汽车复合材料解决方案——v2

汽车复合材料解决方案——v2
汽车复合材料解决方案——v2

汽车复合材料解决方案

一、汽车轻量化及复合材料必要性

伴随着汽车工业的发展,汽车产量和保有量逐渐增加,汽车在给人们出行带来方便的同时,也产生了油耗、安全和环保三大问题。为保证汽车工业的健康发展,各国针对汽车工业发展产生的三大问题,制定了相应的法规。包括油耗法规、正碰和侧碰的安全法规,以及排放法规各国汽车工业认为:满足各项严格法规要求极为有效的手段是采取高强度轻量化材料,以使满足汽车轻量化降低油耗和排放的同时,保证汽车的安全性法规要求。

汽车轻量化是提高汽车动力性、舒适性进而提高竞争力的必须。汽车质量减少,减小动力和动力传动系统负荷,可在较低的牵引负荷下表现出同样或更好的性能。研究表明,约75%的油耗与整车质量有关,降低汽车质量就可有效降低油耗及排放。目前,大量研究表明,汽车质量每下降10%,油耗下降8%,排放下降4%。油耗的下降,意味着二氧化碳、氮氧化物等有害气体排放量的下降。

基于以上汽车轻量化方面的强烈的需求,世界各大汽车厂商陆续开发了各种轻量化材料,如高强度钢,铝合金,镁合金,树脂基复合材料等。树脂基复合材料也称为纤维增强塑料(CFRP), 它是以合成树脂为基体, 以纤维为增强材料, 经成型技术形成的一种新型复合材料。与钢铁材料铝合金等传统材料相比, 树脂基复合材料具有质量小、比强度高、耐腐蚀、减振性能好、可设计性强易于加工等优点, 在汽车工业中得到广泛应用。作为汽车上重要的轻量化材料, 树脂基复合材料越来越多地取代了传统的金属材料。实践证明, 在汽车上大量使用树脂基

复合材料可以显著减轻汽车自重、降低油耗、提高汽车安全舒适性、减少环境污染和降低汽车的制造与使用综合成本, 它在汽车工业中应用前景十分广阔。

二、当前汽车复合材料存在的问题

复合材料在汽车上的应用长期以来主要集中于F1赛车、高档跑车等高端领域,近年来,随着轻量化的逐渐普及,一些电动及混合动力的车型逐渐面世,大众型的车辆上复合材料压力逐渐提高。中国的汽车工业直到最近几年才真正开始接触和引入与国际水平较为接近的塑料件和复合材料新技术, 随着轻量化概念的深入推广,复合材料在国内迎来了以消化吸收为主要目标的新发展时期, 并在实践中逐渐获得了中国汽车工业的认可。复合材料存在诸多明显的优势,但从材料本身及其设计方法方面仍然存在下述问题:

2.1连续长纤维材料逐渐代替短纤维材料

长期以来,以短纤维SMC为代表的热固性复合材料一直是汽车复合材料的主流。其主要有不饱和聚酯树脂、添加剂、短切玻璃纤维等混合制的一种片状模塑料,具有成本低廉、工艺快速等优点,在汽车行业得到了广泛应用。

长纤维复合材料(LFT)由于没有经过增强的SMC等短切纤维复合材料,具有更强的抗冲击性和耐用性,更低的质量,更短的成型周期和更好的回收性,因此自上世纪80年代推出以来越来越多受到汽车工业的青睐,在全球汽车工业得到高速的增长,长纤维复合材料目前已经广泛应用于汽车的防撞内杆、前端框架、仪表盘骨架、座椅骨架等结构件和半结构件。据统计,汽车行业已经占据了长纤维复合材料消费的80%。

碳纤维复合材料(CFRP)因其质量小,且具有高强度、高刚性及耐腐蚀等特点,因此是最理想的汽车轻量化材料。2003款克莱斯勒Viper运动车采用CFRP 取代了钢材料制造底盘和车身外部构件,减重达68%,油耗下降40%。2013年底,宝马公司面向全球推出旗下第一款全电动汽车i3,其车身创造性地采用了全碳纤维复合材料,大幅减轻了整车质量,在抵消蓄电池组重量的同时,又符合安全标准。

2.2复合材料设计无有效的设计手段及工具

复合材料是一种“可设计”的材料, 通过改变纤维或基体可以在极大范围内设计材料的性能, 但因其制造过程复杂, 使好的设计无法实现,或不能以合理的成本制造出来,传统设计方法、手段和技术的局限性,已经严重的阻碍了设计效率的提高,设计水平的提升,无法缩短设计周期。因此采用先进的设计方法、使用专业化的复合材料设计软件进行设计,是推动复合材料在汽车工业进一步发展的保障。

传统的设计方法是将金属材料直接替代为复合材料,采用经验式“积木式”设计方法,但设计方法和其材料许用值的确定缺乏科学方法,富裕度过大,导致复合材料的应用优势不明显。主流的CAE分析工具已经在复合材料的设计中得到一定规模的应用。但由于CAE的几何建模功能的局限性,在该软件中进行复合材料铺层的定义费时费力,十分不便,尤其是在进行设计更改时,操作相当繁琐,而且容易发生错误。由于复合材料的各向异性和纤维的组织形式,复合材料在铺敷到工装面时,各点处的真实纤维角度并不等同于所定义的铺层方向,特别是对于复杂曲面,纤维角度变化更为明显。由于复合材料的各向异性,纤维角度

的变化将显著的影响结构强度等性能。CAE软件在进行铺层定义时,并不能计算出复合材料部件各点处的纤维的真实方向,只能基于所指定的理想的纤维角度进行分析,因此分析结果将与真实的部件性能有相当大差异,分析结果的准确性无法保证。因此亟需一种复合材料设计软件为CAE提供铺层设计数据和真实的纤维方向数据,以充分发挥CAE软件的使用价值,提高复合材料部件的设计质量,减少设计成本。

三、西门子汽车复合材料解决方案

Siemens PLM是世界领先的工业软件供应商,提供专业的复合材料工具,它集成了复合材料的设计分析和制造流程,是目前航空航天、汽车等进行复合材料研发首要选择。

3.1解决方案概述

复合材料构件的最显著工艺特点是在完成材料制造的同时完成产品的制造。因此,复合材料构件的数字化定义与其它材料零件的定义方法有明显的区别,其数据不仅包含构件的几何信息、铺层信息,还要包含相关的材料制造信息等非几何数据。

西门子复合材料解决方案涵盖了复合材料前期的概念设计、有限元分析、结构设计、中期的详细铺层设计,铺层铺敷性分析,工艺设计,工装设计,后期的工程图纸,自动下料数据、激光投影数据,自动铺带数据,RTM数据等。另外,在整个复合材料从设计到生产的全生命周期里,西门子还提供了全面的数据管理功能,方便企业内部多个不同的部门进行有效的数据传递及数据管理。

西门子PLM复合材料解决方案

NX CAD/CAE提供了复合材料前期的概念设计,强度,结构设计等工具。Teamcenter提供了复合材料全生命周期的数据管理。F iberSIM可以完全集成于用户已有的CAD(NX UG, CATIA,PROE)系统中,使CAD系统成为高性能的设计/制造复合材料构件的软件工具。该软件可以提供专业的工程设计环境,高效地处理复合材料及其结构的复杂性问题,能够捕捉CAD系统中复合材料构件的完整定义,管理复合材料数据,在项目内部共享复合材料构件的定义。FiberSIM 复合材料工程设计环境见下图。

FiberSIM复合材料工程设计环境

FiberSIM软件独有的铺层仿真技术,能够预测复合材料如何与复杂的表面贴合,支持整个复合材料的工程过程,该软件使工程师同时在构件几何、材料、结构要求以及工艺过程约束之间进行权衡,使用FiberSIM软件,工程师能快速可视化铺层形状和纤维方向,在设计阶段即发现制造问题,并采取相应的纠正措施,实现DFM。从初步设计、详细设计直至制造车间,设计师借助该软件很容易创建和转换设计、工程图以及相关的数据,并使零件数据在FiberSIM软件、设计、制造以及商业应用之间进行交换和传递。FiberSIM可选模块有:分析接口模块、文档生成模块、平面图样输出模块、激光投影模块、纤维铺放接口等,以构件定义信息为源头,向强度分析、工艺设计、工装设计、制造过程仿真和相应的制造设备传递复合材料构件的几何信息、材料信息、铺层信息等。

3.2 复合材料构件结构设计

在设计阶段的产品定义过程中是以工程数据集为核心来组织数据,是支持产品数字化设计、制造全过程的基础,是制造、检验的重要依据。

(1)复合材料构件的三维模型定义

由于复合材料定义方法的特殊性和复杂性,构件的最终形状是由许多铺放在模具表面的铺层固化形成的,每个零件的不同区域厚度会有所不同,而且是逐步变化的,通过从设定的铺层信息直接生成铺层表面和三维实体,这些表面可用于制造数字实物模型,生成零件铺叠表面,产生配套工装的内表面和中间铺层表面等。某型号飞机座舱罩顶棚实体模型如图所示,三维实体用于定义构件的形状以及定位特征(如成形面的参考曲面,零件模型的定位点等几何信息),以便在重量和重心分析、数字化预装配、工装设计、运动部件的模拟运动分析等过程中应用。因此,复合材料构件三维实体建模的核心问题是表现材料制造信息的铺层设计。铺层设计中有两个重用的概念:铺层和铺层集,并且铺层集和铺层都有编号。

某飞机座舱罩顶棚铺层定义某飞机座舱罩顶棚实体模型(2)复合材料构件的二维模型定义

在数据集中,三维模型是最主要的数据,但二维图纸模型也是必不可少的,一般由三维模型生成。FiberSIM提供的文档模块可以快速地将三维环境下的CAD 铺层信息快速地生成对应的2维工程文档图。在模型的二维视图中,可以完整的定义出复合材料构件的结构形式和几何外形尺寸等信息,在目前生产实际中,二维图纸仍然是进行复合材料构件制造加工、检验、质量保证的重要依据,也是供应商评估和投标的重要依据。在复合材料构件的二维图纸上,需要有剖面示意图、铺层图、铺层标注、铺设取向标注以及铺层表等内容,铺层表用来对照零件的铺

层、材料、取向等信息,如图所示。

复合材料构件二维图纸及铺层表的放大图

3.3复合材料构件有限元分析

设计初期需要对所设计的复合材料结构件进行有限元有关的计算,以确定其最终的铺层,疲劳,层间应力等方面性能。NX CAE提供专门的复合材料有限元建模工具NX Laminate Composite模块,其集成与NX CAE下,能够进行有限元方面的建模,优化等分析工作。

NX CAE提供复合材料有限元分析

FiberSIM提供了分析接口模块,该模块可以将详细的零件铺层设计数据,包括铺层材料、铺层边界、铺层实际纤维方向等,传递给NX CAE分析软件,进

行更精确和高效的分析和性能验证仿真。

NX CAE-Fibersim有限元接口

由于复合材料的各向异性和纤维的组织形式,复合材料在铺敷到工装面时,各点处的真实纤维角度并不等同于所定义的铺层方向,特别对于复杂曲面,纤维角度变化更为明显。由于复合材料的各向异性,纤维角度的变化会显著的影响结构强度等性能。由于NX CAE分析软件在进行铺层定义时,并不能计算出复合材料部件各点处的纤维的真实方向,只能基于所指定的理想的纤维角度进行分析,因此分析结果将与真实的部件性能有差异,影响分析结果的准确性。FiberSIM可以精确计算纤维在工装表面的真实纤维方向,并可以通过分析接口将纤维方向数据传输至NX CAE,从而使得NX CAE建立接近于真实部件的有限元模型,分析结果更精确。

3.4复合材料构件工艺与工装设计

结合企业复合材料工艺设计及管理的特点,Fibersim提供具有企业特点的复合材料构件快速工艺设计系统。根据具体零件的不同的制造工艺,Fibersim提供

准确的可制造性分析,能够提前模拟材料的制造缺陷问题,并根据不同的制造工艺,如手工铺敷,RTM,自动铺敷等进行对应的工艺设计。

实例:Fibersim汽车B柱铺层可制造性分析

Fibersim支持多种复合材料工艺设计

FiberSIM软件可以根据复材构件的实际铺层情况,快速地生成偏臵曲面,该偏臵曲面既可以用作干涉检查,亦可以直接用作工装面,用于加工模具。

3.5复合材料构件制造

复合材料构件的数字化制造技术主要是结合用户的软硬件的实际情况,包括复合材料自动下料、激光投影,自动铺带,RTM等各方面技术,提供直接用户设备的数据,无需第三方工具进行数据转换。

复合材料构件生产过程中,预浸料下料是一个费时、费力、繁琐的工序,我公司采用专门的数控切割设备-自动剪裁机进行预浸料的平面切割,实现预浸料的自动下料。应用FiberSIM软件设计的复合材料构件的每一三维铺层信息展开为二维铺层展开数据后,经铺层切割数据转换接口生成预浸料排样数据,直接输入自动剪裁机控制软件指导材料自动切割。自动剪裁的预浸料消除了手工下料样板,每一铺层的形状和纤维方向更加准确,并且都印有铺层编号,减少了铺放过程中的错误,其下料比手工下料效率可提高3倍以上,节约原材料20%左右。

FiberSIM基于构件的CAD三维设计数据生成激光投影数据输入到激光投影系统中,通过特殊反光镜,控制激光束将构件铺层形状轮廓线上的点依次投影到

模具表面,由于点投影的更迭移动速度极快(每秒300m以上),在操作者眼中,模具或零件表面会生成相应的边界轮廓线,操作者可根据该轮廓线进行有关的定位操作(如定位铺叠等),从而实现各铺层的精确定位,免除了传统的铺叠样板。

四、结论

作为全球领先的航空航天及汽车复合材料行业工程软件和咨询服务供应商,西门子工业软件近20年来通过与全球超过300家客户的密切合作,已开发出了一套自己独有的复合材料专业知识。一直致力于为航空航天和汽车复合材料行业提供卓越的复合材料设计和制造解决方案,其主要特点如下:

●单一数据源、单一架构的复合材料一体化解决方案,有效管理复材设计、工

艺和制造的整个流程。

?减少设计周期60%,尤其是多次设计/分析迭代

?减少层铺放时间75%

?减少制造废料率90%

?交付100%准确的数据

?多批次零件质量公差1.5%

●在单一的平台环境下,提供基于统一数模的多学科复合材料解决方案,是

唯一支持多CAD,多CAE和最完整流程的解决方案。

●端到端开放流程集成,高度知识自动化和知识重用,最大化共享信息资源,

高度的并行工作方式和环境,确保产品按时制造,极大的降低了制造成本和制造周期,提高了质量。

●直接使用铺层数据,自动完成工艺设计和生成3D车间作业指导文档。

●全生命周期内的数据更改控制,跟踪更改历史和多视图影响范围的管理体

系,从而确保在整个流程中出现不可避免变动时,不出差错和不延误进度。

汽车材料轻量化

浅谈汽车轻量化 摘要:通过对汽车轻量化的意义的分析,以及汽车轻量化技术的现状特点,引出了轻量化的发展方向。 关键词:汽车;轻量化;发展 一、汽车轻量化的意义 现阶段,降低能耗、减少环境污染以及节约有限资源是各国面临的一个十分重要而紧迫的课题,而通过减轻汽车自重能提高汽车的燃油经济性、降低能耗、减少污染已成为全球汽车工业的发展趋势。 有关研究数据表明:若汽车整车质量降低10%,燃油效率可提高 6%-8%;若滚动阻力减少10%,燃油效率可提高3%;若车桥、变速器等机构的传动效率提高10%,燃油效率可提高7%。此外,车辆每减重100kg,CO2排放量可减少约5g/km。 由此可见,汽车轻量化对于节能减排具有重大的意义,是实现我国汽车工业可持续发展的重要措施。同时,轻量化还可以使车辆行驶时因底盘重量的减轻而减轻颠簸,提高了车身的稳定性;轻量化的材料能对冲撞能量的吸收,又可以有效提高碰撞安全性。 因此,无论是对于传统动力汽车,还是新能源汽车,轻量化一直是科研、汽车生产制造等重点探索方向。目前,在汽车轻量化领域,正呈现技术、工艺和材料等多方发力局面。 一、汽车轻量化技术的现状: 汽车轻量化技术包括汽车结构的合理设计、轻量化材料的使用和制造工艺三个方面。 ①轻量化材料:实现汽车轻量化必须集成利用多种新材料和相关应用技术。目前,汽车轻量化材料使用的主要是高强度钢,其次是铝镁合金、复合材料及塑料。其中,高强材料主要用于降低钢板厚度,保证汽车结构和安全性能;低密度材料主要用于非结构件替换和减轻汽车质量。 1)采用高强材料:高强钢是轻量化的关键材料,它的大量使用既实现了整车轻量化,又保证了汽车的安全性和可靠性,因此,高强钢使用面广且量大。 2)采用轻量化材料:铝合金是轻质材料,具有良好的抗腐蚀性,应用前景良好。近年来,铝材在汽车上应用量增加很快,主要是板材、挤压材、铸铝及锻铝,在车身结构、空间框架、外覆盖件和车轮等处均有大量应用。 除了镁合金以外,还采用更轻的铝材料,用于壳体类、气缸盖罩盖和方向盘骨架等件,现在已经扩展到座椅骨架、车门、车顶、仪表盘骨架和支架类零件,轻量化效果更明显。 3)复合材料的使用:塑料及纤维复合材料在汽车工业的应用也日趋增加,汽车上应用塑料件已达数百个,多应用于发动机的缸套、活塞、连杆、活塞销、摇臂和气门挺柱,刹车系统的刹车盘和刹车毂。 ②优化设计:随着汽车工业设计水平的不断提高,如果汽车车身结构设计合理,不仅可

复合材料在汽车制造中的应用

2012年10月(下)工业技术科技创新与应用 复合材料在汽车制造中的应用 刘莉 (兰州职业技术学院,甘肃兰州730070) 汽车工业是我国国民经济的重要产业支柱之一,近年来已取得迅猛的发展。截至2010年,我国汽车产销量分别为1826.7和1806.9万辆,跃居世界第一。按照“十二五”规划,到2015年将形成2500万辆的产能[1]。汽车工业的快速发展伴随着能源匮乏、环境污染等问题。汽车节能、环保、安全既是国际汽车技术的发展方向,也是我国产业政策的要求[2]。由于钢材料刚性好、易加工,能满足汽车各零部件对材料性能的要求,但钢材料也存在易腐蚀、密度大、能量消耗多的缺点,因此以轻质材料取代传统钢材料势在必行。近年来,复合材料在汽车制造业的开发应用减轻了重量、降低了油耗、提高了强度和改善震动等性能[3]。复合材料是由两种或者多种不同性质的材料用物理或化学方法在宏观尺度上组成的具有新性能的材料。一般复合材料的性能优于其组成材料的性能,并且有些性能是原来组成材料所没有的,如改善材料的刚度、强度和热学等性能等。 1汽车制造业发展趋势 为缓解日益减少的石油资源的压力,节能减排是影响可持续发展的关键因素。用高性能轻质材料是实现汽车轻量化的一条重要途径。减轻了汽车重量,滚动阻力随之减少,每公里油耗也就随之下降,不但降低了石油资源的损耗,还减少了尾气排放,缓解了温室效应的压力[2]。近年来,由于机械和汽车领域对材料强度和硬度方面的要求越来越高,使得复合材料得到广泛的应用。但与复合材料在宇航方面的应用相比,汽车工业应用复合材料的发展较为缓慢,主要是受限于材料价格高,复合材料的成型加工困难等因素。目前,伴随高性能复合材料研发与应用,已可通过减轻材料重量来节约成本。复合材料与金属材料相比,具有能耗低、加工方便、材料性能高和使用寿命长的特点,目前已大规模应用于汽车零部件和内部装饰等方面[4]。 2复合材料在汽车零部件开发应用 2.1在汽车发动机上的应用 发动机的主要部件是活塞,它的工作环境为高温高压,并且活塞在运动过程中不断与活塞环、汽缸壁之间产生摩擦,极易损坏,因此要保证发动机正常工作,要选择耐磨的复合材料。目前,应用于活塞的材料主要由低密度金属和增强陶瓷纤维组成。此外,国外又推出了氧化铝纤维增强活塞顶的铝活塞及氧化铝增强的镁合金制造的活塞等[5]。由于陶瓷材料质量较轻,若将配气机构中的附件也用陶瓷复合材料替换后,可以通过提高转速的方法来提高发动机的功率,或者转速不变,也可通过降低气门弹簧的弹力而降低功率损耗,从而达到节能减排的目的。气门座和摇臂头等易磨损部件再采用陶瓷材料后,也可减少磨损,延长使用寿命。在柴油机的涡流室安装陶瓷镶块后,改善了发动机低负荷时的燃烧,及低温启动性能,降低了燃烧噪声。涡轮增压器零件中使用最普遍的是增压器陶瓷涡轮,与金属涡轮相比,陶瓷涡轮质轻,转动惯量仅为金属涡轮的20%,“涡轮滞后”现象得以改善,提高了增压器的动态性能,能在金属涡轮不能承受的高温下工作[6]。韩鹏[7]从碳纤维复合材料的力学性能和发动机罩的结构特点出发,按照等刚度原则,设计并分析了碳纤维复合材料发动机罩。用有限元分析方法,确定了发动机罩性能参数。结果发现,复合材料发动机罩在满足刚度条件下,可减重约16%左右。 2.2车轮 刘国军[4]数值模拟了碳纤维/环氧(T300/5208)复合材料车轮与铝合金车轮的弯曲疲劳试验。通过对汽车车轮建模,用有限元AN-SYS软件,按国家标准车轮弯曲疲劳试验,分别分析了铝合金和复合材料汽车车轮的强度。结果发现,在相同应力水平下,复合材料车轮比铝合金车轮轻了40.74%。同时,优化设计碳纤维/环氧(T300/ 5208)复合材料汽车车轮的轮辋厚度、车轮安装凸缘厚度和车轮的轮廓尺寸,也可以使车轮的重量降低。 2.3其他部件 东风汽车公司开发的共聚甲醛与钢背复合润滑滑动轴承复合材料,已应用于汽车的制动系、传动系、转向系等轴承中。具有综合性能优于青铜合金,工艺稳定、生产率高、价格低廉等优点。此外,铜材质的散热器管材也逐渐被复合材料取代。目前一般采用30%GF 增强的PA66注射成型,并以机械方式与散热器接合,可明显提高设备的耐腐蚀性并节约了金属材料。用橡胶密封圈使接合面上达到密封的目的,还可以起到防振作用[8]。张泽书[9]用玻璃纤维和改性丙纶为原料,设计开发了GMT复合材料,并用于汽车内饰。产品规格为单位质量1150~1250g/m2,幅宽为2200mm。研究了GMT复合材料成型加工工艺参数与其力学性能之间的关系。结果发现,采用玻璃纤维和改性丙纶直接混合方法,用非织造布设备进行制备GMT复合材料,成功解决了玻璃纤维和改性丙纶均匀混合、梳理成网均匀等技术问题。 3展望 含有陶瓷纤维、玻璃纤维、高分子材料以及其他新型非金属原料的高性能复合材料在汽车制造业中的广泛研究与应用,极大减小了汽车材料对金属的依赖,实现汽车轻量化,有效缓解了对资源的压力。伴随我国汽车产业的迅猛发展,探索并开发高性能新型复合材料,进一步减轻重量,增强材料力学及加工性能,降低成本,促进汽车产业的节能减排,已经成为一种必不可挡的趋势。 参考文献 [1]黄茂松,贾润萍.中国汽车用聚氨酯材料发展方向[J].聚氨酯, 2012,3:61-66 [2]郑学森.国内汽车复合材料应用现状与未来展望[J].玻璃纤维, 2010,3:35-42 [3]刘军,王腾宁.复合材料在汽车中的应用[J].工程塑料应用, 1996,3:31-33 [4]刘国军.复合材料汽车车轮的强度分析及优化设计[D].哈尔滨:哈尔滨工业大学,2006 [5]曹令俊.复合材料在汽车工业中的应用及趋势[J].天津汽车, 2000,1:28-31 [6]罗鹰.复合材料在现代汽车发动机中的应用[J].汽车工程师, 2009,2:50-52 [7]韩鹏.碳纤维复合材料发动机罩优化设计研究[D].长春:吉林大学,2011 [8]向乐新,潘典三.树脂基复合材料及其在汽车中的应用[J].武汉工学院学报,1995,4:19-25 [9]张泽书.汽车内饰用GMT复合材料的制备与研究[D].郑州:中原工学院,2009 摘要:根据当前汽车制造业的发展趋势,从节能减排角度入手,分析了汽车轻量化是当今汽车工业发展的方向,综述了复合材料在我国汽车制造中的开发与应用。 关键词:复合材料;汽车制造;应用 110 --

汽车轻量化材料成型新工艺

汽车轻量化材料成型新工艺 杨荫⑴,方芳⑵ 汽车管理学院车辆管理系 【摘要】汽车轻量化是汽车产业的发展方向之一,面对节能环保要求和原材料价格上涨压力,加速汽车轻量化进程就越发显得迫在眉睫。车用材料加工工艺的改进是实现轻量化的有效手段之一。本文将近 年来的一系列与新材料应用有关的新工艺作一介绍。 【关键词】轻量化,材料,新工艺 New Technique on Materials of Lightweight Car Yang Yin⑴,Fang Fang⑵ Automobile Management Institute, Department of Automobile Management Abstract:Lightweight car is one of the development directions of the automobile industry.It is imminent to accelerate the process of car in the face of energy saving and environmental protection and the pressure of raw material. This paper introduces new technology about using new materials on recent years. Key words:Lightweight Car,Materials,New Technique 1 前沿 作为国民经济的重要支柱产业,我国汽车工业近几年呈现出强劲的发展态势,目前仅次于美国、日本,产量居世界第三位。对汽车而言,环保、安全成为重中之重,无论是从节能减排还是从循环经济的角度,车身轻量化都是一个成效显著的途径。乘用车车身轻量化势在必行,载货车、客车、轨道车辆车身轻量化亟待突破。 汽车轻量化是一个系统工程,包括轻量化材料的开发和应用,轻量化结构的设计和优化,以及与之相匹配的先进成形技术的改进和发展。近年来,一系列与新材料应用有关的新工艺逐渐应用到汽车工业中,如金属板材变截面轧制、超高强钢的热成型、激光拼焊、液压成形、超塑性成形、电磁成形、半固态金属加工、喷射成型、塑料制品的低压注射成型、气体辅助注射成型及不同种类材料的焊接、粘接与铆接技术等。这一系列加工工艺的改进是实现轻量化的有效手段。 2 轻量化技术 2.1 超高强钢热成形技术[1] 超高强度锰硼钢板常温下强度为500-600 MPa,加热使之奥氏体化后,迅速送入带有冷却系统的模具内冲压成形.同时被模具冷却淬火,其微观组织由奥氏体转变成马氏体,发生相变强化,强度可提高3倍以上,高达1500 - 2000 Mpa,可制备出超高强度车身冲压件。这种热成形技术是国际上近年来出现的一种专门用于生产汽车超高强度钢板冲压件的最新技术,可生产轻量且超高强度的冲压件,质量减轻20%以上,高温下成形没有回弹,零件成形精度高(冷冲压无法消除回弹) 并且可以一次成形冷冲压无法成形的复杂零件。目前,超高强度钢板热成形技术已成为国外汽车制造业的热门技术,发展非常迅速。德国、法国等工业发达国家走在前列,开发出多种热成形超高强钢,如Usibor1500、DB200等,并率先推出商品化生产线。法国的阿塞洛(Arcelor)公司、德国的蒂森-克虏

新型复合材料在汽车轻量化方面的应用及展望

新型复合材料在汽车轻量化方面的应用及展望 林栋,周晓兵,杨建国,许俊 (上海华普汽车有限公司,上海201501) 【摘要】汽车轻量化在节能减排和环境保护方面起着非常重要的作用,本文首先介绍了国外内汽车轻量化复合材料应用发展动态,然后针对几种轻量化复合材料进行简单分析比较,并在此基础上介绍了新型复合材料在汽车电池框和前机盖方面的应用,最后阐述了复合材料的未来发展趋势。 【关键词】汽车轻量化材料;PE;电池框;前机盖; The Application and Development Trend of New Type Composite Materi- al in Automobile Lightweight Dong Lin, Xiaobing Zhou, Jianguo Yang, Jun Xu (Shanghai Maple Auto Co,ltd , Shanghai 201501 , China) Abstract: Automotive lightweigh plays a very important role in energy conservation, emission reduction and environmental protection.This paper firstly introduces the latest development of automobile light-weight composite material in the world, and then, the thesis makes analysis and comparison on several kinds of automobile lightweight composite material available. It is succeeded to introduced the applica-tion of composite material in the car battery box and the automotive front hood. At last, the development of auto lightweight composite material is elaborated in future. Keywords: Automotive lightweighting material; PE; battery frame; automotive front hood; 1 前言 当今世界,科技日新月异,但随之带来是生存环境的恶化及能源危机持续升级,节能减排逐渐成为新趋势。社会生活水平的提高,汽车已成为大众化行车工具。2014年我国汽车产销量双双突破2300万辆,连续第六年位居全球第一。汽车产销2372.29万辆和2349.19万辆,同比增长7.26%和6.86%。由于消费者节能减排意识的增强,低油耗车辆逐渐成为选择的重要因素,这使车企更加重视车辆的节能性,而车身重量是其重要的影响因素,因此车身轻量化已正成为汽车节能的重要考察因素。 美国福特汽车公司的全顺车在欧洲的试验结果表明: 满足欧Ⅳ标准条件下,每百公里油耗Y与自身质量x(kg)满足以下关系: Y = 0.003X + 3.3434 (1) 汽车整车重量降低10%,燃油利用效率可提高6%~8%,尾气排放减少约5%,原材料成本可降低约10%[1,2]。油耗的下降,同时意味着CO2、氮氧化物(NO x)等有害气体排放量的下降,对环保要求的降低油耗和减少碳排放发挥重要作用。 针对各种类型车的大量试验结果表明,车辆的油耗与汽车的质量呈线性关系[3-5]。因此,通过降低汽车自重,即通过轻量化的手段来降低油耗,成为汽车行业最为热门的研究课题。大量地使用复合材料替代传统的纯金属,是汽车轻量化的一个重要手段,也是最重要的手段之一。 2轻量化复合材料汽车行业发展动态 复合材料作为能有效替代传统的纯金属轻量化材料之一,国内外汽车制造商在生产的车型中的使用量逐年上升,平均每辆汽车上塑料的用量从20世纪70年代初的50~60kg已增加到目前的150kg,预计还将继续增加。在日本、美国和欧洲等发达国家,每辆轿车平均塑料使用量已超过150kg,占到汽车总质量的10%。 以碳纤维复合材料使用为例,宝马i3纯电动汽车的面世是汽车设计的一次革命。它将是第一款车体主要由碳纤维材料制成的量产汽车。新型CFRP技术的应用使i3的整备质量仅为1195(1250)kg,比传统电动车减轻了250~350kg,同时实现了最高级别的碰撞安全保护。日本东丽TEEWAVE AR1电动概念车也大量使用碳纤维复合材料,使该车重量仅为846kg,比起钢制汽車重量減少53%(其中CFRP约使用160kg),扭力转向刚性却与钢制车旗鼓相当,甚至更好。平均单位重量的能量吸收达到钢的2.5倍。 近年来国内载货车技术得到很大的提高、优化与改进,同时随着国民经济的高速发展带来的市场驱动载货车产量的不断攀升,复合材料在载货车中取得了突破性的应用。国内新老汽车制造商相继推出新的车型,这些都成为汽车复合材料应用的新亮

浅谈热塑性复合材料在汽车上的应用

浅谈热塑性复合材料在汽车上的应用 本文阐述了热塑性复合材料在汽车上的应用。 标签:热塑性;复合材料;汽车 热塑性复合材料是以热塑性树脂为基体的复合材料。常用的热塑性树脂有聚丙烯、聚碳酸酯、聚酰胺和聚砜等。主要的增强纤维是短玻璃纤维、碳纤维、织物纤维及其他充填物,一般纤维体积含量约为20%~30%,最大可达到40%~55%。大多数情况下,纤维及充填物无方向随机排布。纤维的主要增强效果是提高强度和耐磨性,改善基体的耐热性和蠕变抗力,使用玻璃纤维和碳纤维增强的热塑性树脂,其拉伸强度和抗弯模量可提高2倍至6倍,但冲击强度有所降低,广泛用于汽车工业、化工、电子及航空工业。 随着热塑树脂基复合材科学技术的不断成熟以及可回收用的发展,该品种的复会材料发展较快,欧美发达国家热热塑性复合材料已占到树基复合材料总量的30%以上。 1.在汽车外饰件上的应用 汽车外饰主要指汽车前后保险杠、汽车车身裙板、进气格栅、散热器面罩、外侧围、扰流板、防擦条、车门外开手柄、前后风挡玻璃等等。 在以往汽車外饰中经常使用的材料一般是热固性材料,这种材料的废弃件和边角余料经常是通过掩埋或者焚烧进行处理的,这样的处理方式会造成环境的污染问题。但是使用热塑性材料则不会出现些类似问题,热塑新材料不仅可以进行循环利用,还具有密度低、成本低、生产效率高等特点。在生产中使用这一材料代替金属材料或者是热固性材料可以实现轻量化的设计和生产,所以这种材料在汽车中的使用范围越来越广。 在过去的一段时间内,没有使用热塑性材料是因为其无法进行喷涂,而且表面的质量较差,使其无法再外饰件中广泛使用。但是经过新兴技术的不断研发,使其在外饰件中的使用成为可能,而且逐渐成为热门。 戴姆勒福莱纳车型的挡泥板和保险杠采用了30%长玻纤增强PP材料,解放J6的保险杠支架采用了40%长玻纤增强PP材料。 2.在汽车内饰件上的应用 汽车内饰系统是汽车车身的重要组成部分,而且内饰系统的设计工作量占到车造型设计工作量的60%以上,远超过汽车外形,是车身最重要的部分之一。 汽车内饰主要包括以下子系统:仪表板系统、副仪表板系统、门内护板系统、

轻量化在汽车上的应用

轻量化在汽车上的应用 轻量化在汽车上的应用一、轻量化”是新能源汽车发展方向之一■ 轻量化是新能源汽车发展方向汽车轻量化设计,不仅带来油耗降低,更能促进综合性能的全面提升。科技部部长万钢强调了“轻量化”是中国电动汽车的发展方向之一。德国联邦经济与能源部委托德国工程师协会编制的2015年《德国轻量化现状盘点》研究报告中指出,轻量化对汽车制造业等许多行业意义深远,它决定了德国工业在未来的全球市场中是否能以创新、高能效和资源节约型的产品取得统治地位。研究表明,在市区的运行工况下,平均车重1600kg的电动车如果减重20%,能量消耗可以减少15%。如果采用增加电池来增加行驶里程,成本往往会非常高。有关专家认为,在电池技术短期内难有重大突破的情况下,电动汽车迫切需要

采用轻量化技术来降低重量,以减轻电池增重的压力。■ 新能源汽车轻量化设计有多种趋势新能源汽车企业正在做轻量化设计,北汽、长安走在前列,奇瑞、江淮、吉利等也都非常重视。目前正在探讨新能源汽车轻量化的路线,比如,整车包括车身轻量化、全新架构底盘轻量化、电池系统轻量化以及车身内外饰与电子电器等;材料方面包括复合材料及成形工艺、轻质铝合金及成形工艺、高强度钢及成形工艺、轻质镁合金及成形工艺等。未来新能源汽车轻量化将车身高强钢化和全铝车身两条路线并行,2020年先进高强钢比例达到国际先进水平和应用全铝车身。汽车车身轻量化的发展趋势是混合多材料设计。碳纤维混合材料车身不仅能够承重,而且更安全。至于目前存在的成本高问题,碳纤维成本居高不下,主要是工艺成本高,未来批量生产,成本有望下降。汽车对材料的成本要求很高,因此碳纤维在汽车轻量化中的应

汽车复合材料的历史和现状

汽车复合材料的历史和现状 作为一种新型的轻量化材料,树脂基复合材料正日益成为汽车制造业中的新宠。 汽车复合材料的历史 自开始制造汽车以来,复合材料,包括天然复合材料和人工合成复合材料便以各种形式应用于汽车中。早在1908年,美国福特汽车公司第一款大批量开发生产的T型车,其引擎盖就是采用天然复合材料——木头制造而成的。其后,很多汽车的车身框架、车底板和汽车装饰品等也均由木质材料制成。在汽车制造史上,复合材料被大规模地应用于汽车部件生产的一个典型例子是汽车的轮胎。众所周知,轮胎的橡胶基体中含有大约50%的碳黑,它不仅使轮胎呈黑色,更主要的是,碳黑的加入显著地提高了轮胎的耐磨性。通过在轮胎纵向方向加入纤维和钢丝,还大大增加了轮胎的结构强度,这是典型的人工合成复合材料在汽车领域的应用案例。尽管现代轮胎的制造技术己取得了巨大进步,但从福特公司T型车诞生以来,轮胎的基本配方和结构形式却一直都没有改变。因此我们可以认为,汽车制造业的发展史,实际上也是复合材料在汽车上的应用史。当然,本文主要介绍的是树脂基汽车复合材料,其历史应该追溯到树脂基复合材料诞生之后。 树脂基复合材料(以下简称“复合材料”)自1932年在美国诞生以来,至今已有近75年的发展历史。然而,其真正批量化应用于汽车工业则始于1953年。据资料记载,1951年,时任通用汽车公司车身设计负责人的Harley Early先生从通用汽车公司展示的玻纤增强复合材料概念车中得到启发,他憧憬着有朝一日能够设计出一款供批量生产的全玻纤增强复合材料车身的跑车,这款跑车可以结合所有欧洲汽车的优点。很快,他的想法得到了通用汽车公司副总裁Harlow Curtice先生的支持。1952年,通用汽车公司将一款原准备采用常规的钢材制造的跑车改为采用玻纤增强复合材料来制造,并将原名“Opel”改为“Corvette”,Corvette的英文原意是“轻巡洋舰”,其涵义充分表达了轻型、快速和操控性强的设计理念。 第一批Corvette车身采用手糊工艺制作而成:首先将剪切好的玻纤增强材料铺设在开放式的模具内,然后通过树脂浸渍、滚压赶泡、固化反应及脱模等一系列工序制作完成,这在当时是一种全新的车身制造工艺。经过全员努力,1952年12月22日,通用汽车公司成功地完成了该车身的开发制造。 1953年1月17日,一辆锃亮的配有红色内饰的白色Chevrolet Corvette跑车在美国纽约的Waldorf宾馆首次向观众展示(如图1所示),这是世界上第一款全复合材料车身的两座位跑车,这一天也因此成为了汽车复合材料史上值得永远纪念的日子。1953年6月30日,第一批试生产的300辆Corvette车在美国的Michigan投产。1954年,其生产地被移至美国的 St.Louis。从1984年至今,Chevrolet Corvette车型一直在Bowling Green生产。

(汽车行业)汽车车身新材料的应用及发展方向

(汽车行业)汽车车身新材料的应用及发展方向

汽车车身新材料的应用及发展趋势 现代汽车车身除满足强度和使用寿命的要求外,仍应满足性能、外观、安全、价格、环保、节能等方面的需要。在上世纪八十年代,轿车的整车质量中,钢铁占80%,铝占3%,树脂为4%。自1978年世界爆发石油危机以来,作为轻量化材料的高强度钢板、表面处理钢板逐年上升,有色金属材料总体有所增加,其中,铝的增加明显;非金属材料也逐步增长,近年来开发的高性能工程塑料,不仅替代了普通塑料,而且品种繁多,在汽车上的应用范围广泛。本文着重介绍国内外在新型材料应用方面的情况及发展趋势。 高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。当下的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车X公司和宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之壹;冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进壹步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性和高强度的结合,特别适用于壹些形状复杂而强度要求高的冲压零件。 轻量化迭层钢板 迭层钢板是在俩层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。和具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。铝合金 和汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众X公司的新型奥迪A2型轿车,由于采用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合。这种结构不仅使车身的扭转刚度提高了60%,仍比同类车型的钢制车身车重减少50%。由于所有的铝合金都能够回收再生利用,深受环保人士的欢迎。根据车身结构设计的需要,采用激光束压合成型工艺,将不同厚度的铝板或者用铝板和钢板复合成型,再在表面涂覆防具有良好的耐腐蚀性。 镁合金 镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的

汽车轻量化论文

摘要:汽车轻量化对于降低汽车燃油消耗和减少排放污染起着举足轻重的作用,采用轻质材料是实现汽车轻量化的重要途径。文章详细分析了轻量化技术 在现在汽车种的应用,包括铝合金镁合金钛合金3种轻合金的特点。轻量化 设计技术以及金属成型方法和连接技术,说明了汽车轻量化的意义,对汽车的 轻量化技术发展有一定的指导作用。 关键词:汽车;轻量化;车身 1轻量化技术在汽车上的应用 目前,国内外应用于汽车的请炼化技术主要有:1)轻质材料技术的应用,如铝合金镁合金钛合金高强度钢塑料粉末冶金生态复合材料及陶瓷等的应用越来越多;2)结构优化及计算机辅助设计和分析技术的应用;3)汽车制造中新的成型方法和连接技术的不断应用。 1.1.1基于材料的轻量化技术的应用 1.11高强度钢在汽车上的应用 高强度刚已成为颇具竞争力的汽车轻量化材料,它在抗碰撞性能,加工工艺和成本方面与其他材料相比具有较大的优势。采用高强度钢板,首先能改善汽车的安全和碰撞性能,传统的碳素钢虽然可以吸收碰撞能量,但其缺点是质量大,影响燃油经济性;高强度钢板用于汽车车身,除了能减薄车身部件厚度降低自重之外还可以提高汽车表面件的抗凹陷性及抗破坏能力,在降低燃油消耗率的同时又可以提高汽车的安全性。 国外高强度钢在汽车上的应用以日本最为典型。在日本,车身零件实际应用高强度钢始于20世纪70年代,最早应用于车身外表件,然后应用到内部零件和结构件。目前,日本悬架结构和支撑件的强度已达到800-1000MPa。 抗拉强度410 MPa的高强度钢多用于内部件,即将采用590 MPa高强度钢用于内部件,有望进一步减薄零件厚度。

1.12铝合金在汽车上的应用 铝具有高的导电性和导热性,密度小,塑性好,易成型,易回收利用。 可通过铸锻冲压工艺制造各类汽车零件。自1991年使用高强度铝合金以来,北美汽车上铝的用量已增加2倍,运动多用途车皮卡和微型厢式车上的铝的用量呈3倍增长。 目前,铝合金已经广泛应用于汽车车身底盘零部件以及发动机的某些部件上。现代轿车发动机活塞几乎都采用铸铝合金,这是因为活塞作为主要的往复运动件要靠减重来减小惯性,减轻曲轴配重,提高效率,并需要材料有良好的导热性,较小的热膨胀系数,以及在350度左右有良好的力学性能,而铸铝合金符合这些要求。同时由于活塞连杆采用了铸铝合金件,减轻了质量,从而降低了发动机的振动,降低了噪声,使发动机的油耗下降,这也符合汽车的发展趋势。 近年来,一些新型铝合金材料也开始在汽车上应用,如快速凝固铝合金TiAi金属间化合物泡沫铝材铝复合材料铝基粉末冶金材料和铝拼焊冲压坯材料。 1.13 镁合金在汽车上的应用 镁合金的基本特性如下: 1)质量轻。镁合金比铝合金轻33%,比钢轻77%,为常用结构金属材料中最轻的材料。同时,镁能制造出与铝同样复杂的零件而质量则较后者轻 1/3.镁合金用于车辆,将显著地降低其起动惯性,降低燃油消耗,减少 环境污染。 2)比强度高,刚性强。同等形状下,镁合金制品的刚性为塑料的10倍以上。 如用镁合金代替ABS塑料,则制品的质量可以减少36%,厚度可以降低 64%。

玻纤增强复合材料在汽车上的应用

玻纤增强复合材料在汽车上的应用 2004-7-15 来源:中国玻璃网作者:佚名点击数:956次 更多玻纤增强复合材料汽车新闻 汽车上使用的非金属材料包括塑料、橡胶、粘接密封胶、摩擦材料、织物、玻璃等各种材料,涉及石化、轻工、纺织、建材等相关工业部门,因此非金属材料在汽车上应用的如何,反映了一个国家经济和技术综合实力,同时也包含了一大批与之相关产业的技术开发及应用能力。 目前汽车上应用的玻璃纤维增强复合材料包括:玻璃纤维增强热塑性材料(QFRTP)、玻璃纤维毡增强热塑性材料(GMT)、片状模塑料(S MC)、树脂传递模塑材料(RTM)以及手糊FRP制品。 目前汽车上使用的玻纤增强塑料主要有:玻纤增强PP、玻纤增强PA66或PA6以及少量PBT、PPO 材料。 增强PP主要用于制作发动机冷却风扇叶片、正时齿带上下罩盖等制品,但有些制品存在外观质量不好、翘曲等缺欠,因此非功能件逐渐被滑石粉等无机填料添充PP所替代。 增强PA材料在乘用车、商用车上都已采用,一般都是用于制作一些小的功能件,例如:锁体防护罩、保险楔块、嵌装螺母、油门踏板、换挡上下护架-防护罩、开启手柄等,如果零件生产厂家所选材料质量不稳定、生产工艺采用不当或材料烘干不好,就会出现制品薄弱部位断裂现象。 塑料进气歧管是近几年发展起来的新技术,与铝合金铸造的进气歧管相比,具有重量轻、内表面光滑、减震隔热等优点,因此在国外汽车上得到广泛应用,它所用的材料全部是玻纤增强PA66或PA6,主要采用熔芯法或振动摩擦焊法,目前国内有关单位已经开展此方面研究并取得阶段性成果。 随着汽车对轻量化及环保的要求,国外汽车工业越来越倾向于使用GMT材料以满足结构部件的需要,这主要是因为GMT材料具有韧性好、成型周期短、生产效率高、加工成本低、不污染环境等一系列优点,被视为21世纪材料之一,主要用于生产乘用车多功能支架、仪表板托架、座椅骨架、发动机护板、蓄电池托架等,一汽大众目前生产的AudiA6,以及A4车已采用GMT材料,但都没有实现本地化生产。 为了提高汽车整车质量赶上国际先进水平,达到减重、减震、降噪目的,国内有关单位已在八五、九五期间开展了GMT材料生产及产品成型工艺的研究,并具有批量生产GMT材料的能力,年产3000吨GMT材料的生产线已经在江苏江阴建成,国内汽车生产厂也在一些车型设计上采用GMT材料,并已开始批量试制。 片状模塑料(SMC)是重要的玻纤增强热固性塑料,由于它的各项性能优异、可大规模生产和可达到A级表面等优势,已大量应用于汽车上。目前国外SMC材料在汽车上应用品种又有了新的进展,现 在,SMC在汽车上的应用量最大的是车身板,占SMC用量的70%,增长最快的是结构件和传动器零件,在今后5年内,SMC在汽车上的用量将继续增加22%~71%,而在其他行业的增长为13%~35%。

车身轻量化的思路及途径轻量化制造工艺(完)

车身轻量化的思路及途径轻量化制造工艺(完) 作者:北京现代汽车有限公司沧州分公司慕温周、杨人杰、罗艳路、张剑、吕顺、朱珍厚(韩) 车身轻量化的思路及途径——轻量化材料的应用(一) 车身轻量化的思路及途径——轻量化结构设计(二) 车身轻量化的思路及途径的第三个重要方法——轻量化制 造工艺 轻量化制造工艺在使用轻量化材料和优化结构设计后,往往需要革新制造工艺来满足材料和结构的变化,如目前已广泛应用的激光拼焊板、热冲压成形和液压成形等工艺。 1. 激光拼焊板激光拼焊板(TWB)可将不同材质、不同厚度、不同强度和不同表面镀层的板坯拼合起来然后整体进行压型。激光拼焊板工艺已在汽车领域应用成熟,用于制造车门内板、加强板、立柱、底板和轮罩等部件,大众第7 代Golf 车身的激光焊缝总长度甚至达到了70 m。激光拼焊板工艺通过减少制件数量、局部钢板减薄及去除点焊凸缘来实现轻量化目的。车门内板边缘因需加装铰链,需要在0.8 mm 的主板基础上应用2 mm 厚的裁剪板来加强,因无需加装额外的增强板故车门整体减重1.4 kg。 2. 热冲压成形工艺高强度钢板由于屈服强度和抗拉强度的提高,冲压成形性能下降,主要表现为成形缺陷多、所需成

形力大以及回弹严重制件尺寸精度难以保证。如当强度超过1 000 MPa 以上时,对于一些几何形状比较复杂的零件,使用常规的冷冲压工艺几乎无法成形,所以高强度钢的热冲压成形工艺应运而生。热冲压成形工艺首先将高强度钢板加热至奥氏体化状态,然后快速转移到模具中进行冲压成形,在保证一定压力的情况下,制件在模具本体中以大于27℃/s 的冷却速度进行淬火处理,保压淬火一段时间,以获得具有均匀马氏体组织的超高强钢零件。 3. 液压成形工艺液压成形工艺一般有预成形、成形以及校准三个过程,可用于板材和管材成形。板材液压成形技术尤其适用于有深冲要求的复杂工件及较少凹槽的大型工件,如车身的结构件和外覆盖件。在车门外板的液压成形过程中,由于预成形使材料产生了期望的预应力,可以使车门等外板件在保持耐冲击性不变的情况下减少壁厚,从而达到轻量化效果。 管材液压成形是指管坯在内外部液体压力作用下贴合内部 的芯棒成形,该工艺可提高管件的内、外表面精度,也可用于两个部件的连接。管材液压成形的主要车身制件有发动机歧管、车顶支架、侧门横梁、散热器支架和传动轴零件等。 4. 铝合金压铸新工艺铝合金的加工方法有铸造、压铸、辊压、挤压和冲压等。随着铝合金在车身上的应用日益广泛,工程师们开发了一系列铝合金压铸新工艺,如冲压压铸法、针孔

汽车复合材料

汽车复合材料主要加工工艺和技术 世界上第一辆全复合材料车身的汽车诞生55年以来,随着汽车工业的快速发展以及大众环保意识和节能意识的不断增强,尤其是在世界能源危机和石油涨价而使得汽车工业向轻量化方向发展的大背景下,作为汽车轻量化主流轻质材料之一的汽车复合材料的材料性能和加工工艺技术也因此而得到了快速发展。现在,无论是欧、美、日等汽车工业发达国家,还是中国、巴西和印度等汽车工业快速发展中国家,都已在汽车制造量采用汽车复合材料,涉及的车辆有商用车、乘用车、工程车、农用车、运动车以及休闲车、军用车和摩托车等几乎所有的车种,主要应用围也从外履件发展到汽车的各个部分,可以说从车头到车尾,从外饰件到饰件,从A级表面的车身面板到结构件、半结构件,从车门、车窗到车盖、车顶,从皮卡车厢、车身底护板到发动机气门盖、油底壳,从座椅骨架、底盘到储气罐、传动轴和板弹簧等,到处都有汽车复合材料的应用。那么,这些形状各异、技术性能各不相同,甚至规格和产量规模都相差甚远的汽车复合材料零部件是如何生产出来的呢?其主要生产工艺有哪些?与常规金属汽车零部件生产相比又有什么优缺点?……我们知道,汽车复合材料是一种可设计的材料,能够方便地实现整体综合优化设计。其中汽车复合材料制造工艺的可设计性带给了汽车复合材料制造行业无穷的想像力和创新机会。目前,我们己知的汽车复合材料制造工艺技术就多达几十种,并且还处于不断的创新发展之中。由于篇幅有限,本文就汽车复合材料主要且常用的6种加工工艺和技术做一初步介绍。 手糊成型工艺和技术 简单地说,手糊成型工艺(Hand Lay-up Molding)是手工作业把玻璃纤维织物和树脂交替地铺层在已被覆好脱模剂和胶衣的模具上,然后用压辊滚压压实脱泡,最后在常温下固化成型为汽车复合材料制品,如图1所示。尽管在现代汽车复合材料成型新工艺不断涌现的情况下,手糊成型工艺显得比较原始,但是,该工艺却具有其独特的不可替代性,仍然为世界各国汽车复合材料行业特别是中国汽车复合材料行业所广泛采用。 图1 手糊成型工艺示意图 图2所示为手糊成型工艺流程。从该工艺流程可以看出,手糊成型工艺具有以下优点:不需要复杂的设备和模具,投资低;生产技术容易掌握,且产品不受尺寸形状的限制,适合小批量和大型制件的生产;可与其他材料如金属、木材及塑料泡沫等同时复合制成一体。这些优点使得手糊成型工艺至今仍然作为汽车复合材料的一种主要成型工艺而被用于小批量地加工各种汽车复合材料制品,如客车和重型卡车的前/后围面板、高顶、导流罩、引擎罩盖、保险杠、挡泥板以及休闲车、农用车的车身等。此外该工艺还被用于新车开发,如制造概念车和新车样件试制。

典型汽车用簇绒地毯复合材料性能与构成

典型汽车用簇绒地毯复合材料性能与构成 汽车用地毯与整车钣金接触面积比较大,因而对于整车的声学性能起着非常重要的作用,文章通过对典型汽车用簇绒地毯复合材料性能与构成的阐述,以期为业界开发乘用车簇绒地毯起到一定的参考意义。 标签:簇绒地毯声学性能复合材料性能与构成 0 引言 随着现代纺织技术和工艺的发展,汽车工业大量采用高性能纤维材料,充分满足了消费者的需求。就目前而言,汽车地毯类主要有针刺地毯及簇绒地毯两大类。前者所用纤维原料95%以上是聚酰胺纤维,其优点在于优异的回弹和耐磨性。针刺地毯所用纤维主要是聚酯和聚丙烯,由于聚丙烯价格上的优势,各国都投入了较大的人力和物力对其进行研究和开发,而国内目前针刺地毯主要应用在中低档的小型家轿上,中型及豪华轿车上大都采用了簇绒地毯。 下面就从汽车地毯的几个主要性能要求上,对典型汽车用簇绒地毯复合材料开发与应用做一简明的阐述。 作为汽车内饰件的地毯,其主要的性能包括:外观、声学、机械性能、气味、排放、阻燃性等。 图1即为一种典型的簇绒地毯复合材料构成,它是一种层迭式的复合结构,通过簇绒、涂胶、热压成型以及发泡等工艺流程制造。 1 簇绒地毯复合材料构成最上层-毯面的外观特性 首先,汽车用簇绒地毯外观,需满足人们对于舒适豪华感观上的追求,因而对于最上层结构的毯面设计,就需考虑两个要点:毯面的风格及颜色。产业用纺织品的纤维原料已经从过去主要采用棉、毛、麻等天然纤维逐步发展到采用粘胶、丙纶、绵纶、腈纶等化纤,从采用常规化纤发展到大量采用各种高强、高模、耐高温、耐酸碱、高氧化、耐水解的高性能纤维,由于聚酰胺纤维(俗称:尼龙纱线)优异的回弹和耐磨性,它迅速地在汽车簇绒地毯中得到广泛的应用,各供应商也积极地投入到此纱线的开发中来,目前国内比较大规模开发簇绒尼龙纱线的厂家中有Aquafil,Universal以及Invista等,随着中国汽车工业近几年的蓬勃发展,高中档家用轿车和商业用车产销两旺,合成化学纤维用量需求越来越大。 所谓簇绒,是将一束束的尼龙纱线植于无纺布的基布上,簇绒机将纱线剪断,纱线直立或弯曲形成绒感,背面将纱线束用PE胶粘附形成。对毯面的风格而言,主要体现在绒高,簇绒机的幅宽方向的纱线束的针脚距离,毯面的单位面积的克重等,目前国内外的毯面的加工过程大都通过簇绒机完成,以进口机器为主,绒线束针距现在较为普遍的有两种,一种为1/10”,另一种5/64”,是指在簇绒机的

汽车轻量化设计与碳纤维复合材料的应用

汽车轻量化设计与碳纤维复合材料的应用 摘要:本文综述了汽车轻量化设计的常用方法,分析了轻量化方法使用的制约因素,并以宝马集团i3纯电动车中碳纤维复合材料材料使用为导向,探讨今后CFRP 轻量化应用的方向,为汽车轻质化设计工作者提供参考三 关键词:汽车;轻量化设计;碳纤维复合材料中图分类号:TB332文献标志码:A 文章编号:1671-1084﹙2015﹚05-0012-05 谷礼双1,贾晶 2 (1.,545006;2.,710025) 0引言,20152, 1.54三,二,三,70%,10%,6%8%;1%,0.7%;100,0.30.6三,CO2,(NOx )三,25%,13%, 2.7三,,,,三 2012‘(20122020)“,三2015, 6.9/, 5.9/;2020, 5.0/,4.5/三,三图1车重和定速燃料消耗的关系 收稿日期:2015-07-12 作者简介:谷礼双,硕士,柳州职业技术学院机电工程系高级工程师,研究方向:机械结构设计与教学;贾晶,硕士,西安航天复合材料研究所高级工程师,研究方向:碳纤维研制及应用三 柳州职业技术学院学报 155Vol.15No.5Oct.2015

1汽车轻量化 二, ,二二二三 ,,二二 ;,三 ,三:,, ;,; ,二二三 2主要轻量化设计方法 : 1) ,(BIW), 二二,,二,二二,三, 三 2) 2,, ,三 3) 二二,, 三 a. 1kg, 2.25kg,125%, 20kg三,,,90% 三 ,二二, ,三 5三 b. ,,三 ,1/3,二 ,二二三 ,25%,60 三 ,20 三三 c. 200?,500?, ,1500MPa,二三

相关文档
最新文档