第5章受压构件承载力计算
钢筋混凝土设计例题
第5章 受压构件承载力计算
郑州大学
2
1
1 1400 600 555
6500 1.0 1.0 1.08 600
η e0=1.08×600= 648 mm η e0>0.3h0,按大偏心受压构件计算 e =ηe0+h/2-a = 648+600/2-45= 903 mm 4. 计算 As′ b 0.55 取
第5章 受压构件承载力计算
郑州大学
1 1 Nu K K
f A f A c y s
1 0.75 11.9 400 600 300 1256 1520 1.15
2405.74 103 N 2405.74 kN N 800 kN
C ( f y As e f y ' As ' e ')
(300 1256 650.5 300 1520 140.5)
181040400N mm
例题 5.3
第5章 受压构件承载力计算
郑州大学
B B 2 4 AC x 2A 454580 4545802 4 2380 181040400 2 2380
' s
ρ′在经济配筋率范围内,拟定的截面尺寸合理。
(3)选配钢筋并绘制截面配筋图
例题
5.1
第5章 受压构件承载力计算
郑州大学
受压钢筋选用8
20 (As′= 2513 mm2),箍筋选用
6@250。截面配筋见图。
8
20
例题
5.1
第5章 受压构件承载力计算
郑州大学
【例题5-2】某厂房铰接排架的矩形截面偏心受压柱(Ⅱ
第五章受压构件计算
8 f y Ass1 s dcor
Acor
20
2 、 正截面受压承载力计算
(a) (b)
2
s
(c)
Ass 1 Acor S d cor
Ass 1
2 d cor
S d cor
4
Ass 1 d cor 4S
箍筋的换算纵筋面积:
dcor
按体积相等原则换算
s
1.0l
0.7l 0.5l 实际结构按 规范规定取值
一端固定,一端自由
2.0l
4、公式应用
• 截面设计:
已知:fc, f y, l0, N, 求As、A
A N 0.9 ( f c ' f y' )
设ρ’(0.6%~2%), φ=1
N -f c Ac ) 0.9 As f y (
27
受拉破坏时的截面应力和受拉破坏形态 (a)截面应力 (b)受拉破坏形态
N
cu
e0 N
fyAs
f yAs
(a)
N
(b)
2、受压破坏
产生受压破坏的条件有两种情况: ⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
N N
As 太 多
17
混凝土圆柱体三向受压状态的纵向抗压强度
1 f c 4 2
2 、 正截面受压承载力计算
(a) (b)
2
s
(c)
dcor fyAss1
s
2
fyAss1
1 f c 4 2
达到极限状态时(保护层已剥落,不考虑)
Nu 1 Acor f y As
第五章1 钢筋混凝土受压构件正截面承载力计算w
5-6弯曲变形
5-7轴心受压长柱的破坏形态
试验结果表明长柱的承载力低于相同条件短柱的承载 试验结果表明长柱的承载力低于相同条件短柱的承载 力,目前采用引入稳定系数Ψ的方法来考虑长柱纵向 挠曲的不利影响, 挠曲的不利影响,Ψ值小于1.0,且随着长细比的增大 而减小。 而减小。
表5-1 钢筋混凝土轴心受压构件的稳定系数面承载力计
5.2.1 受力过程及破坏特征 轴心受拉构件从开始加载到破坏, 轴心受拉构件从开始加载到破坏,其受力过程可 分为三个不同的阶段: 分为三个不同的阶段: 1.第I阶段 开始加载到混凝土开裂前, 属于第I 阶段。 从 开始加载到混凝土开裂前 , 属于第 I 阶段 。 此 纵向钢筋和混凝土共同承受拉力, 时 纵向钢筋和混凝土共同承受拉力,应力与应变大致 成正比,拉力 N与截面平均拉应变 ε 之间基本上是线 成正比, 性关系, 性关系,如图5-2a中的OA段。
当现浇钢筋混凝土轴心受压构件截面长边或直径 小于300㎜时 ,式中混凝土强度设计值应乘以系数0.8 (构件质量确有保障时不受此限)。 4. 构造要求 (1)材料 混凝土强度对受压构件的承载力影响较大, 混凝土强度对受压构件的承载力影响较大,故宜 采用强度等级较高的混凝土 强度等级较高的混凝土, 采用强度等级较高的混凝土,如C25,C30,C40等。 在高层建筑和重要结构中, 在高层建筑和重要结构中,尚应选择强度等级更高的 混凝土。 混凝土。 钢筋与混凝土共同受压时, 钢筋与混凝土共同受压时 , 若钢筋强度过高 ( 如 则不能充分发挥其作用, 高于 0.002Es) , 则不能充分发挥其作用 , 故 不宜用高 强度钢筋作为受压钢筋。同时, 强度钢筋作为受压钢筋。同时,也不得用冷拉钢筋作 为受压钢筋。 为受压钢筋。
第五章 受压构件的截面承载力
12
3.受压短柱承载力
N 混凝土压碎 钢筋凸出
钢筋屈服
混凝土压碎
N
达到最大承载力时混凝土压坏。 o
l
c' f c 应变 c' 0
如果 y 0则钢筋已经屈服 s' f y' 如果 y 0则钢筋未屈服但 f
' s ' y
fc f y As
(注意f y' 取值原则)
6e0 N 弹性材料 ( 1 ) A h
钢筋混凝土偏心受压构件的破坏形态与 偏心距e0和纵向钢筋配筋率有关
20
一、偏心受压短柱的破坏形态
(一)受拉破坏(大偏心受压破坏)
条件:偏性距较大且As不过多。 靠近纵向力一侧受压,远离纵向力一侧受拉。截面受拉侧混 凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达 到屈服强度。此后,裂缝迅速开展,受压区高度减小,压区 混凝土压碎而达到破坏。受压侧钢筋A‘s 一般能受压屈服。
普通箍筋柱:
螺旋箍筋柱:箍筋的形状为圆形, 且间距较密,其对混凝土的约束作 用较强。
9
纵筋的作用:
◆ ◆ ◆
协助混凝土受压减小截面尺寸、改善截面延性。
承担弯矩作用
减小持续压应力下混凝土收缩和徐变的影响。
箍筋的作用: 与纵筋组成空间骨架,避免纵筋受压外凸。
10
一、配有纵向钢筋和普通箍筋柱
1.试验分析
混凝土:混凝土强度等级对受压构件的承载影响较大,一 般应采用强度等级较高的混凝土。目前我国一般结构中柱 的混凝土强度等级常用C30~C40,在高层建筑中, C50~C60级混凝土也经常使用。 钢筋:纵筋:HRB400 HRB500。箍筋:HRB400 HPB300。
第五章受弯承载力计算双筋矩形截面
M 0
hf M u 1 f cbf hf (h0 ) 2
判别条件:
h xh f M a1 f cbf hf (h0 ) 第一类 T形截面 2
f
f
• 截面设计时:
h xh f M a1 f cbf hf ( h0 ) 第二类 T形截面 2 • 截面复核时:
解两个联立方程,求两个未知数x和As:
M u M u1 + M u 2 M u1 As f y (h0 as ) M u 2 M u M u1 x 1 f cbx(h0 ) 2
Mu2 x f y (h0 ) 2
由求出x ,然后由式出As2:
As 2
_ φ 受压钢筋选用3 20mm钢筋,As’=941mm2 。
求:所需受拉钢筋截面面积As
【解】
由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,
环境类别为二级b,假定受拉钢筋放两排,设保护层
最小厚度35mm为故设α s=35+25/2=47.5mm,则
h0=400-47.5=352.5mm
由混凝土和钢筋等级,查附表(混凝土强
1)求计算系数:
M 330 106 s 2 1.0 19.1 200 4002 1 f cbh0
0.446
1 1 2 s 1 1 2 0.4 46
0.672>b 0.55
∴应设计成双筋矩形截面。
取ξ = ξ b,
M u 1 f cbh (1
1 f cbx
fy
1
而
As1
As f y fy
As f y + 1 f cbx fy
第五章 受弯构件正截面承载力答案
5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。
我们只说喜欢,就算喜欢也是偷偷摸摸的。
”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。
”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。
8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。
9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。
1.“噢,居然有土龙肉,给我一块!”2.老人们都笑了,自巨石上起身。
而那些身材健壮如虎的成年人则是一阵笑骂,数落着自己的孩子,拎着骨棒与阔剑也快步向自家中走去。
第五章 钢筋混凝土受弯构件正截面承载力计算一、填空题:1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态。
2、受弯构件梁的最小配筋率应取 %2.0m i n =ρ 和 y t f f /45min =ρ 较大者。
3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。
4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_。
5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______。
6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算。
7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据。
8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 's A 都未知,计算时引入的补充条件为 b ξξ=。
第五章-受扭构件承载力计算
第五章 受扭构件承载力计算
基础 知识
➢ 材料特性 ➢ 设计方法
构件 设计
学习内容
➢ 受弯构件 ➢ 受剪构件 ➢ 受扭构件 ➢ 偏压、偏拉构件 ➢轴拉构件 ➢轴压构件 ➢变形、裂缝 ➢预应力混凝土结构
结构设计, 后续课程
➢ 桥梁工程
弯梁桥的截面上除有弯矩M剪力V外,还存在扭矩T。由
开裂后的箱形截面受扭构件的受力可比拟成空间桁架:
纵筋为受拉弦杆, 箍筋为受拉腹杆, 斜裂缝间的混凝土为受压腹杆。
裂缝 箍筋
纵筋
T T
F4+F4=Ast4st
F1+F1=Ast1st
s F3+F3=Ast3st
F2+F2=Ast2st
箱形截面的剪应力分布,可采用薄壁管理论
T
rqds
2q
1 2
rds
纵筋的拉力
对隔离体ABCD
F1 F2 qhcorctg
相应其它三个面的隔离体
F1' F4 ' qbcorctg F4 F3 qhcorctg F3' F2 ' qbcorctg
裂缝 箍筋
纵筋
T T
F4+F4=Ast4fy
C
D
F1+F1=Ast1fy
B
F3+F3=Ast3fy
As
F2+F2=Ast2fy
纯扭构件在工程中几乎是没有的。工程中构件往往要同时 承受轴力、弯矩、剪力和扭矩。对于钢筋混凝土弯扭构件, 轴力对配筋的影响很小,可以忽略不计。为简化计算,设计 中可分别计算在弯扭和剪扭共同作用下的配筋,然后再进行 叠加。
受拉构件承载力计算
第一节 收入
通常,所有权上的风险和报酬的转移伴随着所有权凭证的转移或实物的交 付而转移,例如大多数零售交易。但有些情况下,企业已将所有权凭证 或实物交付给买方,但商品所有权上的主要风险和报酬并未转移。可能 有以下几种情况:
企业销售的商品在质量、品种、规格等方面不符合合同规定的要求,又未 根据正当的保证条款予以弥补,因而仍负有责任。
上一页 返回
图5-1矩形截面大偏心受拉构件 正截面受拉承载力示意图
返回
图5-2矩形截面小偏心受拉构件 正截面受拉承载力示意图
返回
第十一章 收入、费用和利润
第一节 收入 第二节 费用 第三节 利润
第一节 收入
一、收入的基本内容
1.收入的含义 我们所熟悉的收入是指企业在日常活动中形成的、会导致所有者权益增加
(2)收入只包括本企业经济利益的流入,不包括企业为第三方或客户代收 的款项 企业为第三方或客户代收的款项,如代收利息、增值税、代收代 缴的税金等。代收的款项,一方由增加企业的资产,一方面增加企业的 负债,同此不能作为本企业的收入。
上一页 下一页 返回
第一节 收入
(3)收入能导致企业所有者权益的增加 根据"资产-负债=所有者权益"这 一静态会计等式不难看出,由于取得收入能导致企业的资产增加或者负 债减少,或二者兼而有之,所以进而必然会使所有者权益增加。但是, 这里所说的收入能增加所有者权益,仅指收入本身的影响,而收入扣除 相关成本与费用后,则可能增加所有者权益,也可能减少所有者权益。
的、与所有者投入资本无关的经济利益的总流入,包括销售商品的收入、 提供劳务收入和让渡资产使用权收入。企业代第三方收取的款项,应当 作为负债处理,不应当确认为收入。
叶见曙结构设计原理第四版第5章
图5-4 矩形截面纯扭构件
图5-5 矩形截面纯扭构件剪应力分布
6
矩形截面钢筋混凝土受扭构件的开裂扭矩,只能近似地 采用理想塑性材料的剪应力图形进行计算,同时通过试验来 加以校正,乘以一个折减系数0.7。于是,开裂扭矩的计算 式为
Tcr =0.7Wt ftd
(5-2)
式中 Tcr——矩形截面纯扭构件的开裂扭矩; ftd ——混凝土抗拉强度设计值; Wt——矩形截面的抗扭塑性抵抗矩,Wt =b2(3h-b)/6。
st
= st,min
Ast,min bh
=0.08
2t -1
fcd fsd
(5-28)
Ast,min——纯扭构件全部纵向钢筋最小截面面积(mm2); h ——矩形截面的长边长度(mm); b ——矩形截面的短边长度(mm); ρst——纵向抗扭钢筋配筋率 ,ρst=Ast/bh; Ast ——全部纵向抗扭钢筋截面积(mm2)。
26
(3)抗弯受拉纵向钢筋As和受压纵向钢筋As’是分别配置 在截面受拉边缘区和受压边缘区,为集中配筋布置。
抗扭纵向钢筋Ast是在截面周边对称均匀形式布置的形式。
h
Ast /3 A's
Ast /3 As Ast /3 b
弯扭剪构件的纵向钢筋(n=3) 配置示意图
配置在截面受(拉)压边缘区 的纵筋,按叠加后所需纵向钢筋面 积截面来选择钢筋直径和布置。
和工字形截面受扭构件的截面配筋计算。 需要解决的问题: 所受扭矩在构件截面上的分配; 纵向钢筋和箍筋的设计。
1 ) T形、工字形截面扭矩分配 T形、工字形截面可以看作是由简单矩形截面所组成的复 杂截面。
T形、工字形截面分块示意图
(1) 在计算其抗裂扭矩、抗扭极限承载力时,可将截 面划分为几个矩形截面,并将扭矩Td 按各个矩形分块的抗扭 塑性抵抗矩按比例分配给各个矩形分块,以求得各个矩形分 块所承担的扭矩。
第五章 钢筋混凝土受扭构件承载力计算
沿45°角主拉应力方向配置螺旋钢筋,并将螺旋钢筋配置 在构件截面的边缘处,由于45°角方向螺旋钢筋不便于施 工,为此,通常在构件中配置纵筋和箍筋来承受主拉应力 承受扭矩作用效应。 钢筋混凝土受扭构件在扭矩作用下,混凝土开裂以前 钢筋应力是很小的,当裂缝出现后开裂混凝土退出工作, 斜截面上拉应力主要由钢筋承受,斜裂缝的倾角α 是变化 的,结构的破坏特征主要与配筋数量有关。 ⑴当混凝土受扭构件配筋数且较少时(少筋构件)结构 在扭矩荷载作用下,混凝土开裂并退出工作,混凝土承担 的拉力转移给钢筋,由于结构配置纵筋及箍筋数量很少, 钢筋应力立即达到或超过屈服点,结构立即破坏。破坏形 态和性质同无筋混凝土受扭构件,共破坏类似于受弯构件 时的少筋梁,属于脆性破坏,在工程设计中应予避免。
根据极限平衡条件,结构受扭开裂扭矩值为
(5-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(5-2)计算的受 扭开裂扭矩值比试验值低,按式(5-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
§5.3建筑工程中受扭构件承载力计算
5.3.1纯扭构件承载力计算
1. 矩形截面钢筋混凝土纯扭构件
矩形截面是钢筋混凝土结构中最常用的截面形式。纯扭 构件扭曲截面计算包括两个方面内容:一为结构受扭的开裂 扭矩计算,二为结构受扭的承载力计算。如果结构扭矩大于 开裂扭矩值时应按计算配置受扭纵筋和箍筋用以满足截面 承载力要求;同时还应满足结构受扭构造要求。
【精】06第五章钢筋混凝土受压构件承载力计算(1)(免费阅读)
第五章钢筋混凝土受压构件承载力计算以承受轴向压力为主的构件称为受压构件(柱)。
理论上认为,轴向外力的作用线与构件轴线重合的受压构件,称为轴心受压构件。
在实际结构中,真正的轴心受压构件几乎是没有的,因为由于混凝土材料组成的不均匀,构件施工误差,安装就位不准,都会导致压力偏心。
如果偏心距很小,设计中可以略去不计,近似简化为按轴心受压构件计算。
若轴向外力作用线偏离或同时作用有轴向力和弯矩的构件称为偏心受压构件。
在实际结构中,在轴向力和弯矩作用的同时,还作用有横向剪力,如单层厂房的柱、刚架桥的立柱等。
在设计时,因构件截面尺寸较大,而横向剪力较小,为简化计算,在承载力计算时,一般不考虑横向剪力,仅考虑轴向偏心力(或轴力和弯矩)的作用。
§5-1 轴心受压构件承载力计算轴心受压构件按其配筋形式不同,可分为两种形式:一种为配有纵向钢筋及普通箍筋的构件,称为普通箍筋柱(直接配筋);另一种为配有纵向钢筋和密集的螺旋箍筋或焊接环形箍筋的构件,称为螺旋箍筋柱(间接配筋)。
在一般情况下,承受同一荷载时,螺旋箍筋柱所需截面尺寸较小,但施工较复杂,用钢量较多,因此,只有当承受荷载较大,而截面尺寸又受到限制时才采用。
(一)普通箍筋柱1、构造要点普通箍筋柱的截面常采用正方形或矩形。
柱中配置的纵向钢筋用来协助混凝土承担压力,以减小截面尺寸,并用以增加对意外弯矩的抵抗能力,防止构件的突然破坏。
纵向钢筋的直径不应小于12mm,其净距不应小于50mm,也不应大于350mm;对水平浇筑的预制件,其纵向钢筋的最小净距应按受弯构件的有关规定处理。
配筋率不应小于0.5%,当混凝土强度等级为C50及以上时应不小于0.6%;同时,一侧钢筋的配筋率不应小于0.2%。
受压构件的配筋率按构件的全截面面积计算(图5.1-1)。
柱内除配置纵向钢筋外,在横向围绕着纵向钢筋配置有箍筋,箍筋与纵向钢筋形成骨架,防止纵向钢筋受力后压屈。
柱的箍筋应做成封闭式,其直径应不小于纵向钢筋直径的1/4,且不小于8mm。
混凝土结构设计原理 第五章 受扭构件承载力计算
fy Astl s z Ast1 ucor f yv
试验表明,当0.5≤z ≤2.0范围时,受扭破坏时纵筋和箍 筋基本上都能达到屈服强度。 《规范》建议取0.6≤z ≤1.7, 当z >1.7时,取z =1.7 设计中通常取z =1.~1.2。
《规范》矩形受扭承载力计算公式
Tu 0.35 f tWt 1.2 z
对于矩形截面一般剪扭构件,
Tu 0.35 t f tWt 1.2 z f yv
Ast1 Acor s
nAsv1 Vu 0.7(1.5 t ) ft bh0 1.25 f yv h0 s
1.5 t V Wt 1 0.5 T bh0
称为剪扭构件混凝土强度 降低系数,小于0.5时取 0.5;大于1时取1。
ft
Tcr , p
b f t (3h b) f tWt 6
2
◆
混凝土材料为弹塑性材料。
◆ 达到开裂极限状态时开裂扭矩介于Tcr,e和Tcr,p之间。 ◆ 引入修正降低系数考虑应力非完全塑性分布的影响。
◆ 根据实验结果,修正系数在0.87~0.97之间,《规范》 为偏于安全起见,取 0.7。开裂扭矩的计算公式为
A's + Astl /3
+
As 4
Astl /3
=
Astl /3
Astl /3
As+ Astl /3
Asv1 s
Ast 1 s
2
Asv1 s
+
=
Asv1 Ast 1 + s s
对于弯剪扭构件,为防止少筋破坏 ★按面积计算的箍筋配筋率
Asv ft sv sv,min 0.28 bs f yv
第5章_钢筋混凝土受压构件承载力计算
第5章_钢筋混凝土受压构件承载力计算钢筋混凝土受压构件承载力计算是建筑设计中非常重要的一部分。
这一章节将介绍如何计算钢筋混凝土受压构件的承载力。
首先,我们需要了解一些基本概念和符号。
钢筋混凝土受压构件是指在受压状态下的梁、柱等结构构件。
计算承载力时,通常采用极限状态设计法,即根据结构在最不利工况下的破坏状态进行计算。
钢筋混凝土受压构件的承载力主要包括弯曲承载力和轴心受压承载力两个方面。
弯曲承载力指的是构件在受弯矩作用下的破坏,而轴心受压承载力指的是构件在受轴向压力作用下的破坏。
本章将主要介绍弯曲承载力的计算方法。
首先,我们需要计算构件的截面性能参数,如截面面积、惯性矩、抵抗矩等。
这些参数可通过截面尺寸和施工材料的材料力学性质进行计算。
对于常见的矩形截面,截面面积为b×h,其中b为截面的宽度,h为截面的高度。
惯性矩和抵抗矩可通过以下公式计算:I=b×h^3/12W=b×h^2/6其中,I为惯性矩,W为抵抗矩。
接下来,我们需要确定混凝土的受压峰值应力和钢筋的受拉峰值应力。
根据混凝土的强度和钢筋的屈服强度,可确定其中的应力值。
混凝土的受压峰值应力可根据混凝土的强度和安全系数计算得到。
而钢筋的受拉峰值应力通常取屈服强度的0.87倍。
然后,我们需要计算弯曲承载力的设计值。
弯曲承载力的设计值是根据构件的几何形状和材料力学参数计算得到的。
常见的弯曲承载力计算公式如下:MRd = W×fcd×(d-0.5a)+A5fyd(a+(d-a)/2)其中,MRd为弯曲承载力的设计值,W为截面的抵抗矩,fcd为混凝土的设计受压强度,d为混凝土受压区高度,a为混凝土受压区到受拉钢筋的距离,A5为受拉钢筋的截面面积,fyd为受拉钢筋的设计抗拉强度。
最后,我们需要检查计算得到的弯曲承载力是否满足设计要求。
通常,需要将设计值与允许值进行比较。
如果设计值小于允许值,则说明构件能够满足设计要求;如果设计值大于允许值,则需要进行调整,以满足设计要求。
受压构件承载力计算
e0b M b 0.5[fcbb (h bh0 ) ( f yAs f y As )(h0 a) / h0 ]
h0 Nbh0
fcb bh0 f yAs f y As
第六章 受压构件
e0b M b 0.5[fcbb (h bh0 ) ( f yAs f y As )(h0 a) / h0 ]
6 受压构件承载力计算
6.1 概述 主要以承受轴向压力为主,一般还有弯矩
和剪力作用
(a)轴心受压
(b)单向偏心受压 (c)坏,往往造成整个构造旳损坏,甚至倒塌。
轴心受压构件
纵筋旳主要作用: 帮助混凝土受压
箍筋旳主要作用: 预防纵向受力钢筋压屈
Ass 0
dcor Ass1
s
c
Nu fc Acor f yAs 2 f y Ass0
N Nu 0.9( fc Acor f yAs 2f y Ass0 )
螺旋箍筋对混凝土约束旳折减系数,当fcu,k≤50N/mm2时,取 = 1.0;当fcu,k=80N/mm2时,取 =0.85,其间直线插值。
第六章 受压构件
受拉破坏和受压破坏旳界线
◆ 即受拉钢筋屈服与受压区混凝土边沿极限压应变ecu
同步到达 ◆ 与适筋梁和超筋梁旳界线情况类似。 ◆ 所以,相对界线受压区高度仍为,
b
1
b
fy
e cu Es
第六章 受压构件
当 ≤b时 —受拉破坏(大偏心受压)
Nu fcbx f yAs f y As
fcc fc 4 c
c sdcor 2 f y Ass1
c
c
2 f y Ass1 s dcor
f cc
fc
8 f y Ass1 s dcor
第5章 受压构件思考题和习题答案
钢筋混凝土受压构件计算题1、某轴心受压柱,截面尺寸b ×h =400×500mm ,计算长度l 0=4.8m ,采用混凝土强度等级为C25,HPB235级钢筋,承受轴向力设计值N =1670kN ,计算纵筋数量。
【解】由已知条件知:ƒc =11.9N/mm 2, f y '=210N/mm 2⑴计算稳定系数φl 0/b =4800/400=12,查表得:φ=0.95⑵计算纵筋截面面积A s ',并校验ρ'由于11.940050023801670c f A KN KN =⨯⨯=>,即混凝土的抗压能力已经满足轴向力的要求,所以纵筋按照构造要求配置即可。
2min0.6%4005001200s A A mm ρ''=⨯=⨯⨯= ⑶配筋采用4Φ20,2212561200sA mm mm '=>,可以。
截面每一侧配筋率0.512560.003140.2%400500ρ⨯'==>⨯,可以。
所以,选用4根直径20mm 的HPB235级钢筋,21256sA mm '=。
2、某钢筋混凝土偏心受压柱,承受轴向压力设计值N =250kN ,弯矩设计值M =158kN·m ,截面尺寸为b ×h =300×400mm ,a s =a s '=40mm ,柱的计算长度l 0=4.0m ,采用C25混凝土和HRB335钢筋,进行截面对称配筋设计。
【解】由已知条件知:ƒc =11.9N/mm 2, f y '=f y =300N/mm 2⑴计算初始偏心距e ie 0=N M =631581025010⨯⨯=632mm e a ={30h ,20mm }max ={13mm ,20mm }max =20mmi 0a ⑵计算偏心距增大系数ηh 0=400-40=360mml 0/h =4000/400=10>5,应考虑附加弯矩的影响。
第五章受压构件的截面承载力(小偏压三种情况说明)
h ¢ ¢ N u e 1 f c bh0 (h0 ) f y¢ As (h0 a¢ s) 2
e¢ h a¢ s (e0 ea ) 2
f ¢yAs
a1f cbx h0 – a¢ s h¢ 0
ssA¢s
a¢ s
as
大偏心受压不对称配筋
不对称配筋
小偏心受压不对称配筋 实际工程中,受压构件常承受变号弯矩作用,所以采用对称配筋
对称配筋不会在施工中产生差错,为方便施工通常采用对称配筋
大偏心受压对称配筋 对称配筋 小偏心受压对称配筋
5.6 非对称配筋截面的承载力计算
大小偏心分界限
当 < b 属于大偏心破坏形态 > b 属于小偏心破坏形态
e0b
Nb
界限破坏时: =b,由平衡条件得 f y As 1 fcbh0b
界限破坏
当受拉钢筋屈服的同时,受压边缘混凝土应变 达到极限压应变。
大小偏心受压的分界:
As h0
A¢s
x h0
xb b h0
s y
g h 0.002
当 < b ––– 大偏心受压 ab
b c d e f
x0
a¢¢ a¢ a xcb
= b ––– 界限破坏状态 ad
cu
(1)偏心距小,构件全截面受压,靠近纵向力一侧压应力 大,最后该区混凝土被压碎,同时压筋达到屈服强度,另一 侧钢筋受压,但未屈服。 (2)偏心距小 ,截面大部分受压,小部分受拉,破坏时压区 混凝土压碎,受压钢筋屈服,另一侧钢筋受拉,但由于离中 和轴近,未屈服。 (3)偏心距大,但受拉钢筋配置较多。由于受拉钢筋配置较多, 钢筋应力小,破坏时达不到屈服强度,破坏是由于受压区混 凝土压碎而引起,类似超筋梁。 特征:破坏是由于混凝土被压碎而引起的,破坏时靠近纵向力 一侧钢筋达到屈服强度,另一侧钢筋可能受拉也可能受压, 但都未屈服。
第5章 受扭构件
2. T形和工字形截面纯扭构件承 载力计算 总扭矩T由腹板、受压翼缘 和受拉翼缘三个矩形块承担
bf'
hf '
腹板:
受压翼缘:
Wtw TW T Wt
Tf Wtf Wt
T
h
b
hw
T
hf
受拉翼缘:
Tf
0.875 f t bh0 时,可按 (1)当 V 0.35 f t bh0 或 V 1
受弯构件的正截面受弯承载力和纯扭构件的受扭承载 力分别进行计算。 (2)当
T 0.175 f tWt
时,可按受弯构件的正截面受弯
承载力和斜截面的受剪承载力分别进行计算。
(3)其它情况按弯剪扭构件进行承载力计算。
sv ,min
Asv ,min bs
ft 0.28 f yv
4. 构造要求 (1)纵筋 受扭纵筋应对称设置于截面的周边; 伸入支座长度应按充分利用强度的受拉钢筋考虑。 (2)箍筋 箍筋的最小直径和最大间距要 满足表4-2和表4-3要求; 箍筋要采用封闭式。
5.2.5 弯剪扭构件计算方法确定 《规范》规定:矩形截面弯剪扭构件,可按下列规定进 行承载力计算:
2纯扭构件的破坏特征
1). 素混凝土纯扭构件
素混凝土纯扭构件 先在某长边中点开裂 主拉应力、主压应力成45度角
T(T)
T(T)
2
1 2
裂缝
1
Tmax
形成一螺旋形裂缝,一裂即坏
受压区
三边受拉,一边受压
2). 钢筋混凝土纯扭构件
一、开裂前的应力状态
max
第05章 受压构件的截面承载力
第5章 受压构件
2.承载力计算计算
轴心受压短柱 轴心受压长柱
N f c A f y As
s u
N N
l u
s u
稳定系数
N N
l u s u
稳定系数 主要与
柱的长细比l0/b有关
N N u 0.9 ( f c A f y As )
可靠度调整系数 0.9是考虑初始偏心的影响,以及主要承受恒 载作用的轴心受压柱的可靠性。
第5章 受压构件
箍筋
第5章 受压构件
截面形状复杂的构件,不可采用具有内折角的箍筋
第5章 受压构件
箍筋的作用
(1)与纵筋形成骨架,便于施工; (2)防止纵筋的压屈; (3)对核心混凝土形成约束,提高混凝土的抗压强度,增加构件的延性。
第5章 受压构件
柱钢筋图
第5章 受压构件
电渣压力焊
第5章 受压构件
第5章 受压构件
表5-1
6.1 轴心受压构件的承载力计算
第5章 受压构件
5.2.2 轴心受压螺旋箍筋柱的正截面受压 承载力计算
Õ ¨Ö ¿ ù Æ Í ¸ ¹ Ö
Ý ý Ö ¿ ù Â Ð ¸ ¹ Ö
6.1 轴心受压构件的承载力计算
第5章 受压构件
混凝土圆柱体三向受压状态的纵向抗压强度
f f c r
第5章 受压构件
(2)随着荷载的增大,构件变形迅速增大,此时混凝
土塑性变形增加,弹性模量降低,应力增加缓慢,而钢
筋应力的增加则越来越快。在临近破坏时,柱子表面出 现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间 的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏。 破坏时混凝土的应力达到棱柱体抗压强度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
先假设 1, ' ,AAs'估算1%出A,然后确定As,纵筋配筋率 宜在0.5%~2%之间。
教材例题5-1。
B 截面复核(Check of Sections)
已知:柱截面尺寸和配筋,柱计算长度和材料强度等级。 计算:柱能承担的轴向力设计值(或标准值)。
方法与步骤:将有关数据代入计算公式即可求得构件
所能承担的轴向力设计值。
2 纵筋+螺旋箍筋柱(Spiral Column)
2.1 使用场合:当轴心受压构件承受的轴向荷载设计值较
大,而同时其截面尺寸由于建筑上及使用上的要求而受到限 制,若按配有纵筋和普通箍筋的柱来计算,即使提高混凝土 强度等级和增加了纵筋用量仍不能满足承受该荷载的计算要 求时,可考虑采用配有螺旋式(或焊接环式)箍筋柱,以提高 构件的承载能力。但由于施工比较复杂,造价较高,用钢量 较大,一般不宜普遍采用。不过,在地震区,配置螺旋式 (或焊接环式)箍筋却不失为一种提高轴心受压构件延性的有
•教材例题5-2。
§ 5.3 偏心受压构件正截面承载力计算
§5.3 Carrying Capacity Calculations of Nomal Sections in
Compression Members with Eccentricities
0 相关概念(concept)
e0
M N
仅承受偏心压力
大偏心受压破坏形态
Failure shapes for compression members with large eccentricities.
1.2 小偏心受压破坏(Compression Failure with Small Eccentricities )
形成条件:构件截面中轴向压力的偏心距较小或很小,或虽然偏心距较大, 但配置过多的受拉钢筋。
规范公式限制条件: (1)算得的承载力不宜大于普通箍柱承载力的1.5倍,以免保 护层过早脱落。 (2)当l0/d>12时,不考虑箍筋的有利作用。 (3)当按上式算得的承载力小于普通箍柱承载力时,取后 者。 (4)Ass0 小于As’的25%时,不考虑箍筋的有利作用。
•箍筋-间接钢筋要求:
•间距:40mms 80mm和dcor/5;直径按普通柱箍筋 的直径规定。
箍筋间距不应大于400mm及构件的短边尺寸,同时在 绑扎骨架中不应大于15d,在焊接骨架中不应大于20d 。 此处,d为纵向钢筋中的最小直径。
当柱中全部纵向钢筋的配筋率大于3%时,箍筋直径不 宜小于8mm,且应焊成封闭式的,其间距不应大于10d(d 为纵筋的最小直径),且不应大于200mm。
柱中箍筋应做成封闭式,其形状及布置应配合柱的截面 形状及纵筋根数。当柱截面各边纵筋根数超过3根时,应 设置复合箍筋,其配置要求是使纵筋每隔一根位于箍筋转 角处。当柱的短边边长b≤400mm,且纵向钢筋根数不多 于4根时,可采用单个封闭箍筋。
形成条件:构件截面中轴向压力的偏心距较大,而且没有配置过多的受拉 钢筋。
试验与分析:弯矩M 的影响较为显著,具有与适筋受弯构件类似的受力特 点。在偏心距较大的轴向压力N 作用下,远离纵向偏心力一侧截面受拉。 当N 增大到一定程度时,受拉边缘混凝土将达到其极限拉应变,从而出现 垂直于构件轴线的裂缝。这些裂缝将随着荷载的增大而不断加宽并向受压 一侧发展,裂缝截面中的拉力将全部转由受拉钢筋承担。随着荷载的增大, 受拉钢筋将首先达到屈服。随着钢筋屈服后的塑性伸长,裂缝将明显加宽 并进一步向受压一侧延伸,从而使受压区面积减小,受压边缘的压应变逐 步增大。最后当受压边混凝土达到其极限压应变时,受压区混凝土被压碎 而导致构件的最终破坏。这类构件的混凝土压碎区一般都不太长,破坏时 受拉区形成一条较宽的主裂缝。
fcA co rfy'A s' 2fyA s0 s
规范公式: 0 N N u 0 .9 ( f c A c o fy r 'A s ' 2 fy A s 0 ) s
α-间接钢筋对混凝土约束的折减系数取值 当混凝土强度等级≤C50时,取α=1.0;当混凝土强度等级 =C80时,取α=0.85;其间按线性内插法确定。
参见教材p130图 5-2与图5-3
柱箍筋构造要求
(5)上下层柱纵筋的搭接
柱每侧纵筋不超过3根时,可允许在同一截面搭接;多于 3根时,接头位置应相互错开,同一搭接区段内接头面积 不宜大于50%。
§ 5.2 轴心受压构件正截面承载力计算
§5.2 Carrying Capacity Calculations of Nomal Sections in
Chap. 5 Carrying Capacity Calculations of RC Compression Members
扬州科技学院土木工程系 朱平华
0 概述Introduction
1受压构件工程实例
2 分类
轴心受压 实例
RC受压构件 纵向压力作 用线与截面 形心重合否
是
否
轴心受压 偏心受压
外鼓出,凸边混凝土开裂,柱失去平衡状态。
1.2 承载力计算公式
稳定系数:长柱承载力与短柱承载力的比值 。
Nl Ns
长柱的极限承载力: N lN s(fcA fy'A s')
规范公式:
0N 0 .9 (fcA fy'A s')
规范公式应用
(1)稳定性系数 取法:由长细比确定。
l0 /b(b为矩形截面短边尺寸) 长细比 l0 /d(d为圆形截面的直径)
向钢筋,以有利于混凝土的浇筑密实,但钢筋根数不得少于4根。 纵向钢筋的保护层厚度要求与梁相同≥25mm或d 。当柱为竖位浇
注混凝土时,纵筋的净间距不应小于50mm;对水平位置浇注的预制 柱,其净间距要求与梁同。柱中纵向钢筋的中距不应大于350mm。
纵向钢筋配筋率过小时,柱的受力接近于纯混凝土柱,纵筋将起不 到防止脆性破坏的缓冲作用。同时为了承受可能存在的不大的弯矩, 以及收缩、温度变化引起的应力,对受压构件的最小配筋率应有所限 制。
Axial Compression Members
①纵筋+普通箍筋
普通箍筋柱
轴心受压柱 按箍筋形式
1 纵筋+普通箍筋柱
②纵筋+螺旋式箍筋 或焊环式间接钢筋
螺旋箍筋柱
纵筋的作用 箍筋的作用
①协助混凝土承担压力,防止混凝土的脆性破坏
②承受因荷载偏心引起的弯矩 ①与纵筋构成空间骨架
②减少纵筋的计算长度,防止纵筋过早压屈
1.1 试验研究结果
短柱试验
试验结果:全截面应变均匀分布,荷载增加应变亦增加;混凝土达到极 限压应变后,柱出现纵向裂缝,混凝土保护层剥落,纵向钢筋外凸,构 件因混凝土压碎而破坏。 试验结果分析:(1)应变c: s ;(2)应力:s' sE s, ccE c;(3) 柱破坏时,混凝土极限压应变在0.002以内,钢筋的最大应力=400MPa。
l0 /i(i为组合截面最小回转 径半 )
试验研究表明:
l0 /b8时,1 l0 /b8~34时,1.1770.02l10 /b l0 /b35~50时,0.870.012l0 /b
规范取法见教材 P133表5-1。
(2)截面面积取法:当配筋率
As' A
3%
,A改为Ac,
Ac AAs'
(3)计算长度lo 取法: (A)一般有侧移的多层房屋的钢筋混凝土框架柱(柱与梁为刚
2.3 应力计算公式
螺旋箍筋承受拉应力,达到屈服强度
后就不能再约束混凝土的横向变形,
柱即压碎。
柱核心混凝土抗压强度
箍筋屈服时柱核芯混凝 土受到的径向应力
fyAss1
c dcor
fc1fc4c fyAss1
c 可由在箍筋间距s 范围内 c 的合力与箍
筋拉力相平衡的条件,得:
间接钢筋的换算
面积
c
《规范》规定轴心受压构件全部纵向钢筋的配筋率( )不As' /得A小于
O.6%(即 )。从m' i经n 济和施工方面来考虑,为了不使截面配筋过于拥挤,
除采用型钢配筋的柱以外,全部纵向钢筋的配筋率不应大于
5%( m' )ax。
(4)箍筋 箍筋一般采用I级钢筋,其直径不应小于d/4,亦不小于
6mm;当采用冷拔低碳钢丝时,不应小于d/5或5mm。 此处,d为纵向钢筋中的最大直径。
接):
现浇楼盖底层柱lo=1.0H;其余各层拄lo=1.25H; 装配式楼盖底层柱lo=1.25H;其余各层柱lo=1.5H 。 (B)可按无侧移考虑的钢筋混凝土框架结构,如具有非轻质
隔墙的多层房屋,当为三跨及三跨以上或为两跨且房屋的
总宽度不小于房屋总高度的l/3时,其各层柱的计算长度:
现浇楼盖lo=O.7H;装配式楼盖lo=1.OH 。 (C)理想连接柱计算长度:两端铰支,lo=H;两端固定, lo=0.5H;一端固定另一端铰支, lo=0.7H;一端固定另一 端自由, lo=2H。
受压构件的承载力主要取决于混凝土,因此,采用较高 强度的混凝土是经济合理的,一般柱混凝土强度等级采用 C30、C35或C40,对于高层建筑的底层柱必要时可采用更 高的强度等级。
(Байду номын сангаас)纵向钢筋
纵向钢筋一般常用Ⅱ级、Ⅲ级钢筋,不宜采用更高强度钢筋,因其
强度不能充分利用。 钢筋直径d不应小于12mm,柱中宜采用根数较少,直径较粗的纵
力措施。柱的截面形状一般为圆形或多边形。
2.2 受力分析
dcor
Acor
配螺旋式、焊接环式箍筋的轴心受压柱
混凝土的纵向受压破坏可以认 为是由于横向变形而发生拉坏 的现象。如果能约束其横向变 形就能间接提高其纵向抗压强 度。对配置螺旋式或焊接环式 箍筋的柱,箍筋所包围的核心 混凝土,相当于受到一个套箍 作用,有效地限制了核心混凝 土的横向变形,使核心混凝土 在三向压应力作用下工作,从 而提高了轴心受压构件正截面 承载力。