高二数学寒假作业 专题18 复数(学)(1)
高三数学寒假作业专题18复数练含解析
(寒假总动员)高三数学寒假作业专题18 复数(练)(含解析)一.选择题1.若i2 1+是关于x的实系数方程02=++cbxx的一个复数根,则()A.3,2==cb B.3,2=-=cb C.1,2-=-=cb D.1,2-==cb2.设25sin1πnnan=,nnaaaS+++=21,在10021,,,SSS中,正数的个数是()A.25 B.50 C.75 D.1003.设,a b R∈,i是虚数单位,则“0ab=”是“复数bai+为纯虚数”的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件4.复数2(1)2ii-=()A、1B、1-C、iD、i-【答案】B5.复数131ii -+=+( )A .2i +B .2i -C .12i +D .12i -二.填空题6.已知复数2(3)z i =+ (i 为虚数单位),则|z|=_____.7.设N=2n (n ∈N*,n ≥2),将N 个数x1,x2,…,xN 依次放入编号为1,2,…,N 的N 个位置,获得分列P0=x1x2…xN.将该分列中分别位于奇数与偶数位置的数取出,并按原按次依次放入对应的前2N 和后2N个,获得分列P1=x1x3…xN-1x2x4…xN ,将此操作称为C 变换,将P1分成两段,每段2N个数,并对每段作C 变换,获得2p;当2≤i ≤n-2时,将Pi 分成2i 段,每段2i N 个数,并对每段C 变换,获得Pi+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置. (1)当N=16时,x7位于P2中的第___个位置;(2)当N=2n (n ≥8)时,x173位于P4中的第___个位置. 【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x =,可设为(1,2,3,4,5,6,,16),113571524616P x x x x x x x x x =,即为(1,3,5,7,9,2,4,6,8,,16),2159133711152616P x x x x x x x x x x x =,即(1,5,9,13,3,7,11,15,2,6,,16), x7位于P2中的第6个位置,;三.解答题8. 已知复数z1=2-3i ,z2=15-5i2+i 2.求:(1)z1·z2;(2)z1z2.。
2023最新高中数学复数练习题及参考答案
2023最新高中数学复数练习题及参考答案2023年的高中数学课程设置,将继续涉及到复数的内容,需要对复数的相关知识点进行深入的学习和掌握。
针对这种情况,我们为大家准备了一系列的练习题及其答案。
以下是我们所提供的2023最新高中数学复数练习题及参考答案。
1、求出下列复数的共轭复数:(1)2-3i;(2)4i+6;(3)(-2i)(6+i)。
解答:(1)2+3i;(2)6-4i;(3) 12+(-10)i。
2、如果z=2+3i,则求出z^2的值。
解答:z^2=(2+3i)^2 =4+12i+9i^2=4+12i-9= -5+12i。
3、如果z=(3+i)^2,则求出z的值。
解答:z=(3+i)^2=(3^2+2×3×i+i^2)= 9+6i-1=8+6i。
4、已知复数z1=5+i,z2=3+2i,请计算出它们的和与积。
解答:z1+z2=5+i+3+2i=8+3i,z1z2=(5+i)×(3+2i)=15+10i+3i+2i^2=13+13i。
5、如果z=(a-bi)×(c+di),请利用a、b、c、d四个数表示出z的实部和虚部。
解答:z=(ac+bd)+(-ad+bc)i,因此,实部为ac+bd,虚部为-bc+ad。
练习题中的这些例子,将有助于大家深入理解复数的相关知识点,并且为2023年高中数学考试做好准备。
在实际的练习中,还需要同学们根据需要加强的知识点进行有针对性的练习。
我们建议大家在练习过程中,注重分析题目中的意义、目的和解题方法,这样才能获得更好的学习效果。
文章排版:为了更好地表现出文章的内容和结构,我们在文中使用了分段落的方式进行阐述。
在排版上,我们尽量避免了过渡繁琐的词汇和格式设置,以保持全文整洁、美观。
结语:以上是我们为大家提供的2023最新高中数学复数练习题及参考答案。
我们相信,通过针对性、有计划的练习,我们可以更好地提高自己的数学水平,迎接未来的高考挑战。
高二数学复数试题答案及解析
高二数学复数试题答案及解析1.已知复数,(,是虚数单位).(1)若复数在复平面上对应点落在第一象限,求实数的取值范围;(2)若虚数是实系数一元二次方程的根,求实数值.【答案】(1);(2).【解析】(1)先算出,再根据在复平面上对应的点落在第一象限,可得不等式组,从中求解即可得出的取值范围;(2)根据实系数的一元二次方程有一复数根时,则该方程的另一个根必为,且,从而可先求解出的值,进而求出的值.(1)由条件得 2分因为在复平面上对应点落在第一象限,故有 4分∴解得 6分(2)因为虚数是实系数一元二次方程的根,所以也是该方程的一个根根据二次方程根与系数的关系可得,即 10分把代入,则, 11分所以 14分.【考点】1.复数的几何意义;2.实系数的一元二次方程在复数范围内根与系数的关系;3.复数的运算.2.已知复数Z=,则Z在复平面上对应的点在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】,其对应的点落在第四象限。
故选D。
【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.点评:本题主要考查两个复数代数形式的除法,虚数单位i的幂运算性质,利用了两个复数相除,分子和分母同时乘以分母的共轭复数,属于基础题.3.设是虚数,是实数,且,则的实部取值范围是()A.B.C.D.【答案】B【解析】根据题意,由于是虚数,是实数,且,=0,则可知b=0,=,则可知其实部取值范围,故答案为B【考点】复数的计算点评:主要是考查了复数的计算的运用,属于基础题。
4.若复数是纯虚数(是虚数单位,为实数),则A.2B.C.D.【答案】A【解析】,复数为纯虚数,则,解得:。
故选A。
【考点】复数的概念点评:在复数中,当时,复数为实数;当时,复数为虚数;当时,复数为纯虚数。
5.若复数是纯虚数(是虚数单位),则的值为()A.B.C.D.【答案】D【解析】根据题意,由于复数是纯虚数,则可知 (2+ai)(1+i)=,那么可知2-a=0,故可知a=2,答案为D.【考点】复数的概念点评:主要是考查了复数的计算以及概念的运用,属于基础题。
北京市房山区房山中学高二数学 寒假作业 第四单元《复数》 文
一、基础知识:1.复数的单位为i ,它的平方等于______,即______-.2.复数及其相关概念:① 复数:形如a + b i 的数(其中R b a ∈,);② 实数:当b =______时的复数a + b i ,即a ;③ 虚数:当_________时的复数a + b i ;④ 纯虚数:当_______________时的复数a + b i ,即b i.⑤ 复数a + b i 的实部与虚部:_____叫做复数的实部,_______叫做虚部(注意a ,b 都是实数)⑥ 复数集C —全体复数的集合,一般用字母C 表示.3.两个复数相等的定义:如果两个复数的实部和虚部分别相等⇔这两个复数_______,即如果a,b,c,d ∈R ,那么a+bi=c+di ⇔_______________, a+bi=0 ⇔_________4.共轭复数的性质:实部相同虚部_____________5.复数的乘方:)(...+∈⋅⋅=N n z z z z z nn常用的结论:4_______k i =;41_______k i +=;42_______k i +=;43_______k i +=二、巩固练习1.复数.111-++-=i iz 在复平面内,z 所对应的点在 ( )A .第一象限B .第二象限C .第三象限D .第四象限2. 复数z =i +i 2+i 3+i 4的值是 ( )A .-1B .0C .1D .i3. 复数21(1i)+等于( )A .12B .12-C .1i 2 D .1i 2-4. 若复数(1)(2)bi i ++是纯虚数(i 是虚数单位,b 是实数),则b =( )A .-2B .12- C. D .25. 设a 是实数,且1i1i 2a+++是实数,则a =( )A .12B .1C .32D .26. 设复数z 满足12i i z +=,则z =( ) A .2i -+ B .2i -- C .2i -D .2i + 7. 在复平面内,复数z =i +21对应的点位于( ) A .第一象限 B .第二象限 C .第在象限 D .第四象限8. 已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则,p q 的值为 ( )A .4,5p q =-=B .4,5p q ==C .4,5p q ==-D .4,5p q =-=-9.若复数3i z =-,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.计算1i 1i -+的结果是 A .i B .i - C .2D .2- 11.关于复数z 的方程31z -=在复平面上表示的图形是( )A .椭圆B .圆C .抛物线D .双曲线 12.平行四边形OACB 中, ,对应的复数分别为i i 31,21+-+,则向量对应的复数为( )i D i C i B iA -+--2)(2)(5)(5)( 13.复数i435+的共轭复数是( ) i D i C i B i A 5453)(43)(5453)(43)(--++ 二、填空1.22(1)i =+. 2.复数i z -=11的共轭复数是.3.设复数:12121,2(),z i z x i x R z z =+=+∈若为实数,则x = .4.若复数i i a 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为 . 5.若 12z a i =+, 234z i =-,且12z z 为纯虚数,则实数a 的值为 .三、解答题1.当实数m 取何值时,复数z=])65(4[)3(22i m i m m m ++-+- 为实数?(2)为虚数?(3)纯虚数?(4)零?。
(寒假总动员)2015年高三数学寒假作业专题18复数(背)
(寒假总动员)2015年高三数学寒假作业专题18复数(背)
(寒假总动员)2015 年高三数学寒假作业专题18复数(背)1.复数的相关观点
(1 )复数的观点
形如 a+ bi(a, b∈ R)的数叫复数,此中a, b 分别是它的实部和虚部.若
实数;若b≠0,则 a+ bi 为虚数;若a= 0 且 b≠0,则 a+ bi 为纯虚数.
(2) 复数相等: a+bi= c+ di? a= c 且 b= d(a, b, c, d∈ R).
(3) 共轭复数: a+bi 与 c+ di 共轭 ? a= c, b=- d(a, b, c, d∈ R).
b= 0,则a+ bi为
→
(4 )复数的模:向量OZ的模叫做复数z = a+ bi(a, b∈ R) 的模,记作 |z|或 |a+ bi|,即 |z|= |a+bi|=a2+ b2.
2.复数的几何意义
(1)
一一对应
复平面内的点Z( a, b ) (a, b ∈ R).复数 z= a+ bi ――→
一一对应→
(2)平面向量 OZ .
复数 z= a+ bi (a, b∈ R) ――→
3.复数的运算
(2)复数加法的运算律
复数的加法知足互换律、联合律,即对任何z1 , z2, z3∈C,有 z1+z2= z2+z1, (z1+ z2)+z3= z1+ (z2+z3).。
高中数学复数练习题含答案
高中数学复数练习题含答案一、单选题 1.设复数z 满足i 1i(i z ⋅=+为虚数单位),则复数z 在复平面内所对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.下列说法正确的是( )A .若复数()i ,z a b a b R =+∈,则z 为纯虚数的充要条件是0a =且0b =.B .若()()21i 0,x y x y R -+->∈,则2x >且1y >.C .若()()2212230Z Z Z Z -++=,则123Z Z Z ==.D .若复数z 满足i 2z -=,则复数z 对应点的集合是以()0,1为圆心,以2为半径的圆.3.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .24.若复数i (2i)z m m =++在复平面内对应的点在第二象限,则实数m 的取值范围是( ) A .(1,0)- B .(0,1)C .(,0)-∞D .(1,)-+∞5.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知i 是虚数单位,复数12iiz -=,则z 的共轭复数z =( ) A .2i -- B .2i -+C .2i -D .2i +7.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 8.已知复数z 满足(12i)43i z -=-(i 为虚数单位),则z =( )AB .5CD .2 9.设复数z 满足()1i 2i z -=,则z 在复平面内对应的点在第几象限.( ) A .一 B .二 C .三 D .四 10.设i 12z =+,则在复平面内z 的共轭复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.若复数z 对应的点在直线y =2x 上,且|z |z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i12.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +13.下列关于复数的命题中(其中i 为虚数单位),说法正确的是( ) A .若复数1z ,2z 的模相等,则1z ,2z 是共轭复数B .已知复数1z ,2z ,3z ,若()()2212230z z z z -+-=,则123z z z ==C .若关于x 的方程()21i 14i 0x ax +++-=(a ∈R )有实根,则52a =-D .12i +是关于x 的方程20x px q ++=的一个根,其中,p q 为实数,则5q = 14.若5i2iz =+,则||z =( )A.2 B C .D .315.复数5ii 2iz -=-+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 16.已知复数i(1i)z =-,则其共轭复数z =( )A .1i --B .1i -+C .1i -D .1i +17.设向量OP ,PQ ,OQ 对应的复数分别为z 1,z 2,z 3,那么( )A .z 1+z 2+z 3=0B .z 1-z 2-z 3=0C .z 1-z 2+z 3=0D .z 1+z 2-z 3=0 18.已知复数z 满足z +2i -5=7-i ,则|z |=( )A .12B .3C .D .9 19.向量a =(-2,1)所对应的复数是( )A .z =1+2iB .z =1-2iC .z =-1+2iD .z =-2+i20.已知复数23i z =-,则()1i z +=( ) A .3i - B .3+3i - C .3i + D .3i -+二、填空题21.设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则2zz-=________. 22.设复数1z ,2z 是共轭复数,且12229i,-=-+z z ,则1z =___________.23.已知i 是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.24.设(3i)i 6i a a b +=-,其中a ,b 是实数,则i a b +=____________. 25.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 26.复数2ii 1+-的共轭复数是_______. 27.设12z i =-,则z =___________ . 28.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 29.若复数31i 2iz a -=-为实数,则实数a 的值为_______.30.已知复数2i -在复平面内对应的点为P ,复数z 满足|i |1z -=,则P 与z 对应的点Z 间的距离的最大值为________. 31.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 32.复数1515cos77isin ππ+的辐角主值是________. 33.将复数1+i 对应的向量顺时针旋转45°,则所得向量对应的复数为________.34i 对应的向量绕原点按逆时针方向旋转90,则所得向量对应的复数为________.35.已知复数cos isin i z θθ=+(为虚数单位),则1z -的最大值为___________ 36.把复数z 的共轭复数记作z ,已知()12i 43i z +=+(其中i 是虚数单位),则z =______.37.方程()()2223256i 0x x x x --+-+=的实数解x =________.38.设复数20211i 1iz -=-(i 为虚数单位),则z 的虚部是_______.39.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.40.已知复数z =,则复数z 的虚部为__________. 三、解答题41.若43i 3i m m -+(m ∈R)为纯虚数,求42i 2i m m +⎛⎫⎪-⎝⎭的值. 42.设复数22()(lg 2232i )z m m m m =--+++(m ∈R ),试求m 取何值时? (1)z 是实数;(2)z 是纯虚数;(3)z 对应的点位于复平面的第一象限.43.已知i 是虚数单位,复数()()221i z m m m =---,m ∈R.(1)当复数z 为实数时,求m 的值; (2)当复数z 纯虚数时,求m 的值.44.由方程()31cos2πisin 2πz k k k ==+∈Z 得310z -=的三个根为()2π2πcosisin 02,33k k k k k ω=+≤≤∈Z ,则()()()321111z z z z ωω-=---.将上式右边的各个一次因子适当分组相乘,则可变成有理系数多项式,就得到了31z -的有理分解式.请你仿此将151z -进行有理分解.45.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,求线段AB 的中点所对应的复数.【参考答案】一、单选题 1.D 2.D 3.B 4.A 5.A 6.B 7.D 8.A 9.B 10.D 11.D 12.B 13.D 14.B 15.C 16.C 17.D18.C19.D20.B二、填空题21.-1+2i##2i-1 222324.25.四26.13i22-+2728.29.2-30.1##1+ 31.13i+##3i1+32.7π3334.1-1-35.236.2i+##i2+ 37.238.039.340.三、解答题41.【解析】【分析】由题可得21230130mm⎧-=⎨-≠⎩,进而即得.【详解】因为243i (43i)(3i)3i 9m m m m m ---=++=22(123)13i9m m m --+是纯虚数, 所以21230130m m ⎧-=⎨-≠⎩,,解得m =±2.于是当m =2时,4442i 22i 1i 2i 22i 1i m m +++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭=i 4=1; 当2m =-时,4442i 22i 1i 2i 22i 1i m m +--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭=4(i)-=1. 综上,42i 2i m m +⎛⎫⎪-⎝⎭=1.42.(1)2m =-或1m =-; (2)3m =; (3)2m <-或3m >. 【解析】 【分析】(1)(2)利用复数的分类,分别列式,求解作答. (3)复数的几何意义列式,求解作答. (1)复数22()(lg 2232i )z m m m m =--+++是实数,则22220320m m m m ⎧-->⎨++=⎩,解得2m =-或1m =-,所以当2m =-或1m =-时,z 是实数. (2)复数22()(lg 2232i )z m m m m =--+++是纯虚数,则22lg(22)0320m m m m ⎧--=⎨++≠⎩,解得3m =,所以当3m =时,z 是纯虚数. (3)复数22()(lg 2232i )z m m m m =--+++在复平面内对应点2222(lg(,)32)m m m m --++,依题意,22lg(22)0320m m m m ⎧-->⎨++>⎩,解得:2m <-或3m >,所以当2m <-或3m >时,z 对应的点位于复平面的第一象限. 43.(1)1或1-; (2)0. 【解析】 【分析】(1)虚部为零,则为实数;(2)虚部不为零,实部为零,则为纯虚数. (1)当210m -=时,得1m =±; (2)当22010m m m ⎧-=⎨-≠⎩时,得0m =.44.()()()()()231411111z z z z z ωωωω----⋅⋅⋅-【解析】 【分析】根据题目所给的信息即可求解. 【详解】根据题目有理分解式原理可知151=0z -的15个根为()2π2πcosisin 0151514,k k k k k ω=+≤≤∈Z , 则151z -()()()()()231411111z z z z z ωωωω=----⋅⋅⋅-.45.12i + 【解析】 【分析】根据复数的几何意义求出点A 、B 的坐标,可得出线段AB 的中点坐标,利用复数的几何意义即可得出结果. 【详解】解:由复数的几何意义可得()1,1A 、()1,3B ,所以线段AB 的中点为()1,2M , 故线段AB 的中点所对应的复数为12i +.。
高中《复数》经典练习题1(含答案)
高中《复数》经典练习题【编著】黄勇权一、填空题1、复数i i ++12的共扼复数是 。
2.设复数z=1+i (i 是虚数单位),则|+z|= 。
3、若复数Z 满足Z (1-i )=2+4i (i 为虚数单位),则Z= 。
4、若复数Z 满足Z+2i =i2i 55++(i 为虚数单位),则Z= 。
5、z=(m ²-4)+(2-m )i 为纯虚数,则实数m 的值为 。
6、已知m ∈R ,i 是虚数单位,若z=a-2i ,z •z =6,则m= 。
7、已知z =(x+1)+(x -3)i 在复平面内对应的点在第四象限,则实数m 的取值范围是 。
8、若复数Z 满足2-3i= 3+2Zi (i 为虚数单位),则Z= 。
9、复数Z=i+i ²在复平面对应的点在第 象限。
10、复数Z 满足(Z-1)i=2+i ,则Z 的模为 。
11、若复数Z 满足Z (1-i )= 2+2i (i 为虚数单位),则Z= 。
12、复数Z=i1i 32++,则Z •(z -1)= . 13、若复数i 2ia +的实部与虚部相等,则实数a = 。
14、复数的虚部 。
15、2.若复数(α∈R )是纯虚数,则复数2a+2i 在复平面内对应的点在第 象限。
16、设复数z 满足(z+i )(2+i )=5(i 为虚数单位),则z=______。
17、如果复数z= (i 为虚数单位)的实部与虚部互为相反数,那么|z|=______18、复数z=﹣2i+ 3-i i ,则复数z 的共轭复数在复平面内对应的点在第 象限。
19、设复数z 满足i i z i (23)4(+=-⋅是虚数单位),则z 的实部为 。
20、设复数121,1z i z i =-=+,其中i 是虚数单位,则Z1Z2的模为 。
二、选择题1、设a ,b ∈R ,i 为虚数单位,若(a+bi )•i=2﹣5i ,则ab 的值为( )。
A 、-5B 、5C 、-10D 、102、若复数z 为纯虚数, 且满足i )i 2(+=-a z (i 为虚数单位),则实数a 的值为 .A 、 12B 、 13C 、 14D 、 163、已知复数z 满足(1)2i z i -=,其中i 为虚数单位,则z 的模为( )A 、 4 2B 、 3 2C 、 2 2D 、 24、i 是虚数单位,复数等于( ) A 、﹣2﹣2i B 、2﹣2iC 、﹣2+2iD 、2+2i5、若复数()()ai i z -+=11是实数,则实数a 的值是( )A 、1±B 、1-C 、0D 、16、设i 为虚数单位,已知复数ii z -=1,则z 的共轭复数在复平面内表示的点位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限7、i 是虚数单位, 的值是( )。
高二数学寒假作业 专题18 复数(练)(含解析)
专题18 复数
【练一练】
一.选择题
1.已知i是虚数单位,则(﹣1+i)(2﹣i)=()
A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i
【答案】B
【解析】
试题分析:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,
2. 设a是实数,且是实数,则a=()
A.B.1 C.D.2
3. 在复平面内,复数(i为虚数单位)的共轭复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
4. 复数=()
A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i
【答案】C
【解析】
试题分析:=﹣2+i
5. 设i是虚数单位,是复数z的共轭复数,若,则z=()
A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i
【答案】A
二、填空题
6. 复数3+2i
2-3i =
________.
7. 已知x ,y ∈R ,i 是虚数单位,且(x -1)i -y =2+i ,则(1+i)x -y =________.
【答案】-4
【解析】
试题分析:由(x -1)i -y =2+i 得x =2、y =-2,所以(1+i)x -y =(1+i)4=(2i)2=-4.
三.解答题
8. 若虚数z 同时满足下列两个条件:①5
z z 是实数;②z+3的实部与虚部互为相反数. 这样的虚数是否存在?若存在,求出z;若不存在,请说明理由
.。
(2021年整理)高中数学-复数专题
高中数学-复数专题(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学-复数专题(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学-复数专题(推荐完整)的全部内容。
高中数学-复数专题(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望高中数学—复数专题(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <高中数学—复数专题(推荐完整)> 这篇文档的全部内容.复数专题一、选择题1 .(2012年高考(天津理))i是虚数单位,复数7=3iz i-+ ( ) A .2i +B .2i -C .2i -+D .2i --2 .(2012年高考(新课标理))下面是关于复数21z i=-+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( )A .23,p pB .12,p pC .,p p 24D .,p p 343 .(2012年高考(浙江理))已知i 是虚数单位,则3+i1i-= ( )A .1-2iB .2-iC .2+iD .1+2i4 .(2012年高考(四川理))复数2(1)2i i-=( )A .1B .1-C .iD .i -5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c b 。
高中数学复数多选题专项训练100附答案(1)
高中数学复数多选题专项训练100附答案(1)一、复数多选题1.已知复数122,2z i z i =-=则( ) A .2z 是纯虚数 B .12z z -对应的点位于第二象限C .123z z +=D .12z z =答案:AD 【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确. 【详解】利用复数的相关概念可判断A 正确; 对于B 选项,对应的解析:AD 【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确. 【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD 【点睛】本题考查复数的相关概念及复数的计算,较简单. 2.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模答案:ACD 【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D 【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD 【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D 【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确, 故选:ACD 【点睛】本题考查复数的几何意义,考查复数的模 3.下面四个命题,其中错误的命题是( ) A .0比i -大 B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数 答案:ABC 【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误. 【详解】对于A 选项,由于虚数不能比大小,解析:ABC 【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误. 【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确.故选:ABC. 【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.4.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限答案:BD 【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断. 【详解】 因为复数满足, 所以所以,故A 错误; ,故B 正确;复数的实部为 ,故C 错误; 复数对应复平面上的点在第二象限解析:BD 【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误;复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD 【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.5.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=答案:ACD 【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假. 【详解】由可得,,所以,虚部为; 因为,所以,. 故选:ACD . 【解析:ACD 【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假. 【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD . 【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题.6.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限答案:AB 【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项. 【详解】依题意,所以A 选项正确; ,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误. 故选解析:AB 【分析】求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB 【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题. 7.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( ) A.||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根答案:ABCD 【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确. 【详解】 因为(1﹣i )z =解析:ABCD 【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确;所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确; 因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确. 故选:ABCD. 【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.8.已知复数z ,下列结论正确的是( ) A .“0z z +=”是“z 为纯虚数”的充分不必要条件 B .“0z z +=”是“z 为纯虚数”的必要不充分条件 C .“z z =”是“z 为实数”的充要条件 D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件答案:BC 【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】 设,则,则,若,则,,若,则不为纯虚数, 所以,“”是“为纯虚数”必要不充分解析:BC 【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论. 【详解】设(),z a bi a b R =+∈,则z a bi =-,则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数,所以,“0z z +=”是“z 为纯虚数”必要不充分条件;若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC. 【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.9.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( )A .20zB .2z z =C .31z =D .1z =答案:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数(其中为虚数单位), ,故错误; ,故正确; ,故正确; .故正确. 故选:. 【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD 【分析】利用复数的运算法则直接求解. 【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确.故选:BCD . 【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.10.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=答案:AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量, 所以,,|z|=,, 故选:AD解析:AD 【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=, 故选:AD11.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限答案:BCD 【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确. 【详解】 因为复数,所以其虚部为,即A 错误; ,故B 正确;解析:BCD 【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+, 所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确. 故选:BCD. 【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.12.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数zw z=,则下列结论正确的有( )A .w 在复平面内对应的点位于第二象限B .1w =C .w 的实部为12-D .w 答案:ABC 【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解. 【详解】 对选项由题得 .所以复数对应的点为,在第二象限,所以选项正确解析:ABC 【分析】对选项,A 求出1=22w -+,再判断得解;对选项B ,求出1w =再判断得解;对选项,C 复数w 的实部为12-,判断得解;对选项D ,w 的虚部为2,判断得解. 【详解】对选项,A 由题得1,z =-1=2w ∴===-.所以复数w 对应的点为1(,22-,在第二象限,所以选项A 正确;对选项B ,因为1w ==,所以选项B 正确; 对选项,C 复数w 的实部为12-,所以选项C 正确;对选项D ,w 所以选项D 错误. 故选:ABC 【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平. 13.已知i 为虚数单位,复数322iz i+=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z =D .z 在复平面内对应的点在第一象限答案:AD 【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项. 【详解】 ,故,故A 正确.的虚部为,故B 错,,故C 错, 在复平面内对应的点为,故D 正确. 故选:AD. 【点睛】 本题考解析:AD 【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项. 【详解】()()32232474725555i i i i iz i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错,z 在复平面内对应的点为47,55⎛⎫⎪⎝⎭,故D 正确.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.14.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =答案:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)1(1)(1)2i i z i i i --====-+-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题15.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 答案:AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.16.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ).A .20zB .2z z =C .31z =D .1z = 答案:BCD【分析】计算出,即可进行判断.【详解】,,故B 正确,由于复数不能比较大小,故A 错误;,故C 正确;,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】 计算出23,,,z z z z ,即可进行判断.【详解】12z =-+, 221313i i=2222z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222222z ,故C 正确; 2213122z,故D 正确.故选:BCD.【点睛】 本题考查复数的相关计算,属于基础题.17.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 答案:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222zz z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】 本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.18.(多选题)已知集合{},n M m m i n N ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( )A .()()11i i -+B .11i i -+C .11i i +-D .()21i - 答案:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】根据题意,中,时,;时,;时,;时,,.选项A 中,;选项B 中,;选项C 中,;选项D 中,.解析:BC【分析】根据集合求出集合内部的元素,再对四个选项依次化简即可得出选项.【详解】 根据题意,{},n M m m i n N ==∈中, ()4n k k N =∈时,1n i =;()41n k k N =+∈时,n i i =;()42n k k N =+∈时,1n i =-;()43n k k N =+∈时,n i i =-,{}1,1,,M i i ∴=--.选项A 中,()()112i i M -+=∉;选项B 中,()()()211111i i i i i i M --==-+-∈+; 选项C 中,()()()211111i i i i i i M ++==-+∈-; 选项D 中,()212i i M -=-∉.故选:BC.【点睛】此题考查复数的基本运算,涉及复数的乘方和乘法除法运算,准确计算才能得解.19.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 答案:BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确; z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确. 故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.20.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( )A .2ωω=B .31ω=-C .210ωω++=D .ωω> 答案:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】 本题主要考查复数的有关概念解析:AC【分析】 根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以12ω=--,∴2131442ωω=--=--=,故A 正确,3211131222244ωωω⎛⎫⎛⎫⎛⎫==---+=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.21.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于1答案:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题.22.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 答案:CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误 解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.。
高二数学寒假作业 专题18 复数(背)(1)
专题18 复数 【背一背】1. 复数的概念 (1) 虚数单位i: i2=-1;i 和实数在一起,服从实数的运算律.(2) 代数形式:a +bi(a ,b ∈R),其中a 叫实部,b 叫虚部.2. 复数的分类复数z =a +bi(a 、b ∈R)中,z 是实数a ∈R ,b =0,z 是虚数b≠0,z 是纯虚数a =0,b≠0.3. a +bi 与a -bi(a ,b ∈R)互为共轭复数.4. 复数相等的条件a +bi =c +di(a 、b 、c 、d ∈R)a =c 且b =d.特殊的,a +bi =0(a 、b ∈R)a =0且b =0. 5. 设复数z =a +bi(a ,b ∈R),z 在复平面内对应点为Z ,则OZ →的长度叫做复数z 的模(或绝对值),即|z|=|OZ→|=a2+b2.6. 运算法则z1=a +bi ,z2=c +di ,(a 、b 、c 、d ∈R).1、i i n =+14、124-=+n i 、i i n -=+34、14=n i 2、复数的加减(类比合并同类项)i d b c a di c bi a )()()()(±+±=+±+3、复数的相乘(类比整式乘法)i bc ab bd ac di c bi a )()()()(++-=+⋅+4、复数的相除(类比分母有理化)i d c ad bc dc bd ac di c di c di c bi a di c bi a 2222))(())((+-+++=-+-+=++ 5、1的立方根有3个:1、23211+-=ω、23212--=ω 7.复数的乘法的运算律对于任何123,,z z z C ∈,有 交换律:1221z z z z ⋅=⋅. 结合律:123123()()z z z z z z ⋅⋅=⋅⋅. 分配律:1231213()z z z z z z z ⋅+=⋅+⋅ .8.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).9.复平面向量的垂直非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ ,2OZ ,则12OZ OZ ⊥⇔12z z ⋅的实部为零⇔21z z 为纯虚数⇔2221212||||||z z z z +=+ ⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).10.实系数一元二次方程的解 实系数一元二次方程20ax bx c ++=, ①若240b ac ∆=->,则1,22b x a -=;②若240b ac ∆=-=,则122b x x a ==-; ③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.11.注意点1、复数的确定可以多考虑用待定系数法。
高二数学寒假作业 专题18 复数测含解析 试题
卜人入州八九几市潮王学校专题18复数【测一测】一.选择题1.假设复数z满足z(1+i)=1-i(i是虚数单位),那么z的一共轭复数z等于()(A)-i(B)(C)i【答案】C 【解析】试题分析:由条件知21i(1i)2iz i,1i(1i)(1i)2---====-++-所以z i.=2.假设复数z满足(1-i)z=2i,那么复数z对应的点位于()(A)第一象限(B)第二象限(C)第三象限(D)第四象限3.复数z=1+i,那么2z2zz1--等于()(A)2i (B)-2i (C)2 (D)-2【答案】A【解析】试题分析:22z2z(1i)2(1i)2i22iz11i1i-+-+--==-+-=2i.4.m(1+i)=2-ni(m,n∈R),其中i是虚数单位,那么3m ni()m ni+-等于()(A)1 (B)-1 (C)i (D)-i 【答案】C【解析】试题分析:由m(1+i)=2-ni,得m+mi=2-ni,故m=2,m=-n,故m=2,n=-2,故33m ni22i()()i. m ni22i+-== -+5.i是虚数单位,那么=〔〕A.1﹣2iB.2﹣iC.2+iD.1+2i7.复数z=i〔i+1〕〔i为虚数单位〕的一共轭复数是〔〕A.﹣1﹣iB.﹣1+iC.1﹣iD.1+i【答案】A【解析】试题分析:∵z=i〔i+1〕=i2+i=﹣1+i,∴复数z=i〔i+1〕〔i为虚数单位〕的一共轭复数是﹣1﹣i.8.假设i是关于x的实系数方程x2+bx+c=0的一个复数根,那么〔〕A.b=2,c=3B.b=2,c=﹣1 C.b=﹣2,c=﹣1D.b=﹣2,c=39.设a,b∈R.“a=O〞是“复数a+bi是纯虚数〞的〔〕A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析:因为a,b∈R.“a=O〞时“复数a+bi不一定是纯虚数〞.“复数a+bi是纯虚数〞那么“a=0〞一定成立.所以a,b∈R.“a=O〞是“复数a+bi是纯虚数〞的必要而不充分条件.10.i 为虚数单位,=〔〕A.0B.2iC.﹣2iD.4i二、填空题11.=b+i(a,b∈R),其中i为虚数单位,那么a+b=________.12.数z=1+i,为z的一共轭复数,那么z-z-1=________.【答案】-i【解析】试题分析:z=1+i,那么z-z-1=2-(1+i)-1=-i.13.假设(1+ai)2=-1+bi(a,b∈R,i是虚数单位),那么|a+bi|=__________.14.定义一种运算如下:11122122x yx y x yx y⎡⎤=-⎢⎥⎣⎦,那么复数3i1z3i i⎤-=⎥⎥⎦(i是虚数单位)的一共轭复数是__.31(31)i-【解析】试题分析:由定义知,z(3i)i(3i)(1)31(31)i,=--⨯-=-+-故z31(31)i.=--三.解答题15.m取何实数时,复数z=+(m2-2m-15)i.(1)是实数;(2)是虚数;(3)是纯虚数.16.设z是虚数,w=z+是实数,且-1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设u=,求证:u为纯虚数;。
高二数学复数练习题及答案
高二数学复数练习题及答案复数是数学中的一个重要概念,它在数学和物理等领域中有着广泛的应用。
在高二数学中,复数也是一项重要的学习内容,通过掌握复数的性质和运算规则,可以解决各种与实数无法解决的问题。
本文将为同学们提供一些高二数学复数练习题及其答案,帮助巩固复数的知识。
练习题一:1. 计算并写出结果的精确值:(3+2i)+(1-4i)2. 求复数的共轭数:(4+3i)的共轭数是多少?3. 计算并写出结果的精确值:(2-5i)(1+3i)4. 求复数的模:计算|(4-1i)|的值。
5. 求复数的幅角:计算辐角arg(2i)的值。
练习题二:1. 计算并写出结果的精确值:(1+i)^2的值是多少?2. 计算并写出结果的精确值:(1+i)^4的值是多少?3. 计算并写出结果的精确值:(1+i)^5的值是多少?4. 求复数的幂:计算(2+3i)^3的值。
5. 求复数的根:计算方程x^4+1=0的全部根。
练习题三:1. 求函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点。
2. 求函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点。
3. 求函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点。
4. 求函数f(x) = 3x^2 + 2x - 1的最小值。
5. 求函数f(x) = -2x^2 + 4x - 3的最大值。
答案及解析:练习题一:1. (3+2i)+(1-4i) = 3+2i+1-4i = 4-2i2. (4+3i)的共轭数为4-3i3. (2-5i)(1+3i) = 2+6i-5i-15i^2 = 2+6i-5i+15 = 17+i4. |(4-1i)| = √(4^2 + (-1)^2) = √175. 辐角arg(2i)的值为π/2练习题二:1. (1+i)^2 = 1^2 + 2i + i^2 = 1+2i-1 = 2i2. (1+i)^4 = (1^2 + 2i + i^2)^2 = (1+2i-1)^2 = (2i)^2 = -43. (1+i)^5 = (1+i)(1+2i-1)^2 = (1+i)(2i)^2 = (1+i)(-4) = -4-4i4. (2+3i)^3 = (2^2+2*2*3i+(3i)^2)(2+3i) = (4-9+12i)(2+3i) = (-5+12i)(2+3i) = (-34+1i)5. 方程x^4+1=0的全部根为±i,±i^3练习题三:1. 函数f(x) = 2x^3 - 3x^2 + x + 1的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到2x^3 - 3x^2 + x + 1 = 0的解;y轴上的交点:x = 0时,y = f(0) = 1,所以与y轴的交点为(0, 1)2. 函数f(x) = (x+1)^2 - 4的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到(x+1)^2 - 4 = 0的解;y轴上的交点:x = 0时,y = f(0) = -3,所以与y轴的交点为(0, -3)3. 函数f(x) = x^2 - 3x + 2的图像与坐标轴的交点为:x轴上的交点:令f(x) = 0,得到x^2 - 3x + 2 = 0的解;y轴上的交点:x = 0时,y = f(0) = 2,所以与y轴的交点为(0, 2)4. 函数f(x) = 3x^2 + 2x - 1的最小值为函数的顶点坐标的y值,顶点的横坐标为 x = -b/2a = -2/(2*3) = -1/3;将x = -1/3代入函数中,得到f(-1/3) = 3*(-1/3)^2 + 2*(-1/3) - 1 = -8/9,所以最小值为-8/9。
完整版)高中数学复数练习题
完整版)高中数学复数练习题高中数学《复数》练题一、基本知识:复数的基本概念1.形如a+bi的数叫做复数(其中a,b∈R);复数的单位为i,它的平方等于-1,即i²=-1.其中a叫做复数的实部,b叫做虚部。
2.实数:当b=0时复数a+bi为实数;虚数:当b≠0时的复数a+bi为虚数;纯虚数:当a=0且b≠0时的复数a+bi为纯虚数。
3.两个复数相等的定义:a+bi=c+di⟺a=c且b=d(其中,a,b,c,d,∈R)。
特别地a+bi=0⟺a=b=0.4.共轭复数:z=a+bi的共轭记作z=a-bi;5.复平面:z=a+bi,对应点坐标为p(a,b);(象限的复)6.复数的模:对于复数z=a+bi,把z²=a²+b²叫做复数z的模;二、复数的基本运算:设z1=a1+b1i,z2=a2+b2i1.加法:z1+z2=(a1+a2)+(b1+b2)i;2.减法:z1-z2=(a1-a2)+(b1-b2)i;3.乘法:z1·z2=(a1a2-b1b2)+(a2b1+a1b2)i。
特别z·z=a²+b²。
4.幂运算:i¹=i,i²=-1,i³=-i,i⁴=1,i⁵=i,i⁶=-1……以此类推。
三、复数的化简把c+di(a,b是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:z=(a+bi)/(c+di)=(ac+bd)+(ad-bc)i/(c²+d²)四、例题分析例1】已知z=a+1+(b-4)i,求1) 当a,b为何值时z为实数2) 当a,b为何值时z为纯虚数3) 当a,b为何值时z为虚数4) 当a,b满足什么条件时z对应的点在复平面内的第二象限。
变式1】若复数z=(x²-1)+(x-1)i为纯虚数,则实数x的值为A。
-1 B。
1 C。
0 D。
-1或1例2】已知z1=3+4i,z2=(a-3)+(b-4)i,求当a,b为何值时z1=z2例3】已知z=1-i,求z,z·z;变式1】复数z满足z=(2-i)/(1-i),则求z的共轭z变式2】已知复数z=3+i,则z·z=?例4】已知z1=2-i,z2=-3+2i1) 求z1+z22) 求z1·z22.已知复数 $z$ 满足 $(z-2)i=1+i$,求 $|z|$。
高中数学复数练习题附答案
高中数学复数练习题附答案一、单选题1.复数20222i 1iz =+(其中i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知复数13i z a =-,22i z =+(i 为虚数单位),若12z z 是纯虚数,则实数=a ( ) A .32- B .32C .6-D .63.设复数21iz =-+,则z 在复平面内对应的点的坐标为( ) A .(1,1) B .(-1,1) C .(1,-1) D .(-1,-1)4.已知复数113i z =+的实部与复数21i z a =--的虚部相等,则实数a 等于( ) A .-3 B .3 C .-1D .15.在复平面内,复数z 满足()()1i 1i ,z a b a b R +=++∈,且z 所对应的点在第一象限或坐标轴的非负半轴上,则2+a b 的最小值为( ) A .2- B .1- C .1 D .2 6.设||(12i)34i z -=+,则z 的共轭复数对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在复平面内,复数z 对应的点为P ,则复数i=z ⋅( )A .2i -B .12i -C .1+2i -D .2i --8.已知复数z 满足i 232i z z +=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限9.已知复数2ii+=a z (a R ∈,i 是虚数单位)的虚部是3-,则复数z 对应的点在复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限 10.若复数z 满足()13i 17i -=-z ,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.已知z 1,z 2∈C ,|z 1+z 2|=|z 1|=2,|z 2|=2,则|z 1-z 2|等于( ) A .1 B .12 C.2D .12.设i 为虚数单位,()1i 2i z -+=+,则复数z 的虚部是( ) A .12-B .1i 2C .32-D .3i 2-13.复数2i z =-(i 为虚数单位)的虚部为( ) A .2 B .1C .iD .1-14.若复数z 满足()12i 10z -=,则( )A .24i z =+B .2z +是纯虚数C .复数z 在复平面内对应的点在第三象限D .若复数z 在复平面内对应的点在角α的终边上,则sin α=15.若复数2(1i)-的实部为a ,虚部为b ,则a b +=( ) A .3-B .2-C .2D .316.已知34i z =+,则()i z z -=( ) A .1117i +B .1917i +C .1117i -D .1923i +17.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A .1i - B .1i + C .2i + D .2i - 18.复数z 在复平面内对应点的坐标为(-2,4),则1z +=( )A .3B .4CD 19.已知复数z 满足(2i)43i z +=-(i 为虚数单位),则z =( )A .2+iB .2-iC .1+2iD .1-2i20.若复数()()2i ,z a b a b =+-∈R ,在复平面内对应的点在直线20x y --=上,则a b -=( )A .4-B .0C .2D .4二、填空题21.若复数(1i)+(2+3i)z =-(i 为虚数单位),则z =__________.22.设复数i 12z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为________.23.已知复数z 满足()1i 42i z -=+,则z =_________(用代数式表示).24.已知i是虚数单位,则202220221i 1i ⎛+⎛⎫+= ⎪ -⎝⎭⎝⎭________.25.18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如,z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离,在复数平面内,复数02i1ia z +=+ (i 是虚数单位,)a R ∈是纯虚数,其对应的点为0Z ,Z 为曲线1z =上的动点,则0Z 与Z 之间的最小距离为________________.26.若i 为虚数单位,复数3i z =+,则表示复数1iz+的点在第_______象限. 27.若复数z 满足i 2022i z ⋅=-(i 是虚数单位),则z 的虚部是___________. 28.若复数z 满足i 3i=iz -+,则z =________. 29.在复平面内,复数1z 和2z 对应的点分别是(21)A ,和(01)B ,,则12zz=_______. 30.若复数()2(2)9i()z m m m R =++-∈是正实数,则实数m 的值为________.31.已知i 是虚数单位,复数z 满足322i z =+,则z =___________. 32.已知复数()3iR ib z b -=∈的实部和虚部相等,则z =___________. 33.已知复数z =,则复数z 的虚部为__________. 34.甲、乙、丙、丁四人对复数z 的陈述如下(i为虚数单位):甲:z z +=;乙:2z z -=;丙:26;:4z z z z z ⋅==丁,在甲、乙、丙、丁四人陈述中,有且只有两个人的陈述正确,则z =___________. 35.复数1515cos77isin ππ+的辐角主值是________. 36.下列命题:①若a R ∈,则()1i a +是纯虚数;②若()()()22132i x x x x R -+++∈是纯虚数,则1x =±;③两个虚数不能比较大小. 其中正确命题的序号是________. 37.若i 是虚数单位,则复数310i3i =-________.(写成最简结果) 38.设i 是虚数单位,复数z =,则z =___________. 39.设i 为虚数单位,则复数2(1i)1i+-=____.40.已知复数ππsin i cos 33z =+,则z =________. 三、解答题41.设实部为正数的复数z ,满足z =(12i)z +在复平面上对应的点在第一、三象限的角平分线上. (1)求复数z ; (2)若i()1im z m R ⋅+∈+为纯虚数,求实数m 的值.42.已知复数z1i ,z 2=12-+ (1)求|z 1|及|z 2|并比较大小;(2)设C z ∈,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 43.已知复数22(6)(215)i z m m m m =--++-(i 是虚数单位). (1)若复数z 是实数,求实数m 的值; (2)若复数z 是纯虚数,求实数m 的值. 44.根据要求完成下列问题:(1)关于x 的方程2(2i)i 10x a x a +--+=有实根,求实数a 的取值范围; (2)若复数22(2)(23)i z m m m m =+-+--(R m ∈)的共轭复数z 对应的点在第一象限,求实数m 的集合.45.(1)已知设方程α,β是方程220x x a ++=的两根,其中a R ∈,则||||αβ+的值;(2)关于x 的方程243i 0x ax +++=有实根,其中a C ∈,求||a 的最小值,并求取得最小值时方程的根.【参考答案】一、单选题1.B 2.A 3.D 4.C 5.B 6.D 7.D 8.A 9.D 10.D 11.D 12.C 13.D 14.D 15.B 16.B 17.A 18.C 19.B 20.B 二、填空题2122.()34-,23.13i +##3i+1 2425.1 26.四 27.2022-2829.12i -##2i+1- 30.3 3132.33.34.2 35.7π36.③ 37.13i +##3i 1+38.39.1i -+ 40.1 三、解答题41.(1)3i z =-; (2)6m =-. 【解析】 【分析】(1)根据复数的模公式,结合复数乘法的运算法则、第一、三象限的角平分线的性质进行求解即可;(2)根据纯虚数的定义,结合共轭复数的定义、复数除法的运算法则进行求解即可. (1)设i(0,),10,(12i)2(2)i z a b a b R z z a b b a =+>∈∴=+=-++,由题意得,22223,101a b b a a a b b -=+=⎧⎧∴⎨⎨+==-⎩⎩,即3i z =-; (2)i i 3i 3(1)i 1i 222m m m m mz ⋅++=++=++++为纯虚数, 30,62mm ∴+=∴=-. 42.(1)12122,1,z z z z ==>(2)以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周) 【解析】 【分析】(1)根据复数模的计算公式可求得1||z ,2||z 的值;(2)根据复数几何意义可解决此问题. (1)解:(1)13i z =+,212z =-,1||2z ∴,2||1z =, ∴12z z >; (2)解:由21||||||z z z ≤≤,得1||2z ≤≤,根据复数几何意义可知复数z 对应的点到原点的距离, 所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合, |z |≤2表示|z |=2所表示的圆内部所有点组成的集合,所以复数z 对应的点Z 的轨迹是以原点O 为圆心,以1和2为半径的圆之间的部分(包括两边界). 43.(1)5-或3 (2)2- 【解析】 【分析】(1)根据复数是实数得到虚部为零即可求解;(2)根据复数为纯虚数得到实部为零且虚部不为零即可求解. (1)由22(6)(215)i z m m m m =--++-是实数,得22150m m +-=,即()()530m m +-=,解得5m =-或3m =,所以实数m 的值为5-或3. (2)由22(6)(215)i z m m m m =--++-是纯虚数,得22602150m m m m --=+-≠⎧⎨⎩,解得2353m m m m =-=≠⎩-≠⎧⎨或且,即2m =-, 所以实数m 的值为2-. 44.(1)1a =±(2)312(,)【解析】 【分析】(1)设方程的根为0x ,并代入方程中,根据复数相等得到方程组,解得答案;(2)写出22(2)(23)i z m m m m =+-+--的共轭复数,根据z 对应的点在第一象限,列出不等式组,解得答案. (1)设0x 是其实根,代入原方程变形为200021()i 0x ax a x ++-+=,由复数相等的定义,得20002100x ax a x ⎧++=⎨+=⎩,解得1a =±;(2)由题意得22(2)(23)i z m m m m =+----,∴2220(23)0m m m m ⎧+->⎨--->⎩,即2220230m m m m ⎧+->⎨--<⎩,解得312m <<, 故实数m 的集合为3(1,)2.45.(1)()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩;(2)min ||a =3i)+或3i)+.【解析】 【分析】(1)求出判别式4(1)a ∆=-,对a 分类讨论:当01a 时,当0a <时,当1a >时三种情况,分别求出||||αβ+;(2)设0x 为方程的实根,代入原方程,表示出a ,利用基本不等式求出||a 的最小值,并求取得最小值时方程的根. 【详解】(1)判别式444(1)a a ∆=-=-, ①若0∆,即1a ,则α,β是实根,则2αβ+=-,a αβ=,则2222(||||)2||()22||422||a a αβαβαβαβαβαβ+=++=+-+=-+,故||||αβ+,当01a 时,||||2αβ+=, 当0a <时,||||αβ+=②若∆<0,即1a >,则α,β是虚根,1α=-,1β=-,故||||αβ+==综上:()()()0201a a a a αβ⎧<⎪+=≤≤⎨⎪>⎩.(2)设0x 为方程的实根,则20043i 0x ax +++=, 所以00043i a x x x =---,则20020004325||2()2()2818a x x x x x =++=++, 当202025x x =即0x =||min a =当0x =3i)+,当0x =3i)+.。
秋高中数学课时作业18复数的几何意义新人教A版选修2-2(2021年整理)
2018年秋高中数学课时分层作业18 复数的几何意义新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋高中数学课时分层作业18 复数的几何意义新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋高中数学课时分层作业18 复数的几何意义新人教A版选修2-2的全部内容。
课时分层作业(十八)复数的几何意义(建议用时:40分钟)[基础达标练]一、选择题1.下列命题中,假命题是( )A.复数的模是非负实数B.复数等于零的充要条件是它的模等于零C.两个复数模相等是这两个复数相等的必要条件D.复数z1〉z2的充要条件是|z1|>|z2|D[①任意复数z=a+b i(a、b∈R)的模|z|=错误!≥0总成立.∴A正确;②由复数相等的条件z=0⇔错误!⇔|z|=0,故B正确;③若z1=a1+b1i,z2=a2+b2i(a1、b1、a2、b2∈R),若z1=z2,则有a1=a2,b1=b2,∴|z1|=|z2|.反之由|z1|=|z2|,推不出z1=z2,如z1=1+3i,z2=1-3i时|z1|=|z2|,故C正确;④不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,∴D错.]2.在复平面内,O为原点,向量错误!对应的复数为-1+2i,若点A关于直线y=-x的对称点为B,则向量错误!对应的复数为()【导学号:31062205】A.-2-i B.-2+iC.1+2i D.-1+2iB[∵A(-1,2)关于直线y=-x的对称点B(-2,1),∴向量错误!对应的复数为-2+i.]3.若复数(m2-3m-4)+(m2-5m-6)i对应的点在虚轴上,则实数m的值是( ) A.-1 B.4C.-1和4 D.-1和6C[由m2-3m-4=0得m=4或-1,故选C.]4.当错误!<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于() A.第一象限B.第二象限C.第三象限D.第四象限D[∵错误!<m<1,∴3m-2>0,m-1<0,∴点(3m-2,m-1)在第四象限.]5.如果复数z满足条件z+|z|=2+i,那么z=( )A.-错误!+i B.错误!-iC.-错误!-i D.错误!+iD[设z=a+b i(a,b∈R),由复数相等的充要条件,得错误!解得错误!即z=错误!+i.]二、填空题6.i为虚数单位,设复数z1、z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=________。
高中数学复数知识点及练习
【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部。
实数:当b = 0时复数a + b i 为实数; 虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b =;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。
(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-【3】复数的化简c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+【例1】若复数()312a iz a R i +=∈-(i 为虚数单位),(1)若z 为实数,求a 的值 (2)当z 为纯虚数,求a 的值。
【变式1】设a 是实数,且112a ii -++是实数,求a 的值。
2022高中数学课时作业18复数的几何意义含解析新人教A版选修2_2
复数的几何意义(建议用时:40分钟)一、选择题1.下列命题中,假命题是( ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|D [①任意复数z =a +b i(a ,b ∈R)的模|z |=a 2+b 2≥0总成立.∴A 正确;②由复数相等的条件z =0⇔⎩⎪⎨⎪⎧a =0b =0⇔|z |=0,故B 正确;③若z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R), 若z 1=z 2,则有a 1=a 2,b 1=b 2,∴|z 1|=|z 2|. 反之由|z 1|=|z 2|,推不出z 1=z 2,如z 1=1+3i ,z 2=1-3i 时|z 1|=|z 2|,故C 正确;④不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,∴D 错.] 2.欧拉公式e i x=cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据此公式可知,e 2i表示的复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限B [依题可知e i x表示的复数在复平面内对应的点的坐标为(cos x ,sin x ),故e 2i表示的复数在复平面内对应的点的坐标为(cos 2,sin 2),显然该点位于第二象限,选B.]3.若复数(m 2-3m -4)+(m 2-5m -6)i 对应的点在虚轴上,则实数m 的值是( ) A .-1 B .4 C .-1和4D .-1和6C [由m 2-3m -4=0得m =4或-1,故选C.]4.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限D [∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.]5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+iB .34-i C .-34-iD .34+i D [设z =a +b i(a ,b ∈R),由复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =1,解得⎩⎪⎨⎪⎧a =34,b =1,即z =34+i.]二、填空题6.若复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),其中m ∈R,则|z |=________. 3 [复数z =(m -2)+(m +1)i 为纯虚数(i 为虚数单位),所以m -2=0且m +1≠0,解得m =2,所以z =3i ,所以|z |=3.]7.已知在△ABC 中, AB →,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的复数为________.-1-5i [因为AB →,AC →对应的复数分别为-1+2i ,-2-3i ,所以AB →=(-1,2),AC →=(-2,-3),又BC →=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的复数为-1-5i.]8.复数z =3a -6i 的模为40,则实数a 的值为__________. ±23 [由|z |=3a2+-62=40,得a =±23.]三、解答题9.已知复数z =a +3i(a ∈R)在复平面内对应的点位于第二象限,且|z |=2,求复数z .[解] 因为z 在复平面内对应的点位于第二象限, 所以a <0,由|z |=2知,a 2+32=2,解得a =±1,故a =-1,所以z =-1+3i.10.在复平面内,分别求实数m 的取值范围,使复数z =(m 2-m -2)+(m 2-3m +2)i 的对应点,(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2. (1)由题意得m 2-m -2=0.解得m =2或m =-1.(2)由题意得⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎪⎨⎪⎧-1<m <2,m >2或m <1,∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2.∴m =2.1.在复平面内,复数z 1,z 2对应点分别为A ,B .已知A (1,2),|AB |=25,|z 2|=41,则z 2=( )A .4+5B .5+4iC .3+4iD .5+4i 或15+325iD [设z 2=x +y i(x ,y ∈R),由条件得,⎩⎪⎨⎪⎧x -12+y -22=20,x 2+y 2=41.∴⎩⎪⎨⎪⎧x =5,y =4或⎩⎪⎨⎪⎧x =15,y =325.故选D.]2.复数z =m (3+i)-(2+i)(m ∈R,i 为虚数单位)在复平面内对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限B [复数z =(3m -2)+(m -1)i 在复平面内的对应点P (3m -2,m -1),当m >1时,P 在第一象限;当m <23时,P 在第三象限,当23<m <1时,P 在第四象限,当m =23时,P 在虚轴上,当m =1时,P 在实轴上,故选B.]3.设z 为纯虚数,且|z -1|=|-1+i|,则复数z =________.±i [因为z 为纯虚数,所以设z =a i(a ∈R,且a ≠0),则|z -1|=|a i -1|=a 2+1. 又因为|-1+i|=2, 所以a 2+1=2,即a 2=1, 所以a =±1,即z =±i.]4.已知复数(x -2)+y i(x ,y ∈R)的模为3,则y x的最大值为________.3 [∵|x -2+y i|=3,∴(x -2)2+y 2=3,故(x ,y )在以C (2,0)为圆心,3为半径的圆上,yx表示圆上的点(x ,y )与原点连线的斜率.如图,由平面几何知识,易知y x的最大值为 3.]5.已知z 1=cos θ+isin 2θ,z 2=3sin θ+icos θ,当θ为何值时, (1)z 1=z 2;(2)z 1,z 2对应点关于x 轴对称; (3)|z 2|< 2.[解] (1)z 1=z 2⇔⎩⎨⎧cos θ=3sin θ,sin 2θ=cos θ,⇒⎩⎪⎨⎪⎧tan θ=33,2sin θcos θ=cos θ,⇒θ=2k π+π6(k ∈Z).(2)z 1与z 2对应点关于x 轴对称⇒⎩⎨⎧cos θ=3sin θ,sin 2θ=-cos θ,⇒⎩⎪⎨⎪⎧θ=k π+π6k ∈Z ,2sin θcos θ=-cos θ,⇒θ=2k π+76π(k ∈Z).(3)|z 2|<2⇒3sin θ2+cos 2θ< 2⇒3sin 2θ+cos 2θ<2⇒sin 2θ<12⇒k π-π4<θ<k π+π4(k ∈Z).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题18 复数
学一学------基础知识结论
1. 复数的概念
(1) 虚数单位i: i2=-1;i 和实数在一起,服从实数的运算律.
(2) 代数形式:a +bi(a ,b ∈R),其中a 叫实部,b 叫虚部.
2. 复数的分类
复数z =a +bi(a 、b ∈R)中,z 是实数a ∈R ,b =0,z 是虚数b ≠0,z 是纯虚数a =0,b ≠0.
3. 共轭复数
a +bi 与a -bi(a ,
b ∈R)互为共轭复数.
4. 复数相等的条件
a +bi =c +di(a 、
b 、
c 、
d ∈R),则a =c 且b =d.
特殊的,a +bi =0(a 、b ∈R),则a =0且b =0.
5. 复数的模
设复数z =a +bi(a ,b ∈R),z 在复平面内对应点为Z ,则OZ →的长度叫做复数z 的模(或绝对值),即|z|=|OZ
→|=22a b +.
6. 运算法则
z1=a +bi ,z2=c +di ,(a 、b 、c 、d ∈R). (1)i i n =+14、124-=+n i 、i i n -=+34、14=n i
(2)复数的加减(类比合并同类项)i d b c a di c bi a )()()()(±+±=+±+
(3)复数的相乘(类比整式乘法)i bc ab bd ac di c bi a )()()()(++-=+⋅+
(4)复数的相除(类比分母有理化)
i d c ad bc d c bd ac di c di c di c bi a di c bi a 2222))(())((+-+++=-+-+=++ 7.复数的乘法的运算律:对于任何
123,,z z z C ∈,有 交换律:1221z z z z ⋅=⋅;结合律:123123()()z z z z z z ⋅⋅=⋅⋅;分配律:1231213()z z z z z z z ⋅+=⋅+⋅ .
8.复平面上的两点间的距离公式
22
122121||()()d z z x x y y =-=-+-(111z x y i =+,222z x y i =+). 9.复平面向量的垂直
非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ ,2OZ ,则
12OZ OZ ⊥⇔12z z ⋅的实部为零⇔2
1z z 为纯虚数⇔2221212||||||z z z z +=+
⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).
10.实系数一元二次方程的解 :实系数一元二次方程2
0ax bx c ++=:
①若240b ac ∆=->,则21,242b b ac x a -±-=;②若240b ac ∆=-=,则
122b x x a ==-; ③若
240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根22(4)(40)2b b ac i x b ac a -±--=-<.
11.注意点
(1)复数的确定可以多考虑用待定系数法。
先设bi a z +=(a 、R b ∈)再根据题意及复数有关知识列出关于a 、b 的方程。
解方程得a 、b ,从而可以确定复数bi a z +=.
(2)数的概念扩展为复数后,实数集中一些运算性质、概念、关系不一定适用了,如不等式的性质,绝对值的定义,偶次方非负等. (3)两个实数可以比较大小,但两个复数,如果不全是实数,就不能比较它们的大小,两个复数的模可以比较大小.
学一学------方法规律技巧
1.复数的分类
复数是高中学生学习的最大数集范围,它包括实数和虚数这两大类,这是初学者所难搞清的,因为高中数学很多问题都是在实数范围内所完成的.解题时一定要注意纯虚数的条件:一个复数的实部为零且虚部不为零.
例1若复数z =lg(m2-2m -3)+i ·lg(m2+3m -3)为实数,求实数m 的值.
【答案】m =-4
【解析】解:z =a +bi ∈R 的充要条件是b =0,前提必须是a ,b ∈R ,因此必须先保证a ,b 有意义.由
条件知,⎩⎪⎨⎪⎧
m2+3m -3=1m2-2m -3>0
,∴m =-4. 例2、若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A .1 B .2 C .1或2 D .1
-
2. 复数代数形式的运算
复数与实数类似,它也有加、减、乘、除、乘方等运算,其中一定要注意两点:一是i 的平方等于-1,这是学生在复数部分最易出现的错误;二是复数与它的共轭复数的关系要搞清.
例3如果复数2-bi 3+i
(b ∈R)的实部与虚部互为相反数,则b
=________.
例4已知复数z =1+i ,则2z
-z =________.
3.复数的几何意义 复数是由实部和虚部构成的,这就决定了复数与向量有着极其想似的性质:比如说复数有模或绝对值,复数也可以放在一个坐标(称之为复平面)内对应于一个点.
例5已知复数z1=2-i ,z2=a +(1-a2)i 在复平面内的对应点分别为P1、P2,向量P2P1→对应的复数为-3
+i ,求实数a 的值.
例6若a 、b ∈R ,则复数(a2+6a +10)+(-b2-4b -5)i 对应的点在第几象限?
【答案】第四象限
【解析】a2+6a +10=(a +3)2+1>0,-b2-4b -5=-(b +2)2-1<0.
所以复数所对应的点在第四象限.。