八年级上册幂的运算

合集下载

数学华师大版八年级上《幂的运算》课件ppt(共18张PPT)

数学华师大版八年级上《幂的运算》课件ppt(共18张PPT)

同底数幂相乘 m n m+n a · a =a
指数相加 底数不变 指数相乘
其中m , n都是 正整数
m n mn (a ) =a
幂的乘方

练习一
2. 计算:
①(10m· 10m-1 ).100= 102m+1 ②3×27×9×3m=
15 (m - n) =
3m+6
③(m-n)4· (m-n) 5· (n-m)6
幂的运算 3 积的乘方
积的乘方
回忆: 同底数幂的乘法法则:
m n m+n a · a =a
其中m , n都是正整数
语言叙述: 同底数幂相乘,底数 不变,指数相加
回忆: 幂的乘方法则:
m n mn (a ) =a
其中m , n都是正整数
语言叙述: 幂的乘方,底数不变, 指数相乘
想一想:同底数 幂的乘法法则与 幂的乘方法则有 什么相同点和不 同点?
(C)(x7)7
(D )x 3x 4x 5x 2
3.计算(-32)5-(-35)2的结果是( B )
(A )0
(C)2×310
(B) -2×310
(D) -2×37
积的乘方
(1)(ab)2 = (ab) • (ab) = (aa) • (bb) = a (2 )b( 2 ) (ab) • (ab) • (ab) (2)(ab)3=__________________________
(aaa) • (bbb) =__________________________
= a ( 3 )b( 3 ) (ab) • (ab) • (ab) • (ab) (3)(ab)4=__________________________ (aaaa) • (bbbb) =__________________________ =a

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(教师版)25学年八年级数学上册

幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)(人教版)(教师版)25学年八年级数学上册

专题14.1幂的运算(3大知识点7类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的乘法法则+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.【要点提示】(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m nm n aa a +=⋅(,m n 都是正整数).【知识点2】幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.【要点提示】(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式:()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识点3】积的乘方法则()=⋅n n nab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.【要点提示】(1)公式的推广:()=⋅⋅nnnnabc a b c(n 为正整数).(2)逆用公式:()n n na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识点4】注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【题型目录】【题型1】同底数幂的乘法运算及逆运算...........................................2;【题型2】幂的乘方运算及逆运算.................................................4;【题型3】积的乘方运算及逆运算.................................................7;【题型4】幂的混合运算.........................................................9;【题型5】幂的运算的应用.......................................................11;【题型6】直通中考.............................................................13;【题型7】拓展与延伸...........................................................14.第二部分【题型展示与方法点拨】【题型1】同底数幂的乘法运算及逆运算【例1】(23-24七年级上·河南周口·期中)在学习第一章有理数时,类比小学两个正数的运算法则学习了有理数的加减法、有理数的乘除法,在第二章整式的加减时,类比第一章有理数的学习过程学习了整式的加减,那么整式的乘法是否可以类比有理数的乘法进行学习呢?我们从特殊情况入手对两个同底数幂相乘进行探究.(1)探究根据乘方的意义填空,观察计算结果,你能发现什么规律①53( )222⨯=,②42( )a a a ⋅=,③( )555m n ⨯=,(2)规律( )m n a a a ⋅=(,m n 都是正整数).即__________________________.(文字表达)(3)应用①计算31m m a a +⋅;②把(2)x y +看成一个整体,计算23(2)(2)x y x y +⋅+.【答案】(1)①8;②6;③;m n +(2);m n +同底数幂相乘,底数不变,指数相加(3)①41m a +;②5(2)x y +【分析】本题考查了同底数幂的乘法公式的推导和应用.掌握同底数幂的乘法公式的计算公式是关键;(1)(2)(3)根据同底数幂相乘,底数不变,指数相加解答即可;解:(1)①853(35)2222+⨯==,②642(4+2)a a a a ⋅==,③555m n m n +⨯=,故答案为:8;6;;m n +(2)m n m n a a a +⋅=,即同底数幂相乘,底数不变,指数相加;故答案为:;m n +同底数幂相乘,底数不变,指数相加;(3)①1314m m m a a a ++⋅=;②253.(2)(2)(2)x y x y x y +=+⋅+【变式1】(23-24七年级下·全国·单元测试)计算3()()x y y x -⋅-=()A .4()x y -B .4()x y --C .4)y x -(D .4()x y +【答案】B【分析】本题考查了同底数幂的乘法法则,把()x y -看作一个整体,利用同底数幂的乘法法则即可求解.解题的关键是熟练的掌握同底数幂的乘法法则.解:334()()()()()x y y x x y x y x y -⋅-=--⋅-=--,故选:B .【变式2】(23-24七年级下·全国·单元测试)已知1222162x x ⋅⋅=,则x =.【答案】4【分析】本题主要考查了同底数幂的乘法运算,根据同底数幂相乘,底数不变指数相加,将1222162x x ⋅⋅=变形为:241222x +=,从而得出2412x +=,再求出x 的值即可.解:42421622222x x x x x +⋅=⋅⋅⋅=,∵1222162x x ⋅⋅=,∴241222x +=,∴2412x +=,解得:4x =.故答案为:4.【例2】(2024七年级下·全国·专题练习)(1)已知23x =,求32x +的值;(2)若21464a +=,求a 的值.【答案】(1)24;(2)1a =【分析】本题考查的是同底数幂的乘法运算的逆运算,熟记运算法则是解本题的关键;(1)由33222x x +=⨯,再代入数据计算即可;(2)由21344a +=,再建立方程求解即可.解:(1)∵23x =,∴332238242x x +=⨯=⨯=;(2)∵21464a +=,∴21344a +=,∴213a +=,解得1a =.【变式1】(23-24七年级下·江苏淮安·期中)已知23x =,26y =,则2x y +的值是()A .12B .18C .36D .54【答案】B【分析】本题考查了同底数幂的乘法的逆用,根据同底数幂的乘法法则进行变形即可求解,解题的关键是熟练掌握同底数幂的乘法法则.解:由8232261x y x y +=⨯=⨯=,故选:B .【变式2】(2024七年级上·上海·专题练习)已知4222112x x +-⋅=,则x 的值为.【答案】3【分析】本题主要考查同底数幂的乘法运算以及提取公因式法分解因式,熟练并正确掌握相关运算法则是解题的关键.解:∵4222112x x +-⋅=,∴()13221112x +⨯-=,故142162x +==,解得:3x =故答案为:3.【题型2】幂的乘方运算及逆运算【例3】(21-22七年级上·上海·期末)计算:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦.【答案】12x 【分析】先计算幂的乘方和同底数幂的乘法,再合并同类项即可.解:()()()3254652x x x x x x ⎡⎤⋅-⋅+-⋅+-⎣⎦121212x x x =-++12x =.【点拨】本题考查了整式的运算法则,解题的关键是熟记幂的乘方,同底数幂的乘法,合并同类项的知识.【变式1】(2022·江苏镇江·中考真题)下列运算中,结果正确的是()A .224325a a a +=B .3332a a a -=C .235a a a ⋅=D .()325a a =【答案】C【分析】根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则逐项计算即可判断选择.解:222325a a a +=,故A 计算错误,不符合题意;3332a a a -=-,故B 计算错误,不符合题意;235a a a ⋅=,故C 计算正确,符合题意;()326a a =,故D 计算错误,不符合题意.故选C .【点拨】本题考查合并同类项,同底数幂的乘法,幂的乘方.熟练掌握各运算法则是解题关键.【变式2】.若25 3 0x y +-=,则432⋅=x y .【答案】8【分析】根据已知条件可得2+5=3x y ,根据幂的乘方运算以及同底数幂的乘法进行计算即可求解.解:∵25 3 0x y +-=∴2+5=3x y ,∴432⋅=x y 2525322228x y x y +⨯===,故答案为:8.【点拨】本题考查了幂的乘方运算以及同底数幂的乘法,熟练掌握幂的运算法则是解题的关键.【例4】(2023八年级上·全国·专题练习)(1)若23m n a a ==,,求32m n a +的值;(2)若2639273x x ⨯⨯=,求x 的值.【答案】(1)72;(2)5【分析】(1)利用幂的乘方和同底数幂的乘法法则进行变形,再利用整体代入计算即可;(2)把2639273x x ⨯⨯=变形为1232633x x ++=,得到关于x 的方程,解方程即可得到答案;熟练掌握幂的乘方、同底数幂的乘法法则,并利用整体思想是解题的关键.解:(1)∵23m n a a ==,,∴32m na +32m na a =⋅()()32m na a =⋅3223=⨯89=⨯72=;(2)2639273x x ⨯⨯=,23263333x x=⨯⨯()(),23263333x x ⨯=⨯,1232633x x ++=,12326x x ++=,5x =.【变式1】已知553a =,444b =,335c =,则a 、b 、c 的大小关系为()A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A【分析】把a 、b 、c 三个数变成指数相同的幂,通过底数可得出a 、b 、c 的大小关系.解:∵a =(35)11=24311,b =(44)11=25611,c =(53)11=12511,又∵125243256<<,∴c a b <<.故选:A .【点拨】本题考查了幂的乘方的逆运算,解答本题关键是掌握幂的乘方法则,把各数的指数变成相同.【变式2】(23-24八年级上·重庆九龙坡·阶段练习)已知433,33a b ==,则239a b ⨯=.【答案】16【分析】直接根据同底数幂的乘法以及幂的乘方运算法则进行计算即可得到答案.解:∵433,33a b==,∴()()()()222222243933333163a b a ba b ⎛⎫⨯=⨯=⨯=⨯= ⎪⎝⎭故答案为:16.【点拨】本题主要考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解答本题的关键.【题型3】积的乘方运算及逆运算25.【例5】(22-23八年级上·黑龙江哈尔滨·阶段练习)(1)()34222x x x ⋅-;(2)()()23332232x y x y +-【答案】(1)6x ;(2)66x y 【分析】(1)根据同底数幂乘法法则及幂的乘方计算法则计算,再合并同类项即可;(2)根据积的乘方计算法则去括号,再合并同类项即可.解:(1)()34222x x x ⋅-662x x =-6x =;(2)()()23332232x y x y +-666698x y x y =-66x y =.【点拨】此题考查了整式的计算,正确掌握同底数幂乘法法则及幂的乘方计算法则、积的乘方计算法则、合并同类项法则是解题的关键.【变式1】(2022·广东深圳·中考真题)下列运算正确的是()A .268a a a ⋅=B .()3326a a -=C .()22a b a b+=+D .235a b ab+=【答案】A【分析】分别根据同底数幂的乘法法则,积的乘方运算法则,单项式乘多项式及合并同类项的法则逐一判断即可.解:A 、268a a a ⋅=,计算正确,故此选项符合题意;B 、33(2)8a a -=-,原计算错误,故此选项不符合题意;C 、2()22a b a b +=+,原计算错误,故此选项不符合题意;D 、23a b +,不是同类项不能合并,原计算错误,故此选项不符合题意.故选:A .【点拨】本题考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式2】(20-21七年级下·江苏扬州·期末)已知am =10,bm =2,则(ab )m =.【答案】20【分析】根据积的乘方计算法则解答.解:∵am =10,bm =2,∴(ab )m =10220m m a b ⋅=⨯=,故答案为:20.【点拨】此题考查积的乘方计算法则:积的乘方等于积中每个因式分别乘方,再把结果相乘,熟记法则是解题的关键.【例6】(2023九年级·全国·专题练习)用简便方法计算:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()201720180.1258⨯-.【答案】(1)1-;(2)8-.【分析】(1)原式逆用积的乘方运算法则进行计算即可;(2)先将20188-变形为201788-⨯,再逆用积的乘方运算法则进行计算即可.解:(1)88552510.25(4)57⎛⎫⎛⎫-⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭8585715()()()(4)547=-⨯⨯⨯-8855751(4)574⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-⨯⨯⨯-⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦58751(4)574⎛⎫⎡⎤=-⨯⨯⨯- ⎪⎢⎥⎝⎭⎣⎦1(1)=⨯-1=-;(2)()201720180.1258⨯-()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭()201720171888⎛⎫=⨯-⨯ ⎪⎝⎭20171888⎛⎫=-⨯⨯ ⎪⎝⎭18=-⨯8=-.【点拨】本题主要考查了积的乘方的逆运算,熟练掌握运算法则是解答本题的关键.【变式1】(22-23七年级下·河北沧州·期中)若n 为正整数.且24n a =,则()()223224nn a a -的值为()A .4B .16C .64D .192【答案】D【分析】根据积的乘方以及逆运算对式子进行化简求解即可.解:()()2232642444nnn na a a a -=-()()322232444444nna a =-=⨯-⨯()32444448192=⨯-=⨯=,故选D .【点拨】此题考查了幂的有关运算,解题的关键是熟练掌握幂的有关运算法则.同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方.【变式2】已知2232336x x x ++-⋅=,则x =.【答案】8.【分析】根据积的乘方和幂的乘方的逆运算,把等式变形,根据指数相同求解即可.解:2232336x x x ++-⋅=,根据积的乘方和幂的乘方,等式可变形为:223(23)(6)x x +-⨯=,即22666x x +-=,226x x +=-,解得,8x =故答案为:8.【点拨】本题考查了幂的运算的逆运算,解题关键是把等式恰当变形,依据底数相同,指数也相同列方程.【题型4】幂的混合运算【例7】(21-22八年级上·全国·课后作业)计算:(1)()()()2243224249()(2)--+-a a b a b ;(2)()()()22112()3------n n n nx x x x x .【答案】(1)8425a b ;(2)31n x -.【分析】(1)先计算幂的乘方,再计算同底数幂,最后合并同类项即可;(3)先计算幂的乘方,再计算同底数幂,最后合并同类项即可.解:(1)()()()2243224249()(2)--+-a a b a b ,=62484916a a b a b ⋅⋅+,=8484916a b a b +,=8425a b ;(2)()()()22112()3------n n n nx x x x x ,=()()21212()3n n n n xx x x x -----,=()2112123n n n n x x -+++--+,=313123n n x x ---+,=31n x -.【点拨】本题考查整式的幂指数运算,掌握幂的乘方,同底数幂的乘法,合并同类项是解题关键.【变式1】(20-21七年级下·甘肃兰州·阶段练习)下列各式计算正确的是()A .-3xy ·(-2xy )2=12x 3y 3B .4x 2·(-2x 3)2=16x 12C .(-a 2)·a 3=a 6D .2a 2b ·(-ab )2=2a 4b 3【答案】D【分析】根据幂的运算法则逐一计算,可得结果.解:A 、()2333212xy xy x y -⋅--=,故选项错误;B 、()22384216x x x ⋅-=,故选项错误;C 、()236a a a -⋅=-,故选项错误;D 、()224322a b ab a b ⋅-=,故选项正确;故选D .【点拨】本题考查了幂的混合运算,熟练掌握运算法则是解题的关键.【变式2】已知2,3x x a t ==,则24x =.(用含,a t 的代数式表示)【答案】3a t解:∵2x =a ,3x =t ,∴24x =(23×3)x =23x ×3x =(2x )3×3x =a 3t .故答案为a 3t .【题型5】幂的运算的应用【例8】(23-24八年级上·山西长治·阶段练习)我们知道,一般的数学公式、法则、定义可以正向运用,也可以逆向运用.对于“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为m n m n a a a += ,()()n m mn m n a a a ==,()mm m a b ab =;(m ,n 为正整数).请运用这个思路和幂的运算法则解决下列问题:(1)已知552a =,443b =,334c =,请把a ,b ,c 用“<”连接起来:;(2)若2a x =,3b x =,求32a b x +的值;(3)计算:2001001011284⎛⎫⨯⨯ ⎪⎝⎭.【答案】(1)a c b <<;(2)72;(3)8.【分析】(1)根据逆用幂的乘方,化成指数相同的幂,再比较大小;(2)根据逆用同底数幂的乘法和逆用幂的乘方即可求解;(3)根据逆用同底数幂的乘法和逆用幂的乘方,化成指数相同的幂,再计算即可求解;本题主要考查了同底数幂的乘法、幂的乘方法则,掌握法则的逆用是解题的关键.(1)解:∵()11555112232a ===,()11444113381b ===,()11333114464c ===.又∵326481<<,∴a c b <<,故答案为:a c b <<;(2)解:32a bx +32a b x x =⋅,()()32a b x x =⋅,∵2a x =,3b x =,∴原式3223=⋅,89=⨯,72=;(3)解:2001001011284⎛⎫⨯⨯ ⎪⎝⎭()200210110031222⎡⎤⎛⎫=⨯⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,4001003031222⎛⎫=⨯⨯ ⎪⎝⎭,400403122⎛⎫=⨯ ⎪⎝⎭,40040031222⎛⎫=⨯⨯ ⎪⎝⎭,40031222⎛⎫=⨯⨯ ⎪⎝⎭,402312=⨯,8=.【变式1】(21-22八年级上·河南三门峡·期末)下列运算中,错误的个数是()(1)224a a a +=;(2)236a a a ⋅=;(3)2n n n a a a ⋅=;(4)()448a a a --⋅=A .1个B .2个C .3个D .4个【答案】D 【分析】利用同底数幂的乘法运算法则,合并同类项的法则对各式进行运算,即可得出结果.解:(1)22242a a a a ≠+=,故(1)错误;(2)2356a a a a ⋅≠=,故(2)错误;(3)22n n n n a a a a ⋅≠=,故(3)错误;(4)()4488a a a a ---⋅≠=,故(4)错误,综上所述,错误的个数为4个,故选:D .【点拨】本题主要考查同底数幂的乘法运算法则、合并同类项运算等知识,解题的关键是对相应的运算法【变式2】(20-21九年级下·湖南永州·期中)将边长为1的正方形纸片按如图所示方法进行对折,记第1次对折后得到的图形面积为S 1,第2次对折后得到的图形面积为S 2,…,第n 次对折后得到的图形面积为S n ,请根据图2化简,12320202021S S S S S +++++= .【答案】202111()2-【分析】先具体计算出S 1,S 2,S 3,S 4的值,得出面积规律,表示S 2021,再设12320202021S S S S S S =+++++ ①,两边都乘以12,得到42320212022111111((()()+()222222S =++++ ②,利用①−②,求解S ,从而可得答案.解:∵42320211234202111111111,(,(),(),(242821622S S S S S ======== 设S =42320211234202111111()()((22222S S S S S +++++=+++++ ①12320202021111111222222S S S S S S ∴=+++++ 4232021202211111(()()()+()22222=++++ ②①-②得,2022111()222S ∴=-202111()2S ∴=-故答案为:202111()2-.【点拨】本题考查的是图形的面积规律的探究,有理数的乘方运算的灵活应用,同底数幂的乘法与除法的应用,方程思想的应用,正方形的性质,掌握以上知识是解题的关键.第三部分【中考链接与拓展延伸】【题型6】直通中考【例9】(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .【例10】(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 【答案】D【分析】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,解题的关键是熟练掌握以上运算法则;根据同底数幂的乘法同底数幂的除法,合并同类项,幂的乘方,运算法则计算即可解:A .23235a a a a +⋅==,故选项不符合题意;B .12212210a a a a -÷==,故选项不符合题意;C .3332a a a +=,故选项不符合题意;D .()32236a a a ⨯==,故选项符合题意;故选:D .【题型7】拓展延伸【例11】(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +【答案】D 【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .【例12】(19-20七年级下·江苏南京·期中)观察等式(2a ﹣1)a +2=1,其中a 的取值可能是()A .﹣2B .1或﹣2C .0或1D .1或﹣2或0【答案】D 【分析】存在3种情况:一种是指数为0,底数不为0;第二种是底数为1,指数为任意值;第三种是底数为-1,指数为偶数,分别求解可得.解:情况一:指数为0,底数不为0即:a +2=0,2a -1≠0解得:a =-2情况二:底数为1,指数为任意值即:2a -1=1解得:a =1情况三:底数为-1,指数为偶数即:2a -1=-1,解得a =0代入a +2=2,为偶数,成立故答案为:D【点拨】本题考查0指数和底数为±1的指数的特点,本题底数为-1的情况容易遗漏,需要关注.。

八年级数学上册 12.1 幂的运算 活用幂的乘方与积的乘方素材 (新版)华东师大版

八年级数学上册 12.1 幂的运算 活用幂的乘方与积的乘方素材 (新版)华东师大版

活用幂的乘方与积的乘方幂的运算性质一般具有双向性,但同学们在运用时往往只习惯从左到右进行,而不习惯逆向运用,如果逆用这些性质,常能化繁为简,化难为易,收到事半功倍的效果。

现举例说明,供大家参考:一、逆用同底数幂的乘法法则 ,巧拆乘例1、若5m =x ,5n =y ,则52m+3n+3=_________。

解析:52m+3n+3=52m ·53n ·53=(5m )2·(5n )3·53=125x 2y 3。

评注:注意到已知式与未知式之间的底数是相同的,而指数存在着和与倍的关系,于是,逆用法则进行计算。

二、逆用积的乘方运算性质,巧整合例2、(–0.125)15⨯(215)3+(135)2006·(-253)2005 解析:式先确定两项乘积的符号是“–”的原式= –(81)15⨯(23)15-(135)2006·(513)2005 = –(81)15⨯(8)15-135·(135)2005·(513)2005 = –(81⨯8)15-135·(135·513)2005 评注:⇒原式先确定两项乘积的符号是“–”的⇒定根据幂的乘方的义得出⇒根据积的乘方的逆运算得出,当底数间互为倒数时,通常逆用“积的乘方的运算性质”,巧作整合,使得它们的指数相同。

这样,就会使运算过程变得简便,也会使运算结果变得较为简单。

直接计算本例中的每一个式子,显然量大繁琐,即使用计算器也不简单,但若考虑它们的数字特点和结构特征,可逆用同底数幂相乘的法则和积的乘方的法则就可以简洁获解。

例3、计算[(12)2]3×(23)3. 解析:原式=(12)6×29 =(12)6×26×23 =(12×2)6×23 =8评注:对于这样的计算题,应该先用幂的乘方的运算性质化简,再逆用积的乘方的运算性质,巧妙地进行简便计算。

14.1.1同底数幂的乘法(教案)八年级上册初二数学(人教版)

14.1.1同底数幂的乘法(教案)八年级上册初二数学(人教版)
-在解决实际问题时,如计算一个细胞分裂问题,让学生从第一次分裂后的细胞数(2^1),推导到第二次分裂后的细胞数(2^2),直到第n次分裂后的细胞数(2^n),从而理解同底数幂乘法在描述此类问题时的优势。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“14.1.1同底数幂的乘法”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过相同底数的幂相乘的情况?”(如:计算连续翻倍问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索同底数幂乘法的奥秘。
-举例说明,如2的3次方表示2连乘3次,2的5次方表示2连乘5次,两者的乘积即为2连乘3+5=8次。
-设计具有实际背景的问题,如计算连续翻倍问题,让学生感受同底数幂乘法在实际问题中的应用。
-提供多样化的练习题,包括不同底数的乘法、含变量的幂的乘法等,帮助学生巩固指数相加的概念。
-难点举例:
-对于指数相加的难点,可以通过具体的例子,如2^10•2^15,引导学生先分别计算2^10和2^15,然后理解它们的乘积是2^(10+15)=2^25。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同底数幂乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.理解同底数幂的乘法法则,提升学生的数学运算能力,使其能够熟练运用法则解决相关问题。

八年级数学上 幂的运算和整式乘法

八年级数学上 幂的运算和整式乘法

一. 教学内容: 幂的运算和整式乘法二. 学习要点:1. 掌握幂的三种运算,并能灵活运用其解决一些数学问题。

2. 掌握进行整式乘法的方法。

三. 知识讲解: (一)幂的运算 1. 同底数幂的乘法同底数幂相乘,底数不变,指数相加。

a a a m n m n ·=+(m 、n 为正整数)推广:a a a a m n p m n p ··=++(m 、n 、p 为正整数)2. 幂的乘方幂的乘方底数不变,指数相乘。

()a a mnmn=(m 、n 为正整数)推广:()[]a a m npmnp=(m 、n 、p 为正整数)3. 积的乘方积的乘方是把积中每一个因式分别乘方,然后把所得的幂相乘。

()ab a b m m m =(m 为正整数)推广:()abc a b c m m m m=··(m 为正整数)(二)整式的乘法 1. 单项式与单项式相乘单项式与单项式相乘,用它们系数的积作为积的系数,相同字母的幂相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式。

2. 单项式乘以多项式单项式乘以多项式就用这个单项式去乘以多项式的每一项,再把所得的积相加,如()m a b c ma mb mc ++=++。

3. 多项式乘以多项式多项式与多项式相乘,先用多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

如:()()a b m n am an bm bn ++=+++【典型例题】例1. 下列算式是否正确?如果错误指出原因,并加以改正。

(1)a a a 3332·=(2)x x x 5510+=(3)a a a 339·=(4)b b b b ··246= (5)101010818⨯=分析:要判断以上各算式是否正确,主要是要搞清楚幂的乘法与合并同类项的区别,而且还要分清底数和指数。

解答:(1)错。

错在将a a 33·混同于a a 33+,正确结果为a 6。

华师大版数学八年级上册12.1《幂的运算》(第2课时)说课稿

华师大版数学八年级上册12.1《幂的运算》(第2课时)说课稿

华师大版数学八年级上册12.1《幂的运算》(第2课时)说课稿一. 教材分析华师大版数学八年级上册12.1《幂的运算》(第2课时)的内容主要包括同底数幂的乘法、除法和幂的乘方。

这一部分内容是幂的运算的基础,对于学生掌握幂的运算规则,提高解决实际问题的能力具有重要意义。

二. 学情分析八年级的学生已经学习了幂的基本概念,对幂的运算有了一定的了解。

但是,学生在运算过程中,容易混淆底数和指数,对幂的乘方和积的乘方运算规则理解不深。

因此,在教学过程中,需要引导学生通过实例理解运算规则,提高运算能力。

三. 说教学目标1.知识与技能目标:使学生掌握同底数幂的乘法、除法和幂的乘方运算规则,能够熟练进行幂的运算。

2.过程与方法目标:通过实例分析,培养学生运用幂的运算规则解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心。

四. 说教学重难点1.教学重点:同底数幂的乘法、除法和幂的乘方运算规则。

2.教学难点:幂的乘方和积的乘方运算规则的理解与应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法,引导学生通过实例理解幂的运算规则,提高学生的运算能力。

2.教学手段:利用多媒体课件,直观展示幂的运算过程,帮助学生理解运算规则。

六. 说教学过程1.导入新课:回顾上节课的内容,引出本节课的学习主题——幂的运算。

2.知识讲解:讲解同底数幂的乘法、除法和幂的乘方运算规则,通过实例分析,使学生理解并掌握运算规则。

3.练习巩固:布置一些幂的运算题目,让学生独立完成,检验学生对运算规则的掌握情况。

4.拓展应用:引导学生运用幂的运算规则解决实际问题,提高学生的应用能力。

5.课堂小结:总结本节课的学习内容,强调幂的运算规则。

6.布置作业:布置一些幂的运算题目,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:1.同底数幂的乘法:am × an = am+n2.同底数幂的除法:am ÷ an = am-n3.幂的乘方:(am)n = amn4.积的乘方:(ab)n = anbn八. 说教学评价教学评价主要从学生的课堂表现、作业完成情况和课后拓展应用情况三个方面进行。

人教版八年级上册课件 14.1.2 幂的乘方和积的乘方 (共48张PPT)

人教版八年级上册课件 14.1.2 幂的乘方和积的乘方  (共48张PPT)
2018/8/1
温故知新
1.幂的乘方的法则 语言叙述 幂的乘方,底数不变,指数相乘.
符号叙述 ( a ) a
m n
m n
(m、n都是正整数) .
公式中的a可表示一 个数、字母、式子等 .
2.幂的乘方的法则可以逆用.即
a
mn
(a ) (a )
m n
n m
3.多重乘方也具有这一性质.如
[(a ) ] a
已知:am=2, an=3.
m+n 求a
= ?.
=2 × 3=6
解: am+n = am · an
2018/8/1
1.( x) ( -x) ( x)
6 5
2.( y x) ( x-y)
3 4
2018/8/1
判断下面计算是否正确,如有错误请改正。
a +a a
6 6
12
(×)
2018/8/1
(3) (am)2= a mΧ 2 = a 2m ; (4) -(x4)3 = - x 4Χ3 = - x12 .
计算: (1) (103)3; (2) (x3)2;
(3) - ( xm )5 ; ⑸ ( y 3 )2
(4) (a2 )3∙ a5;

[(a b) 3 ]4
幂的乘方法则(重点) 例 2:计算: (1)(x2)3; (3)(a3)2-(a2)3; (2)-(x9)8; (4)(a2)3· a5.
a
6
a a
6
2a
2018/8/1
6
2、
(1) [(x y) ]
3 4
⑵ (a-b)3[(a-b)3]2
⑶[(x-y)2]2[(y-x)2]3

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

人教版八年级上册14.1.2幂的运算培优例题和练习(无答案)

幂的运算幂的运算性质(其中m 、n 、p 都为正整数):1.m n m n a a a +⋅=2.()m n mn a a =3.()n n n ab a b =4.m n m n a a a -÷=5.011(0)(0)p pa a a a a -=≠=≠, 【例1】下列算式,正确的个数是( )①3412a a a ⋅= ②5510a a a += ③336()a a = ④236(2)6a a -- A .0个 B .1个 C .2个 D .3个【解法指导】①同底数幂相乘,底数不变,指数相加,结果应为7a ;②合并同类项,结果为52a ;③幂的乘方,底数不变,指数相乘,即过位9a ;④积的乘方,等于积的每一个因式分别乘方,结果为68a -,故选A .【变式题组】01.计算212()()n n c c +⋅的结果是( )A .42n c +B .44n c +C .22n c +D .34n c + 02.计算100101(2)(2)-+-=_______________ 03.如果3915()n m a b b a b ⋅=,则m =_________,n =____________04.计算2323()()()n n x y x y +-⋅-=_______________【例2】若2n+12448n +=,求n 的值.【解法指导】将等式的左右两边变形为同底数幂的形式.解:∵2n+12448n +=,∴2n+122248n +=,22222232n n n ⋅+=⋅,243232n ⋅=⋅,∴24,2n n ==【变式题组】01.若24m =,216n =,求22m n +的值02.若35n x =,求代数式2332(2)4()n n x x -+的值03.若3m x =,6n x =,则32m n x -=________.04.已知33m a=,32n b =,求233242()()m n m n m n a b a b a b +-⋅⋅⋅的值【例3】(希望杯)552a =-,443b =-,335c =-,226d =-,那么a 、b 、c 、d 的大小关系为( ) A .a >b >c >d B .a >b >d >cC .b >a >c >dD .a >d >b >c 【解法指导】逆用幂的乘方公式()mn m n aa =,将a 、b 、c 、d 变为指数相同的幂的形式. 解:∵55511112(2)32a =-=-=-,44411113(3)81b =-=-=-,33311115(5)125c =-=-=-,22211116(6)36d =-=-=-,∴a >d >b >c.故选D .【变式题组】01.已知3181a =,4127b =,619c =,则a 、b 、c 的大小关系是() A .a >b >c B .a >c >b C .a <b <c D .b >c >a02.已知503a =,404b =,305c =,则a 、b 、c 的大小关系为()A .a <b <cB .c <a <bC .c <b <aD .b <c <a【例4】求满足200300(1)3x ->的x 的最小正整数【解法指导】将左右两边变成指数相同的幂的形式解:∵200300(1)3x -> ∴21003100[(1)](3)x ->∴2(1)27x -> ∵x 为正整数∴1x ->1x >∴x 的最小正整数为7【变式题组】01.求满足2003005n <的最大整数值n.02.如果x 、y 是正整数,且2232x y ⋅=,求满足条件的整数x 、y03.求满足22(1)1n n n +--=的整数n.演练巩固 反馈提高01.下列运算正确的是( )A .3412x x ⋅=B .623(6)(2)3x x x -÷-=C .23a a a -=-D .236(2)6x x -=-02.下列各式计算正确的是() A .23523a a a += B .235(2)6b b = C .2(3)()3xy xy xy ÷= D .56236x x x ⋅=03.当n 为正整数时,221()n x +-等于() A .42n x +- B .41n x +-C .41n x +D .42n x + 04.计算3224()a a a +⋅的结果为() A . 92a B .62a C .68a a +D .12a 05.下列命题中,正确的个数是( )(1)m 为正奇数时,一定有等式(4)4m m -=-(2)等式(2)2m m-=,无论m 为何值时都不成立 (3)三个等式:236326236()()[))]a a a a a a -=-=--=,,((都不成立; (4)两个等式:3434(2)2m m m m x y xy -=-,3434(2)2n n n n x y x y -=-都不一定成立. A .1个 B .2个C .3个D .4个06.下列各题中,计算正确的是( ) A .322366()()m n m n --= B .322331818[()()]m n m n --=-C .2222398()()m n mn m n --=-D .232399()()m n mn m n --=-07.已知22|2||238|0y x x x y x y y x -+-+=⋅-⋅,则=_______________08.32125a a x x x x +⋅⋅=,则关于y 的方程ay =a +14的解是________________09.在555511(2)(3)()()23----,,,中,最大的数是_________________10.一块长方形草坪的长是1m a-米,宽是3m a +米(m 、n 均为大于1的正整数),则该长方形草坪的面积是______________2米.11.计算 ⑴2001100021()(2)34-⋅=_______________ 20012002200311312.计算⑴122n n y yy y +⋅-⋅⑵4344()()2()()x x x x x x x -+⋅-+⋅---⋅⑶4224223322()()()()()()x x x x x x x x +-⋅--⋅-⋅-⑷232223()7()()()x y x x y -+⋅-⋅-13.若2(32)|235|0a b a b ++++=,化简:2322231()()()a a ax y bxy x y z a ⋅-⋅14.已知n 是正整数,216n x =,求322211()()1616n n x x -的值15.已知a 、b 、c 为自然数,且227371998a b c ⋅⋅=,求2010()a b c --的值培优01.若1122222n n n n x y +--=+=+,,其中n 为整数,则x 与y 的数量关系为() A .x =4y B .y =4xC .x =12yD .y =12x 02.化简4322(2)2(2)n n n ++-得( ) A .1128n +- B .12n +- C .78 D .7403.化简2231424m m m ++--=__________________ 04.15825⨯的位数为_____________________05.2001200220033713⨯⨯所得积的末位数字是____________________06.若3436x y ==,,求2927x y x y --+的值07.是否存在整数a 、b 、c 满足91016()()()28915a b c ⋅⋅=?若存在,求出a 、b 、c 的值;若不存在,说明理由.08.如果整数x 、y 、z 满足10981()()()271615256x y z ⋅⋅=,求()x y x y z ---的值09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.09.已知311n m +能被10整除,求证:42311n m +++也能被10整除10.设a 、b 、c 、d 都是非零自然数,且543219a b d c a ==-=,c ,,求d b -的值11.已知k 、x 、y 、z 是整数,且k >x >y >z ,若k 、x 、y 、z 满足方程16(2222)330k x y z +++=,求k 的值.。

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案

人教版八年级数学上册《幂的运算》专项练习题-附含答案一.同底数幂的乘法1.已知2m•2m•8=211则m=4.试题分析:将已知中的2m•2m•8化为同底数的幂然后利用同底数幂的乘法法则进行计算再根据指数相同列式求解即可.答案详解:解:2m•2m•8=2m•2m•23=2m+m+3∵2m•2m•8=211∴m+m+3=11解得m=4.所以答案是4.2.已知2x+3y﹣2=0 求9x•27y的值.试题分析:直接利用幂的乘方运算法则将原式变形进而化简得出答案.答案详解:解:∵2x +3y ﹣2=0∴2x +3y =2∴9x •27y =32x •33y =32x +3y =32=9.3.已知3x +2=m 用含m 的代数式表示3x ( )A .3x =m ﹣9B .3x =m 9C .3x =m ﹣6D .3x =m 6 试题分析:根据同底数幂的乘法法则解答即可.答案详解:解:∵3x +2=3x ×32=m∴3x =m 9. 所以选:B .二.同底数幂的除法4.已知:3m =2 9n =3 则3m ﹣2n = 23 .试题分析:先利用幂的乘方变为同底数幂 再逆用同底数幂的除法求解.答案详解:解:∵9n =32n =3∴3m ﹣2n =3m ÷32n =23所以答案是:23.5.已知m =154344 n =54340 那么2016m ﹣n = 1 . 试题分析:根据积的乘方的性质将m 的分子转化为以3和5为底数的幂的积 然后化简从而得到m =n 再根据任何非零数的零次幂等于1解答.答案详解:解:∵m =154344=34⋅54344=54340 ∴m =n∴2016m ﹣n =20160=1. 所以答案是:1.6.已知k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2 则9a ÷27b = 9 . 试题分析:先将9a ÷27b 变形 再由k a =4 k b =6 k c =9 2b +c •3b +c =6a ﹣2分别得出a b c 的关系式 然后联立得方程组 整体求得(2a ﹣3b )的值 最后代入将9a ÷27b 变形所得的式子即可得出答案.答案详解:解:9a ÷27b=(32)a ÷(33)b=(3)2a ﹣3b∵k a =4 k b =6 k c =9∴k a •k c =k b •k b∴k a +c =k 2b∴a +c =2b ①;∵2b +c •3b +c =6a ﹣2∴(2×3)b +c =6a ﹣2∴b +c =a ﹣2②;联立①②得:{a +c =2b b +c =a −2∴{c =2b −a c =a −2−b∴2b ﹣a =a ﹣2﹣b∴2a ﹣3b =2∴9a ÷27b=(3)2a ﹣3b=32=9.所以答案是:9.三.幂的乘方与积的乘方(注意整体思想的运用)7.已知2m =a 32n =b m n 为正整数 则25m +10n = a 5b 2 .试题分析:根据积的乘方与幂的乘方及同底数幂的乘法的运算法则解答.答案详解:解:∵2m =a 32n =b∴25m +10n =(2m )5•(25)2n =(2m )5•322n =(2m )5•(32n )2=a 5b 2所以答案是:a 5b 2.8.计算:(﹣0.2)100×5101= 5 .试题分析:根据幂的乘方与积的乘方运算法则 将所求的式子变形为(﹣0.2×5)100×5再求解即可.答案详解:解:(﹣0.2)100×5101=(﹣0.2)100×5100×5=(﹣0.2×5)100×5=5所以答案是:5.9.若x+3y﹣3=0 则2x•8y=8.试题分析:根据已知条件求得x=3﹣3y然后根据同底数幂的乘法法则进行解答.答案详解:解:∵x+3y﹣3=0∴x=3﹣3y∴2x•8y=23﹣3y•23y=23=8.所以答案是:8.四.幂的运算中的规律10.阅读材料:求1+2+22+23+24+…+22017+22018的值.解:设S=1+2+22+23+24+…+22017+22018①将等式两边同时乘 2 得2S=2+22+23+24+25+…+22018+22019②②﹣①得2S﹣S=22019﹣1 即S=22019﹣1所以1+2+22+23+24+…+22017+22018=22019﹣1.请你仿照此法计算:(1)1+2+22+23+24+…+29+210;(2)1+3+32+33+34+…+3n﹣1+3n(其中n为正整数).试题分析:(1)直接利用例题将原式变形进而得出答案;(2)直接利用例题将原式变形进而得出答案.答案详解:解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘2得:2S=2+22+23+24+…+210+211②②﹣①得2S﹣S=211﹣1即S=211﹣1∴1+2+22+23+24+…+210=211﹣1.(2)设S=1+3+32+33+34+…+3n①将等式两边同时乘3得:3S=3+32+33+34+…+3n+3n+1②②﹣①得3S﹣S=3n+1﹣1即S=12(3n+1﹣1)∴1+3+32+33+34+…+3n=12(3n+1﹣1).11.(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)根据上面的猜想可以知道:20082009>20092008.试题分析:先要正确计算(1)中的各个数根据计算的结果确定所填的符号观察所填符号总结规律.答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n≥3时n n+1>(n+1)n;(3)∵n =2008>3∴20082009>20092008.12.求1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.试题分析:依据12=1−12 12+14=1−14 12+14+18=1−18 …可得规律12+14+18+⋯+12200=1−12200 进而得到1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200的值.答案详解:解:∵12=1−1212+14=1−1412+14+18=1−18…12+14+18+⋯+12200=1−12200∴1+2﹣1+2﹣2+2﹣3+2﹣4+…+2﹣200=1+12+14+18+⋯+12200=1+1−12200=2−12200.13.探究:22﹣21=2×21﹣1×21=2( 1 )23﹣22= 2×22﹣1×22 =2( 2 )24﹣23= 2×23﹣1×23 =2( 3 )……(1)请仔细观察 写出第4个等式;(2)请你找规律 写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.试题分析:(1)根据给出的内容 直接可以仿写25﹣24=2×24﹣1×24=24(2)2n +1﹣2n =2×2n ﹣1×2n =2n(3)将原式进行变形 即提出负号后 就转化为原题中的类型 利用(1)(2)的结论 直接得出结果.答案详解:解:探究:22﹣21=2×21﹣1×21=2123﹣22=2×22﹣1×22=2224﹣23=2×23﹣1×23=23(1)25﹣24=2×24﹣1×24=24;(2)2n+1﹣2n=2×2n﹣1×2n=2n;(3)原式=﹣(22020﹣22019﹣22018﹣22017﹣……﹣22﹣2)=﹣2.所以答案是:1;2×22﹣1×22;2;2×23﹣1×23;3五.新定义14.定义一种新运算(a b)若a c=b则(a b)=c例(2 8)=3 (3 81)=4.已知(3 5)+(3 7)=(3 x)则x的值为35.试题分析:设3m=5 3n=7 根据新运算定义用m、n表示(3 5)+(3 7)得方程求出x 的值.答案详解:解:设3m=5 3n=7依题意(3 5)=m(3 7)=n∴(3 5)+(3 7)=m+n.∴(3 x)=m+n∴x=3m+n=3m×3n=5×7=35.所以答案是:35.15.规定两数a b之间的一种运算记作(a b);如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:①(5 125)=3(﹣2 ﹣32)=5;②若(x 18)=﹣3 则x=2.(2)若(4 5)=a(4 6)=b(4 30)=c试探究a b c之间存在的数量关系;(3)若(m8)+(m3)=(m t)求t的值.试题分析:(1)①根据新定义的运算进行求解即可;②根据新定义的运算进行求解即可;(2)根据新定义的运算进行求解即可;(3)根据新定义的运算进行求解即可.答案详解:解:①∵53=125∴(5 125)=3∵(﹣2)5=﹣32∴(﹣2 ﹣32)=5所以答案是:3;5;②由题意得:x﹣3=1 8则x﹣3=2﹣3∴x=2所以答案是:2;(2)∵(4 5)=a(4 6)=b(4 30)=c ∴4a=5 4b=6 4c=30∵5×6=30∴4a•4b=4c∴a+b=c.(3)设(m8)=p(m3)=q(m t)=r ∴m p=8 m q=3 m r=t∵(m8)+(m3)=(m t)∴p+q=r∴m p+q=m r∴m p•m r=m t即8×3=t∴t=24.16.规定两数a b之间的一种运算记作(a b):如果a c=b那么(a b)=c.例如:因为23=8 所以(2 8)=3.(1)根据上述规定填空:(3 27)=3(5 1)=0(2 14)=﹣2.(2)小明在研究这种运算时发现一个现象:(3n4n)=(3 4)小明给出了如下的证明:设(3n4n)=x则(3n)x=4n即(3x)n=4n所以3x=4 即(3 4)=x所以(3n4n)=(3 4).请你尝试运用这种方法证明下面这个等式:(3 4)+(3 5)=(3 20)试题分析:(1)分别计算左边与右边式子即可做出判断;(2)设(3 4)=x(3 5)=y根据同底数幂的乘法法则即可求解.答案详解:解:(1)∵33=27∴(3 27)=3;∵50=1∴(5 1)=0;∵2﹣2=1 4∴(2 14)=﹣2;(2)设(3 4)=x(3 5)=y则3x=4 3y=5∴3x+y=3x•3y=20∴(3 20)=x+y∴(3 4)+(3 5)=(3 20).所以答案是:3 0 ﹣2.六.阅读类---紧扣例题化归思想17.阅读下列材料:一般地n个相同的因数a相乘a⋅a⋯a︸n个记为a n.如2×2×2=23=8 此时3叫做以2为底8的对数记为log28(即log28=3).一般地若a n=b(a>0且a≠1 b>0)则n叫做以a为底b的对数记为log a b(即log a b=n).如34=81 则4叫做以3为底81的对数记为log381(即log381=4).(1)计算以下各对数的值:log24=2log216=4log264=6.(2)观察(1)中三数4、16、64之间满足怎样的关系式log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果你能归纳出一个一般性的结论吗?log a M+log a N=log a(MN);(a>0且a≠1 M>0 N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.试题分析:首先认真阅读题目准确理解对数的定义把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察不难找到规律:4×16=64 log24+log216=log264;(3)由特殊到一般得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1log a N=b2再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.答案详解:解:(1)log24=2 log216=4 log264=6;(2)4×16=64 log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1log a N=b2则a b1=M a b2=N∴MN=a b1⋅a b2=a b1+b2∴b1+b2=log a(MN)即log a M+log a N=log a(MN).18.阅读下列材料:若a3=2 b5=3 则a b的大小关系是a>b(填“<”或“>”).解:因为a15=(a3)5=25=32 b15=(b5)3=33=27 32>27 所以a15>b15所以a >b .解答下列问题:(1)上述求解过程中 逆用了哪一条幂的运算性质 CA .同底数幂的乘法B .同底数幂的除法C .幂的乘方D .积的乘方(2)已知x 7=2 y 9=3 试比较x 与y 的大小.试题分析:(1)根据幂的乘方进行解答即可;(2)根据题目所给的求解方法 进行比较.答案详解:解:∵a 15=(a 3)5=25=32 b 15=(b 5)3=33=27 32>27 所以a 15>b 15 所以a >b 所以答案是:>;(1)上述求解过程中 逆用了幂的乘方 所以选C ;(2)∵x 63=(x 7)9=29=512 y 63=(y 9)7=37=2187 2187>512∴x 63<y 63∴x <y .19.阅读下面一段话 解决后面的问题.观察下面一列数:1 2 4 8 … 我们发现 这一列数从第二项起 每一项与它前一项的比都等于2.一般地 如果一列数从第二项起 每一项与它前一项的比都等于同一个常数 这一列数就叫做等比数列 这个常数叫做等比数列的比.(1)等比数列5 ﹣15 45 …的第四项是 ﹣135 .(2)如果一列数a 1 a 2 a 3 a 4 …是等比数列 且公比为q 那么根据上述的规定 有a 2a 1=q ,a 3a 2=q ,a 4a 3= …所以a 2=a 1q a 3=a 2q =(a 1q )q =a 1q 2 a 4=a 3q =(a 1q 2)q =a 1q 3 … a n = a 1q n ﹣1 (用含a 1与q 的代数式表示).(3)一个等比数列的第二项是10 第三项是20 则它的第一项是 5 第四项是 40 . 试题分析:(1)由于﹣15÷5=﹣3 45÷(﹣15)=﹣3 所以可以根据规律得到第四项.(2)通过观察发现 第n 项是首项a 1乘以公比q 的(n ﹣1)次方 这样就可以推出公式了;(3)由于第二项是10 第三项是20 由此可以得到公比然后就可以得到第一项和第四项.答案详解:解:(1)∵﹣15÷5=﹣3 45÷(﹣15)=﹣3∴第四项为45×(﹣3)=﹣135.故填空答案:﹣135;(2)通过观察发现第n项是首项a1乘以公比q的(n﹣1)次方即:a n=a1q n﹣1.故填空答案:a1q n﹣1;(3)∵公比等于20÷10=2∴第一项等于:10÷2=5第四项等于20×2=40.a n=a1q n﹣1.故填空答案:它的第一项是5 第四项是40.七.整式除法(难点)20.我阅读:类比于两数相除可以用竖式运算多项式除以多项式也可以用竖式运算其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时运算终止得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5 余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除请直接写出a、b的值.试题分析:我会做:根据“我阅读”的步骤计算填空即可;我挑战:用竖式计算令余式为0即可算出a b的值.答案详解:解:我阅读:(iii)余式是﹣x+1所以答案是:0x2﹣5x2﹣5x2﹣5x2+0x﹣5 ﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1 ∵x4+x3+ax2+x+b能被x2+x+1整除∴(2﹣a)x+b﹣a+1=0∴2﹣a=0且b﹣a+1=0解得a=2 b=1.21.计算:3a3b2÷a2+b•(a2b﹣3ab).试题分析:根据单项式的除法以及单项式乘以多项式进行计算即可.答案详解:解:原式=3ab2+a2b2﹣3ab2=a2b2.22.计算:(2a3•3a﹣2a)÷(﹣2a)试题分析:依据单项式乘单项式法则进行计算然后再依据多项式除以单项式法则计算即可.答案详解:解:原式=(6a4﹣2a)÷(﹣2a)=6a4)÷(﹣2a)﹣2a÷(﹣2a)=﹣3a3+1.八.巧妙比大小---化相同23.阅读下列解题过程试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27∴2100<375请根据上述解答过程解答:比较255、344、433的大小.试题分析:根据幂的乘方的逆运算把各数化为指数相同、底数不同的形式再根据底数的大小比较即可.答案详解:解:∵255=3211344=8111433=6411且32<64<81∴255<433<344.24.比较20162017与20172016的大小我们可以采用从“特殊到一般”的思想方法:(1)通过计算比较下列各式中两数的大小:(填“>”、“<”或“=”)①12<21②23<32③34>43④45>54⑤56>65…(2)由(1)可以猜测n n+1与(n+1)n(n为正整数)的大小关系:当n≤2时n n+1<(n+1)n;当n>2时n n+1>(n+1)n;(3)根据上面的猜想则有:20162017>20172016(填“>”、“<”或“=”).试题分析:(1)通过计算可比较大小;(2)观察(1)中的符号归纳n n+1与(n+1)n(n为正整数)的大小关系;(3)由(2)中的规律可直接得到答案;答案详解:解:(1)①∵12=1 21=2∴12<21②∵23=8 32=9∴23<32③∵34=81 43=64∴34>43④∵45=1024 54=625∴45>54⑤∵56=15625 65=7776∴56>65(2)通过观察可以看出;n≤2时n n+1<(n+1)n;n>2时n n+1>(n+1)n;(3)由(2)得到的结论;2016>2∴20162017>20172016.所以答案是:(1)<<>>;≤2 >2;>.25.(1)用“>”、“<”、“=”填空:35<3653<63(2)比较下列各组中三个数的大小并用“<”连接:①41086164②255344433.试题分析:(1)根据底数为大于1的正数时底数相同指数越大幂越大和指数相同时底数越小幂越小填空即可;(2)①先把这3个数化为底数都为2的幂比较大小;②根据(a m)n=a mn(m n是正整数)的逆运算把三个数化为指数相同的数再比较底数的大小即可.答案详解:解:(1)∵3>1∴35<36所以答案是:<;∵1<5<6∴53<63所以答案是:<;(2)①∵410=(42)5=220164=(42)4=21686=218∵220>218>216∴164<86<410;②∵255=(25)11344=(34)11433=(43)11又∵25=32<43=64<34=81∴255<433<344.九.幂的运算的综合提升26.已知5a=2b=10 求1a +1b的值.试题分析:想办法证明ab=a+b即可.答案详解:解:∵5a=2b=10∴(5a)b=10b(2b)a=10a∴5ab=10b2ab=10a∴5ab•2ab=10b•10a∴10ab=10a+b∴ab=a+b∴1a+1b=a+bab=127.已知6x=192 32y=192 则(﹣2017)(x﹣1)(y﹣1)﹣2=−1 2017.试题分析:由6x=192 32y=192 推出6x=192=32×6 32y=192=32×6 推出6x﹣1=32 32y ﹣1=6 可得(6x﹣1)y﹣1=6 推出(x﹣1)(y﹣1)=1 由此即可解决问.答案详解:解:∵6x=192 32y=192∴6x=192=32×6 32y=192=32×6∴6x﹣1=32 32y﹣1=6∴(6x﹣1)y﹣1=6∴(x﹣1)(y﹣1)=1∴(﹣2017)(x﹣1)(y﹣1)﹣2=(﹣2017)﹣1=−1 201728.已知三个互不相等的有理数既可以表示为1 a a+b的形式又可以表示0 bab的形式试求a2n﹣1•a2n(n≥1的整数)的值.试题分析:由于ba 有意义则a≠0 则应有a+b=0 则ba=−1 故只能b=1 a=﹣1了再代入代数式求解.答案详解:解:由题可得:a≠0 a+b=0∴ba=−1 b=1∴a=﹣1又∵2n﹣1为奇数﹣1的奇数次方得﹣1;2n为偶数﹣1的偶数次方得1∴a2n﹣1•a2n=(﹣1)2n﹣1×(﹣1)2n=﹣1×1=﹣1.29.化简与求值:(1)已知3×9m×27m=321求(﹣m2)3÷(m3•m2)m的值.(2)已知10a=5 10b=6 求①102a+103b的值;②102a+3b的值.试题分析:(1)先根据幂的乘方的运算法则求出m的值然后化简(﹣m2)3÷(m3•m2)m并代入求值;(2)根据幂的乘方以及同底数幂的乘法法则求解.答案详解:解:(1)3×9m×27m=3×32m×33m=35m+1=321∴5m+1=21解得:m=4则(﹣m2)3÷(m3•m2)m=﹣m6﹣5m将m=4代入得:原式=﹣46﹣20=﹣4﹣14;(2)①102a+103b=(10a)2+(10b)3=52+63=241;②102a+3b=(10a)2•(10b)3=25×216=5400.。

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题

八年级上册数学幂的运算计算题在八年级数学课程中,幂的运算是一个重要的知识点。

幂的运算涉及到指数、底数的运算,也包括了幂的乘法、除法、幂的零次和一次运算等内容。

通过解决一些实际问题和计算题,可以更好地掌握和理解幂的运算方法,从而提高数学运算的水平。

1. 幂的乘法计算题1)计算:\[4^3 \times 4^2\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[4^3 \times 4^2 = 4^{3+2} = 4^5 = 1024\]2)计算:\[5^4 \times 5^6\]解析:根据幂的乘法法则,\(a^m \times a^n = a^{m+n}\),所以\[5^4 \times 5^6 = 5^{4+6} = 5^{10}\]3)计算:\[(3^2)^3\]解析:根据幂的乘法法则,\((a^m)^n = a^{m \times n}\),所以\[(3^2)^3 = 3^{2 \times 3} = 3^6 = 729\]2. 幂的除法计算题1)计算:\[\frac{3^5}{3^2}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27\]2)计算:\[\frac{5^7}{5^4}\]解析:根据幂的除法法则,\(\frac{a^m}{a^n} = a^{m-n}\),所以\[\frac{5^7}{5^4} = 5^{7-4} = 5^3 = 125\]3)计算:\[\frac{(2^3)^5}{2^4}\]解析:根据幂的除法法则,\(\frac{(a^m)^n}{a^n} = a^{m \times n - n}\) ,所以\[\frac{(2^3)^5}{2^4} = 2^{3 \times 5 - 4} = 2^{15-4} = 2^{11}\]3. 幂的零次和一次计算题1)计算:\(5^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\(5^0 = 1\)2)计算:\(2^1\)解析:根据幂的一次法则,任何数的一次幂都是它本身,所以\(2^1 = 2\)3)计算:\((7^2)^0\)解析:根据幂的零次法则,任何非零数的零次幂都是1,所以\((7^2)^0 = 1\)4. 理解幂的运算的重要性幂的运算在数学中有着非常重要的地位,它不仅在简单的计算题中有所体现,更在代数式的简化、方程的求解等更为复杂的数学问题中发挥着重要作用。

八年级数学(上)14.1幂的运算

八年级数学(上)14.1幂的运算

八年级数学(上)14.1幂的运算知识网络重难突破知识点一整式乘法幂的运算性质(基础):●a m·a n=a m+n(m、n为正整数)同底数幂相乘,底数不变,指数相加.【同底数幂相乘注意事项】1)底数为负数时,先用同底数幂乘法法则计算,根据指数是奇偶数来确定结果的正负,并且化简到底。

2)不能疏忽指数为1的情况。

3)乘数a可以看做有理数、单项式或多项式(整体思想)。

4)如果底数互为相反数时可先变成同底后再运算。

典例1(2019·新蔡县期末)若2x=5,2y=3,则22x+y=_____.典例2(2017·洪泽县期中)已知,则x的值为____________.典例3(2018·台州市期末)已知,则n的值是________________.●(a m)n=a mn (m、n为正整数)幂的乘方,底数不变,指数相乘.【同底数幂相乘注意事项】负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。

典例1(2018·长春市期末)若,,则的值为_____.典例2(2019·中山市期末)已知m+2n+2=0,则2m•4n的值为_____.典例3(2019·襄樊市期末)若,则的值是_______.●(ab)n=a n b n(n为正整数)积的乘方等于各因式分别乘方,再把所得的幂相乘.典例1(2019·富阳市期末)(-2)2018×(-)2019 =____________。

典例2(2019·临潼区期末)若,,则__________.典例3(2017·成都市期末)(﹣2ab2)3=_____.●a m ÷a n=a m-n (a≠0,m、n都是正整数,且m>n)同底数幂相除,底数不变,指数相减.【同底数幂相除注意事项】1.因为0不能做除数,所以底数a≠0.2.运用同底数幂法则关键看底数是否相同,而指数相减是指被除式的指数减去除式的指数。

华师版数学八年级上册1幂的运算第1课时同底数幂的乘法课件

华师版数学八年级上册1幂的运算第1课时同底数幂的乘法课件

12个
3个
=10×10×···×10
15个
=1015
新课探究
测测你的视察力:
(1)23×24 =(2×2×2) × (2×2×2×2 ) = 2( 7 ) ; (2)53×54 = (5×5×5)×(5×5×5×5) = 5( 7 ); (3)a3 ·a4 = (a×a×a)×(a×a×a×a) = a(7 ); (4)a5 ·a4 = (a×a×a×a×a) × (a×a×a×a) = a(9) (5)am ·an = (a×… ×a )×(a×a×… ×a ) =a( m+n )
(1)b5·b5=2b5(
)
(2)b5+b5=b10 ( )
(3)x5·x5=x25 (
)
(4)y5·y5=2y10 (
)
(5)c·c3=c3 (
) (6)m+m3=m4 ( )
思考 根据同底数幂的乘法法则,填空: பைடு நூலகம்1) am+n=am·__a_n_ (m,n都是正整数), (2) am+n+p=am·an ·__a_p_ (m,n,p都是正整数). 这说明同底数幂的乘法法则可以__逆__用___.
2.已知am=5,an=3,则am+n等于( A )
A.15
B.8
C.0.6
D.125
分析:因为同底数幂的乘法可以逆用, 即am+n=am·an , 又因为am=5,an=3, 所以am+n=am·an =5×3=15.故选A.
3.已知am=3,an=2,那么am+n+2的值为( C )
A.8
B.7
成立
am ·an ·ap =am+n+p(m,n,p都是正整数)

八年级数学华师大版上册12.1幂的运算(含答案)

八年级数学华师大版上册12.1幂的运算(含答案)

第12章整式的乘除12.1幂的运算专题一与幂的计算有关的探究题1. 我们约定a&b=10a×10b,如2&3=102×103=105,那么4&8为()A.32 B.1032 C.1012 D.12102. 已知10a=3,10b=5,10c=7,试把105写成底数是10的幂的形式___________.专题二阅读理解题5. 为了求1+2+22+23+24+...+22013的值,可令S=1+2+22+23+24+ (22013)则2S=2+22+23+24+…+22013+22014,因此2S-S=(2+22+23+…+22013+22014)-(1+2+22+23+…+22013)=22014-1.所以:S=22014-1.即1+2+22+23+24+…+22013=22014-1.请依照此法,求:1+4+42+43+44+…+42013的值.6. 阅读下列解题过程,试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,,而16<27,∴2100<375.请根据上述解答过程解答:若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.(写出过程)状元笔记:[知识要点]2. 幂的乘方是指几个相同的幂相乘法则:幂的乘方,底数不变,指数相乘.即(a m)n=a mn(m,n都是正整数).3. 积的乘方是指底数是乘积形式的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)n=a n b n(n是正整数).4.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即a m÷a n= a m-n(a≠0,m,n都是正整数,且m>n).参考答案1. C 【解析】4&8=104×108=1012.故选C.故应填10a+b+c.3. 小亮【解析】小亮的答案是正确的.理由如下:∴x+2+3=7,解得x=2.故填小亮.4. 解:(1)12*3=1012×103=1015,2*5=102×105=107;(2)相等.∵(a*b )*c=(10a ×10b)*c=b +a 1010×10c =b +a 1010+c ,a*(b*c )=a*(10b ×10c )=10a+10b+c .∴(a*b )*c ≠a*(b*c ).5. 解:为了求1+4+42+43+44+...+42013的值,可令S=1+4+42+43+44+ (42013)则4S=4+42+43+44+ (42014)所以4S-S=(4+42+43+44+…+42014)-(1+4+42+43+44+…+42013)=42014-1,所以3S=42014-1,所以S=31(42014-1), 即1+4+42+43+44+…+42013=31(42014-1). 6. 解:∵a=2555,b=3444,c=4333,d=5222,∴a=(25)111,b=(34)111,c=(43)111,d=(52)111,∴a=32111,b=81111,c=64111,d=25111.∵81>64>32>25,∴81111>64111>32111>25111,∴b >c >a >d .。

华师大版数学八年级上册12.1《幂的运算》说课稿

华师大版数学八年级上册12.1《幂的运算》说课稿

华师大版数学八年级上册12.1《幂的运算》说课稿一. 教材分析《幂的运算》是华师大版数学八年级上册第12.1节的内容,本节课的主要内容是让学生掌握幂的运算性质和运算法则。

这部分内容是初等数学中的重要组成部分,也是学生进一步学习代数和高等数学的基础。

在本节课中,学生将学习幂的乘方、积的乘方以及同底数幂的除法等运算规则。

这些规则对于学生理解和掌握幂的运算非常重要,也是学生在日常生活中和进一步学习中经常会用到的知识点。

二. 学情分析学生在进入八年级之前,已经学习了有理数的运算,对运算有一定的理解和掌握。

但是,幂的运算与有理数的运算有很大的不同,需要学生对幂的概念有深入的理解,同时需要学生能够灵活运用已有的知识来理解和掌握幂的运算规则。

另外,学生在学习过程中可能会对幂的运算规则感到困惑,因此需要教师在教学过程中耐心引导,帮助学生理解和掌握。

三. 说教学目标本节课的教学目标是让学生掌握幂的运算性质和运算法则,能够熟练地进行幂的运算。

同时,通过教学过程中学生的自主探究和合作交流,培养学生的逻辑思维能力和团队协作能力。

四. 说教学重难点本节课的教学重点是幂的运算性质和运算法则的理解和掌握。

教学难点主要是幂的运算规则的理解和应用,特别是同底数幂的除法运算。

五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法和探究法相结合的教学方法。

在教学过程中,我将通过讲解和举例来引导学生理解和掌握幂的运算规则。

同时,我会学生进行自主探究和合作交流,让学生在实践中理解和掌握幂的运算。

六. 说教学过程1.导入:通过复习有理数的运算,引导学生进入幂的运算的学习。

2.讲解:讲解幂的运算性质和运算法则,通过举例来帮助学生理解和掌握。

3.自主探究:学生进行自主探究,让学生通过自己的努力来理解和掌握幂的运算规则。

4.合作交流:学生进行合作交流,让学生在交流中理解和掌握幂的运算规则。

5.练习:布置练习题,让学生在练习中巩固理解和掌握幂的运算规则。

幂的乘方与积的乘方(课件)八年级数学上册(人教版)

幂的乘方与积的乘方(课件)八年级数学上册(人教版)

(4) − 2
3
= 9 ⋅ 12 = 21
+1 2
= −2
2+2
⋅ 4 3 ; (4) − 2
+1 2
.
12.在比较216 和312 的大小时,我们可以这样来处理:
∵216 =(24 )4 =164 ,312 = 33 4 =274 ,16<27,
∴164 <274 ,即216 <312 .
解:原式=
4
=
5
5
4
2019
= .
5
×
4
4 2019
5
2019
×
×
5
4
5 2020

4
(2) (−8)2020 × (−0.125)2022
解:原式=82020 × 0.1252022
=(8 × 0.125)2020 × 0.1252
=0.1252
=
1
64
三种幂的运算法则逆运用的规律
逆用公式(以下m,n都是
C.c>a>b
D.a<b<c
7.计算:( 2 )3 ⋅ 2 − ( 4 )2 + 2 ⋅ 6 =_____.
x8
8.已知2 = ,32 = ,则23+10 =______.
a3b2
9.已知,满足方程3 + 2 = 4,则8 ⋅ 4 =______.
16
10.比较大小:230 ______3
同理:
( ab )
(ab) (ab) (ab)
3
(a a a) (b b b)
a b
3 3
推理验证

华师大版数学八年级上册12.1《幂的运算》教学设计

华师大版数学八年级上册12.1《幂的运算》教学设计

华师大版数学八年级上册12.1《幂的运算》教学设计一. 教材分析《幂的运算》是华师大版数学八年级上册12.1节的内容,本节内容主要让学生掌握幂的运算法则,包括同底数幂的乘法、除法、幂的乘方与积的乘方,以及零指数幂与负整数指数幂的运算。

这些内容是学生进一步学习指数函数、对数函数等数学知识的基础,也是解决实际问题的重要工具。

二. 学情分析学生在七年级时已经学习了有理数的乘方,对幂的概念有了初步的了解。

但他们对幂的运算规则的理解还不够深入,特别是对于幂的乘方与积的乘方,以及零指数幂与负整数指数幂的运算,可能会感到困惑。

因此,在教学过程中,需要引导学生通过实际例子来理解这些运算规则,并能够运用这些规则解决实际问题。

三. 教学目标1.理解幂的运算法则,包括同底数幂的乘法、除法,幂的乘方与积的乘方,以及零指数幂与负整数指数幂的运算。

2.能够运用幂的运算法则解决实际问题。

3.培养学生的逻辑思维能力和运算能力。

四. 教学重难点1.教学重点:掌握幂的运算法则,包括同底数幂的乘法、除法,幂的乘方与积的乘方,以及零指数幂与负整数指数幂的运算。

2.教学难点:理解幂的乘方与积的乘方的运算规则,以及零指数幂与负整数指数幂的运算规则。

五. 教学方法1.实例教学法:通过具体的例子,让学生理解幂的运算法则。

2.问题驱动法:引导学生通过解决问题来运用幂的运算法则。

3.小组合作学习:让学生在小组内讨论问题,共同解决问题,培养学生的合作能力。

六. 教学准备1.教学PPT:制作PPT,展示幂的运算的规则和实例。

2.练习题:准备一些幂的运算的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如计算墙高的例子,让学生感受到幂的运算在实际问题中的重要性。

引导学生思考如何解决这些问题。

2.呈现(15分钟)利用PPT呈现幂的运算法则,包括同底数幂的乘法、除法,幂的乘方与积的乘方,以及零指数幂与负整数指数幂的运算。

八年级数学幂的运算

八年级数学幂的运算

幂的运算主要包括以下几种:
1. 同底数幂的加法:对于同底数的幂,可以直接将指数相加。

例如,a^m + a^n = a^(m+n)。

2. 同底数幂的乘法:对于同底数的幂,可以直接将指数相乘。

例如,a^m a^n = a^(mn)。

3. 幂的乘方:对于幂的乘方,可以直接将指数相乘。

例如,(a^m)^n = a^(mn)。

4. 幂的除法:对于幂的除法,被除数的指数要减去除数的指数。

例如,a^m a^n = a^(m-n)。

5. 幂的开方:对于幂的开方,指数要除以开方数。

例如,√(a^m) = a^(m2)。

6. 幂的负数:对于幂的负数,指数要取反。

例如,a^-m = 1(a^m)。

在进行幂的运算时,要注意保持底数、指数的正确关系,同时还要注意运算的顺序和运算性质的使用。

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

八年级上册数学幂的运算知识点和典型习题分类汇总附答案

第9讲 幂的运算❖ 基本知识(熟记,会推导,会倒过来写,要提问.) 1、运算顺序,乘方开方,再乘除,最后加减。

nm nma a a +=⋅2、同底数幂相乘【推导】:【推导】n m nmaa a -=÷3、同底数幂相除:【推导】4、0的任何非0次幂等于0)0( 00≠=n n, 5、0的0次幂没有意义6、任何不等于0的数的0次幂都等于1)0( 10≠=a a , n naa 1=-7、负指数:,其实就是取倒数!【物理上用!】 mnn m a a =)(8、幂的乘方:【推导】mm m b a ab =)(9、积的乘方:【推导】n n nb a b a =⎪⎭⎫⎝⎛10、商的乘方:【推导】❖ 基本计算训练 【同底数幂相乘】 1、计算下列各题 52x x ⋅(1)6a a ⋅(2)34)2()2()2(-⨯-⨯-(3)13+⋅m m x x (4)2、计算下列各题 b b ⋅5(1)32212121⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-(2)62-⋅a a (3)12+⋅n ny y (4)参考答案1、(17x );(27a );(3)256;(414+m x )2、(15b );(2641);(34-a );(413+n y )【同底数幂相除】 1、计算下列各题 28x x ÷(1)25)()(ab ab ÷(2)64xx (3)32-nn (4)2、计算下列各题 57-÷x x (1)88m m ÷(2)710)()(a a -÷-(3)35)()(xy xy ÷(4)3、计算下列各题431010-(1)32--yy (2)64nn (3)641010-(4)参考答案1、(16x );(233b a );(32-x);(35n )2、(112x );(2)1;(33a -);(422y x )3、(1710);(2y );(32-n );(41010-)【幂的乘方】 1、计算下列各题53)10((1)44)(a (2)2)(m a (3)34)(x -(4)2、计算下列各题33)10((1)23)(x (2)5)(m x -(3)532)(a a ⋅(4)参考答案1、(11510);(216a );(3ma2);(412x -) 2、(1910);(26x );(3mx 5-);(411a )【积的乘方】 1、计算下列各题 3)2(a (1)3)5(b -(2)22)(xy (3)43)2(x -(4)2、计算下列各题 4)(ab (1)321⎪⎭⎫ ⎝⎛-xy (2)32)103(⨯-(3)32)2(ab (4)参考答案1、(138a );(23125b -);(342y x );(41216x ) 2、(144b a );(23381y x -);(37107.2⨯-);(4)638b a【幂的运算综合】1、判断下面计算的对错,并把错误的改正过来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算
【学习目标】
1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);
2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.
【要点梳理】
要点一、同底数幂的乘法性质
(其中都是正整数).即同底数幂相乘,底数不变,指数相加.
要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质,
即(都是正整数).
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们
的指数之和等于原来的幂的指数。

即(都是正整数). 要点二、幂的乘方法则
(其中都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广: (,均为正整数) (2)逆用公式: ,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从
而解决问题.
要点三、积的乘方法则 (其中是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 要点诠释:(1)公式的推广: (为正整数).
(2)逆用公式:逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如: 要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.
(5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯.
【典型例题】
+⋅=m n m n a a a ,m n m n p m n p a a a a ++⋅⋅=,,m n p m n m n a
a a +=⋅,m n ()=m n mn a a ,m n (())=m n p mnp a a
0≠a ,,m n p ()()n m mn m n a
a a ==()=⋅n n n a
b a b n ()=⋅⋅n n n n
abc a b c n ()n n n a b ab =1010
101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭
类型一、同底数幂的乘法性质
1、计算:
(1) ;
(2) .

类型二、幂的乘方法则
2、计算:
(1); (2);
(3); (4).
3、已知2x =8y+2,9y =3x ﹣9,求x+2y 的值.
举一反三:
【变式】已知,则= . 类型三、积的乘方法则
4、计算:
(1)
(2)
举一反三:
【变式1】下列等式正确的个数是( ).
① ② ③ 35(2)(2)(2)b b b +⋅+⋅+23(2)(2)x y y x -⋅-23[()]a b --32235()()2y y y y +-22412()()m m x
x -+⋅3234()()x x ⋅322,3m m a b ==()()()36322m
m m m a b a b b +-⋅24(2)xy -24333[()]a a b -⋅-()3236926x y
x y -=-()326m m a a -=()3
6933a a =
④ ⑤
A. 1个
B. 2个
C. 3个
D. 4个
【变式2】计算:
(1)a 4•(3a 3)2+(﹣4a 5)2
(2)(2)20•()21.
5、已知x 2m =2,求(2x 3m )2﹣(3x m )2的值.
【巩固练习】
一.选择题
1.下列计算正确的是( ).
A. B. C. D. 2.的结果是( ). A.0 B. C. D.
3.下列算式计算正确的是( ).
A. B. C. D. 4.可以写成( ).
()()57355107103510⨯⨯⨯=⨯()()1001001010.520.522-⨯=-⨯⨯()
325x x =()5315x x =4520x x x ⋅=()236x x --=()()25
52a a -+-72a -102a 102a -()33336
a a a +==()22n n x x -=()()3626y
y y -=-=()3
3333327c c c ⨯⨯⎡⎤==⎢⎥⎣⎦31n x +
A. B. C. D.
5.下列计算中,错误的个数是( ).
① ② ③ ④ ⑤
A. 2个
B. 3个
C. 4个
D. 5个
6.计算(﹣x 2y )2的结果是( )
A .x 4y 2
B .﹣x 4y 2
C .x 2y 2
D .﹣x 2y 2
二.填空题
7.化简:(1)=_______;(2)=_______. 8.直接写出结果: (1)=; (2)=; (3)若,则=______.
9.已知2m +5n +3=0,则4m ×32n 的值为 .
10.若,用,表示可以表示为 .
11.已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是 . ()13n x +()31n x +3n x x ⋅()21n n x +()
23636x x =()2551010525a b a b -=-3328()327x x -=-()42367381x y x y =235x x x ⋅=33331)31(b a ab +-()()
322223a a a +⋅()_____n 233n n n
a b 1011x y ()5_____y ⋅2,3n n a b ==6n
23,25,290a b c ===a b c。

相关文档
最新文档