人教版-数学-五年级上册-【精品】《组合图形的面积》教案(第二课时)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形的面积

第2课时

教学目标:

知识与技能:初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。

过程与方法:用数格子方法和近似图形求面积法估测不规则图形的面积。

情感态度与价值观:培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。教学重、难点:

重点:将规则的简单图形与形状的不规则图形建立联系。

难点:掌握估算的习惯和方法的选择。

教学方法:

动手实践、自主探索、合作交流

教学准备:

师:多媒体、树叶、透明方格纸。

生:树叶若干片、方格纸一张。

教学过程:

一、情境导入

出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢?

学生回答,并根据学生的回答板书课题:树叶的面积。

出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。

引导学生思考:它是一个不规则的图形,那么面积如何计算呢?

学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。

【设计意图】激趣引入,激发学生学习的热情。提高学生学习的积极性。

二、互动新授

1.出示教材第100页情境图中的树叶。

引导思考:这片叶子的形状不规则,怎么计算面积呢?

让学生思考,并在小组内交流。

学生可能会想到:可以将树叶放在透明方格纸上来计数。

对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。

演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。

引导学生观察情境图,说一说发现了一些什么情况?

学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。

2.自主探索树叶的面积。

明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。

先让学生估一估,这片叶子的面积大约是多少平方厘米。

让学生自主猜测。

再让学生数一下整格的:一共有18格。

引导思考:余下方格的怎么办?

小组交流讨论,汇报。

通过讨论,学生可能会想到:可以把少的与多的拼在一起算一格;也可以把大于等于半格的算一格,小于半格的可以舍去不算。

提示:如果把不满一格的都按半格计算,这片叶子的面积大约是多少平方厘米?

学生通过数方格可以得出:这片叶子的面积大约是27cm2。

质疑:为什么这里要说树叶的面积是“大约”?

学生自主回答:因为有的多算,有的不算,算出的面积不是准确数。

3.让学生拿出树叶及小方格纸,以小组为单位研究树叶面积的计算。

小组合作进行测量、计算,并汇报本组测量的树叶的面积大约是多少。

4.引导:你还能用其他方法来计算叶子的面积吗?

小组讨论、交流。学生有了前面学习的经验后,会想到可以把叶子的图形转化成学过的平面图形来估算。

让学生观察叶子的形状近似于我们学过的哪种图形。(平行四边形)

思考:你能将叶子的图形近似转化成平行四边形吗?

学生回答,师根据学生的回答多媒体出示将叶子转化成平行四边形的过程(即教材第100页第三幅情境图)。

再让学生数一数这个平行四边形的底与高分别是多少,再尝试计算。

(平行四边形的底是5厘米,高6厘米。)

学生自主解答,并汇报。

根据学生汇报板书计算过程:

S=ah

=5×6

=30(cm2)

5.让学生再说一说,你是怎样估算树叶的面积?

学生可能会回答:先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。

【设计意图】引导学生有目的、有意识地对所学知识进行分析、归纳、总结、联想,从中发现新结论。让学生自己探索学习的过程,体现学生的学习自主性,教师放手让学生自己探索学习。发现新的结论和概念。

三、巩固拓展

1.完成教材第102页“练习二十二”第8题。先让学生数一数阴影部分的面积大约是多少。汇报时让学生说一说是怎么数的。

学生可能数的是阴影部分;也有的把阴影部分填补成学过的图形,算出图形的面积再减去填补的图形的面积。让学生对这两种方法进行比较,从中选出较简单的方法计算。

提示:第一幅图还可以把图形添上一个三角形填补成一个梯形,算出梯形的面积再减去三角形的面积,从而求出准确值。

2.完成教材第102页“练习二十二”第9题。通过上一题对计算方法的选择,师引导学生先把这个图形转化成学过的近似图形,再估算。

3.完成教材第102页“练习二十二”第10题。

先让学生运用自己喜欢的方法估计一下图上手掌的面积,再估一估自己手掌的面积大约是多少。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.求不规则图形的面积时,先通过数方格确定面积的范围,再把不规则图形转化为学过的图形来估算。

2.不规则图形的面积都不是准确值,而是一个近似数。

【设计意图】培养分析和思考问题能力。设计各种不同的练习,学生自己总结概念。总结可以使知识进一步得到巩固。

五、作业

教材第102页练习二十二第7.11题。

板书设计:

方格图中不规则图形的面积计算

先通过数方格确定面积的范围,

再把不规则图形转化为学过的图形来估算。

S=ah

=5×6

=30(cm2)

教学反思:

在现实生活中,学生经常会接触到不规则图形的面积问题,让学生掌握估计、计算不规则图形的面积,是培养学生空间观念,提高学生解决实际问题能力的好途径。因此,在教材中,在组合图形面积计算的后面,教材特地安排了不规则图形的面积计算。许多教师对这种课都不太重视,认为只要教会学生估计的方法就村了,反正结果是近似值。这个内容主要是以方格图作为背景进行估计与计算的,我认为一是为了巩固前面所学的估计不规则图形面积的方法,二是根据图形的形状,确定一个近似的基本图,通过对基本图形面积的计算,估计出不规则图形的面积,这种方法更有助于学生形成较为丰富的空间观念。

相关文档
最新文档