【函数与导数压轴题突破】构造函数证明不等式
利用导数构造函数证明数列型不等式
微专题二十四 构造函数证明数列型不等式利用函数证明不等式是在高考导数题中比较考验学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,巧妙地将函数,数列,不等式连接在一起,也是近年来高考的热门题型。
一、基础知识: 1、考察类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。
(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。
其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 3、常见恒成立不等式:(1)ln 1x x <- 对数→多项式 (2)1x e x >+ 指数→多项式 4、关于前n 项和的放缩问题:(1)倒序相加:通项公式具备第k 项与第1n k -+项的和为常数的特点(2)错位相减:通项公式为“等差⨯等比”的形式(例如2nn a n =⋅,求和可用错位相减)(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且n a 裂开的某项能够与后面项裂开的某项进行相消。
二、典型例题:例1: 已知函数()()2ln f x x a x x =+--在0x =处取得极值(1)求实数a 的值(2)证明:对于任意的正整数n ,不等式23412ln(1)49n n n+++++>+L 都成立 【解析】:下面求()()2ln 1f x x x x =+--的单调区间()()'2312111x x fx x x x +=--=-++,令()'00f x x >⇒<()()00f x f ∴<=即()2ln 1x x x +<+(每一个函数的最值都会为我们提供一个恒成立的不等式,不用白不用!观察刚好与所证不等式不等号方向一致)令1x n =,则2111ln 1n n n⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭即211ln n n n n ++⎛⎫< ⎪⎝⎭223131ln ln ln 2124n n n n ++∴+++<+++L L 即23412ln(1)49n n n+++++>+L例2: 已知函数()()2ln 1f x ax x =++(1)当14a =-时,求函数()f x 的单调区间 (2)当[)0,x ∈+∞时,函数()y f x =图像上的点都在0x y x ≥⎧⎨-≤⎩所表示的平面区域内,求实数a 的取值范围(3)求证:()()1248211112335582121n n n e -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪++++< ⎪⎪⎪ ⎪⨯⨯⨯++⎝⎭⎝⎭⎝⎭⎝⎭L(其中,n N e *∈是自然对数的底数)【解析】:(1)常规解法,求出单调区间找最值 ()()21ln 14f x x x =-++ ()()()()()2'21112212121x x x x f x x x x x +-+-=-+=-=-+++,令()'0f x >求出单调区间如下: (2)解:Q 函数()y f x =图像上的点都在0x y x ≥⎧⎨-≤⎩区域内,Q 条件等价于[)0,x ∀∈+∞,()2ln 1ax x x ++≤恒成立,即()2ln 10ax x x ++-≤令()()2ln 1g x ax x x =++- ()00g ∴=()()()2'221221121111ax a x x ax a g x ax x x x +-+-=+-==+++ 令()'02210g x ax a >⇒+->即212ax a >-① 0a >时, 211111ln 1ln 10g a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=++-=+> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭不符合题意(此时发现单调性并不能直接舍掉0a >的情况,但可估计函数值的趋势,()ln 1x +恒为正,而2ax x -早晚会随着x 值的变大而为正数,所以必然不符合题意。
函数与导数中的不等式证明之“构造函数法”
函数与导数中的不等式证明之“构造函数法”新课标下,对数学的基本知识,思想方法,解题技巧的考察仍是高考的重要内容。
在我们的函数解答题中,通常会涉及到用导数研究函数的性质,以及导数与不等式,方程,数列的交汇问题。
这部分题目能够很好的反映学生的分析问题,解决问题的能力,巧妙构造函数,结合函数的单调性是解决这类题目的一种重要方法。
标签:函数导数;构造思想;不等式下面借助于教学过程中的几个例子,通过构造函数的方法来解决这类不等式的证明问题。
例1.已知m∈R函数f(x)=mx--lnx,g(x)=+lnx(1)若y=f(x)-g(x)在[1,+∞)上为单调递增函数,求实数m的取值范围(2)证明:+++…+0)若斜率为k的直线与y=f’(x)曲线交于A(x1,y1),B(x2,y2)两点,求证:x10),k==要证x11,lnt>0故考虑证lnt1)则g’(t)=1->0故g(t)在(1,∞)上是增函数所以当t>1时,g(t)=t-1-lnt>g(1)=0,即lnt0,(t>1)h(t)在(1,∞)上是增函数,∴当t>1时,h(t)=tlnt-(t-1)>h(1)=0,即t-10则f(x)在(0,1]上为单调递增函数,从而f(x)>f(0)=0即x>ln(1+x),(019时,不等式91时,令x=,则x>1,故f()=+ln=-+ln>0∴ln>∴+++…+=+++…+>++++++…+>+(+)+(+++)+…(+…+)>++…+=+9>9故不等式成立。
例4.设函数f(x)=mlnx,h(x)=x-a(1)当m=2时,若函数k(x)=h(x)-f(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;(2)证明:当n≥2,n∈N*时,loge2+loge3+loge4+…+logen>解析(1)函数k(x)=h(x)-f(x)在[1,3]上恰有两个不同零点等价于方程x-2lnx=a,在[1,3]上恰有两个相异实根令g(x)=x-2lnx,则g’(x)=1-,当x∈[1,2),g’(x)0故g(x)min=g(2)=2-2ln2,又g(1)=1,g(3)=3-2ln3,g(3)-g(1)=lng(3),由题意只需g(2)=>=-,(n≥2)∴loge2+loge3+loge4+…+logen=++…+>1-+-+…+(-)=1+--=即得证。
压轴题型02 构造法在函数中的应用(解析版)-2023年高考数学压轴题专项训练
压轴题型02构造法在函数中的应用近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.○热○点○题○型1构造法解决高考函数对称与周期性问题○热○点○题○型2主元构造法○热○点○题○型3分离参数构造法○热○点○题○型4局部构造法○热○点○题○型5换元构造法○热○点○题○型6特征构造法○热○点○题○型7放缩构造法一、单选题1.若正数x满足532-+=,则x的取值范围是().x x xA x<B x<<C .x <D .x >2.设函数()f x =若曲线sin 22y x =+上存在点0(x ,0)y 使得00(())f f y y =成立,则实数a 的取值范围为()A .[0,21]e e -+B .[0,21]e e +-C .[0,21]e e --D .[0,21]e e ++3.“米”是象形字.数学探究课上,某同学用拋物线1和2构造了一个类似“米”字型的图案,如图所示,若抛物线1C ,2C 的焦点分别为1F ,2F ,点P 在拋物线1C 上,过点P 作x 轴的平行线交抛物线2C 于点Q ,若124==PF PQ ,则p =()A .2B .3C .4D .6树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为()A .272πcmB .2162πcmC .2216πcmD .2288πcm 【答案】C【分析】根据题意可知正方体的体对角线即是外接球的直径,又因圆柱的外侧面内切于正方体的侧面,可利用勾股定理得出正方体边长,继而求出球的表面积.【详解】不妨设正方体的边长为2a ,球О的半径为R ,则圆柱的底面半径为a ,因为正方体的体对角线即为球О直径,故223R a =,利用勾股定理得:222263a R a +==,解得18a =,球的表面积为2ππ44318216πS R ==⨯⨯=,故选:C.5.若函数()()有两个零点,则实数的取值范围是()A .()1,2B .()0,2C .()1,+∞D .(),2-∞【答案】A【分析】将函数()()ln 2f x x a x a =+-+有两个零点的问题转化为函数ln ,(2)y x y a x a ==--的图象交点个数问题,结合导数的几何意义,数形结合,即可求解.【详解】由()()ln 2f x x a x a =+-+有两个零点,即()ln 20x a x a +-+=有两个正根,即函数ln ,(2)y x y a x a ==--的图象有2个交点,直线(2)y a x a =--可变为(1)20a x x y -++-=,令=1x -,则=2y -,即直线(2)y a x a =--过定点(1,2)P --,当该直线与ln y x =相切时,设切点为00(,)x y ,则1y x'=,则000ln 211x x x +=+,即001ln 10x x -+=,令1g()ln 1,(0)x x x x=-+>,则()g x 在(0,)+∞上单调递增,又(1)0g =,故1g()ln 1,(0)x x x x=-+>有唯一零点1x =,故01x =,即(2)y a x a =--与曲线ln y x =相切时,切点为(1,0),则切线斜率为1,要使函数ln ,(2)y x y a x a ==--的图象有2个交点,需满足021a <-<,即(1,2)a ∈,故选:A【点睛】方法点睛:根据函数的零点个数求解参数范围,一般方法:(1)转化为函数最值问题,利用导数解决;(2)转化为函数图像的交点问题,数形结合解决问题;(3)参变分离法,结合函数最值或范围解决.6.已知()f x 是定义域为R 的函数,()220f x +为奇函数,()221f x +为偶函数,当10x -≤<时,()f x =()()()60y f x a x a =-+>有5个零点,则实数a 的取值范围为()A .11,73⎛⎫ ⎪⎝⎭B .,124⎛ ⎝⎭C .⎝⎭D .11,62⎛⎫ ⎪⎝⎭当直线()2y a x =-与圆()()22910x y y -+=≥相切时,271aa +()2y a x =-与圆()()22510x y y -+=≥相切时,2311a a =+,解得32124a <<.故选:B .【点睛】通过函数的奇偶性挖掘周期性与函数图像的对称性,从而能作出整个函数的大致图像,将函数零点转化为方程的根,再转化为两个函数图像交点的横坐标.交点的个数时注意数形结合思想的应用,动中蕴静,变化中抓住不变,抓住临界状态,利用直线与圆相切,借助点到直线的距离公式得到参数的临界值,从而求出参数的取值范围,考生综合分析问题和解决问题的能力要求比较高.二、填空题7.已知函数21()(1)1x f x x x -⎛⎫=> ⎪+⎝⎭,如果不等式1(1)()(x f x m m -->-对11,164x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数m 的取值范围_______________.5⎛⎫①ln52<;②lnπ>③11<;④3ln2e>其中真命题序号为__________.9.设函数4()log ,0f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的函数()()()()2g 23x fx a f x =-++恰好有四个零点,则实数a 的取值范围是____________.令()f x t =,函数()()()()2g 23x fx a fx =-++恰好有四个零点.则方程()()()2230f x a f x -++=化为()2230t a t -++=,设()2230t a t -++=的两根为12,t t ,因为123t t =,所以两根均大于0,且方程的一根在区间(]0,1内,另一根在区间()2+∞,内.令()()223g t t a t =-++所以()()()()2Δ2120001020a g g g ⎧=+->⎪>⎪⎨≤⎪⎪<⎩,解得:2a ≥,综上:实数a 的取值范围为[)2,.∞+故答案为:[)2,.∞+【点睛】复合函数零点个数问题,要先画出函数图象,然后适当运用换元法,将零点个数问题转化为二次函数或其他函数根的分布情况,从而求出参数的取值范围或判断出零点个数.三、解答题10.已知正数a b 、满足1a b +=,求M =的最小值.11.已知函数在处的切线方程为(1).求()f x 的解析式;(2).若对任意的0x >,均有()10f x kx -+≥求实数k 的范围;(3).设12x x ,为两个正数,求证:()()()121212f x f x x x f x x +++>+。
【2021高考数学压轴题】构造函数证明不等式
2021高考数学压轴题命题区间探究与突破专题第一篇函数与导数专题04巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一“比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞- ⎥⎝⎦,求证:()12ax f x ax xe -≥-.【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=,①当0a ≤时,则()'0f x <在()0,+∞上恒成立,∴()f x 在()0,+∞上单调递减.②当0a >时,则当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()()'0f x f x >,单调递增,当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减.综上:当0a ≤时,()f x 在()0,+∞上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe-=-+1ln ax xe ax x -=--,则()111'ax ax g x eaxea x--=+--()()()111111ax ax ax xe ax e x x--+-⎛⎫=+-=⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->,∴当10,x a⎛⎫∈- ⎪⎝⎭时,()()'0r x r x >,单调递增;当1,x a⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<,单调递减.∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-),∴110ax e x--≤.∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭,设(210,t e a⎤=-∈⎦,则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭,()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减,∴()()20h t h e ≥=;∴()0g x ≥,故()12ax f x ax xe-≥-.说明:判断11ax e x--的符号时,还可以用以下方法判断:由110ax e x --=得到1ln x a x -=,设()1ln x p x x -=,则()2ln 2'x p x x -=,当2x e >时,()'0p x >;当20x e <<时,()'0p x <.从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p e e ==-.当21a e ≤-时,1ln x a x -≤,即110ax e x--≤.【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈.(Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)x e x x e x x+≥-++-.【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=>当0a ≤时,1(ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增.所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-,由题意()0f x ≥,所以ln 10a a +-≥.令()ln 1g x x x =-+,所以11()1x g x x x-'=-=,当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x ≥-在0x >时恒成立.要证212ln (2)x e x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥令2()(2)1(0)x h x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2x u x e '=-,令()20x u x e '=-=,解得ln 2x =,所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增.而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减.当(1,)x ∈+∞时,()0,()h x h x '>单调递增,又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)x e x x e x x+≥-++-成立.类型二“拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数.(1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围;(2)设()()()221ln 1e 11x H x x x x x ⎛⎫=-++-- ⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >.【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方,所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立.设()1ln F x x t x x =--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >.①当240t - ,即02t < 时,()0F x ' ,所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<,则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<,所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意.综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-,因为当()0,1x ∈时,e 10x x x -+>,ln 0x <,所以()()()21e 10e ln x xx x x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+.令()()e 101x h x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++.由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立.综上可得,对任意()0,1x ∈,都有()0H x >成立.【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈.(1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<.【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==.①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减;②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>.又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>,令1()0f x x a>⇒<或12x a >-.又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<,(0,1)x ∈ ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x x e =+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增.所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增,所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <,即原不等式成立.类型三“换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅.【解析】(1)函数()()1x f x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >,所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=>所以()a ϕ单调递增,则()()22140a e e ϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==,要证1212x x x x <+⋅,即证()()12111x x --<,根据()()120f x f x ==,可知()111x e a x =-,()221xe a x =-,即证()()12122111x x e x x a+--=<,即证122x x e a +<,即证122ln x x a +<,即证212ln x a x <-,设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增,故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a<所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx x a a e ae g x e a e e +-'=--+=-()2xxe a e -=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=,所以()()2ln f a x f x ->在(),ln a -∞上恒成立,所以()()112ln f a x f x ->,故原命题得证.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元.【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥.【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==.切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=.212121212()()42(ln )x x x x x x x x +++=+-令12x x t =,()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数,(1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥,得到1220x x +-≥,即:122x x +≥.类型四“转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x -+=--+-'=.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,42a x =或42a x =.当0,,22a a x ⎛⎛⎫+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当,22a a x ⎛+∈ ⎪⎝⎭时,()0f x '>.所以()f x在0,,,22a a ⎛⎛⎫++∞ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递减,在,22a a ⎛-+ ⎪⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----,所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围;(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>.【解析】(I )()ln 24f x x ax +'=-.∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立.令()ln 2x g x x x =+,则()21ln xg x x --'=,∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫ ⎪⎝⎭内为增函数;当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数.∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e ,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x ,由(I ),知e 04a <<.由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a +>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减.∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+.即不等式12112221ln 1x x xx x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>.三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立.附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2x f x e ax '=+,记()2x g x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意;②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增,要使导函数()g x 在区间(],1-∞上为单调函数,则需()ln 21a -≥,解得2ea ≤-,此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦.(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=-⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a > ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x x x +--=>,所以()1212x x f f x +⎛⎫''> ⎪⎝⎭,即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <=即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得.2.【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->,当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值;当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<,则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11x g x e x'=--,令()()h x g x '=,则()210x h x e x =+>',所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=< ⎪⎝⎭,()120h e =->,所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即0011x e x =+,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln xg x e x x x x x =--=+--,又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()x xf x be f x e +≥+,故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<.【解析】(1)令()()()(1)1x g x f x ax e e a x =--=+--,则()1x g x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1x g x e a x =+--在R 上单调递增.因为1(1)(1)10g a e-=---<,所以1a ≤不合题意;当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增.所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥记()2(1)ln(1)(1)h a a a a a =-+-->,则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减,所以max ()(2)0h a h ==,即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥,所以2(1)ln(1)0a a a -+--=,解得2a =.(2)因为()()120f x f x +=,所以12122(1)x x e e x x e +++=+.因为12122122,x x x x e e ex x ++≥≠,所以121222x x x x e e e++>令12x x t +=,则22220t e t e +--<.记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<,得()(2)m t m <,所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数.(1)若()g x 是R 上的单调函数,求a 的值;(2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>.【解析】(1)()()1112'1x x e e ax g x f x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭,令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+⎪⎝⎭,令()()()H t h t h t =+-173173484484t tt t e e t e e --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288't tt t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭()()()()171288t t t t t t t te e e e t e e e e ----=+--+--()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证.5.【2020·安徽黄山期末】已知函数()()2e 12e x x f x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x x f x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-=⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫->⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减.(2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>,12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x x a a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<,()()()122f x f x f x =>-.由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立;(2)求函数()g x 的极值;(3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <.【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤ ,()11cos 0a f x a x '∴≤=-≥,,()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立;(2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=>当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值.(3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数,由(2)知,当0m ≥,()g x 在()0+∞,上为增函数,这时,()()f x g x +在()0+∞,上为增函数,所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---①1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--②由①②式可得:()()()2121211ln ln 22m x x x x x x -->---即()()21213ln ln 02m x x x x -->->又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③又要证12249x x m <,即证21294m x x >120,0m x x <<<即证m ->……④所以由③式知,只需证明:2121ln ln x x x x ->-2121ln 1x x x x ->设211x t x =>,只需证1ln t t ->即证()ln 01t t ->>令()()ln 1h t t t =>由()()()2101h t t h t -'=>>,在()1+∞,上为增函数,()()10h t h∴>=2121ln ln x x x x -∴>-成立,所以由③知,0m ->>成立,所以1224 9x xm 成立.7.【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解;(3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x=-- 所以定义域为()0,+¥6()24f x x x'∴=--;(1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-,令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-;22ln ()(1)x x h x x --'∴=-,记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数,且(3)1ln 30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-;所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20ag x x x x -'=-==得0x =,当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增,而要使()g x 有两个零点,要满足()00g x <,即2ln 02g a a e =-<⇒>;因为10x <<2x >,令21x t x =(1)t >,由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a tx t ∴=-而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a+>即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>,令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t >故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R=++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++ .【解析】(1)由()0f x ≥,得ln 10x x ax ++≥(0)x >.整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭.令()1ln F x x x =+.则()22111'x F x x x x-=-=.∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =.∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞.(2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和.∴只需证明()()211ln 12n n n n +<++()11n n <+即可.由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-.令11n x n +=>,即得1ln 11n n n n +>-+11n =+.∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++1112n n =-++.现证明()211ln 1n n n n +<+,即<==()*现证明12ln (1)x x x x <->.构造函数()12ln G x x x x=--()1x ≥,则()212'1G x x x =+-22210x x x-+=≥.∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x <-成立.令x =,则()*式成立.综上,得()()211ln 12n n n n +<++()11n n <+.对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得223ln 2ln 242n n <++21ln 1n n n n ++⋅⋅⋅+<+.10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈.(1)试讨论函数()f x 的单调性;(2)若1a =,试证明:()e cos x x f x x +<.【解析】(1)由221()a x a f x x x x -'=-=(0)x >知:(i )若0a ≤,2()0(0)x a f x x x -'=>>,∴()f x 在区间()0,∞+上为增函数.(ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴()f x 在区间()0,a 上为减函数.当x ∈(),a +∞时,有()0f x '>,∴()f x 在区间(),a +∞上为增函数.综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数.(2)若1a =,则1()ln (0)f x x x x =+>要证e cos ()x x f x x +<,只需证ln 1e cos x x x x +<+,即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=>∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞,∵()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则1()e cos x h x x x'=-- 1x >,∴1()e cos e 110x h x x x '=-->-->∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '>∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+->即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-,∴e cos ()<x x f x x+综上:当0x >时,有e cos ()<x x f x x +成立.。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧导数与构造函数是微积分中的重要概念,它们在证明不等式中起着重要作用。
本文将介绍一些导数与构造函数在证明不等式中的技巧,并通过具体的例子来加深理解。
1. 利用导数的性质进行不等式证明在证明不等式时,可以通过导数的性质来进行推导。
当需要证明一个函数在某个区间上单调递增或单调递减时,可以通过求导数并分析导数的正负性来进行证明。
假设一个函数f(x)在区间[a, b]上可导,求出其导数f'(x)并分析f'(x)的正负性,如果f'(x)恒大于零,那么函数f(x)在区间[a, b]上就是单调递增的;如果f'(x)恒小于零,那么函数f(x)在区间[a, b]上就是单调递减的。
通过这种方法,可以利用导数的性质来证明函数的单调性质,从而进一步推导出不等式。
2. 构造函数进行不等式证明构造函数是指通过一些技巧将原函数进行变形,从而更好地应用各种数学性质来进行不等式证明。
当需要证明一个不等式时,可以通过构造一个辅助函数来简化原不等式的证明过程。
通过巧妙地构造函数,可以使得不等式的证明更加直观、简单。
例1:证明当x>0时,有e^x>1+x。
解:可以通过在函数f(x) = e^x - (1+x)上应用导数的性质来证明这个不等式。
求导数得f'(x) = e^x - 1,显然f'(x)恒大于零,因此f(x)在区间(0, +∞)上单调递增。
又当x=0时,有f(0) = e^0 - (1+0) = 0,因此在区间(0, +∞)上有f(x)>0,即e^x>1+x。
通过导数的性质,成功证明了不等式e^x>1+x。
通过以上两个例子,可以看到导数与构造函数在不等式证明中的重要作用。
通过分析导数的性质以及巧妙地构造辅助函数,可以更好地理解、应用和证明各种不等式。
在实际的数学问题中,通常会遇到各种复杂的不等式,通过灵活运用导数与构造函数的技巧,可以更加轻松地解决这些问题。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧在高中数学中,不等式是经常会遇到的题目类型,也是数学竞赛中经常涉及到的一类题目。
在证明不等式的过程中,我们可以运用导数与构造函数等技巧来简化证明难度,提高证明效率。
一、运用导数证明不等式当我们需要证明一个函数的值在某个范围内时,我们可以考虑用导数来帮助我们进行证明,具体可分为以下步骤:1、确定函数的定义域和值域,并确定要证明的不等式形式。
2、通过求导得到函数的单调性或极值点。
3、根据函数的单调性或极值点,利用数轴或图象来确定函数的取值范围及是否满足要证明的不等式。
例如,要证明关于 $x$ 的不等式 $\frac{3}{2}x^2-6x+5>0$ 成立,可按以下步骤进行证明:1、由不等式左边的式子可得到 $f(x)=\frac{3}{2}x^2-6x+5$,其定义域为实数集,值域为 $[0,\infty)$。
2、对 $f(x)$ 求导,得到 $f'(x)=3x-6$。
当 $f'(x)>0$ 时,$f(x)$ 单调上升,当$f'(x)<0$ 时,$f(x)$ 单调下降。
当 $f'(x)=0$ 时,$f(x)$ 有极值,即当 $x=2$ 时,$f(x)$ 取得极小值 $-1$。
3、据此得到 $f(x)$ 的图象如下图所示,可知在 $x<2$ 和 $x>2$ 的区间内,$f(x)$ 的取值为正,因此原不等式成立。
构造函数法是一种运用代数方法构造一个函数来满足指定条件的证明方法。
具体可分为以下步骤:1、根据不等式的形式或特点,分析解析式中可能出现的约束条件或不等式关系。
2、构造一个函数并确定其满足条件的范围。
3、证明所构造的函数满足所要证明的不等式条件。
1、根据不等式的形式,可考虑构造分式函数。
2、构造函数 $f(x,y)=\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}$,其定义域为$D=\{(x,y)\mid x\neq0,y\neq0,x\neq y\}$。
高三数学函数与导数压轴题训练——函数不等式问题
高三数学函数与导数压轴题训练——函数不等式问题在近几年的高考试题中,出现了一类抽象函数与导数交汇的重要题型,这类问题由于比较抽象,很多学生解题时,突破不了由抽象而造成的解题障碍.实际上,根据所解不等式,联想导数的运算法则,构造适当的辅助函数,然后利用导数判断其单调性是解决此类问题的通法.[典例]设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)[思路点拨]观察xf′(x)-f(x)<0这个式子的特征,不难想到商的求导公式,尝试构造函数F(x)=f(x)x求解.[方法演示]法一:构造抽象函数求解设F(x)=f(x)x.因为f(x)是奇函数,故F(x)是偶函数,F′(x)=xf′(x)-f(x)x2,易知当x>0时,F′(x)<0,所以函数F(x)在(0,+∞)上单调递减.又f(-1)=0,则f(1)=0,于是F(-1)=F(1)=0,f(x)=xF(x),解不等式f(x)>0,即找到x与F(x)的符号相同的区间,易知当x∈(-∞,-1)∪(0,1)时,f(x)>0,故选A.法二:构造具体函数求解设f(x)是多项式函数,因为f(x)是奇函数,所以它只含x的奇次项.又f(1)=-f(-1)=0,所以f(x)能被x2-1整除.因此可取f(x)=x-x3,检验知f(x)满足题设条件.解不等式f(x)>0,得x∈(-∞,-1)∪(0,1),故选A.答案:A[解题师说]抽象函数的导数问题在高考中常考常新,可谓变化多端,解决此类问题的关键是构造函数,常见的构造函数方法有如下几种:(1)利用和、差函数求导法则构造函数①对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);②对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(2)利用积、商函数求导法则构造函数①对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); ②对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0). (3)利用积、商函数求导法则的特殊情况构造函数①对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); ②对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )x(x ≠0); ③对于不等式xf ′(x )+nf (x )>0(或<0),构造函数F (x )=x n f (x ); ④对于不等式xf ′(x )-nf (x )>0(或<0),构造函数F (x )=f (x )x n (x ≠0); ⑤对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ); ⑥对于不等式f ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )e x; ⑦对于不等式f (x )+f ′(x )tan x >0(或<0),构造函数F (x )=sin xf (x ); ⑧对于不等式f (x )-f ′(x )tan x >0(或<0),构造函数F (x )=f (x )sin x (sin x ≠0);⑨对于不等式f ′(x )-f (x )tan x >0(或<0),构造函数F (x )=cos xf (x ); ⑩对于不等式f ′(x )+f (x )tan x >0(或<0),构造函数F (x )=f (x )cos x (cos x ≠0).⑪(理)对于不等式f ′(x )+kf (x )>0(或<0),构造函数F (x )=e kx f (x ); ⑫(理)对于不等式f ′(x )-kf (x )>0(或<0),构造函数F (x )=f (x )e kx ;[应用体验]1.定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.解析:构造函数g (x )=f (x )-x +12, 则g ′(x )=f ′(x )-12<0,∴g (x )在定义域上是减函数. 又g (1)=f (1)-1=0,∴原不等式可化为g (lg x )>g (1), ∴lg x <1,解得0<x <10.∴原不等式的解集为{x |0<x <10}. 答案:(0,10)2.已知定义在⎝⎛⎭⎫0,π2内的函数f (x )的导函数为f ′(x ),且对任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则不等式f (x )<2f ⎝⎛⎭⎫π6sin x 的解集为__________.解析:构造函数g (x )=f (x )sin x ,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x <0,∴g (x )在⎝⎛⎭⎫0,π2内为减函数. 由f (x )<2f ⎝⎛⎭⎫π6sin x , 得f (x )sin x <2f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π6sin π6, 即g (x )<g ⎝⎛⎭⎫π6,∴π6<x <π2, ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x π6<x <π2.答案:⎝⎛⎭⎫π6,π2一、选择题1.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得-3<x <-2或2<x <3.2.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集为( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)f (x 2-1),所以x +1<x 2-1,解得x >2.3.已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集为( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)解析:选D 因为g (x )=x 2f (x ),所以g ′(x )=x 2f ′(x )+2xf (x )=x [xf ′(x )+2f (x )].由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1),得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,所以x ∈(-1,0)∪(0,1). 4.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析:选D 设F (x )=f (x )g (x ),当x <0时, ∵F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, ∴F (x )在(-∞,0)上为增函数.又∵F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ), 故F (x )为R 上的奇函数.∴F (x )在(0,+∞)上也为增函数. 由g (-3)=0,得F (-3)=F (3)=0.画出函数F (x )的大致图象如图所示, ∴F (x )<0的解集为{x |x <-3或0<x <3}.5.已知函数f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对于任意正数a ,b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )解析:选C ∵xf ′(x )+f (x )≤0,且x >0,f (x )≥0. ∴f ′(x )≤-f (x )x ,即f (x )在(0,+∞)上是减函数.又0<a <b ,∴af (b )<bf (a ),当f (x )=0时,符合题意,则af (b )=bf (a ),故af (b )≤bf (a ).6.设函数f (x )在R 上的导函数为f ′(x ),2f (x )+xf ′(x )>x 2,则下面的不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x解析:选A 法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2], 当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2, 令x =0,则f (0)>0,故可排除B 、D.如果f (x )=x 2+0.1,已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不恒成立,故排除C ,选A.7.已知函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则不等式f(x)>2x+4的解集为()A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析:选B令m(x)=f(x)-(2x+4),则m′(x)=f′(x)-2>0,∴函数m(x)在R上为单调递增函数.又∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).8.设函数f(x),g(x)在区间[a,b]上连续,在区间(a,b)上可导,且f′(x)<g′(x),则当x∈(a,b)时必有()A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)<g(x)+f(a)D.f(x)+g(b)<g(x)+f(b)解析:选C令函数h(x)=f(x)-g(x).因为f′(x)<g′(x),故h′(x)=[f(x)-g(x)]′=f′(x)-g′(x)<0,即函数h(x)在区间[a,b]上单调递减.所以x∈(a,b)时必有h(b)<h(x)<h(a),即f(b)-g(b)<f(x)-g(x)<f(a)-g(a),移项整理得,f(x)+g(a)<g(x)+f(a),f(x)+g(b)>g(x)+f(b),故选项C正确.9.函数f(x)是定义在R上的偶函数,f(-2)=0,且x>0时,f(x)+xf′(x)>0,则不等式xf(x)≥0的解集是()A.[-2,0]B.[0,2]C.[-2,2]D.[-2,0]∪[2,+∞)解析:选D因为x>0时,f(x)+xf′(x)>0,故构造函数y=xf(x),则该函数在(0,+∞)上单调递增.又因为f(x)为偶函数,故y=xf(x)为奇函数.结合f(-2)=0,画出函数y=xf(x)的大致图象如图所示.所以不等式xf(x)≥0的解集为[-2,0]∪[2,+∞).10.函数f (x )是定义在R 上的奇函数,f (3)=0,且x <0时,xf ′(x )<f (x ),则不等式f (x )≥0的解集为( )A .(-∞,0)B .[-3,0]∪[3,+∞)C .[-3,3]D .[0,3]解析:选B 令F (x )=f (x )x ,因为f (x )为定义在R 上的奇函数,所以F (x )为偶函数,当x <0时,F ′(x )=xf ′(x )-f (x )x 2<0,故f (x )在(-∞,0)上为减函数,在(0,+∞)上为增函数. 结合f (3)=0,画出函数F (x )=f (x )x 的大致图象如图所示.所以不等式f (x )≥0的解集为[-3,0]∪[3,+∞).11.函数f (x )是定义在R 上的可导函数,且f (x )>f ′(x )对任意x ∈R 都成立,则下列不等式中成立的是( )A .f (2 018)>e 2 018f (0),f (2 018)>e f (2 017)B .f (2 018)>e 2 018f (0),f (2 018)<e f (2 017)C .f (2 018)<e 2 018f (0),f (2 018)>e f (2 017)D .f (2 018)<e 2 018f (0),f (2 018)<e f (2 017) 解析:选D 令函数g (x )=f (x )e x .由f (x )>f ′(x ),得f ′(x )-f (x )<0,所以g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x <0,即函数g (x )=f (x )e x 在R 上单调递减.所以f (2 018)e 2 018<f (2 017)e 2 017<f (0)e0,即有f (2 018)<e f (2 017),f (2 018)<e 2 018f (0).12.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝⎛⎭⎫1k <1kB .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 令g (x )=f (x )-kx +1, 则g (0)=f (0)+1=0,g ⎝ ⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k ·1k -1+1 =f ⎝ ⎛⎭⎪⎫1k -1-1k -1. ∵g ′(x )=f ′(x )-k >0, ∴g (x )在[0,+∞)上为增函数. 又∵k >1,∴1k -1>0,∴g ⎝ ⎛⎭⎪⎫1k -1>g (0)=0, ∴f ⎝ ⎛⎭⎪⎫1k -1-1k -1>0, 即f ⎝ ⎛⎭⎪⎫1k -1>1k -1.二、填空题13.设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1f (x 2-1)的解集为________.解析:令g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x )>0,∴g (x )是R 上的增函数.又f (x +1)>x -1f (x 2-1)可等价转化为x +1f (x +1)>x 2-1f (x 2-1),即g (x +1)>g (x 2-1),所以⎩⎪⎨⎪⎧x +1>x 2-1,x -1≥0,解得1≤x <2,∴原不等式的解集为{x |1≤x <2}.答案:[1,2)14.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2 018)2·f (x +2 018)-4f (-2)>0的解集为________.解析:令g (x )=x 2f (x ),则g ′(x )=2xf (x )+x 2f ′(x ). 结合条件2f (x )+xf ′(x )>x 2,将条件两边同时乘以x , 得2xf (x )+x 2f ′(x )<x 3<0,即g ′(x )<0, ∴g (x )在(-∞,0)上是减函数, 又g (-2)=4f (-2),∴由(x +2 018)2f (x +2 018)-4f (-2)>0, 即g (x +2 018)>g (-2),得x +2 018<-2,解得x <-2 020, ∴原不等式的解集为(-∞,-2 020). 答案:(-∞,-2 020)15.已知定义在R 上的可导函数y =f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且y =f (x +1)为偶函数.f (2)=1,则不等式f (x )<e x 的解集为________.解析:令h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x <0,∴h (x )在R 上是减函数,又y =f (x +1)是偶函数, ∴y =f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=1.由f (x )<e x ,得f (x )e x <1,又h (0)=f (0)e 0=1,∴h (x )<h (0),∴x >0,故原不等式的解集为{x |x >0}. 答案:(0,+∞)16.设f (x )是R 上的奇函数,且f (-1)=0,当x >0时,(x 2+1)f ′(x )-2xf (x )<0,则不等式f (x )>0的解集为______.解析:令g (x )=f (x )x 2+1,则g ′(x )=(x 2+1)f ′(x )-2xf (x )(x 2+1)2.因为当x >0时,(x 2+1)f ′(x )-2xf (x )<0,所以g ′(x )<0,所以g (x )在[0,+∞)上单调递减. 又f (x )=g (x )(x 2+1),所以f(x)在[0,+∞)上单调递减.又f(x)是R上的奇函数,f(-1)=0,所以f(1)=0.当x>0时,f(x)>0=f(1)⇒0<x<1;当x<0时,f(x)>0=f(-1)⇒x<-1.综上,可得不等式f(x)>0的解集为(-∞,-1)∪(0,1).答案:(-∞,-1)∪(0,1)。
专题04 巧妙构造函数,应用导数证明不等式问题(解析版)
2020高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题04 巧妙构造函数,应用导数证明不等式问题一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧.二.解题策略类型一 “比较法”构造差函数证明不等式【例1】【2020·湖南长沙一中月考】已知函数()ln f x ax x =-. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若21,a e ⎛⎤∈-∞-⎥⎝⎦,求证:()12ax f x ax xe -≥-. 【解析】(Ⅰ)由题意得()11'ax f x a x x-=-=, ①当0a ≤时,则()'0f x <在()0,+∞上恒成立, ∴()f x 在()0,+∞上单调递减. ②当0a >时, 则当1,x a ⎛⎫∈+∞⎪⎝⎭时,()()'0f x f x >,单调递增, 当10x a ⎛⎫∈ ⎪⎝⎭,时,()()0f x f x '<,单调递减. 综上:当0a ≤时,()f x 在()0,+∞上单调递减; 当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.(Ⅱ)令()()12ax g x f x ax xe -=-+ 1ln ax xe ax x -=--,则()111'ax ax g x eaxea x --=+-- ()()()111111ax ax ax xe ax e x x --+-⎛⎫=+-= ⎪⎝⎭,设()11ax r x xe-=-,则()()1'1ax r x ax e -=+,∵10ax e ->, ∴当10,x a ⎛⎫∈-⎪⎝⎭时,()()'0r x r x >, 单调递增; 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()0r x r x '<, 单调递减. ∴()2max 1110r x r a ae ⎛⎫⎛⎫=-=-+≤ ⎪ ⎪⎝⎭⎝⎭(因为21a e ≤-), ∴110ax ex --≤. ∴()g x 在10,a ⎛⎫- ⎪⎝⎭上单调递减,在1,a⎛⎫-+∞ ⎪⎝⎭上单调递增,∴()min1g x g a ⎛⎫=- ⎪⎝⎭, 设(210,t e a⎤=-∈⎦, 则()221ln 1(0)t g h t t t e a e ⎛⎫-==-+<≤ ⎪⎝⎭, ()211'0h t e t=-≤,()h t 在(20,e ⎤⎦上递减, ∴()()20h t h e≥=;∴()0g x ≥,故()12ax f x ax xe -≥-.说明:判断11ax ex--的符号时,还可以用以下方法判断: 由110ax e x --=得到1ln x a x-=,设()1ln x p x x -=,则()2ln 2'x p x x-=, 当2x e >时,()'0p x >;当20x e <<时,()'0p x <. 从而()p x 在()20,e 上递减,在()2,e +∞上递增.∴()()22min 1p x p ee==-. 当21a e ≤-时,1ln x a x -≤,即110ax ex--≤. 【指点迷津】当题目中给出简单的基本初等函数,例如()()3f x xg x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【2020·河北衡水中学月考】已知函数1()ln (1),f x x a a R x=+-∈. (Ⅰ)若()0f x ≥,求实数a 取值的集合;(Ⅱ)证明:212ln (2)xe x x e x x+≥-++-. 【解析】(Ⅰ)由已知,有221()(0)a x af x x x x x-'=-=> 当0a ≤时,1()ln 202f a =-+<,与条件()0f x ≥矛盾,当0a >时,若(0,)x a ∈,则()0f x '<,()f x 单调递减,若(,)x a ∈+∞,则()0f x '>,则()f x 单调递增. 所以()f x 在(0,)+∞上有最小值1()ln (1)ln 1f a a a a a a=+-=+-, 由题意()0f x ≥,所以ln 10a a +-≥. 令()ln 1g x x x =-+,所以11()1x g x x x-'=-=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,)x ∈+∞时,()0g x '<,()g x 单调递减,所以()g x 在(0,)+∞上有最大值(1)0g =,所以()ln 10g x x x =-+≤,ln 10a a -+≤,ln 10a a -+=,1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1;(Ⅱ)证明:由(Ⅰ)可知:1a =时,()0f x ≥,即1ln 1x x≥-在0x >时恒成立. 要证212ln (2)xe x x e x x+≥-++-,只需证当0x >时,2(2)10x e x e x ----≥ 令2()(2)1(0)xh x e x e x x =---->()2(2)x h x e x e '=---,令()2(2)x u x e x e =---,则()2xu x e '=-,令()20xu x e '=-=,解得ln 2x =, 所以,函数()u x 在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增. 即函数()h x '在(0,ln 2)内单调递减,在(ln 2,)+∞上单调递增. 而(0)1(2)30h e e '=--=->.(ln 2)(1)0h h '<'=∴存在0(0,ln 2)x ∈,使得0()0h x '=当0(0,)x x ∈时,()0,()h x h x '>单调递增;当0(,1)x x ∈时,()0,()h x h x '<单调递减. 当(1,)x ∈+∞时,()0,()h x h x '>单调递增, 又(0)110,(1)11(2)0h h e e =-==----=,∴对0,()0x h x ∀>≥恒成立,即2(2)10x e x e x ----≥,综上可得:212ln (2)xe x x e x x+≥-++-成立. 类型二 “拆分法”构造两函数证明不等式【例2】【2020·安徽阜阳统测】设函数()1f x x x=-,()ln g x t x =,其中()0,1x ∈,t 为正实数. (1)若()f x 的图象总在函数()g x 的图象的下方,求实数t 的取值范围; (2)设()()()221ln 1e 11xH x x x x x ⎛⎫=-++--⎪⎝⎭,证明:对任意()0,1x ∈,都有()0H x >. 【解析】(1)因为函数()f x 的图象恒在()g x 的图象的下方, 所以()()1ln 0f x g x x t x x-=--<在区间()0,1上恒成立. 设()1ln F x x t x x=--,其中()0,1x ∈,所以()222111t x tx F x x x x-+'=+-=,其中24t ∆=-,0t >. ①当240t -…,即02t <…时,()0F x '…, 所以函数()F x 在()0,1上单调递增,()()10F x F <=,故()()0f x g x -<成立,满足题意.②当240t ->,即2t >时,设()()2101x x tx x θ=-+<<, 则()x θ图象的对称轴12tx =>,()01θ=,()120t θ=-<, 所以()x θ在()0,1上存在唯一实根,设为1x ,则()1,1x x ∈,()0x θ<,()0F x '<,所以()F x 在()1,1x 上单调递减,此时()()10F x F >=,不合题意. 综上可得,实数t 的取值范围是(]0,2.(2)证明:由题意得()()21e ln 1e 1xx H x x x x ⎛⎫=---+ ⎪⎝⎭()()21e 1e ln xx x x x x x--+=-, 因为当()0,1x ∈时,e 10x x x -+>,ln 0x <, 所以()()()21e 10eln x xxx x H x x x--+>⇔>2e 1e 1ln x x x x x x x-⇔<-+. 令()()e 101xh x x x =--<<,则()e 10xh x '=->,所以()h x 在()0,1上单调递增,()()00h x h >=,即e 1x x >+,所以()2e 1111xx x x x x x -+>+-+=+,从而2e e e 11x xx x x x <-++. 由(1)知当2t =时,12ln 0x x x --<在()0,1x ∈上恒成立,整理得212ln x x x ->.令()()2e 011xm x x x =<<+,则要证()0H x >,只需证()2m x <.因为()()()222e 101x x m x x-'=>+,所以()m x 在()0,1上单调递增,所以()()e122m x m <=<,即()2m x <在()0,1上恒成立. 综上可得,对任意()0,1x ∈,都有()0H x >成立. 【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【2020届福建厦门双十中学月考】已知函数22()1ln ()f x x a x ax a R =-+-∈. (1)讨论()f x 的单调区间;(2)当0a =且(0,1)x ∈,求证:()11x f x x e x+-<. 【解析】(1)函数()f x 定义域为(0,)+∞,21()2f x a x a x '=-+-2221(21)(1)a x ax ax ax x x--+-==. ①若0a =时,则()0f x <,()f x 在(0,)+∞上单调递减; ②若0a >时,1102a a >>-,令1()02f x x a >⇒<-或1x a>. 又0x >,()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;③若0a <时,1102a a ->>, 令1()0f x x a>⇒<或12x a >-. 又0x >,()f x ∴在10,2a ⎛⎫- ⎪⎝⎭上单调递减,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(2)要证()11x f x x e x +-<,只需证1ln 11x x x e x-+-<, (0,1)x ∈Q ,只需证()2(1ln )1x x x x x e -<+-,设()(1ln )g x x x =-,()2()1xh x x xe=+-,()ln 0g x x '=->在(0,1)x ∈上恒成立,所以()g x 在(0,1)上单调递增. 所以()(1)1g x g <=,()2()2(2)(1)0x x h x x x e x x e '=--+=-+->,所以()h x 在(0,1)上单调递增, 所以()(0)1h x h >=,所以当(0,1)x ∈时,()()g x h x <, 即原不等式成立.类型三 “换元法”构造函数证明不等式【例3】【2020湖北宜昌一中期中】已知函数()()1xf x e a x =--有两个零点.(1)求实数a 的取值范围;(2)设1x 、2x 是()f x 的两个零点,证明:1212x x x x <+⋅. 【解析】(1)函数()()1xf x e a x =--,所以()xf x e a '=-,当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上单调递增,()f x 至多只有一个零点,不符合题意,当0a >时,由()0f x '=得ln x a =,所以(),ln x a ∈-∞时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增,所以ln x a =时()f x 取得极小值,也是最小值,()f x 要有两个零点,则()ln 0f a <,即()2ln 0a a -<,解得2a e >, 所以ln 2a >,当1ln x a =<时,得()10f e =>,当2ln ln x a a =>时,()()22ln 2ln 2ln 1f a a a a a a a a =-+=-+,设()2ln 1a a a ϕ=-+,则()2210a a a aϕ-'=-=> 所以()a ϕ单调递增,则()()22140a eeϕϕ>=+->,所以()()2ln 2ln 10f a a a a =-+>,所以()f x 在区间()1,ln a 上有且只有一个零点,在()ln ,2ln a a 上有且只有一个零点,所以满足()f x 有两个零点的a 的取值范围为2()e +∞.(2)1x 、2x 是()f x 的两个零点,则()()120f x f x ==, 要证1212x x x x <+⋅,即证()()12111x x --<, 根据()()120f x f x ==, 可知()111xe a x =-,()221x ea x =-,即证()()12122111x x e x x a+--=<, 即证122x x e a +<,即证122ln x x a +<, 即证212ln x a x <-, 设1ln x a <,2ln x a >,由(1)知()f x 在()ln ,a +∞上单调递增, 故只需证明()()212ln f x f a x <-,而()()21f x f x =,所以只需证()()112ln f x f a x <-令()()()2ln g x f a x f x =--,且ln x a <所以()222ln x x a g x e ax a a e =-+-,ln x a <,()22222x x xx xa a e ae g x e a e e+-'=--+=- ()20xxe a e-=-<所以()g x 在(),ln a -∞上单调递减,所以()()()()ln 2ln ln ln 0g x g a f a a f a >=--=, 所以()()2ln f a x f x ->在(),ln a -∞上恒成立, 所以()()112ln f a x f x ->, 故原命题得证. 【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元. 【举一反三】【2020山西太原五中期中】已知函数2()2ln f x x x x =++. (1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)若正实数12,x x 满足12()()4f x f x +=,求证:122x x +≥. 【解析】(1)2(1)2ln111=2f =++,切点为(1,2).2()21f x x x'=++,(1)5k f '==. 切线为:25(1)y x -=-,即530x y --=.(2)2212111222()()2ln 2ln 4f x f x x x x x x x +=+++++=221112222ln 2ln 4x x x x x x +++++=. 212121212()()42(ln )x x x x x x x x +++=+-令12x x t =, ()ln g t t t =-,0t >,11()1t g t t t-'=-=,(0,1)t ∈,()0g t '<,()g t 为减函数, (1,)t ∈+∞,()0g t '>,()g t 为增函数,min ()(1)1g t g ==,所以()1g t ≥.即21212()()426x x x x +++≥+=.得:1212(3)(2)0x x x x +++-≥, 得到1220x x +-≥,即:122x x +≥.类型四 “转化法”构造函数证明不等式【例4】【2020·天津南开中学月考】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x-+=--+-'=. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当0,22a a x ⎛⎛⎫-+∈⋃+∞ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当x ⎝⎭时,()0f x '>.所以()f x 在,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<. 设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--. 【指点迷津】在关于x 1,x 2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x 1,x 2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【2020·吉林省实验期末】已知函数()2ln 2f x x x ax x =-+,a ∈R .(Ⅰ)若()f x 在()0,∞+内单调递减,求实数a 的取值范围; (Ⅱ)若函数()f x 有两个极值点分别为1x ,2x ,证明:1212x x a+>. 【解析】(I )()ln 24f x x ax +'=-. ∴()f x 在()0,∞+内单调递减,∴()ln 240f x x ax =+-≤在()0,∞+内恒成立,即ln 24x a x x ≥+在()0,∞+内恒成立. 令()ln 2x g x x x =+,则()21ln xg x x--'=, ∴当10e x <<时,()0g x '>,即()g x 在10,e ⎛⎫⎪⎝⎭内为增函数; 当1x e >时,()0g x '<,即()g x 在1,e ⎛⎫+∞ ⎪⎝⎭内为减函数. ∴()g x 的最大值为1g e e ⎛⎫= ⎪⎝⎭,∴e,4a ⎡⎫∈+∞⎪⎢⎣⎭(Ⅱ)若函数()f x 有两个极值点分别为1x ,2x , 则()ln 240f x x ax =+-='在()0,∞+内有两根1x ,2x , 由(I ),知e 04a <<. 由1122ln 240ln 240x ax x ax +-=⎧⎨+-=⎩,两式相减,得()1212ln ln 4x x a x x -=-.不妨设120x x <<,∴要证明1212x x a+>,只需证明()()121212142ln ln x x a x x a x x +<--.即证明()1212122ln ln x x x x x x ->-+,亦即证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+. 令函数.∴22(1)'()0(1)x h x x x --=≤+,即函数()h x 在(]0,1内单调递减. ∴()0,1x ∈时,有()()10h x h >=,∴2(1)ln 1x x x ->+. 即不等式12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+成立.综上,得1212x x a+>. 三.强化训练1.【2020·辽宁本溪一高期末】已知a R ∈,函数2()x f x e ax =+.(1)()f x '是函数数()f x 的导函数,记()()g x f x '=,若()g x 在区间(,1]-∞上为单调函数,求实数a 的取值范围;(2)设实数0a >,求证:对任意实数12,x x ()12x x ≠,总有()()121222f x f x x x f ++⎛⎫<⎪⎝⎭成立. 附:简单复合函数求导法则为[()]()f ax b af ax b ''+=+.【解析】(1)由已知得()2xf x e ax '=+,记()2xg x e ax =+,则()2xg x e a '=+.①若0a ≥,()0g x '>,()g x 在定义域上单调递增,符合题意; ②若0a <,令()0g x '=解得()ln 2x a =-,()g x '自身单调递增, 要使导函数()g x 在区间(],1-∞上为单调函数, 则需()ln 21a -≥,解得2ea ≤-, 此时导函数()g x 在区间(],1-∞上为单调递减函数.综合①②得使导函数()f x '在区间(],1-∞上为单调函数的a 的取值范围是[),0,2e ⎛⎤-∞-+∞ ⎥⎝⎦U .(2)因为12x x ≠,不妨设12x x <,取1x 为自变量构造函数,()()()1212122f x f x x x F x f ++⎛⎫=- ⎪⎝⎭,则其导数为()()11211222f x x x F x f '+⎛⎫''=- ⎪⎝⎭()121122x x f f x ⎡+⎤⎛⎫''=- ⎪⎢⎥⎝⎭⎣⎦0a >Q ()2xf x e ax ∴'=+在R 上单调递增而且12211022x x x xx +--=>, 所以()1212x x f f x +⎛⎫''>⎪⎝⎭, 即()10F x '>.故关于1x 的函数()1F x 单调递增,()()120F x F x <= 即()()121222f x f x x x f ++⎛⎫<⎪⎝⎭证得. 2. 【2020·湖北随州一中期末】高三月考(理))已知函数()ln f x ax x =-.(Ⅰ)求()f x 的极值;(Ⅱ)若1a =-,1b ≥,()()xg x f x be =+,求证:()0g x >.【解析】(Ⅰ)()()10f x a x x'=->, 当0a ≤时,()0f x '<恒成立,则()f x 在()0,∞+上单调递减,()f x 无极值; 当0a >时,令()0f x '>,得1x a >;令()0f x '<,得10x a<<, 则()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,()f x 有极小值为1ln a +,无极大值;(Ⅱ)当1a =-,1b =时,()()ln 0xg x e x x x =-->,()11xg x e x'=--, 令()()h x g x '=,则()210xh x e x =+>', 所以()h x 在()0,∞+上单调递增.又1302h ⎛⎫=<⎪⎝⎭,()120h e =->, 所以01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()000110x h x e x =--=,即011x e x =+, 所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以函数()g x 的最小值为()00000001ln 1ln x g x e x x x x x =--=+--, 又函数11ln y x x x=+--在1,12⎛⎫⎪⎝⎭上是单调减函数,所以()011ln1110g x >+--=>,又1b ≥,()()xxf x be f x e +≥+, 故()0g x >.3.【2020·湖北黄石一高月考】已知函数2()1f x e x e =+--.(1)若()f x ax e ≥-对x ∈R 恒成立,求实数a 的值;(2)若存在不相等的实数1x ,2x ,满足12()()0f x f x +=,证明:122x x +<. 【解析】(1)令()()()(1)1xg x f x ax e e a x =--=+--, 则()1xg x e a '=+-,由题意,知()0g x ≥对x ∈R 恒成立,等价min ()0g x ≥.当1a ≤时,由()0g x '≥知()(1)1xg x e a x =+--在R 上单调递增. 因为1(1)(1)10g a e-=---<,所以1a ≤不合题意; 当1a >时,若(,ln(1))x a ∈-∞-,则()0g x '<,若(ln(1),)x a ∈-+∞,则()0g x '>,所以,()g x 在(,ln(1))a -∞-单调递减,在(ln(1),)a -+∞上单调递增. 所以min ()(ln(1))2(1)ln(1)0g x g a a a a =-=-+--≥ 记()2(1)ln(1)(1)h a a a a a =-+-->, 则()ln(1)h a a '=--.易知()h a 在(1,2)单调递增,在(2,)+∞单调递减, 所以max ()(2)0h a h ==, 即2(1)ln(1)0a a a -+--≤.而min ()2(1)ln(1)0g x a a a =-+--≥, 所以2(1)ln(1)0a a a -+--=,解得2a =. (2)因为()()120f x f x +=, 所以12122(1)xxe e x x e +++=+. 因为12122122,x x x x e e e x x ++≥≠,所以121222x x x x e e e ++>令12x x t +=, 则22220te t e +--<. 记2()2220tm t e t e =+--<,则2()10t m t e '=+>,所以()m t 在R 上单调递增.又(2)0m =,由22220te t e +--<, 得()(2)m t m <, 所以2t <,即122x x +<.4.【2020·浙江高温州三中期末】已知函数()11114x x e e ax a f x ++⎛⎫=-+- ⎪⎝⎭,其中 2.718e =⋅⋅⋅是自然对数的底数,()()'g x f x =是函数()f x 的导数. (1)若()g x 是R 上的单调函数,求a 的值; (2)当78a =时,求证:若12x x ≠,且122x x +=-,则()()122f x f x +>. 【解析】(1)()()1112'1x x ee ax g xf x ++⎛⎫=-- ⎝=⎪⎭,()()11'1x x e e x g x a a ++=---,由题意()110x e ax a G x +=---≥恒成立,由于()10G -=,所以()'10G -=,解得1a =.方法一:消元求导死算(2)()11171488x x e x e f x ++⎛⎫=-- ⎪⎝⎭()111731484x x e e x ++⎛⎫=-++ ⎪⎝⎭, 令1x t +=,120t t +=,不妨设210t x =+>,()173484t th e e t t ⎛⎫=-+ ⎪⎝⎭,令()()()H t h t h t =+-173173484484tt t t e e t e e t --⎛⎫⎛⎫=-++++⎪ ⎪⎝⎭⎝⎭,原题即证明当0t >时,()2H t >,()171171288288'tt t t e e t e e H t t --⎛⎫⎛⎫=---+-⎪ ⎪⎝⎭⎝⎭ ()()()()171288t t t t t t t te e e e t e e e e ----=+--+-- ()()()()711208216t t t t t t t t e e e e t e e e e ----⎡⎤⎡⎤=+--+-+-≥⎢⎥⎣⎦⎣⎦,其中 ()()11'1022t t t t e e t e e --⎡⎤--=+-≥⎢⎥⎣⎦,因为()02H =,所以当0t >时,()2H t >,得证. 5.【2020·安徽黄山期末】已知函数()()2e 12e x xf x a a x =+--.(1)当0a <时,讨论()f x 的单调性;(2)若()f x 有两个不同零点1x ,2x ,证明:1a >且120x x +<.【解析】(1)()()()()22e 12e 1e 12e 1x x x xf x a a a '=+--=-+.因为0a <,由()0f x '=得,0x =或1ln 2x a ⎛⎫=- ⎪⎝⎭.i )1ln 02a ⎛⎫-< ⎪⎝⎭即12a <-时,()f x 在1,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在1ln ,02a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在()0,∞+单调递减;ii )1ln 02a ⎛⎫-= ⎪⎝⎭即12a =-时,()f x 在(),-∞+∞单调递减;iii )1ln 02a ⎛⎫-> ⎪⎝⎭即102a -<<时,()f x 在(),0-∞单调递减,在10,ln 2a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭单调递增,在1ln ,2a ⎛⎫⎛⎫-+∞ ⎪⎪⎝⎭⎝⎭单调递减. (2)由(1)知,12a <-时,()f x 的极小值为111ln 1ln 10242f a a a ⎛⎫⎛⎫⎛⎫-=--->> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,102a -<<时,()f x 的极小值为()0110f a =->>, 12a =-时,()f x 在(),-∞+∞单调,故0a <时,()f x 至多有一个零点.当0a ≥时,易知()f x 在(),0-∞单调递减,在()0,∞+单调递增.要使()f x 有两个零点,则()00f <,即120a a +-<,得1a >.令()()()F x f x f x =--,(0x >),则()()()F x f x f x '''=+-()()22e 12e 1x xa a =+--()()22e 12e 1x x a a --++--()()()2e e 1e e 2e e 20x x x x x x a ---=+++-++-≥,所以()F x 在0x >时单调递增,()()00F x F >=,()()f x f x >-.不妨设12x x <,则10x <,20x >,20x -<, ()()()122f x f x f x =>-. 由()f x 在(),0-∞单调递减得,12x x <-,即120x x +<.6.【2020·山东东营期末】已知函数()()sin ,ln f x x a x g x x m x =-=+.(1)求证:当1a ≤时,对任意()()0,,0x f x ∈+∞>恒成立; (2)求函数()g x 的极值; (3)当12a =时,若存在()12,0,x x ∈+∞且12x x ≠,满足()()()()1122f x g x f x g x +=+,求证:12249x x m <. 【解析】(1)()()sin 1cos f x x a x f x a x '=-∴=-,1cos 1x -≤≤Q ,()11cos 0a f x a x '∴≤=-≥,, ()sin f x x a x =-在()0+∞,上为增函数,所以当()0,x ∈+∞时,恒有()()00f x f >=成立; (2)由()()()ln ,10m x mg x x m x g x x x x+'=+∴=+=> 当()00m g x '≥>,()g x 在()0+∞,上为增函数,无极值 当()()0,00;0m x m g x x m g x ''<<<-<>->,,()g x 在()0m -,上为减函数,在(),m -+∞上为增函数,()x m x ∴=-,g 有极小值()ln m m m -+-,无极大值,综上知:当()0m g x ≥,无极值,当()0m g x <,有极小值()ln m m m -+-,无极大值. (3)当()11sin 22a f x x x ==-,在()0+∞,上为增函数, 由(2)知,当0m ≥,()g x 在()0+∞,上为增函数, 这时,()()f x g x +在()0+∞,上为增函数, 所以不可能存在()12,0,x x ∈+∞,满足()()()()1122f x g x f x g x +=+且12x x ≠ 所以有0m <现不防设()()()()1211220x x f x g x f x g x <<+=+,得:111222112sin ln 2sin ln 22x x m x x x m x -+=-+()()()2121211ln ln 2sin sin 2m x x x x x x --=---① 1122sin sin x x x x -<-()()212111sin sin 22x x x x -->--② 由①②式可得:()()()2121211ln ln 22m x x x x x x -->--- 即()()21213ln ln 02m x x x x -->-> 又1221ln ln ,ln ln 0x x x x <->2121302ln ln x x m x x -∴->⨯>-③ 又要证12249x x m <,即证21294m x x > 120,0m x x <<<Q即证1132m x x ->……④ 所以由③式知,只需证明:211221ln ln x x x x x x ->-即证212211ln 1x x x x x x -> 设211x t x =>,只需证1ln t t t->,即证:()ln 01t t t ->> 令()()ln 1h t t t t=-> 由()(()()21012t h t t h t t t-'=>>,在()1+∞,上为增函数, ()()10h t h ∴>=211221ln ln x x x x x x -∴>-成立,所以由③知,12302m x x ->>成立, 所以12249x x m <成立. 7. 【2020届四川省成都一诊】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【解析】(1)由题意,又,所以,因此在点处的切线方程为,即(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【2020·天津南开期末】已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)对(1,)x ∀∈+∞,有21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭恒成立,求k 的最大整数解; (3)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 的唯一的极值点,求证:12034x x x +>.【解析】(1)2()46ln f x x x x =--Q所以定义域为()0,+?6()24f x x x'∴=--; (1)8f '=-;(1)3f =-所以切线方程为85y x =-+;2()(1)(3)f x x x x'=+-, 令()0f x '>解得3x >令()0f x '<解得03x <<所以()f x 的单调递减区间为()0,3,单调递增区间为(3,)+∞.(2)21()()6112xf x f x x k x ⎛⎫'->+-- ⎪⎝⎭等价于min ln ()1x x x k h x x +<=-; 22ln ()(1)x x h x x --'∴=-, 记()2ln m x x x =--,1()10m x x'=->,所以()m x 为(1,)+∞上的递增函数, 且(3)1ln30m =-<,(4)2ln 40m =->,所以0(3,4)x ∃∈,使得()00m x =即002ln 0x x --=,所以()h x 在()01,x 上递减,在()0,x +∞上递增,且()000min 000ln ()(3,4)1x x x h x h x x x +===∈-; 所以k 的最大整数解为3.(3)2()ln g x x a x =-,()20a g x x x x +-'=-==得0x =当x ⎛∈ ⎝,()0g x '<,x ⎫∈+∞⎪⎪⎭,()0g x '>;所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增, 而要使()g x 有两个零点,要满足()00g x <,即202g a a e =-<⇒>;因为10x <<2x >21x t x =(1)t >, 由()()12f x f x =,221122ln ln x a x x a x ∴-=-,即:2221111ln ln x a x t x a tx -=-,212ln 1a t x t ∴=- 而要证12034x x x +>,只需证1(31)t x +>即证:221(31)8t x a +> 即:22ln (31)81a t t a t +>-由0a >,1t >只需证:22(31)ln 880t t t +-+>, 令22()(31)ln 88h t t t t =+-+,则1()(186)ln 76h t t t t t'=+-++ 令1()(186)ln 76n t t t t t =+-++,则261()18ln 110t n t t t -'=++>(1)t > 故()n t 在(1,)+∞上递增,()(1)0n t n >=;故()h t 在(1,)+∞上递增,()(1)0h t h >=;12034x x x ∴+>.9.【2020·湖南洪湖期末】已知函数()1,f x xlnx ax a R =++∈(1)当0x >时,若关于x 的不等式()0f x ≥恒成立,求a 的取值范围;(2)当*n N ∈时,证明:2223122421n n n ln ln ln n n n +<+++<++L . 【解析】(1)由()0f x ≥,得ln 10x x ax ++≥ (0)x >. 整理,得1ln a x x -≤+恒成立,即min 1ln a x x ⎛⎫-≤+ ⎪⎝⎭. 令()1ln F x x x =+.则()22111'x F x x x x-=-=. ∴函数()F x 在()0,1上单调递减,在()1,+∞上单调递增.∴函数()1ln F x x x=+的最小值为()11F =. ∴1a -≤,即1a ≥-.∴a 的取值范围是[)1,-+∞. (2)∵24n n +为数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和,1n n +为数列()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和. ∴只需证明()()211ln 12n n n n +<++ ()11n n <+即可. 由(1),当1a =-时,有ln 10x x x -+≥,即1ln x x x ≥-. 令11n x n +=>,即得1ln 11n n n n +>-+ 11n =+. ∴2211ln 1n n n +⎛⎫> ⎪+⎝⎭()()112n n >++ 1112n n =-++. 现证明()211ln 1n n n n +<+,即<==()* 现证明12ln (1)x x x x<->.构造函数()12ln G x x x x=-- ()1x ≥, 则()212'1G x x x =+- 22210x x x-+=≥. ∴函数()G x 在[)1,-+∞上是增函数,即()()10G x G ≥=.∴当1x >时,有()0G x >,即12ln x x x<-成立.令x =()*式成立. 综上,得()()211ln 12n n n n +<++ ()11n n <+. 对数列()()112n n ⎧⎫⎪⎪⎨⎬++⎪⎪⎩⎭,21ln n n +⎧⎫⎨⎬⎩⎭,()11n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭分别求前n 项和,得 223ln 2ln 242n n <++ 21ln 1n n n n ++⋅⋅⋅+<+. 10.【2020·全国高三专题】已知函数()ln a f x x x=+,其中a R ∈. (1)试讨论函数()f x 的单调性; (2)若1a =,试证明:()e cos x x f x x+<. 【解析】(1)由 221()a x a f x x x x -'=-=(0)x > 知: (i )若0a ≤,2()0(0)x a f x x x -'=>>,∴ ()f x 在区间()0,∞+上为增函数. (ii )若0a >,∴当x ∈()0,a 时,有()0f x '<,∴ ()f x 在区间()0,a 上为减函数. 当x ∈(),a +∞时,有()0f x '>,∴ ()f x 在区间(),a +∞上为增函数. 综上:当0a ≤时,()f x 在区间()0,∞+上为增函数;当0a >时,()f x 在区间()0,a 上为减函数;()f x 在区间(),a +∞上为增函数. (2)若1a =,则1()ln (0)f x x x x=+>要证e cos ()x x f x x+<,只需证ln 1e cos x x x x +<+, 即证:ln e cos 1x x x x <+-.(i )当01x <≤时,ln 0x x ≤,而e cos 11cos11cos10x x +->+-=> ∴此时ln <e cos 1x x x x +-成立.(ii )当1x >时,令()e cos ln 1x g x x x x =+--,()0,x ∈+∞, ∵ ()e sin ln 1x g x x x '=---,设()()e sin ln 1x h x g x x x '==---,则 1()e cos x h x x x'=-- Q 1x >,∴1()e cos e 110x h x x x'=-->--> ∴当1x >时,()h x 单调递增,∴()(1)e sin110h x h >=-->,即()0g x '> ∴()g x 在()1,+∞单调递增,∴()(1)e cos110g x g >=+-> 即()e cos ln 10x g x x x x =+-->,即ln <e cos 1x x x x +-, ∴e cos ()<x x f x x+ 综上:当0x >时,有e cos ()<x x f x x+成立.。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧数学中,不等式是一种非常重要的工具,可以用来证明和描述各种性质和现象。
在证明不等式时,我们常常需要运用导数和构造函数的技巧。
下面,本文将介绍导数和构造函数证明不等式的技巧。
一、导数证明不等式当我们需要证明一个函数的某个性质或者不等式时,可以通过计算其导数来得到一些有用的信息。
具体来说,如果一个函数在某一点的导数为正数,则意味着函数在该点的值越大,导函数也就越大;而如果函数在某一点的导数为负数,则意味着函数在该点的值越大,导函数也就越小。
考虑一个简单的例子:证明二次函数 $f(x)=x^2+4x+3$ 在 $x\geqslant-2$ 的区间内严格单调递增。
我们首先计算 $f(x)$ 的导数:$$f'(x)=2x+4$$然后,我们发现,在 $x\geqslant-2$ 的区间内,$f'(x)$ 是恒正的,因此$f(x)$ 在该区间内是严格单调递增的。
因此,不等式 $f(x_1)<f(x_2)$ 成立当且仅当$x_1<x_2$,其中 $x_1$ 和 $x_2$ 均在 $x\geqslant-2$ 的区间内。
另一种证明不等式的常用技巧是构造函数。
具体来说,我们可以构造一个新的函数$g(x)$,使得 $g(x_1)<g(x_2)$ 成立当且仅当 $f(x_1)<f(x_2)$ 成立。
考虑一个简单的例子:证明当 $a>1$ 时,有 $a^2>a+\sqrt{a}$。
我们首先构造一个函数 $f(x)=x^2-x-\sqrt{x}$,并计算其导数:$$f'(x)=2x-1-\frac{1}{2\sqrt{x}}$$接下来,我们构造一个新的函数 $g(x)=af(x)+(a-1)x$。
由于 $a>1$,因此$g'(x)=af'(x)+(a-1)>0$,因此 $g(x)$ 在 $x>1$ 的区间内是严格单调递增的。
巧妙构造函数应用导数证明不等式问题-2019年高考数学压轴题探究与突破
巧妙构造函数应用导数证明不等式问题-2019年高考数学压轴题探究与突破一.方法综述利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里给出几种常用的构造技巧. 二.解题策略类型一 “比较法”构造差函数证明不等式【例1】【2018届广州模拟】已知函数()(xf x e ax e =-为自然对数的底数,a 为常数)的图象在点(0,1)处的切线斜率为-1.(1)求a 的值及函数()f x 的极值; (2)证明:当20.xx x e >时,< 【答案】见解析. 【解析】(2)证明:令()()22.xxg x e x g x e x '=-,则=-由(1)得()()() 20g x f x f ln '≥=>, 故()g x 在R 上单调递增.所以当()()20010.xx g x g x e >时,>=>,即<【指点迷津】当题目中给出简单的基本初等函数,例如()()3 f x x g x ln x =,=,进而证明在某个取值范围内不等式()()f x g x ≥成立时,可以类比作差法,构造函数()()()()()()h x f x g x x g x f x ϕ=-或=-,进而证明()()00min max h x x ϕ≥≤或即可,在求最值的过程中,可以利用导数为工具.此外,在能够说明()()()00g x f x >>的前提下,也可以类比作商法,构造函数()()()()()f x f x h x xg x g x ϕ=(()=),进而证明()()()11min max h x x ϕ≥≤.【举一反三】【广东省佛山市南海区南海中学2018届考前七校联合体高考冲刺】已知函数,(Ⅰ) 设函数,讨论函数的单调性;(Ⅱ)求证:当时,【答案】(1)见解析.(2)见解析. 【解析】(Ⅱ)要证,即证,令,当时,,∴成立;当时,,当时,;当时,,∴在区间上单调递减,在区间上单调递增,∴.∵,∴,,∴,即成立,故原不等式成立.类型二“拆分法”构造两函数证明不等式【例2】【山东省青岛市2019届9月期初调研】已知函数. (1)若上存在极值,求实数m的取值范围;(2)求证:当时,.【答案】(1);(2)见解析【解析】(2)要证即证令,则再令,则当时,,∴在上是增函数,∴∴,∴在上是增函数 ∴当时,∴令,则当时,,∴即在上是减函数∴当时,所以,即【指点迷津】当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为()()f x g x ≤的形式,进而证明()()max min f x g x ≤即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把握,一般以能利用导数进行最值分析为拆分标准.【举一反三】【山东省实验中学2019届高三第一次诊断】已知函数().(1)若函数在上是减函数,求实数的取值范围; (2)令,是否存在实数,当(为自然对数的底数)时,函数的最小值是,若存在,求出的值;若不存在,说明理由; (3)当时,证明:.【答案】(1);(2);(3)见解析.【解析】分析:(1)根据函数在上是减函数知其导数在上恒成立,结合二次函数性质可求得的范围(2)先假设存在,对函数求导,根据的值分情况讨论在上的单调性和最小值取得,可知当能够保证当时有最小值3(3)令由(2)知,,令可求出其最大值为3,即有,化简即可得证.解:(1)在上恒成立,令,有得,得.(2)假设存在实数,使有最小值3,①当时,在上单调递减,(舍去),②当时,在上单调递减,在上单调递增∴,满足条件.③当时,在上单调递减,(舍去),综上,存在实数,使得当时有最小值3.类型三“换元法”构造函数证明不等式【四川省成都石室中学2019届高三上学期入学】已知函数,,其中【例3】(1)若,求的单调区间;(2)若的两根为,且,证明:.【答案】(1)见解析;(2)见解析【解析】分析:(1) 由已知得,,解不等式即可得到单调区间;(2)由题意可得,要证,即证:,即证:.解:(1)由已知得,所以,当时,;当时,.故的单调递增区间为,单调递减区间为.【指点迷津】若两个变元x 1,x 2之间联系“亲密”,我们可以通过计算、化简,将所证明的不等式整体转化为关于m(x 1,x 2)的表达式(其中m(x 1,x 2)为x 1,x 2组合成的表达式),进而使用换元令m(x 1,x 2)=t ,使所要证明的不等式转化为关于t 的表达式,进而用导数法进行证明,因此,换元的本质是消元. 【举一反三】【2018届四川省资阳市4月模拟(三诊)】已知函数()()ln pF x px x=+(其中0p >). (1)当12p <<时,求()F x 零点的个数k 的值; (2)在(1)的条件下,记这些零点分别为()1,2,,i x i k =,求证:12111kx x x +++> 【答案】(1)见解析;(2)见解析. 【解析】(2)由(1)知()F x 的两个零点为12x x ,,不妨设12x x <, 于是()()112212ln ln 0ln ln 0p pF x p x F x p x x x =++==++=,,且1244p x p x p <<<<, 两式相减得()211122ln0p x x x x x x -+=(*), 令121(1)16x t t x =<<, 则将12x tx =代入(*)得()21ln p t x t t-=,进而()11ln p t x t-=,所以()121ln 111ln ln 1111t t t t t x x p t t p t ⎡⎤+⎛⎫+=+=⎢⎥ ⎪---⎝⎭⎣⎦, 下面证明()1ln 21t t t +>-,其中1116t <<, 即证明()()1ln 21t t t +<-,设()()()211ln f t t t t =--+, 则()11ln f t t t -'=-,令()u t 11ln t t =--,则()221110tu t t t t-='=->,所以()u t 为增函数,即()11ln f t t t-'=-为1,116⎛⎫⎪⎝⎭增函数, 故()()10f t f ''<=,故()()()211ln f t t t t =--+为1,116⎛⎫⎪⎝⎭减函数, 于是()()()()211ln 10f t t t t f =--+>=,即()()211ln t t t ->+.所以有()1ln 21t t t +>-,从而12112x x p +>.而由12p <<,得1p >所以1211x x +> 类型四 “转化法”构造函数证明不等式【例4】【内蒙古赤峰二中2019届第二次月考】设函数有两个极值点,且(I )求的取值范围,并讨论的单调性;(II )证明:【答案】(Ⅰ)函数的单调递增区间为和,单调递减区间,其中,且.(Ⅱ)证明见解析 【解析】(Ⅱ)由韦达定理和①知,,则﹣<x2<0,,a=﹣2x2(1+x2),于是f(x2)=﹣2x2(1+x2)ln(1+x2),设函数g(t)=t2﹣2t(1+t)ln(1+t),则g′(t)=﹣2(1+2t)ln(1+t),当t=﹣时,g′(t)=0,当t∈(﹣,0)时,g′(t)>0,故g(t)在[﹣,0)上是增函数.于是,当t∈(﹣,0),g(t)>g(﹣)=,因此f(x2)=g(x2)>.【指点迷津】在关于x1,x2的双变元问题中,若无法将所要证明的不等式整体转化为关于m(x1,x2)的表达式,则考虑将不等式转化为函数的单调性问题进行处理,进而实现消元的目的.【举一反三】【江西师范大学附属中学2018年10月高三月考】设,函数(1)若无零点,求实数的取值范围;(2)若有两个相异零点,求证:.【答案】(1);(2)见解析【解析】(1)①若时,则是区间上的增函数,∵∴,函数在区间有唯一零点;②若,有唯一零点;③若,令,得,在区间上,,函数是增函数;在区间故在区间三.强化训练1.【山西省长治市第二中学2017-2018学年高二下期末】设函数在点处的切线方程为.(1)求的值,并求的单调区间;(2)证明:当时,.【答案】(1)见解析;(2)见解析【解析】⑴,由已知,,故a=-2,b=-2.,当时,,当时,,故f(x)在单调递减,在单调递减;⑵,即,设,,所以g(x)在递增,在递减,当x≥0时,.2. 【2018届高三第一次全国大联考】已知函数有两个零点(). (1)求实数的取值范围;(2)求证:.【答案】(1);(2)见解析【解析】作出直线,由图可知,实数的取值范围为.(2)由题意,即,所以.故,即,整理得,即,不妨设,由题意得.则,所以.所以,故.记函数(),则,因为,所以,所以函数在上单调递增,所以.而,所以,故,即.3. 【2018届吉林省长春市高三质量监测(三)】已知函数.(1)若在上是单调递增函数,求的取值范围;(2)设,当时,若,其中,求证:. 【答案】(1) (2)见解析【解析】(2),设,则,在上递增且令,设,,,在上递增,,,,令即:又,即:,,在上递增,即:,得证.4.【2018届山东省济南市高三一模】已知函数()()2ln 21f x a x x a x =-+- ()a R ∈有两个不同的零点. (1)求a 的取值范围;(2)设1x , 2x 是()f x 的两个零点,证明: 122x x a +>. 【答案】(1) ()1,+∞ (2)见解析 【解析】②当0a >时,令()'0f x =得: x a =,则(ii )当1a >时, ()()max 0f x a g a =⋅>, ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭ 2110e e --<,∴()f x 在区间1,a e ⎛⎫⎪⎝⎭上有一个零点,∵()()31ln 31f a a a -=- ()()()2312131a a a --+-- ()()ln 3131a a a ⎡⎤=---⎣⎦, 设()ln h x x x =-, (1)x >,∵()1'10h x x=-<, ∴()h x 在()1,+∞上单调递减,则()()312ln220h a h -<=-<, ∴()()31310f a a h a -=⋅-<,∴()f x 在区间(),31a a -上有一个零点,那么, ()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时, a 的取值范围是()1,+∞. (1)【解法二】函数的定义域为: ()0,+∞. ()'221af x x a x =-+- ()()21x a x x+-=, ①当0a ≤时,易得()'0f x <,则()f x 在()0,+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令()'0f x =得: x a =,则∴()()maxf x f x =极大 ()()ln 1f a a a a ==+-. ∴要使函数()f x 有两个零点,则必有()()ln 10f a a a a =+->,即ln 10a a +->, 设()ln 1g a a a =+-,∵()1'10g a a=+>,则()g a 在()0,+∞上单调递增, 又∵()10g =,∴1a >; 当1a >时: ∵121f a e e ⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭2110e e --<,∴()f x 在区间1,a e ⎛⎫ ⎪⎝⎭上有一个零点; 设()ln h x x x =-, ∵()11'1x h x x x-=-=,∴()h x 在()0,1上单调递增,在()1,+∞上单调递减, ∴()()110h x h ≤=-<,∴ln x x <,∴()()2ln 21f x a x x a x =-+- ()22213ax x a x ax x x ≤-+-=-- ()233ax x x a x ≤-=-,则()40f a <,∴()f x 在区间(),4a a 上有一个零点, 那么,此时()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时, a 的取值范围是()1,+∞. (2)【证法一】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当()0,x a ∈时, ()f x 是增函数; 当(),x a ∈+∞时, ()f x 是减函数;不妨设: 12x x <,则: 120x a x <<<; 设()()()2F x f x f a x =--, ()0,2x a ∈, 则: ()()()'''2F x f x f a x =-- ()2212a a x a x a x=-+-+- ()()2221a x a --+- ()()22222x a a ax a x x a x -=+-=--. 当()0,x a ∈时, ()'0F x >,∴()F x 单调递增,又∵()0F a =, ∴()0F x <,∴()()2f x f a x <-, ∵()10,x a ∈,∴()()112f x f a x <-, ∵()()12f x f x =,∴()()212f x f a x <-,∵()2,x a ∈+∞, ()12,a x a -∈+∞, ()f x 在(),a +∞上单调递减, ∴212x a x >-,∴122x x a +>.当()0,x a ∈时, ()'0F x >,∴()F x 单调递增, 又∵()00F =,∴()0F x >,∴()()f a x f a x +>-, ∵()10,a x a -∈,∴()()12f x f x = ()()()()11f a a x f a a x =--<+- ()12f a x =-, ∵()2,x a ∈+∞, ()12,a x a -∈+∞, ()f x 在(),a +∞上单调递减, ∴212x a x >-,∴122x x a +>.5.【2018届四川省攀枝花市高三第三次(4月)统考】已知函数()()2111x f x nx x -=-+,()()()211,g x x nx n x m n R =--∈.(I)若函数()(),f x g x 在区间01(,)上均单调且单调性相反,求实数n 的取值范围;(Ⅱ)若0a b <<,证明112a b a bna nb -+<<-【答案】(Ⅰ)12n ≥;(Ⅱ)见解析. 【解析】(Ⅱ)由(Ⅰ)()()21ln 1x f x x x -=-+在()0,1上单调递增,()()()21ln 101x f x x f x -=-<=+即()21ln 1x x x -<+,令()0,1a x b =∈得()212ln 1a a b a b b a b b⎛⎫- ⎪-⎝⎭<=++, ln 0a b < ∴ .ln ln 2a b a b a b -+<-在(Ⅰ)中,令1,2n =由()g x 在()0,1上均单调递减得: ()()10g x g >=所以()21ln 102x x x -->,即11ln 2x x x ⎛⎫>- ⎪⎝⎭,取()0,1x =得12>,即ln ln a b ->,由ln ln 0a b -<得:.ln ln a b a b --综上:.ln ln 2a b a ba b -+<<-6.【河北省衡水中学2019届高三上二调】已知函数.(1)当时,若在上恒成立,求的取值范围;(2)当时,证明:.【答案】(1) (2)见解析【解析】(2)因为,所以,.令,则.当时,,单调递减;当时,,单调递增.所以,即当时,,所以在上单调递减.又因为所以当时,当时,于是对恒成立.7. 【四川省高2019届高三第一次诊断】已知函数.(1)求曲线在点处的切线方程;(2)设,证明:.【答案】(1);(2)见解析.【解析】(2)证明:因为,所以由于,等价于,令,设函数当时,,所以,所以在上是单调递增函数,又,所以,所以,即等价于,令,设函数当时,,所以,所以在上是单调递减函数,又,所以所以,即综上①②可得:.8.【北京市第八十中学2019届10月月考】已知函数.(1)求曲线在点处的切线方程;(2)当时,求证:.【答案】(1) ex﹣4y+e=0;(2)证明见解析.【解析】(2)设,则,x∈(1,+∞)⇒F''(x)>0⇒F'(x)在(1,+∞)上为增函数;又因,在(1,+∞)上为增函数;在(1,+∞)都成立.设,由于△=32(2﹣e)<0,则在(1,+∞)上为增函数,又G(1)=0,若x>1时,则.综上:.9.【河北省衡水中学2019届高三上二调】已知函数.(1)若函数在上为增函数,求的取值范围;(2)若函数有两个不同的极值点,记作,且,证明:.【答案】(1)(2)见解析【解析】(2)由题得,则因为有两个极值点,所以欲证等价于证,即,所以因为,所以原不等式等价于.由可得,则.由可知,原不等式等价于,即设,则,则上式等价于.令,则因为,所以,所以在区间上单调递增,所以当时,,即,所以原不等式成立,即.10.【贵州省遵义航天高级中学2018届四模】已知函数的两个零点为.(1)求实数m的取值范围;(2)求证:.【答案】(1)(2)见解析【解析】(2)令,则,由题意知方程有两个根,即方程有两个根,不妨设,,令,则当时,单调递增,时,单调递减,综上可知,,要证,即证,即,即证,令,下面证对任意的恒成立,∵,∴,∴又∵,∴∴,则在单调递增∴,故原不等式成立.。
一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题
专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。
导数与构造函数证明不等式的技巧
导数与构造函数证明不等式的技巧证明不等式的技巧和导数有关的主要有两个方面:一是利用导数的性质来求极值,二是利用导数的中值定理来证明不等式。
一、利用导数的性质来求极值1. 极值的存在性:如果函数在开区间(a,b)上连续,在闭区间[a,b]上可导,并且在区间内部有两个不同的点x1和x2使得f'(x1)和f'(x2)异号,则在(a,b)内存在至少一个点c,使得f(c)取得极值。
这个性质可以通过把函数图像在区间内部画出来来直观地理解。
2. 极值的判定条件:设函数f在开区间(a,b)内可导,如果f'(x)在点x=c处为0或者不存在,且f'(c)在从c的左侧和右侧分别取有限不等的符号,则f(c)为极值点。
如果f'(c)在从c的左侧和右侧分别取相等的符号,则f(c)不是极值点。
3. 极值的求解方法:求解极值有两种方法,一种是使用判定条件找到可能的极值点,然后对极值点进行求导计算;另一种是直接对函数进行求导计算,然后通过对导数方程求解,找到可能的极值点。
二、利用导数的中值定理来证明不等式导数的中值定理是数学中一个非常重要的定理,它的表述是:如果函数f在闭区间[a,b]上连续,在开区间(a,b)内可导,那么存在一个点c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)。
这个定理可以用来证明一些不等式的性质。
利用导数的中值定理来证明不等式的基本步骤如下:1. 将不等式转化为两个函数的差值形式,即设函数g(x)=f(x)-h(x),其中f(x)和h(x)是要证明不等式的两个函数。
2. 判断g(x)在[a,b]上的连续性和在(a,b)内的可导性。
3. 在(a,b)内找到一个点c,使得g'(c)=(f(c)-h(c))/(b-a)。
4. 根据g(x)的符号来确定f(x)和h(x)之间的关系,进而证明不等式的成立。
专题06 构造函数法解决导数不等式问题(一)(解析版)
专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)答案 D 解析 因为f (x )<-xf ′(x ),所以f (x )+xf ′(x )<0,即(xf (x ))′<0,所以函数y =xf (x )在(0,+∞)上单调递减.由不等式f (x +1)>(x -1)f (x 2-1),可得(x +1)f (x +1)>(x 2-1)f (x 2-1),所以⎩⎪⎨⎪⎧ x +1>0,x 2-1>0,x 2-1>x +1,解得x >2.选D . (2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016} 答案 D 解析 构造函数g (x )=x 2f (x ),则g ′(x )=x [2f (x )+xf ′(x )].当x >0时,∵2f (x )+xf ′(x )>0,∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增.∵不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021,∴当x +2 021>0,即x >-2 021时,(x +2 021)2f (x +2 021)<52f (5),即g (x +2 021)<g (5),∴0<x +2 021<5,∴-2 021<x <-2 016.(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A 解析 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A .(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.答案 (-∞,-4)∪(0,4) 解析 构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减.根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)答案 B 解析 令g (x )=f (x )x 2(x >0),则g ′(x )=xf ′(x )-2f (x )x 3,由不等式xf ′(x )<2f (x )恒成立知g ′(x )<0,即g (x )在(0,+∞)是减函数,∴g (1)>g (2),即f (1)1>f (2)4,即4f (1)>f (2),故选B . (6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b答案 D 解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,则g ′(x )=xf ′(x )-f (x )x 2<0,即函数g (x )在x ∈(0,+∞)时为减函数.由函数y =f (x )为奇函数知f (-3)=-f (3),则c =f (-3)-3=f (3)3.∵a =f (e )e =g (e),b =f (ln 2)ln 2=g (ln 2),c =f (3)3=g (3)且3>e >ln 2,∴g (3)<g (e)<g (ln 2),即c <a <b ,故选D . 【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)1.答案 B 解析 由2f (x )+xf ′(x )>x 2,结合x ∈(-∞,0)得2xf (x )+x 2f ′(x )<x 3<0,故[x 2f (x )]′<0,设g (x )=x 2f (x ),则g (x )在(-∞,0)上单调递减,(x +2 021)2f (x +2 021)-4f (-2)>0可化为(x +2 021)2f (x +2 021)>(-2)2f (-2),所以⎩⎪⎨⎪⎧ x +2 021<-2,x +2 021<0,解得x <-2 023.故选B .2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.2.答案 (-2,0)∪(2,+∞) 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞).所以函数g (x ) 在(0,+∞)上单调递增.又g (-x )=f (-x )-x =-f (x )-x=f (x )x =g (x ),则g (x )是偶函数,g (-2)=0=g (2).则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧ x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0.解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.3.答案 (-1,0)∪(0,1) 解析 构造F (x )=f (x )x 2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0, 可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,∴F (x )为偶函数,∴F (x )在(-∞,0)上单调递增.根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知f (x )>0的解集为(-1,0)∪(0,1).4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的 解集为________.4.答案 (-∞,-1)∪(1,+∞) 解析 构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x ) >0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.5.答案 (-∞,-2)∪(0,2) 解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,∴φ(x )=f (x )x在(0,+∞)上为 减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数,由数形结合知x ∈(-∞,-2)时f (x )>0.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)6.答案 B 解析 设g (x )=f (x )x ,则g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2,当x >0时,g ′(x )<0,所以函数g (x )=f (x )x 在(0,+∞)上单调递减.因为f (x )是奇函数,所以g (x )=f (x )x是偶函数.因为f (2)=0,所以f (-2)=0.所以不等式f (x )x>0的解集为(-2,0)∪(0,2).故选B . 7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )7.答案 A 解析 设函数F (x )=f (x )x (x >0),则F ′(x )=[f (x )x ]′=xf ′(x )-f (x )x 2.因为x >0,xf ′(x )-f (x )<0,所 以F ′(x )<0,故函数F (x )在(0,+∞)上为减函数.又0<a <b ,所以F (a )>F (b ),即f (a )a >f (b )b,则bf (a )>af (b ).8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定8.答案 A 解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,所以F (x )为减函数,则f (2)2>f (3)3.所以3f (2)>2f (3). 9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 9.答案 B 解析 ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎡⎦⎤f (x )x 2′=f ′(x )·x 2-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,∴y =f (x )x 2在(0,+ ∞)上单调递增,∴f (2)22>f (1)12,即f (2)f (1)>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎡⎦⎤f (x )x 3′=f ′(x )·x 3-3x 2f (x )x 6=xf ′(x )-3f (x )x 4<0,∴y =f (x )x 3在(0,+∞)上单调递减,∴f (2)23<f (1)13,即f (2)f (1)<8,综上,4<f (2)f (1)<8. 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x 的解集为 . 答案 (0,+∞) 解析 构造F (x )=f (x )·e 2x ,∴F ′(x )=f ′(x )·e 2x +f (x )·2e 2x =e 2x [f ′(x )+2f (x )]>0,∴F (x )在R 上单调递增,且F (0)=f (0)·e 0=1,不等式f (x )>1e 2x 可化为f (x )e 2x >1,即F (x )>F (0),∴x >0,∴原不等式的解集为(0,+∞).(2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.答案 {x |x >0} 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-(e x )′f (x )(e x )2=f ′(x )-f (x )e x.由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )e x 在R 上单调递减.又g (0)=f (0)e 0=1,所以f (x )ex <1,即g (x )<g (0),所以x >0,所以不等式的解集为{x |x >0}.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.答案 (0,+∞) 解析 构造F (x )=f (x )e 2x ,则F ′(x )=e 2x f ′(x )-2e 2x f (x )e 4x =f ′(x )-2f (x )e 2x,函数f (x )满足f ′(x )-2f (x )>0,则F ′(x )>0,F (x )在R 上单调递增.又∵f (0)=1,则F (0)=1,f (x )>e 2x ⇔f (x )e 2x >1⇔F (x )>F (0),根据单调性得x >0.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.答案 (1,+∞) 解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )ex >0,故g (x )在R 上单调递增,不等式e x -1f (x )<f (2x -1),即f (x )e x <f (2x -1)e2x -1,故g (x )<g (2x -1),故x <2x -1,解得x >1,所以原不等式的解集为(1,+∞). (5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)答案 A 解析 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ 答案 B 解析 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 021为奇函数,所以f (0)=-2 021,h (0)=-2 021.因为f (x )+2 021e x <0,所以f (x )ex <-2 021,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 021e x <0的解集是(0,+∞).故选B .(7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)答案 B 解析 ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′( -x )=-f ′(x ),即f (x )+f ′(x )>0,设g (x )=e x f (x ),则[]e x f (x )′=e x []f (x )+f ′(x )>0,∴g (x )在(-∞,+∞)上单调递增,由f ⎝⎛⎭⎫x -12+f (x +1)=0,得f (x )+f ⎝⎛⎭⎫x +32=0,f ⎝⎛⎭⎫x +32+f ()x +3=0,相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 021=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1e x ,结合f (x )的周期为3可化为e x -1f (x -1)>1e=e 2f (2),g (x -1)>g (2),x -1>2,x >3,∴不等式的解集为()3,+∞,故选B .(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定答案 A 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,因为f (x )-f ′(x )>0,所以g ′(x )<0,所以函数g (x )在R 上单调递减,所以g (2 021)>g (2 022),即f (2 021)e 2 021>f (2 022)e2 022,所以e f (2 021)>f (2 022),故选A .(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)答案 D 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知选D .(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)答案 C 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足(x -1)[f ′(x )-f (x )]>0,则x >1时F ′(x )>0,F (x )在[1,+∞)上单调递增.当x <1时F ′(x )<0,F (x )在(-∞,1]上单调递减.又由f (2-x )=f (x )e 2-2x ⇔F (2-x )=F (x )⇒F (x )关于x =1对称,从而F (3)>F (0)即f (3)e 3>f (0)e0,∴f (3)>e 3f (0),故选C .【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 1.答案 B 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x,因为f ′(x )<f (x ),所以g ′(x )<0,故函数g (x ) 在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)2.答案 B 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x.∵对任意实数x ,都有f (x )-f ′(x )> 0,∴g ′(x )<0,即g (x )为R 上的减函数.g (1)=f (1)e =1e 2,由不等式f (x )<e x -2,得f(x )e x <e -2=1e2,即g (x )<g (1).∵g (x )为R 上的减函数,∴x >1,∴不等式f (x )<e x -2的解集为(1,+∞).故选B .3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)3.答案 A 解析 设g (x )=f (x )e 2x ,则g ′(x )=f ′(x )-2f (x )e 2x<0在R 上恒成立,所以g (x )在R 上单调递减.因 为f (x )>0,所以g (x )>0,又g (-1)=0,所以x <-1.4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)4.答案 B 解析 因为f (x +3)为偶函数,所以f (3-x )=f (x +3),因此f (0)=f (6)=1.设h (x )=f (x )ex , 则原不等式即h (x )>h (0).又h ′(x )=f ′(x )·e x -f (x )·e x (e x )2=f ′(x )-f (x )e x,依题意f ′(x )>f (x ),故h ′(x )>0,因此函数h (x )在R 上是增函数,所以由h (x )>h (0),得x >0.故选B .5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}5.答案 A 解析 构造函数g (x )=e x ·f (x )-e x -1,求导,得g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得到g ′(x )>0,所以g (x )为R 上的增函数.又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)6.答案 C 解析 构造函数g (x )=f (x )+1e x ,则g ′(x )=f ′(x )-f (x )-1e x>0,故g (x )在R 上为增函数.又g (0) =f (0)+1e 0=3,由f (x )+1>3e x ,得f (x )+1e x>3,即g (x )>g (0),解得x >0.故选C . 7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)7.答案 A 解析 根据题意,设g (x )=e x f (x ),其导函数g ′(x )=e x f (x )+e x f ′(x )=e x [f (x )+f ′(x )],又由函数f (x )与其导函数f ′(x )满足f (x )+f ′(x )<0,则有g ′(x )<0,则函数g (x )在R 上为减函数,则有g (2021)<g (2019),即e 2021f (2021)<e 2019f (2019),即e 2f (2021)<f (2019).8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e x f (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定8.答案 A 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x.由题意得g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即()11e x f x <()22e x f x ,所以1e x f (x 2)>2e xf (x 1). 9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定9.答案 C 解析 令F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x,因为对∀x ∈R 都有f (x )>f ′(x ),所以F ′(x )<0, 即F (x )在R 上单调递减.又ln2<ln3,所以F (ln2)>F (ln3),即f (ln 2)e ln 2>f (ln 3)e ln 3,所以f (ln 2)2>f (ln 3)3,即3f (ln2)>2f (ln3),故选C .10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)10.答案 D 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -(e x )′f (x )(e x )2=f ′(x )-f (x )e x,因为∀x ∈R ,均有f (x )> f ′(x ),并e x >0,所以g ′(x )<0,故函数g (x )=f (x )ex 在R 上单调递减,所以g (-2022)>g (0),g (2022)<g (0), 即f (-2022)e -2022>f (0),f (2022)e 2022<f (0),也就是e 2022f (-2022)>f (0),f (2022)<e 2022f (0). 考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x.由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 答案 C 解析 令g (x )=f (x )sin x ,则g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]cos x ,当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,cos x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (0)=0,∴x ∈[0,π2)时,g (x )=f (x )sin x ≥0.∵f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数,∴g (x )是定义在⎝⎛⎭⎫-π2,π2上的偶函数.不等式cos xf (x +π2)+sin xf (-x )>0,即sin ⎝⎛⎭⎫x +π2·f ⎝⎛⎭⎫x +π2>sin x ·f (x ),即g ⎝⎛⎭⎫x +π2>g (x ),∴|x +π2|>|x |,∴x >-π4 ①,又-π2<x +π2<π2,故-π<x <0 ②,由①②得不等式的解集是⎝⎛⎭⎫-π4,0.故选C . (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 答案 D 解析 因为x ∈⎝⎛⎭⎫0,π2,所以sin x >0,cos x >0,构造函数F (x )=f (x )cos x ,则F ′(x )=-f (x )sin x +f ′(x )cos x ,因为对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,所以f (x )sin x <f ′(x )cos x 恒成立,即f ′(x )cos x -f (x )sin x >0恒成立,所以F ′(x )>0恒成立,所以函数F (x )在x ∈⎝⎛⎭⎫0,π2上单调递增,所以F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π4<F (1)<F ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6cos π6<f ⎝⎛⎭⎫π4cos π4<f (1)cos1<f ⎝⎛⎭⎫π3cos π3,所以32f ⎝⎛⎭⎫π6<22f ⎝⎛⎭⎫π4<f (1)cos1<12f ⎝⎛⎭⎫π3,所以3f ⎝⎛⎭⎫π6<2f ⎝⎛⎭⎫π4<2f (1)cos1<f ⎝⎛⎭⎫π3,结合选项知D 错误,故选D . (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3答案 D 解析 f (x )<f ′(x )tan x ⇔f ′(x )sin x -f (x )cos x >0,令F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x>0,即函数F (x )在⎝⎛⎭⎫0,π2上是增函数,∴F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π6sin π6<f ⎝⎛⎭⎫π3sin π3,∴3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3,故选D . (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 答案 A 解析 构造F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x,导函数f ′(x )满足f ′(x )cos x +f (x )sin x >0,则F ′(x )>0,F (x )在⎝⎛⎭⎫-π2,π2上单调递增.把选项转化后可知选A . (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 答案 CD 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x,因为当x ∈⎝⎛⎭⎫0,π2时,cos xf ′(x )+sin xf (x )<0,所以当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x<0,因此g (x )在⎝⎛⎭⎫0,π2上单调递减,所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4,即f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π312⇒f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π422⇒2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.故选CD . (6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6 答案 B 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x =1+ln x cos 2x ,x ∈⎝⎛⎭⎫0,π2.令g ′(x )=0得x =1e,当x ∈⎝⎛⎭⎫0,1e 时g ′(x )<0,函数g (x )单调递减,当x ∈⎝⎛⎭⎫1e ,π2时,g ′(x )>0,函数g (x )单调递增.∵1e <π6<π4<π3<π2,∴g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫π4<g ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π312>f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π632,化简得2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4,3f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6,3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π6,故选B .。
利用导数证明不等式之构造函数法【有答案】
利用导数证明不等式之构造函数法题型一:移项作差构造函数1、解题思路第一步:判断所证明不等式是否符合移项作差构造函数的特点 将证明不等式()()f xg x >(()()f xg x <( 的问题转化为证明()()0f xg x ->(()()0f x g x -< ,进而构造函数()()()h x f x g x =-。
第二步:符合后构造函数,利用导数研究函数的单调性; 第三步:函数问题转化回不等式问题,得出结论。
[点拨]构造的函数前提是要可导,求导过程较容易,多是整式且最多利用二次求导研究其单调性问题。
比如:不等式11ln 2x x x -+<(证明时,直接移项作差构造的函数()11ln 2x x f x x -+=-(求导过于复杂且无法利用导数快速研究其单调性;2、经典例题例1:(2019春-苏州期末)已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+.[思路分析]第一步:判断不等式特点,右边不等式移项作差直接可以利用已知函数证明,左边不等式移项作差构造函数1()ln(1)11g x x x =++-+(,可直接求导研究函数单调性,都符合移项作差构造函数特点;第二步:分别利用导数求解函数()y f x =和()y g x =的单调性和最值; 第三步:转化回不等式问题,得出结论. [解析]证明:()1()1111xf x x x x '=-=->-++( ∴当10x -<<时,()0f x '>,即()f x 在(1,0)x ∈-上为增函数 当0x >时,()0f x '<,即()f x 在(0,)x ∈+∞上为减函数, 故函数()f x 的单调递增区间为(1,0)-,单调递减区间(0,)+∞, 于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤(右边得证),现证左边,令1()ln(1)11g x x x =++-+,则2211()1(1)(1)xg x x x x '=-=+++ 当(1,0)x ∈-时,()0g x '<;当(0,)x ∈+∞时,()0g x '>,即()g x 在(1,0)x ∈-上为减函数,在(0,)x ∈+∞上为增函数, 故函数()g x 在(1,)-+∞上的最小值为min ()(0)0g x g ==, ∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+( ∴1ln(1)11x x +≥-+,综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+。
高考数学必杀技系列之导数5构造函数证明不等式
高考数学必杀技系列之导数5构造函数证明不等式
专题5 构造函数证明不等式
一、考情分析
函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.
二、解题秘籍
(一) 把证明转化为证明
此类问题一般是有最小值且比较容易求,或者有最小值,
但无法具体确定,这种情况下一般是先把的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围
此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.
(五) 改变不等式结构,重新构造函数证明不等式
此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:
①去分母,把分数不等式转化为整式不等式;
②两边取对数,把指数型不等式转化为对数型不等式;
③两边同时除以,此方法适用于以下两类问题:
(i)不等式为类型,且的符号确定;
(ii)不等式中含有,有时为了一次求导后不再含有对数符号,可考虑此法.
(六) 通过减元法构造函数证明不等式
对于多变量不等式,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.
(七) 与数列前n项和有关的不等式的证明
此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,,n代换,然后用叠加法证明.
完整电子版可关注下载。
构造函数巧用导数证明不等式
构造函数 巧用导数证明不等式江 苏 张文海不等式的证明是高中学习的难点,常用证法有比较法、综合法、分析法等,新教材高考试卷中,灵活构造辅助函数, 借助导数来证明不等式已成为解决不等式证明的一种有效思维方法。
例1:已知e b a <<<0,试比较b a 与a b 的大小.分析:欲比较b a 与a b 的大小,取自然对数后,只需比较a b ln 与b a ln 的大小, 再除以正数ab ,只需比较a a ln 与b b ln 的大小,令x x x f ln )(=则2'ln 1)(xx x f -= 当),0(e x ∈时,1ln ln =<e x ,则,0)('>x f 所以)(x f 在),0(e 上为增函数,由e b a <<<0,得a a ln <bb ln ,于是b a <a b 点评:先把待比较大小的式子变形后再构造函数,然后利用导数证明该函数的单调性,最后利用函数单调性来比较大小。
例2: (2007年湖北理)已知定义在正实数集上的函数21()22f x x ax =+,2()3lng x a x b =+, 其中0a >,设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同。
求证:)0)(()(>≥x x g x f分析:作差构造函数=-=)()()(x g x f x F -+ax x 2212b x a -ln 32)0(>x ,然后利用导数判断其单调性。
证明:设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同. ()2f x x a '=+∵,23()a g x x'=,由题意得00()()f x g x ''=且00()()f x g x = 即20032a x a x +=得:0x a =,或03x a =-(舍去). 设=-=)()()(x g x f x F -+ax x 2212b x a -ln 32)0(>x 则)0()3)((32)(2'>+-=-+=x x a x a x x a a x x F 故)(x F 在),0(a 上单调递减,在),(+∞a 上单调递增。
专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析
专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析专题0 6 导数中的构造函数解不等式导数中经常出现给出原函数与导函数的不等式,再去解一个不等式,初看起来难度很大, 其中这只是一种中等题型,只需根据原函数与。
导函数的关系式或者题目选项所给的提示构造函数,使得可根据原函数与导函数的关系式判断所构造函数的单调性,再将不等式化为两个函数值的形式,根据单调性解不等式即可。
【题型示例】1、定义在R上的函数/(x)满足:/(x) + r(.x)>l, /(0) = 4,则不等式e7Xx)>e" + 3(其中£为自然对数的底数)的解集为()A. (0,+oo)B. (-oo,02 (3,+00)C. (—8,0)5°,+如D. (3,+)【答案】A2、设函数/(x)在/?上的导函数为f何,对VxwR有/(.v)+/(-%) = x2,在(0,+co)上,/'(x)-xvO,若直线/(4-加)-/伽)》8-4〃?,则实数加的取值范围是( )A.. [2,-KX))B.(7,2]C. (-oo,-2] U[2,炖)D. [-2,2]【答案】A【解析】令g(x)=/(x)-|x2,则g(-X)+ g(X)= /(-A)-|A-2+/(X)-|x2 =0,所以函数g(x)为奇函数,当xw(O,~K?)时,g'(x)二/'(X)7VO,所以函数g(x)在(0,+oo)上是减函数,故函数g(x)在(0,0)上也是减函数,由/(0)=0,可得g(x)在/?上是减函数,/./(4_〃?)_/伽)=g(斗一〃J +丄(斗_加)= g(4_〃?)_g(〃?) + 8_4/n8_4? .\g(4-w)^g(w),/.4-w<w,解得加22,实数加的取值范围是< p=""> [2,4<?).3、己知定义在/?上的函数/⑴满足/(2) = 1,且/⑴的导函数f(x)>i 则不等式/(A)<1^2-X+I的解集为()■A. [x\-2<x<2]< p="">B. {x\x<2}c{x 卜>2} D. {x|.r<-2 或x>2}【答案】B【解析】令g(x) = /(x)-** + x, fflg,(x)=/(x)-x+l,因为f(x)>x-l,所以g'(x)>0,即g(x)在/?上为增函数,不等式/(A)<|J;2-.V+1可化为/(A)-|.V2+X<="" p="" 乂j="">g(x)单调递增得工v 2 ,所以不等式的解集为{x\x < 2} ?4、定义在[0,+oo)的函数f(rr)的导函数为严&),对于任意的> 0,恒有> /(r), 仇=绰,^=埠,贝临上的大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】(1)函数 f x ex a x 1 , 所以 f x ex a , 当 a 0 时, f x 0 在 R 上恒成立,所以 f x 在 R 上单调递增, f x 至多只有一个零点,不符合题意, 当 a 0 时,由 f x 0 得 x ln a , 所以 x , ln a 时, f x 0 , f x 单调递减, x ln a, 时, f x 0 , f x 单调递增, 所以 x ln a 时 f x 取得极小值,也是最小值,
【指点迷津】 当所要证明的不等式由几个基本初等函数通过相乘以及相加的形式组成时,如果对其直接求导,得到的导
函数往往给人一种“扑朔迷离”“不知所措”的感觉.这时可以将原不等式合理拆分为 f x g x 的形式,
进而证明 f x g x 即可,此时注意配合使用导数工具.在拆分的过程中,一定要注意合理性的把
所以 h x 在(0,1) 上单调递增, h x h0 0 ,即 ex x 1,
所以 xex x 1 x x 1 x 1 x2 1 ,从而 ex ex .
xex x 1 x 2 1
由(1)知当 t 2 时, x 1 2 ln x 0 在 x 0,1 上恒成立,整理得 x2 1 2 .
要证 ex 1 2 ln x x2 (e 2)x ,只需证当 x 0 时, ex x2 (e 2)x 1 0 x
令 h(x) ex x2 (e 2)x 1(x 0)
h(x) ex 2x (e 2) ,令 u(x) ex 2x (e 2) ,
则 u(x) ex 2 ,令 u(x) ex 2 0 ,解得 x ln 2 ,
t
0, e2 上递减,
∴ ht he2 0 ;
∴ g x 0 ,故 f x 2ax xeax1.
说明:判断 eax1 1 的符号时,还可以用以下方法判断: x
由 eax1 1 0 得到 a 1 lnx ,
x
x
设
p
x
1 lnx x
,则
p
'
x
lnx x2
2
,
当 x e2 时, p ' x 0 ;当 0 x e2 时, p ' x 0 .
∴
r
x
max
r
1 a
1 ae2
1
0 (因为 a
1 e2
),
∴ eax1 1 0 . x
∴
g
x
在
0,
1 a
上单调递减,在
1 a
,
上单调递增,
∴
g
x min
g
1 a
,
设 t 1 a
0, e2 ,
则
g
1 a
ht
t e2
lnt
1(0
t
e2 )
,
h
't
1 e2
1 0 , ht在
∴ f x 在 0, 上单调递减.
②当 a 0 时,
则当
x
1 a
,
时,
f
'x
0,f
x
单调递增,
当
x
0,1 a
时,
f
x
0,f
x 单调递减.
综上:当 a 0 时, f x 在 0, 上单调递减;
当a
0
时,
f
x
在
0,
1 a
上单调递减,在
1 a
,
上单调递增.
(Ⅱ)令 g x f x 2ax xeax1 xeax1 ax lnx ,
(0, ) 上有最大值 g(1) 0 ,所以 g(x) ln x x 1 0 , ln a a 1 0 , ln a a 1 0 , a 1 ,
综上,当 f (x) 0 时,实数 a 取值的集合为1 ;
(Ⅱ)证明:由(Ⅰ)可知: a
1 时,
f
(x)
0 ,即
ln
x
1
1 x
在
x
0 时恒成立.
则 g ' x eax1 axeax1 a 1 x
ax
1
e
ax 1
1 x
ax
1
xeax1 1 x
,
设 r x xeax1 1 ,
则 r ' x 1 axeax1 ,
∵ eax1 0 ,
∴当
x
0,
1 a
时,
r
'
x
0,r
x
单调递增;
当
x
1 a
,
时,
r
x
0,r
x
单调递减.
h(x) x2 x 2 e x (x 2)(x 1)e x 0 ,
所以 h(x) 在 (0,1) 上单调递增,
所以 h(x) h(0) 1 ,
所以当 x (0,1) 时, g(x) h(x) ,
即原不等式成立.
类型三 “换元法”构造函数证明不等式
【例 3】【2020 湖北宜昌一中期中】已知函数 f x ex a x 1 有两个零点.
t x
x2
tx x2
1
,其中
t2
4
,t
0.
①当 t2 4 0 ,即 0 t 2 时, F x 0 ,
所以函数 F x 在(0,1) 上单调递增, F x F 1 0 ,
故 f x g x 0 成立,满足题意.
②当 t2 4 0 ,即 t 2 时,设 x x2 tx 10 x 1 , 则 x 图象的对称轴 x t 1 , 0 1, 1 2 t 0 ,
x2 1
ex
1
1 x
ex
ln
x
x2 1
xex x 1
,
x
因为当 x 0,1 时, xex x 1 0 , ln x 0 ,
所以 H x 0 ex ln x
x2 1
xex x 1 x
xe x
ex
x 1
x2 1 . x ln x
令 h x ex x 10 x 1 ,则 h x ex 1 0 ,
【函数与导数压轴题突破】
专题 04 巧妙构造函数,应用导数证明不等式问题
一.方法综述
利用导数证明不等式是近几年高考命题的一种热点题型.利用导数证明不等式,关键是要找出与待证 不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等 式的目的,这时常常需要构造辅助函数来解决.题目本身特点不同,所构造的函数可有多种形式,解题的 繁简程度也因此而不同,这里给出几种常用的构造技巧.
max
min
握,一般以能利用导数进行最值分析为拆分标准.
【举一反三】【2020 届福建厦门双十中学月考】已知函数 f (x) 1 ln x a 2x 2 ax(a R) .
(1)讨论 f (x) 的单பைடு நூலகம்区间;
(2)当 a
0 且 x (0,1) ,求证:
f (x) ex
x1 x
1.
【解析】(1)函数 f (x) 定义域为 (0, ) ,
x
x ln x
令
mx
ex x2
1
0
x
1 ,则要证
H
x
0 ,只需证 m x
2.
因为 m x
ex x 12
x2 1 2
0 ,所以 m x 在(0,1)上单调递增,
所以 m x m 1 e 2 ,即 m x 2 在(0,1)上恒成立.
2
综上可得,对任意 x 0,1 ,都有 H x 0 成立.
2
所以 x 在(0,1)上存在唯一实根,设为 x1 ,则 x x1,1 , x 0 , F x 0 ,
所以 F x 在 x1,1 上单调递减,此时 F x F 1 0 ,不合题意.
综上可得,实数 t 的取值范围是 0, 2 .
(2)证明:由题意得 H x ex ln x
从而 p x 在 0, e2 上递减,在 e2, 上递增.
∴ p x p min
e2
1 e2
.
当a
1 e2
时, a
1 lnx x
,即 eax1
1 x
0.
【指点迷津】
当题目中给出简单的基本初等函数,例如 f x=x3,g x =ln x ,进而证明在某个取值范围内不等式
f x g x 成立时,可以类比作差法,构造函数 h x=f x -g x 或 x =g x -f x ,进而证明
所以 f (x) 在 (0, ) 上有最小值 f (a) ln a a( 1 1) ln a 1 a , a
由题意 f (x) 0 ,所以 ln a 1 a 0 .
令 g(x) ln x x 1,所以 g(x) 1 1 1 x ,
x
x
当 x (0,1) 时, g(x) 0 , g(x) 单调递增;当 x (1, ) 时, g(x) 0 , g(x) 单调递减,所以 g(x) 在
(Ⅰ)若 f (x) 0 ,求实数 a 取值的集合;
(Ⅱ)证明: ex 1 2 ln x x2 (e 2)x . x
【解析】(Ⅰ)由已知,有
f
(x)
1 x
a x2
x
x2
a
(
x
0)
当 a 0 时, f (1) ln 2 a 0 ,与条件 f (x) 0 矛盾, 2
当 a 0 时,若 x (0, a) ,则 f (x) 0 , f (x) 单调递减,若 x (a, ) ,则 f (x) 0 ,则 f (x) 单调递增.
当 x (0, x0 ) 时, h(x) 0, h(x) 单调递增;当 x (x0,1) 时, h(x) 0, h(x) 单调递减.