二、动点问题题型方法归纳
初中数学动点题解题技巧二
初中数学动点题解题技巧二篇4:初中数学解题技巧初中数学解题技巧1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c∈r,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的重要方法之一。
初中数学动点问题总结
初中数学动点问题总结第一篇:初中数学动点问题总结初二动点问题1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.解答:解:(1)∵四边形PQCD平行为四边形∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形.(2)过D作DE⊥BC于 E 则四边形ABED为矩形∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s)即当t=7(s)时,四边形PQCD为等腰梯形.(3)由题意知:QC-PD=EC时,四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s)即当t=6.5(s)时,四边形PQCD为直角梯形.点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC 的形状并证明你的结论.分析:(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.(3)利用已知条件及正方形的性质解答.解答:解:(1)∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.(2)当点O运动到AC中点处时,四边形AECF是矩形.如图AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE= ∠ACB,同理,∠ACF= ∠ACG,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)= ×180°=90°,∴四边形AECF是矩形.(3)△ABC是直角三角形∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:①当MP=MC时,那么PC=2NC,据此可求出t的值.②当CM=CP时,可根据CM和CP 的表达式以及题设的等量关系来求出t的值.③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.综上所述可得出符合条件的t的值.解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= =,CM=(2)由于四边形PCDQ构成平行四边形∴PC=QD,即4-t=t 解得t=2.(3)如果射线QN将△ABC的周长平分,则有:MN+NC=AM+BN+AB 即:(1+t)+1+t=(3+4+5)解得:t=(5分)而MN= NC=(1+t).∴S△MNC=(1+t)2=(1+t)2×4×3 当t= 时,S△MNC=(1+t)2= ≠ ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.(4)①当MP=MC时(如图1)则有:NP=NC 即PC=2NC∴4-t=2(1+t)解得:t=②当CM=CP时(如图2)则有:(1+t)=4-t 解得:t=③当PM=PC时(如图3)则有:在Rt△MNP中,PM2=MN2+PN2 而MN= NC=(1+t)PN=NC-PC=(1+t)-(4-t)=2t-3 ∴[(1+t)]2+(2t-3)2=(4-t)2 解得:t1= ∴当t=,t=,t2=-1(舍去),t=时,△PMC为等腰三角形点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.分析:以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值.以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式.如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形.解答:解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN 为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.①当点P与点N重合时,由x2+2x=20,得x1=-1,x2=--1(舍去).因为BQ+CM=x+3x=4(-1)<20,此时点Q与点M不重合.所以x=-1符合题意.②当点Q与点M重合时,由x+3x=20,得x=5.此时DN=x2=25>20,不符合题意.故点Q与点M不能重合.所以所求x的值为-1.(2)由(1)知,点Q只能在点M的左侧,①当点P在点N的左侧时,由20-(x+3x)=20-(2x+x2),解得x1=0(舍去),x2=2.当x=2时四边形PQMN是平行四边形.②当点P在点N的右侧时,由20-(x+3x)=(2x+x2)-20,解得x1=-10(舍去),x2=4.当x=4时四边形NQMP是平行四边形.所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.由于2x>x,所以点E一定在点P的左侧.若以P,Q,M,N为顶点的四边形是等腰梯形,则点F一定在点N的右侧,且PE=NF,即2x-x=x2-3x.解得x1=0(舍去),x2=4.由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,所以以P,Q,M,N为顶点的四边形不能为等腰梯形.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?分析:(1)根据平行四边形的性质,对边相等,求得t值;(2)根据等腰梯形的性质,下底减去上底等于12,求解即可.解答:解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形;(2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?分析:(1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PM×QB=96-6t;(2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由 PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出;②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出;③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出.解答:解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形.∴PM=DC=12,∵QB=16-t,∴s= •QB•PM=(16-t)×12=96-6t(0≤t≤(2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况).:①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得;②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ.③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得合题意,舍去).综上所述,当形.或时,以B、P、Q为顶点的三角形是等腰三角,t2=16(不点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7.直线y=-34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t (秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:解:(1)y=0,x=0,求得A(8,0)B(0,6),(2)∵OA=8,OB=6,∴AB=10.∵点Q由O到A的时间是 81=8(秒),∴点P的速度是6+108=2(单位长度/秒).当P在线段OB上运动(或O≤t≤3)时,OQ=t,OP=2t,S=t2.当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,如图,做PD⊥OA于点D,由 PDBO=APAB,得PD= 48-6t5.∴S= 12OQ•PD=-35t2+245t.(3)当S= 485时,∵ 485>12×3×6∴点P在AB上当S= 485时,-35t2+245t= 485 ∴t=4 ∴PD= 48-6×45= 245,AD=16-2×4=8 AD= 82-(245)2= 325 ∴OD=8-325= 85 ∴P(85,245)M1(285,245),M2(-125,245),M3(125,-245)点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.第二篇:初中数学几何动点问题初中数学几何动点问题动点型问题是最近几年中考的一个热点题型,从你初二的动点问题就不是很好这点来看,我认为你对动点问题缺乏技巧。
八年级数学动点题型归纳
八年级数学动点题型归纳一、动点与三角形相关题型1. 动点在三角形边上运动求线段长度或周长题目:在等腰三角形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,求公式的长度。
解析:过点公式作公式于点公式。
因为公式,等腰三角形三线合一,所以公式。
在公式中,根据勾股定理公式。
当公式时,公式,则公式。
在公式中,根据勾股定理公式。
2. 动点运动过程中三角形面积的变化题目:在公式中,公式,公式,公式,点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,同时点公式从点公式出发,沿公式向点公式以每秒公式个单位长度的速度运动,设运动时间为公式秒公式,求公式的面积公式与公式的函数关系式。
解析:已知公式,则公式,公式。
根据三角形面积公式公式,对于公式,底为公式,高为公式。
所以公式。
二、动点与四边形相关题型1. 动点在四边形边上运动判断四边形形状题目:在矩形公式中,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
当公式时,四边形公式是什么四边形?解析:当公式时,公式,公式。
因为四边形公式是矩形,所以公式,公式。
则公式,公式。
在四边形公式中,公式(因为公式),公式,公式(此时公式运动到公式点),公式。
因为公式且公式,所以四边形公式是梯形。
2. 动点运动过程中四边形面积的变化题目:在平行四边形公式中,公式,公式,公式,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,点公式从点公式出发沿公式向点公式运动,速度为每秒公式个单位长度,设运动时间为公式秒。
求四边形公式的面积公式与公式的函数关系式。
解析:四边形公式的面积公式。
过点公式作公式于点公式,在公式中,公式,公式,则公式,公式。
所以公式。
因为公式,则公式。
公式。
所以公式。
三、动点与函数图象相关题型1. 根据动点运动情况确定函数图象题目:如图,在边长为公式的正方形公式中,点公式以每秒公式个单位长度的速度从点公式出发,沿公式的路径运动,到点公式停止。
中考常见动点问题解题方法
小结
以“搬点移线”为主要方法,利用轴
对称性质求解决几何图形中一些线段和最
小值问题。如何实现“搬点移线”
(1)确定被“搬”的点
(2)确定被“移”的线
二、动点构成特殊图形
问题背景是特殊图形,考查问题也是特殊图形,
所以要把握好一般与特殊的关系;分析过程中,特别
要关注图形的特性(特殊角、特殊图形的性质、图形
点就在这个图形上。
练习
1、如图,等边△ABC的,E是AC边上一点,若AE=2,
当EF+CF取得最小值时,则∠ECF的度数为( )
2、如图,在直角梯形中,AD∥BC,AB⊥BC,AD=2,
BC=DC=5,点P在BC上移动,当PA+PD取得
最小值时,△APD中AP边上的高为 _________
的特殊位置).分析图形变化过程中变量和其他量之
间的关系,或是找到变化中的不变量,建立方程或
函数关系解决。
问题导入
如图:梯形ABCD中,AD//BC,
AD=9cm,BC=6cm,点P从点A出发,
中考常见动点问题解题方法PPT
常见的动点问题
一、求最值问题
二、动点构成特殊图形问题
一、求最值问题
初中利用轴对称性质实现“搬点移线”求几何图
形中一些线段和最小值问题。利用轴对称的性质解
决几何图形中的最值问题借助的主要基本定理有三
个:
(1)两点之间线段最短;
(2)三角形两边之和大于第三边;
(3)垂线段最短。
设AB=x, 则AC=2x,
线,求不共线动点分别到定点和另一动点的距
态时几何元素的关系,以及可求出的量
例、如图,正方形ABCD的面积为12,△ABE是等边
二、动点问题题型方法归纳
动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)B图(1)B图(2)2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a=-+≠经过点(2)A-,0,抛物线的顶点为D,过O作射线OM AD∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为()t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB=,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.注意:发现并充分运用特殊角∠DAB=60°当△OPQ面积最大时,四边形BCPQ 的面积最小。
动点问题所有题型解题技巧
动点问题所有题型解题技巧摘要:1.动点问题概述2.动点问题分类与解题思路a.直线动点问题b.圆动点问题c.曲线动点问题3.解题技巧总结4.动点问题应用实例解析5.动点问题练习与解答正文:动点问题是指在数学中,涉及点到点之间运动的问题。
它具有一定的复杂性和挑战性,需要掌握一定的解题技巧。
本文将为大家介绍动点问题的解题技巧,以及如何应对不同类型的动点问题。
一、动点问题概述动点问题涉及几何、函数、方程等多个方面的知识。
一般来说,动点问题有以下几个特点:1.题目中存在一个或多个点在运动。
2.运动过程中,点与直线、曲线之间存在一定的关系。
3.求解问题时,需要运用数学知识进行分析。
二、动点问题分类与解题思路1.直线动点问题直线动点问题主要涉及点到直线的距离、角度等关系。
解题思路如下:(1)找出关键信息,如直线的方程、点的坐标等。
(2)根据题目条件,建立点到直线的距离或角度的方程。
(3)求解方程,得到点的坐标或位置。
2.圆动点问题圆动点问题主要涉及点到圆心、圆上的点等关系。
解题思路如下:(1)找出关键信息,如圆的方程、点的坐标等。
(2)根据题目条件,建立点到圆心距离、圆上的角度等方程。
(3)求解方程,得到点的坐标或位置。
3.曲线动点问题曲线动点问题涉及点到曲线的关系。
解题思路如下:(1)找出关键信息,如曲线的方程、点的坐标等。
(2)根据题目条件,建立点到曲线的关系方程。
(3)求解方程,得到点的坐标或位置。
三、解题技巧总结1.熟练掌握几何知识,如直线、圆的方程,以及点到直线、圆的距离公式。
2.灵活运用函数、方程的知识,建立动点问题的关系方程。
3.利用数学方法求解方程,如代数法、几何法等。
四、动点问题应用实例解析以下为一个动点问题的实例:已知直线l的方程为2x+3y-1=0,点P在直线l上,且满足PA=PB,其中A、B为圆O的两点,圆O的方程为x^2+y^2=4。
求点P的坐标。
解:根据题意,先求出点A、B的坐标,然后根据PA=PB建立方程,最后求解得到点P的坐标。
七年级下册数学动点问题解题技巧
七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。
1. 分析动点的运动轨迹。
- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。
例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。
2. 用含时间t(或其他变量)的代数式表示相关线段的长度。
- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。
- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。
对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。
3. 根据题目中的等量关系列方程求解。
- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。
例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。
二、题目及解析。
1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。
- 若点P到点A、点B的距离相等,求点P对应的数x。
- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。
当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。
- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。
- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。
七年级上数学动点题型归纳
七年级上数学动点题型归纳一、动点题型的基本概念动点题型呢,就是在七年级上的数学里,那些点不是固定的,而是会根据一定的条件动来动去的题目类型。
这种题型超有趣的,就像是点在一个数学的大舞台上跳舞一样。
比如说在数轴上,一个点可能按照某种速度向左或者向右移动,这时候我们就要根据它的移动规则来计算各种相关的数学量啦,像它最终的位置、移动的距离之类的。
二、常见的动点题型分类1. 数轴上的动点在数轴上,我们会遇到这样的动点问题。
例如,已知点A在数轴上表示的数是2,它以每秒3个单位长度的速度向右移动,问经过t秒后点A表示的数是多少。
那我们就可以根据向右移动是做加法的原则,得出这个点表示的数就是2 + 3t啦。
还有那种多个点在数轴上同时移动的情况,这就更复杂一些。
像点A从 - 5开始,以每秒2个单位长度向右移动,点B从3开始,以每秒1个单位长度向左移动,问什么时候它们之间的距离是某个值。
这时候我们就得先表示出t秒后点A和点B的位置,再根据距离公式来求解。
2. 平面直角坐标系中的动点在平面直角坐标系里的动点也很常见哦。
比如一个点在第一象限里,它的横纵坐标都按照一定的规律变化。
可能横坐标按照x = t + 1的规律变化,纵坐标按照y = 2t - 1的规律变化,然后让我们求这个点的运动轨迹是什么形状的。
我们就可以通过消去t来找到x和y的关系,从而判断轨迹形状。
三、解决动点题型的小技巧1. 建立合适的模型当遇到动点问题的时候,我们要根据题目情况建立合适的模型。
如果是数轴上的问题,那数轴就是我们的模型,如果是平面直角坐标系里的,那这个坐标系就是模型。
在模型里,我们把已知条件都标清楚,这样就能更直观地看到点的运动情况啦。
2. 找出等量关系这是解决动点题型的关键哦。
不管是求点的位置,还是求点运动过程中的某个特殊时刻,都要找到等量关系。
比如说在求两个动点相遇的时刻,那它们走过的路程之和等于它们最初的距离就是等量关系。
动点题型虽然有点小复杂,但只要我们掌握了这些小窍门,就可以轻松应对啦。
七年级数轴动点问题题型归纳
七年级数轴动点问题题型归纳
一、动点位置确定
在数轴上,动点的位置可以根据其相对于参考点的位置来确定。
在解题时,我们需要先确定参考点,然后根据题目中给出的条件来确定动点的位置。
二、动点运动规律
动点在数轴上的运动往往遵循一定的规律,如匀速运动、加速运动等。
在解决这类问题时,我们需要根据题目中给出的条件,建立动点运动的时间模型,从而求解出动点的位置。
三、动点与定点距离
在数轴上,动点与定点之间的距离可以通过绝对值或模运算来求解。
在解题时,我们需要先确定定点和动点的位置,然后根据绝对值或模运算的公式来求解。
四、动点与静点距离
在数轴上,动点与静点之间的距离也可以通过绝对值或模运算来求解。
在解题时,我们需要先确定静点的位置,然后根据题目中给出的条件来确定动点的位置,最后通过绝对值或模运算来求解。
五、动点与动点距离
在数轴上,两个动点之间的距离可以通过坐标运算来求解。
在解题时,我们需要先确定两个动点的位置,然后根据坐标运算的公式来求解。
六、动点与数轴交点
在数轴上,动点与数轴的交点可以通过求解方程得到。
在解题时,我们需要先确定动点的位置,然后建立方程求解交点的位置。
七、动点与坐标关系
在数轴上,动点的坐标与时间之间存在一定的关系。
在解题时,我们需要先确定动点的位置和时间的关系,然后建立坐标和时间的函数关系式,最后通过求解函数关系式来得到答案。
二、动点问题题型方法归纳
①求直线解析式
②四边形面积的表示
③动三角形面积函数④矩形性质
①求抛物线顶点坐标
②探究平行四边形
③探究动三角形面积是定值
菱形是含60°的特殊菱形;
△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
动点问题
题型方法归纳
。
近三年中考数学
“坐标几何题”(动点问题)分析
(马铁汉)
07
08
09
动点个数
两个
一个
两个
问题背景
特殊菱形两边上移动
特殊直角梯形三边上移动
抛物线中特殊直角梯形底边上移动
考查难点
探究相似三角形
探究三角形面积函数关系式
探究等腰三角形
考
点
①菱形性质
②特殊角三角函数
③求直线、抛物线解析式
④相似三角形
④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)
三年共同点:
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积
②动点按到拐点时间分段分类
③画出矩形必备条件的图形探究其存在性
①直角梯形是特殊的(一底角是45°)
②点动带动线动
③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)
初二动点问题的方法归纳
初二动点问题的方法归纳动点问题是在数学中常见的一种题型,其中涉及到的知识点包括函数、方程、不等式等。
解决动点问题需要学生具备一定的数学思维和逻辑推理能力。
本文将就初二动点问题的解决方法进行归纳,主要包括以下五个方面:一、理解题意解决动点问题的第一步是理解题意。
学生需要仔细阅读题目,明确题目所给的条件和要解决的问题。
在理解题意的过程中,学生需要注意以下几点:1.确定题目中涉及到的知识点和公式;2.弄清楚各个变量之间的关系;3.判断是否需要分类讨论。
二、画图分析画图分析是解决动点问题的重要步骤。
通过画图可以帮助学生更好地理解题意,将抽象的问题具体化。
在画图分析的过程中,学生需要注意以下几点:1.根据题目所给条件画出图形;2.在图形上标注出已知量和未知量;3.根据问题要求,在图形上标出必要的点和线。
三、建立模型建立模型是解决动点问题的关键步骤。
通过建立数学模型,可以将实际问题转化为数学问题,从而更好地解决问题。
在建立模型的过程中,学生需要注意以下几点:1.根据题意确定需要的方程或不等式;2.根据图形关系建立方程或不等式;3.对于多个变量的情况,需要考虑分类讨论。
四、求解模型求解模型是解决动点问题的核心步骤。
在求解模型的过程中,学生需要注意以下几点:1.选择合适的方法进行求解;2.对于多个变量的情况,需要分别求解并综合结果;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
五、整合答案整合答案是解决动点问题的最后一步。
在整合答案的过程中,学生需要注意以下几点:1.将求解结果进行整理和归纳;2.根据题目要求给出答案;3.对于实际问题需要考虑实际情况,如是否有解、解是否合理等。
动点问题解题技巧总结
动点问题解题技巧总结一、 动点选择题(中考选择最后一道) 1排除法:(1)首先看趋势,排除明显不可能的(2)看图像上面的特殊点,算出特殊点的横纵坐标,排除错误的选项(3)求解析式:如果选项出现二次函数的图像,特别需要确定开口方向,有时候可以不用完全算出解析式,确定了开口方向就可以确定正确选项(4)如果解析式不好求,可以取分段函数的每一段的中点,如果这一段的端点坐标是,x y x y ,,1122)()( 确定纵坐标比+y y 212大还是小 中考再现1.(2017•天水)如图,在等腰△ABC 中,AB=AC=4cm ,∠B=30°,点P 从点B 出发,以cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【分析】第一步看趋势,四个选项都是先增大后减小,均符合 第二步,看特殊点,四个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了两个区间,<<x 04和<<x 48,区间中点x =2和x =6,x =2时,长段线垂,线垂的作过,===<BQ BP Q BP y 2223,1343则易得答案为D .2.(2017•铁岭)如图,在射线AB 上顺次取两点C ,D ,使AC=CD=1,以CD 为边作矩形CDEF ,DE=2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG=x ,EH=y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.【分析】第一步看趋势,均符合第二步,看特殊点,A,B选项是过(2,0),C,D选项是过(1,0),当x=1时,由矩形知CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,当x=1时,即GC=1,求出DH=2,EH=y=0,排除A,B,由0°<α<45°不含等号,所以不能取到(1,0),因此是D选项3.(2017•葫芦岛)如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.【分析】第一步看趋势,A,B,C都是增大,只有D是先增大后减小,随着P,Q向右运动面积一直增大,所以排除D 选项第二步,看特殊点,A,B,C 三个选项特殊点一样,不能排除,第三步,取区间中点,选项中出现了一个区间,<<x 02,区间中点x =1,x =1时,,长段,线垂,线垂的作过,====<S CQ BQ BH H BP 14823 1.5,33333则易得答案为A .二、 动点解答题几何图形动点问题(包括三角形,四边形,圆):此类问题动点是有运动速度和运动路径的,解决问题的步骤如下:第一步,确定动点运动的阶段(如果是在折线上面运动,每一个线段是一个阶段)为了方便理解,每一个阶段都任意画出动点的一个可能位置(动点解答题的解题关键是化动为静,这个“为静”指的是在每一个阶段里任意选一个位置,用t 把相关线段表示出来,这样运动的点在这个阶段内就是“静止”的了),画出对应的图第二步,根据路程=速度⨯时间把动点运动的路程表示出来,进而将每一个阶段涉及到的线段表示出来第三步,根据具体问题列出等量关系式,例如:涉及到面积问题,用21底⨯高表示出面积,根据题目条件列出等量关系式 中考再现1.(2015江苏省)如图所示,在中,,,,点从点出发沿边向点以的速度移动,点从点出发沿边向点以的速度移动,若、同时出发:(1)几秒钟后,可使?(2)几秒钟后,可使四边形的面积占的面积三分之二?1. 【分析】(1)第一步:确定分段,本题两个动点都只在一条线段移动,因此不用分段第二步,根据路程=速度 时间把动点运动的路程表示出来,设运动时间为t秒,P点从A出发,沿着AC运动,运动路程是AP= t,Q点从C出发,沿着CB运动,运动路程是CQ=2t ,第三步,根据具体问题列出等量关系式,即 AC-AP=CQ,即解得,,则秒钟后,.(2)第二问因为前两步已经在第一问解决,直接进入第三步的面积为:,四边形的面积占的面积三分之二,的面积占的面积三分之一,,解得,,,答:秒或秒钟后,可使四边形的面积占的面积三分之二.2. (2015湖北省)如图,在矩形中,,E 是AD 的中点.动点从A 点出发,沿路线以秒的速度运动,运动的时间为秒.将以EP 为折痕折叠,点A 的对应点记为. 当点在边AB 上,且点在边BC 上时,求运动时间;【分析】第一步:确定分段,本题只有一个动点P ,P 在线段AB 运动,不用分段 第二步,根据路程=速度⨯时间把动点运动的路程表示出来,运动时间为t 秒,P 点从A 出发,沿着AB 运动,运动路程是AP= t ,第三步,根据具体问题列出等量关系式当点在边AB 上,且点在边BC 上时,根据折叠不变性,为因又,,。
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)(原卷版)
专题03 数轴上动点问题的答题技巧与方法(方法清单)(7个题型解读+提升训练)【方法清单】【关键】化动为静,分类讨论。
抓住动点,化动为静,以不变应万变寻找破题点(边长、动点速度、角度以及所给图形的能建立等量关系等等) 建立所求的等量代数式,求出未知数等等。
动点问题定点化是主要思想。
比如以某个速度运动,设出时间后即可表示该点位置:再如函数动点,尽量设一个变量,y 尽量用来表示,可以把该点当成动点,来计算。
【步骤】1.画图形2.表线段3.列方程4.求正解1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数一左边点表示的数2,点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b 个单位后表示的数为 a b; 向右运动b个单位后所表示的数为a+b。
3,分析数轴上点的运动要是数形结合进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系题型一、数轴上与速度、时间、距离有关问题【例1】.(2022秋•代县期中)如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,从图中可以看出,终点表示的数是﹣2,已知A,B是数轴上的点.请参照图并思考,完成下列填空:(1)如果点A表示数3,将点A向右移动7个单位长度,那么终点B表示的数是,A,B两点间的距离是.(2)如果点B表示数2,将点B向左移动9个单位长度,再向右移动5个单位长度,那么终点A表示的数是,A,B两点间的距离是.(3)如果点A表示的数是﹣4,将点A向右移动168个单位长度;再向左移动2个单位长度,那么终点B表示的数是,A,B两点间的距离是.(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是,A,B两点间的距离是.【变式1】.(2022秋•博罗县期中)如图,点A,B,C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴上点A,B表示的数:,;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.①当t=2时,求出此时P,Q在数轴上表示的数;②t为何值时,点P,Q相距2个单位长度,并写出此时点P,Q在数轴上表示的数.【变式2】.(2022秋•历下区期中)为宣传健康知识,某社区居委会派车按照顺序为7个小区(分别记为A,B,C,D,E,F,G)分发防疫安全手册.社区工作人员乘车从服务点(原点)出发,沿东西向公路行驶,如果约定向东为正,向西为负,当天的行驶记录如下(单位:百米):+10,﹣18,+14,﹣30,+6,+22,﹣6(1)请你在数轴上标记出这D,E,F这三个小区的位置(在相应位置标记字母即可).(2)服务车最后到达的地方距离服务点多远?若该车辆油耗为0.01升/百米,则这次分发工作共耗油多少升?(3)为方便附近居民进行核酸检测,现居委会计划在这七个小区中选一个作为临时核酸检测点,为使七个小区所有居民步行到检测点的路程总和最小,假设各小区人数相等,那么检测点的位置应设在小区.题型二、数轴上点之间的位置关系问题【例2】(2022秋•余江区期中)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)原点在第部分;(2)若AC=5,BC=3,b=﹣1,求a的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,直接写出d的值.【变式1】.(2022秋•南溪区期中)如图,在数轴上有三个点A,B,C,请回答下列问题:(1)将点B向左移动4个单位长度后,哪个字母所表示的数最小?是多少?(2)将点C向左移动6个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动A、B、C中的两个点才能使三个点表示的数相同?有几种移法?【变式2】.(2022秋•惠济区期中)如图,在数轴上点A表示的数是8,若动点P从原点O出发,以2个单位/秒的速度向左运动,同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).(1)当t=0.5时,求点Q到原点O的距离;(2)当t=2.5时求点Q到原点O的距离;(3)当点Q到原点O的距离为4时,求点P到原点O的距离.【变式3】.(2022秋•庐阳区校级期中)根据课堂所学知识我们知道:数轴上两点A、B对应的数分别为a,b(a<b),那么A,B两点之间距离可以用代数式b﹣a来表示.已知:如图,数轴上两点M、N对应的数分别为﹣8、4,点P为数轴上任意一点,其对应的数为x.(1)M,N两点之间的距离是;(2)当点P到点M、点N的距离相等时,求x的值;(3)当点P到点M、点N的距离之和是16时,求出此时x的值.题型三、数轴上动点定值问题【例3】.(2022秋•灞桥区校级期中)如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是;(2)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度秒的速度也向左匀速运动,设运动时间为t秒,当t为何值时,点B与点C之间的距离为1个单位长度?(3)若线段AB、线段CD分别以1个单位长度/秒、2个单位长度/秒的速度同时向左匀速运动,与此同时,动点P从﹣15出发,以4个单位长度/秒的速度向右匀速运动.设运动时间为t秒,当0<t<5时,2AC﹣PD的值是否发生变化?若不变化,求出这个定值,若变化,请说明理由.【变式1】.(2022秋•河北区期中)在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A 与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC =;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.【变式2】.(2022秋•上林县期中)已知点A、B在数轴上对应的数分别为a、b,且a=﹣2,b=10,点A、B之间的距离记作AB.(1)线段AB的长为;(直接写出结果)(2)若动点P在数轴上对应的数为x,①当点P是线段AB上一点,P A=2PB,则点P表示的数为;此时P A+PB=;(直接写出结果)②当P A+PB=14时,求x的值;③当动点P在点A的左侧,M、N分别是P A、PB的中点,在运动过程中的值是否发现变化?若不变,求出其值;若变化,请求出变化范围.题型四、数轴上折叠问题【例4】(2022秋•仁怀市期中)如图,在数轴上A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数对应的点重合;(3)若点A、B、C是数轴上的动点,点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,那么3BC﹣2AB的值是否随着运动时间t(秒)的变化而改变?若变化,请说明理由;若不变,请求出其值.【变式1】(2022秋•濮阳县期中)如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣3的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣3的点与表示的点重合;②若数轴上A,B两点的距离为6(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为.【变式2】.(2022秋•桓台县期中)如图所示的数轴中,点A表示1,点B表示﹣2,试回答下列问题:(1)A、B两点之间的距离是;(2)观察数轴,与点A的距离为5的点表示的数是;(3)若将数轴折叠,使点A与表示﹣3的点重合,则点B与表示数的点重合;(4)若数轴上M,N两点之间的距离为2022(点M在点N的左侧),且M,N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是和.【变式3】.(2022秋•南山区校级期中)学习完数轴以后,喜欢探索的小聪在纸上画了一个数轴(如图所示),并进行下列操作探究:(1)操作一:折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣4的点与表示的点重合.操作二:折叠纸面,使表示﹣3的点与表示1的点重合,回答以下问题:(2)表示2的点与表示的点重合;(3)若数轴上A、B两点之间距离是a(a>0)(A在B的左侧),且折叠后A、B两点重合.求A、B两点表示的数是多少?题型五、数轴上探究问题【例5】(2022秋•宛城区期中)【问题探索】如图,将一根木棒放在数轴(单位长度为lcm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30:若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长度为cm.(2)图中点A所表示的数是,点B所表示的数是.【实际应用】由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,丽丽去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要32年才出生;你若是我现在这么大,我就106岁啦!”根据对话可知丽丽现在的岁数是,奶奶现在的岁数是.【变式】.(2022秋•和平区校级期中)阅读并解决相应问题:(1)问题发现:在数轴上,点A表示的数为﹣2,点B表示的数为3,若在数轴上存在一点P,使得点P到点A的距离与点P到点B的距离之和等于n,则称点P为点A、B的“n节点”.如图1,若点P表示的数为,有点P到点A的距离与点P到点B的距离之和为+=5,则称点P为点A、B的“5节点”.填空:①若点P表示的数为0,则n的值为.②数轴上表示整数的点称为整点,若整点P为A、B的“5节点”,请直接写出整点P所表示的数.(2)类比探究:如图2,若点P为数轴上一点,且点P到点A的距离为1,请你求出点P表示的数及n的值,并说明理由.(3)拓展延伸:在(1)(2)的条件下,若点P在数轴上运动(不与点A、B重合),满足点P到点B的距离等于点P到点A的距离的,且此时点P为点A、B的“n的节点”,求点P表示的数及n的值,并说明理由.题型六、数轴上新定义问题【例6】(2022秋•永安市期中)[阅读理解]点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离2倍,那么我们就称点C是{A,B}的关联点.例如,如图1,点A表示的数为﹣4,点B表示的数为2.表示0的点C到点A的距离是4,到点B的距离是2,那么点C是{A,B}的关联点;又如,表示﹣2的点D到点A的距离是2.到点B的距离是4,那么点D就不是{A,B}的关联点,但点D是{B,A}的关联点.[知识运用](1)如图2,M、N为数轴上两点,点M所表示的数为﹣4,点N所表示的数为5.数所表示的点是{M,N}的关联点;数所表示的点是{N,M}的关联点;[拓展提升](2)如图3,A、B为数轴上两点,点A所表示的数为﹣60,点B所表示的数为30.现有一动点从点P 出发向左运动.P点运动到数轴上的什么位置时,点P、点A和点B中恰有一个点为其余两点的关联点?【变式1】.(2022秋•衢州期中)点A,B,C为数轴上的三点,如果点C在点A,B之间,且到点A的距离是点C到点B的距离的3倍,那么我们就称点C是{A,B}的奇妙点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇妙点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇妙点,但点D是{B,A}的奇妙点.(1)点A表示的数为1,点B表示的数为2,点C表示的数为5,B是否为{C,A}的奇妙点?请说明理由.(2)如图2,M,N为数轴上的两点,点M所表示的数为﹣2,点N所表示的数为6.表示数的点是{M,N}的奇妙点;表示数的点是{N,M}的奇妙点;(3)如图3,A,B为数轴上的两点,点A所表示的数为﹣10,点B所表示的数为50.现有一动点P从点A出发向右运动,点P运动到数轴上的什么位置时,B为其余两点的奇妙点?【变式2】.(2022秋•平遥县期中)阅读下列材料:我们给出一个新定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.解答下列问题:(1)若点A表示的数为﹣3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为;(2)若点A表示的数为﹣3,点A与点B的“平衡点M”表示的数为﹣5,则点B表示数为;操作探究:如图,已知在纸面上有一条数轴.操作一:(3)折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:(4)折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为.【变式3】.(2022秋•高青县期中)数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.【变式4】.(2022秋•朝阳区校级期中)已知数轴上两点A、B,若在数轴上存在一点C,使得AC+BC=nAB,则称点C为线段AB的“n倍点”.例如图1所示:当点A表示的数为﹣2,点B表示的数为2,点C表示的数为0,有AC+BC=2+2=4=AB,则称点C为线段AB的“1倍点”.请根据上述规定回答下列问题:已知图2中,点A表示的数为﹣3,点B表示的数为1,点C表示的数为x.(1)当﹣3≤x≤1时,点C(填“一定是”或“一定不是”或“不一定是”)线段AB的“1倍点”;(2)若点C为线段AB的“n倍点”,且x=﹣4,求n的值;(3)若点D是线段AB的“2倍点”,则点D表示的数为;(4)若点E在数轴上表示的数为t,点F表示的数为t+12,要使线段EF上始终存在线段AB的“3倍点”,求t的取值范围(用不等号表示)题型七:数轴上存在性问题【例7】(2022秋•蓝山县期中)已知数轴上三点A、B、C对应的数分别是﹣1,1,4,点P为数轴上任意一点,且表示的数是x.(1)点A到点B的距离AB为多少个单位长度?(2)点P到B的距离PB可以表示为;(3)如果点P到点A和到点C的距离相等,那么x的值是多少?(4)数轴上是否存在点P,使点P到点A与到点C的距离之和是8?若存在,请直接写出x的值;若不存在,请说明理由.【变式1】(2022春•南岗区校级期中)若数轴上A、B两点对应的数分别为﹣5、4,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点,直接写出P点对应的数.(2)数轴上是否存在点P,使P点到A点、B点的距离和为11?若存在,求出x值;若不存在,请说明理由.(3)若点P从点A出发向右运动,速度是2个单位/分,点Q从点B出发向左运动,速度是3个单位/分,它们同时出发,经过几分钟,Q、B、P三点中,其中一点是另外两点连成线段的中点?【变式2】(2022秋•定远县期中)对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣4,点B表示数5,点M是点A,B的“联盟点”,点M在A、B之间,且表示一个负数,则点M表示的数为;(2)若点A表示数﹣2,点B表示数2,下列各数,0,4,6所对应的点分别为C1,C2,C3,C4,其中是点A,B的“联盟点”的是;(3)点A表示数﹣15,点B表示数25,P为数轴上一点:①若点P在点B的左侧,且点P是点A,B的“联盟点”,此时点P表示的数是;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P表示的数.【变式3】(2022秋•鱼台县期中)如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C 之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为,点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由.【提升训练】1.(2022秋•桥西区期中)在一条不完整的数轴上标出若干个点,每相邻两点相距一个单位长度,其中点A,B,C对应的分别是整数a,b,c.(1)若以B为原点,写出a,c的值;(2)若c﹣2a=14,判断并说明A,B,C中哪个点是数轴的原点;(3)在(2)的条件下,M点从A点以每秒0.5个单位的速度向右运动,点N从点C以每秒1.5个单位的速度向左运动,点P从点B以每秒2个单位的速度先向左运动碰到点M后立即返回向右运动,碰到点N后又立即返回向左运动,碰到点M后又立即返回向右运动,三个点同时开始运动,当三个点聚于一点时停止运动.直接写出点P在整个运动过程中,移动了多少个单位.2.(2022秋•肥西县校级期中)如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是﹣3,已知A、B是数轴上的点,请参照如图并思考,完成下列各题.(1)如果点A表示的数是﹣2,将点A向右移动5个单位长度到点B,那么点B表示的数是.A、B两点间的距离是.(2)如果点A表示的数是4,将点A向左移动8个单位长度,再向右移动3个单位长度到点B,那么点B表示的数是,A、B两点间的距离是.(3)如果点A表示的数是m,将点A向左移动n个单位长度,再向右移动p个单位长度到点B,那么点B表示的数是.3.(2022秋•沙坪坝区校级期中)数轴上给定两点A、B,点A表示的数为﹣1,点B表示的数为3,若数轴上有两点M、N,线段MN的中点在线段AB上(线段MN的中点可以与A或B点重合),则称M点与N 点关于线段AB对称,请回答下列问题:(1)数轴上,点O为原点,点C、D、E表示的数分别为﹣3、6、7,则点与点O关于线段AB对称;(2)数轴上,点F表示的数为x,G为线段AB上一点,若点F与点G关于线段AB对称,则x的最小值为,最大值为;(3)动点P从﹣9开始以每秒4个单位长度,向数轴正方向移动时,同时,线段AB以每秒1个单位长度,向数轴正方向移动,动点Q从5开始以每秒1个单位长度,向数轴负方向移动;当P、Q相遇时,分别以原速立即返回起点,回到起点后运动结束,设移动的时间为t,则t满足时,P 与Q始终关于线段AB对称.4.(2022秋•泊头市期中)如图是某一条东西方向直线上的公交线路的部分路段,西起A站,东至L站,途中共设12个上下车站点.某天,小明参加该路线上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣3,+4,﹣5,+8,﹣2,+1,﹣3,﹣4,+1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?5.(2022秋•夏津县期中)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.6.(2022秋•文成县期中)如图,在数轴上,点A表示﹣4,点B表示﹣1,点C表示8,P是数轴上的一个点.(1)求点A与点C的距离;(2)若PB表示点P与点B之间的距离,PC表示点P与点C之间的距离,当点P满足PB=2PC时,请求出在数轴上点P表示的数.7.(2022秋•新郑市期中)如图,已知在纸面上有一条数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示的点重合.操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答以下问题:①表示5的点与表示的点重合;②若数轴上A,B两点之间的距离为9(点A在点B的左侧),且A,B两点折叠后重合,求A,B两点表示的数.8.(2022秋•昆明期中)问题探究:(1)如图①,将两根长度为6cm的木棒放置在数轴(单位长度为1cm)上,第一根的两端分别与数轴上表示2的点和点A重合,第二根的两端分别与数轴上点A和点B重合,则图中点A所表示的数是,点B所表示的数是;(2)如图②,将一根未知长度的木棒放置在数轴(单位长度为1cm)上,木棒的左端与数轴上的点C重合,右端与数轴上的点D重合.若将木棒沿数轴向右移动,当它的左端移动到点D时,右端在数轴上所对应的数为26;若将木棒沿数轴向左移动,当它的右端移动到点C时,左端在数轴上所对应的数为2.由此可得这根木棒的长为cm;(3)在(2)的条件下,若数轴上有一点P,点P到木棒CD中点的距离为16个单位长度,则点P所表示的数是.9.(2022秋•嘉祥县期中)定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是【A,B】的美好点.例如:如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的美好点,但点D是【B,A】的美好点.如图2,M,N为数轴上两点,点M所表示的数为﹣7,点N所表示的数为2.(1)点E,F,G表示的数分别是﹣3,6.5,11,其中是【M,N】美好点的是;写出【N,M】美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,P,M和N中恰有一个点为其余两点的美好点?10.(2022秋•承德期中)如图所示,在数轴上点A,B,C表示的数分别为﹣2,0,6.点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)AB=,BC=,AC=;(2)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.①设运动时间为t,请用含有t的算式分别表示出AB,BC,AC;②在①的条件下,请问:BC﹣AB的值是否随着运动时间t的变化而变化?若变化,请说明理由;若不变,请求其值.11.(2022秋•霍邱县期中)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?12.(2022秋•秦淮区校级期中)如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
初中动点问题的方法归纳
初中动点问题的方法归纳初中动点问题是指在空间移动的过程中,需要确定一个或多个点的位置。
这种问题需要运用几何知识和分析能力来解决。
下面将对初中动点问题的方法进行归纳。
一、直线运动问题直线运动是最简单的动点问题之一,常见的例子包括匀速直线运动和匀变速直线运动。
1.匀速直线运动问题的解法:假设动点的速度为v,则可以根据速度和时间的关系确定动点在某个时刻t的位置:距离=速度×时间。
例如,问题描述为“某动点从A点出发,以60km/h的速度匀速向B点行进,已行进2小时,请问此时该动点距离A点多远?”解法:距离=速度×时间= 60km/h × 2h = 120km。
2.匀变速直线运动问题的解法:如果动点的速度随着时间的变化而变化,可以应用速度-时间图像或速度-时间关系的知识来解决问题。
例如,问题描述为“一辆汽车以10m/s^2的加速度匀加速,在10s 内的位移是多少?”解法:根据匀变速运动中的公式s = (初速度+末速度) ×时间/ 2,代入已知条件初速度为0,加速度为10m/s^2,时间为10s,计算得到位移为(0 + 10) × 10 / 2 = 50m。
二、曲线运动问题1.匀速圆周运动问题的解法:当动点以恒定速度绕固定的圆周运动时,可以应用圆的性质来解决问题。
例如,问题描述为“一个半径为5cm的圆正好需要6秒完成一周,求圆周的长度。
”解法:根据圆的性质,圆周长= 2π ×半径= 2π × 5cm =10πcm ≈ 31.4cm。
2.曲线运动问题的解法:在一些特殊的曲线运动问题中,可以利用对称性、角度关系和距离比例等方法来解决。
例如,问题描述为“一个人从A点出发,按其速度向直线BC行进,当经过点B时,BC边所形成的角度是90°,请问此时人到底B点的距离是BC边长的多少?”解法:利用角度关系,已知∠B = 90°,可以得出AB与BC互补,所以AB : BC = 1 : 1,即人到B点的距离等于BC边长的一半。
初二数学动点题型及解题方法
初二数学动点题型及解题方法我折腾了好久初二数学的动点题型,总算找到点门道。
说实话,初二刚接触动点题型的时候,我是真懵。
我一开始也是瞎摸索,感觉就像在一个黑暗的房间里找东西,完全没有方向。
比如说那种在几何图形里,一个点在动,然后让求面积或者线段长度关系之类的题。
我试过一种方法,就是先假设动点静止在某个特殊位置。
比如说一个三角形里有个动点在一条边上动,我就先把它当成在中点的位置去计算,看看能不能得到一些有用的规律或者关系。
但是很多时候,这样做只能得到这个特殊位置的情况,离得出一般的结论还差得远呢。
这就好比在大海里捞鱼,在一个小角落捞到一两条,可这根本不是全部。
后来我发现,用设未知数的方法特别重要。
就像给这个动点安个名字一样,设这个动点的坐标或者它移动的某个长度为x。
然后根据题目中的已知条件,用含x的式子去表示其他相关的线段长度或者角度。
比如说,一个动点从A点向B点移动,AB长度为10,设移动了x的长度,那剩下的长度就是10 - x嘛。
这样就能把变化中的东西用式子固定下来,再去寻找各种几何关系就容易多了。
关于解题步骤,我觉得就像搭积木一样。
首先找出和动点相关的已知条件,这是基础的积木块。
然后根据几何图形的性质,比如说三角形的内角和是180度,平行四边形对边相等之类的,把这些积木块按照规则搭起来,最后就能得出我们想要的结果。
但是这里面有坑啊。
我就犯过错,有时候太急于求成,式子列错了。
有次把相似三角形的对应边关系搞错了,算出来的结果就完全不对。
所以啊,做这种题一定要细心,每一步都要认真想想依据是什么。
要是实在不确定,就再重新仔细读题,看看是不是忽略了什么条件。
再比如说求动点产生的面积问题。
我有个心得,就是一定要去找不变的量和变化的量。
有些图形虽然动点在动,但是它可以转化成我们熟悉的图形加减。
像一个四边形ABCD,里面有个动点P,连接AP、BP、CP、DP把四边形分成了好几个三角形,要求总的面积,就可以看其中某些三角形的面积之和或者差是不变的,先算出来,然后再加上或减去变化部分的面积。
中考专题二动点问题题型方法归纳
动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已图(3) B图(1)B图(2)知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.图(1)图(2) 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
动点题的解题技巧
动点题的解题技巧动点题是数学中常见的一种题型,主要考察学生的空间思维能力和问题解决能力。
解决动点问题需要一定的技巧和策略,以下是一些解题技巧:1. 建立坐标系:首先,为方便分析,我们通常会建立一个坐标系。
根据题目的描述,选择一个合适的点作为原点,确定x轴、y轴的方向。
2. 标记关键点:在动点运动路径上,标记关键的点,如起点、终点、转折点等。
这些关键点在解题过程中可能会起到重要的作用。
3. 找出变量和参数:明确题目中的变量和参数,理解它们之间的关系和变化规律。
这些变量和参数通常与动点的位置、速度、加速度等有关。
4. 运用函数思想:在许多动点问题中,我们需要运用函数的思想来描述和解决。
例如,可以用一次函数、二次函数、三角函数等来表示动点的运动规律。
5. 运用几何知识:动点问题常常涉及到几何图形的形状、大小、位置关系等。
因此,我们需要运用几何知识来分析问题,如平行线、垂直线、角相等、距离相等等等。
6. 寻找等量关系:在解决动点问题时,我们需要寻找等量关系,如时间相等、距离相等、角度相等等等。
这些等量关系可以帮助我们建立方程或方程组。
7. 数形结合:数形结合是解决动点问题的重要方法之一。
通过将数学表达式与几何图形相结合,我们可以更直观地理解问题,找到解题的突破口。
8. 分类讨论:对于一些复杂的动点问题,我们需要进行分类讨论。
根据不同的条件或情况,将问题分解成若干个子问题,然后分别解决。
9. 检验答案:在解决问题后,我们需要对答案进行检验。
检查答案是否符合题目的要求,是否符合实际情况等等。
通过掌握这些解题技巧,我们可以更好地解决动点问题,提高数学思维能力。
初二动点最值问题的常用解法
初二动点最值问题的常用解法
初二动点最值问题是数学中常见的一类问题,常用的解法包括
几何法、代数法和微积分法。
首先,我们来看看几何法。
对于动点最值问题,我们可以通过
几何方法来解决。
例如,如果问题涉及到平面几何中的最短路径或
最大面积等问题,我们可以通过画图、利用几何性质和相似三角形
等方法来求解动点的最值问题。
这种方法相对直观,适用于一些简
单的动点最值问题。
其次,代数法也是常用的解法之一。
对于一些动点问题,我们
可以建立坐标系,引入变量,列方程,然后通过代数运算来求解动
点的最值问题。
例如,对于直线上的动点问题,我们可以设定动点
的坐标,列出相关方程,然后通过代数运算来求解最值。
这种方法
适用于一些需要进行坐标计算的动点最值问题。
最后,微积分法也是解决动点最值问题的常用方法。
通过对动
点轨迹的函数进行微分,找到函数的极值点,可以求得动点的最值。
这种方法适用于一些需要利用导数性质和极值定理的动点最值问题。
综上所述,初二动点最值问题的常用解法包括几何法、代数法和微积分法。
针对不同的问题,我们可以灵活运用这些方法来求解动点的最值问题。
希望这些解法对你有所帮助。
中考数学--动点问题题型方法归纳-7页精选文档
xA OQP By 图(3) ABC OEF AB CO D图(1) ABOE FC 图(2) 动点问题 题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形. 注意:第(3)问按直角位置分类讨论3.如图,已知抛物线(1)233(0)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?P Q A BC DxyMC DPQOAB xyM CD PQ OAB (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.提示:第(2)问按点P到拐点B所有时间分段分类;第(3)问是分类讨论:已知三定点O、P、Q,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。
然后画出各类的图形,根据图形性质求顶点坐标。
图(3)B图(1)B图(2)2、如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.注意:发现并充分运用特殊角∠DAB=60° 当△OPQ 面积最大时,四边形BCPQ 的面积最小。
图(1)图(2)二、 特殊四边形边上动点 4、如图所示,菱形ABCD 的边长为6厘米,60B ∠=°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A CB →→的方向运动,点Q 以2厘米/秒的速度沿A B C D →→→的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动,设P 、Q 运动的时间为x 秒时,APQ △与ABC △重叠部分....的面积为y 平方厘米(这里规定:点和线段是面积为O 的三角形),解答下列问题: (1)点P 、Q 从出发到相遇所用时间是 秒; (2)点P 、Q 从开始运动到停止的过程中,当APQ △是等边三角形时x 的值是秒;(3)求y 与x 之间的函数关系式.提示:第(3)问按点Q 到拐点时间B 、C 所有时间分段分类 ; 提醒----- 高相等的两个三角形面积比等于底边的比 。
5、如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3-,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式; (2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.注意:第(2)问按点P 到拐点B 所用时间分段分类;第(3)问发现∠MBC=90°,∠BCO 与∠ABM 互余,画出点P 运动过程中, ∠MPB=∠ABM 的两种情况,求出t 值。
利用OB ⊥AC,再求OP 与AC 夹角正切值.6、(2009年温州)如图,在平面直角坐标系中,点A(3,0),B(33,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC 向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.(1)求∠ABC的度数;(2)当t为何值时,AB∥DF;(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线y=x2+mx经过动点E,当S<23时,求m的取值范围(写出答案即注意:发现特殊性,DE∥OA7、(07黄冈)已知:如图,在平面直角坐标系中,四边形ABCO 是菱形,且 ∠AOC=60°,点B的坐标是,点P 从点C 开始以每秒1个单位长度的速度在线段CB 上向点B 移动,同时,点Q 从点O 开始以每秒a (1≤a ≤3)个单位长度的速度沿射线OA 方向移动,设(08)t t <≤秒后,直线PQ 交OB 于点D.(1)求∠AOB 的度数及线段OA 的长; (2)求经过A ,B ,C 三点的抛物线的解析式;(3)当3,a OD ==t 的值及此时直线PQ 的解析式;(4)当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆相似?当a 为何值时,以O ,P ,Q ,D 为顶点的三角形与OAB ∆不相似?请给出你的结论,并加以证明.8、(08黄冈)已知:如图,在直角梯形COAB 中,OC AB∥,以O为原点建立平面直角坐标系,A B C,,三点的坐标分别为(80)(810)(04A B C,,,,,,点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的27?(3)动点P从点O出发,沿折线OABD的路线移动过程中,设OPD△的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由.(此题备用)9、(09年黄冈市)如图,在平面直角坐标系xoy 中,抛物线21410189y x x =--与x 轴的交点为点A,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P,Q 移动的时间为t (单位:秒)(1)求A,B,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当0<t <92时,△PQ F 的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.提示:第(3)问用相似比的代换,得PF=OA (定值)。
第(4)问按哪两边相等分类讨论 ①PQ=PF,②PQ=FQ,③QF=PF.三、 直线上动点 8、(2009年湖南长沙)如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将B M N △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.特殊角∠CAB=30°,∠CBA=60° 特殊图形四边形BNPM 为菱形;第(3)问注意到△ABC 为直角三角形后,按直角位置对应分类;先画出与△ABC 相似的△BNQ ,再判断是否在对称轴上。
9、(2009眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
⑴求该抛物线的解析式;⑵动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标P 。
⑶在抛物线的对称轴上找一点M ,使||AM MC -的值最大,求出点M 的坐标。
提示:第(2)问按直角位置分类讨论后画出图形----①P 为直角顶点AE 为斜边时,以AE 为直径画圆与x 轴交点即为所求点P ,②A 为直角顶点时,过点A 作AE 垂线交x 轴于点P ,③E 为直角顶点时,作法同②;第(3)问,三角形两边之差小于第三边,那么等于第三边时差值最大。
10、(2009年兰州)如图①,正方形ABCD 中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.注意:第(4)问按点P分别在AB、BC、CD 边上分类讨论;求t值时,灵活运用等腰三角形“三线合一”。