双管板换热器的设计与制造(通用版)
双管板换热器的设计及制造要点_何玉伟
![双管板换热器的设计及制造要点_何玉伟](https://img.taocdn.com/s3/m/084d0919f12d2af90242e6ce.png)
- 18 -论文广场石油和化工设备2013年第16卷表1 换热器技术参数双管板换热器的设计及制造要点何玉伟,李岩,王雷(中航黎明锦西化工机械(集团)有限责任公司,辽宁 葫芦岛 125001)[摘 要] 对双管板换热器的设计及制造要点进行了介绍,对管板间距的计算及制造工艺的合理性进行了探讨,可供设计人员参考。
[关键词] 双管板换热器;结构;管束;设计;制造;要点作者简介:何玉伟(1969—),女,辽宁葫芦岛人,大学本科,工程师。
在中航黎明锦西化工机械(集团)有限责任公司研究院长期从事压力容器设计制造工作。
换热器是一种实现物料间热量交换的设备。
随着换热器技术的提高,其在工业领域的应用范围越来越广。
在生产使用中为防止腐蚀和污染,同时为满足工艺流程、劳动保护、安全生产等方面的要求,通常采用双管板换热器。
本文提到的冷却器管程介质为四氯化钛,不易燃,但高毒,且渗透性强,设备一旦发生泄漏,与壳程的介质冷却水混合后分解放热,释放出有毒的腐蚀性烟气,具有较强腐蚀性,在设计上采用双管板结构,以延长换热器的寿命。
1 换热器技术参数及结构1.1 设备技术参数见表1。
名称壳程管程设计压力MPa 0.50.5设计温度℃50100工作压力MPa 0.40.4工作温度(进/出)℃30/3870/57程数12物料名称/特性冷却水(无毒)四氯化钛汽液混合体(中度危害)主要受压元件材料Q345R 0Cr18Ni9焊缝接头系数0.851.0管子与管板连接形式强度胀(内管板)强度胀+强度焊(外管板)换热面积(m 2)351.2 设备结构特点设备外形结构见图1。
冷却器壳体尺寸Dg600×8×3982mm ,材质Q345R 。
外侧管板尺寸φ740×45mm ,材质为16MnⅢ+堆焊304,内侧管图1 冷却器结构简图板尺寸φ616×45mm ,材质为16Mn Ⅲ,共有124根φ25×2.5×4000mm 换热管,材质为0Cr18Ni9。
双管板换热器的结构设计
![双管板换热器的结构设计](https://img.taocdn.com/s3/m/e255c120376baf1ffc4fadb4.png)
双管板换热器的结构设计【摘要】本文就双管板换热器的结构设计进行了探讨,详细概述了有关设计条件和计算两方面的要点,并给出了几点需要注意的问题,以期能为双管板换热器的结构设计提供参考借鉴。
【关键词】双管板换热器;结构设计;问题所谓的换热器,就是是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
而双管板换热器比一般的换热器结构复杂,因此在设计过程中要更加重视。
基于此,本文就双管板换热器的结构设计进行了探讨,以期能为双管板换热器的结构设计提供参考借鉴。
1.设计条件某一项目烧碱装置后冷却器设计条件见表1。
该设备壳程介质为氯气,管程介质为循环水,如果两个介质发生泄漏,相接触就会产生强腐蚀性的盐酸或次氯酸,对该设备造成严重的腐蚀。
所以该设备选择双管板换热器,为绝对避免壳程介质与管程介质相接触,设置积液程结构,并设有放空口和排净口(取样口)进行泄漏检测,该设备结构如图1所示。
2.设计计算本文主要介绍管板强度的设计计算及积液程长度L的计算及其相关规定,其他受压元件的计算方法,与普通的单管板换热器计算方法相同,计算时可参考GB151—1999等相关规范···,这里不再赘述。
2.1管板强度计算双管板换热器的设计计算,在我国现行的标准规范GBl51中,没有该结构形式的管板厚度计算方法。
由此,本文参考TEMA标准及文献[2],认为双管板换热器的管程管板(也称外管板)和壳程管板(也称内管板)都能单独满足相应设计工况的设计前提下,确定该换热器管板厚度的计算方法。
(1)管程管板厚度计算。
运用SW6强度计算软件进行换热器的设计时,管板形式选择延长部分兼作法兰的固定式管板,设计参数按以下情况考虑:①设计压力和设计温度按管程工况确定;②壳程和换热管金属壁温按壳程和管程工况确定;③管板与换热管的连接为强度焊;④换热管长度为换热管总长度,换热管有效长度为管程管板内侧间的距离,换热管受压失稳的当量长度Lcr按GB151图32选取。
浅谈双管板换热器的设计与制造
![浅谈双管板换热器的设计与制造](https://img.taocdn.com/s3/m/5c7f5f13c5da50e2524d7f33.png)
介质名称
焊接接头系数 腐蚀裕度/ mm
C 1 2 、 C O 2 、 O 2 、 N 2
1 2
冷却水
0 . 8 5 2
混合物
0 . 8 5 2
图 5液压胀胀头
管 程 侧 管 板
克 程 侧 管 板
图2 管板连接形式 壳体尺寸为 6 0 0 ×8 , 壳程 材质为 Q 3 4 5 R , 管板 材质为 1 6 M n l I I , 管 程侧管板尺寸为 中7 3 0 × 6 0 , 壳程侧管板尺寸为 中6 1 6 × 5 0 , 换热管规格 为 中1 9 × 2 , 材质 为 1 0 号钢。换热器的管板连接形式为 : 管程侧 管板强 度焊+ 贴胀 , 壳程侧管板强度胀接 , 见图2 。 由于双管 板换热器的特殊结 构 , 因此双管 板换热器 的管板 加工和 强度胀接是制造过程 中的难点 。现结合我公 司实际制造情况对双管板 换热器的设计 、 制造工艺进行 简要介绍 。
-- — —
双管板换热 器制造过程 中 , 管程侧管板与壳程侧 管板管孔加工 时 其 同心度 , 平行度 , 粗糙度 , 尤为关键。为保证四块管板管 孔的同心度 、 管孔与端面的垂直度 , 采用先打底孔 、 后钻孔 、 然 后铰孔 , 控制孔径 及粗 糙度 , 不允许出现螺旋状或纵 向划痕 。 3 _ 3折 流 板 加工 折流板管孔与管板管孔是否同心直接影响管子能否J I b a .  ̄ , J 穿过 四坎 管板 , 因此折流板加工时应 最好 与管板配钻 , 折流管孑 L 两端要倒角 , 去 除 毛刺 。根据 折流板 间距的大 小也可适 当调整折 流板孔径 的公差 范 围, 有利于换热器穿管。 3 . 4 管板及 简体组装 1 ) 将换热管 、 管板均清理 干净 , 尤 其是换热管 ( 下转第 3 6 0 页)
双管板换热器的设计与制造
![双管板换热器的设计与制造](https://img.taocdn.com/s3/m/36ef646eb5daa58da0116c175f0e7cd18525185c.png)
双管板换热器的设计与制造简介双管板换热器是一种广泛应用于化工、制药、石油、食品等行业的换热设备。
其主要作用是将一个流体的热量传递给另一个流体,从而达到加热、冷却、蒸发等处理目的。
相比于传统的管壳式换热器,双管板换热器具有体积小、传热效率高、维修方便等优点,因此被广泛应用。
本文将从双管板换热器的设计、制造和使用等方面进行介绍。
设计热传递计算双管板换热器的设计需要进行热传递计算,以确定板片的数量和表面积。
一般情况下,热传递计算需要考虑以下因素:•流体的温度、压力和流量•热传递系数•固体传热能力•换热器的体积和形状•板片的布局和数量•热负荷和热效率要求在进行热传递计算时,可以使用一些工具和软件来辅助计算。
例如,可以使用ANSYS FLUENT软件对流体和固体传热进行模拟和计算。
此外,还需要考虑流体和固体之间的传热方式,包括对流、辐射和传导等。
板片的设计板片的设计是双管板换热器中最重要的部分之一。
一般情况下,板片的设计需要考虑以下因素:•材料的选择:板片材料需要具有良好的耐腐蚀性和传热性能,常见的材料包括不锈钢、镍合金等。
•板片的形状和大小:板片的形状和大小需要根据换热器的具体应用来确定,一般情况下,板片的宽度在2-10mm之间,间距在2-10mm之间,板片总面积应当满足热传递计算的需求。
•板片的密度和布局:密度和布局的选择需要考虑到流体的流量和热负荷等因素,一般情况下,板片的间距和布局需要满足流体的流速和热传递计算的需求。
•板片的安装方式:板片的安装方式需要考虑到维修和清洗等因素,一般情况下,板片需要可以方便的拆卸和安装。
其他设计因素除了板片的设计之外,双管板换热器的设计还需要考虑以下因素:•进出口管道的设计:进出口管道需要满足流量和压力的要求,一般情况下,可以使用方形、圆形或矩形形状的进出口管道。
•头部和底部的设计:头部和底部需要满足与板片的对接要求和防泄漏要求,一般情况下,可以使用法兰连接、焊接或密封槽连接等方式。
双管板换热器的结构及制造工艺合理设计
![双管板换热器的结构及制造工艺合理设计](https://img.taocdn.com/s3/m/b643fe61f121dd36a22d8240.png)
双管板换热器的结构及制造工艺合理设计一、双管板换热器结构设计准备工作(一)结构初步规划对于一项双管板换热器而言,其结构主体上有4块管板,主要结构状态如下:首先是法兰式管程侧管板,有两块,其与管箱法兰之间的连接使用垫片以及螺柱,同时联通换热管、管道共同组成管程。
换热管与管程侧管板之间的连接可采用贴胀与强度焊联合方式,在介质选择上也适应于条件偏向苛刻程度的介质。
非法兰式的壳程侧管板与壳体之间的的连接让壳程更具完整性,在换热管与壳程侧管板之间的连接方式为强度胀接。
在结构中,壳程管板与换热管之间又可以构成两腔积液程,由此产生形态特殊的四腔结构。
(二)選材控制材料的选择关系到双管板换热器的使用稳定性以及安全性,因此选材是结构设计的关键。
在材料选择方面,首先应考虑介质特性,重点放在抗腐蚀方面,并根据用户需求加以调整,保障在压力以及操作温度方面不会对工艺性能产生不良影响。
换热管与管程侧管板之间的连接使用贴胀加强度焊型式,锻件级别为Ⅱ级。
由于换热管与壳程侧管板之间的连接属于强度胀接,因此要求管板质量高,故锻件级别为Ⅲ级。
同时,鉴于管板材料在硬度值方面要与双管板换热器约在HB20-30之间,从理论上来说不锈钢管板与换热管之间的硬度应属于同一水平,但在实际硬度测量中发现,硬度变化能够通过材料供应以及材料选择实现。
在具体设计制造环节中,设计人员同样需要对换热管与管板管孔之间的间隙严格把关,利用“特殊紧配合”原则减少管板材料与换热管之间由于硬度差带来的不良影响。
需要注意的是,换热管HBW硬度要求应在评定实验中明确指出。
二、结构设计要点(一)布管操作以某实际设计为例,换热管外径19mm用户将布管间距设置为23.75mm,将排列方式要求为转角正三角形,因此理论上来说孔桥宽度只能够为4.75mm,在制造中胀接环节操作具有一定难度。
按照双管板换热器传统经验结合相关企业自行加工制造能力,可将换热管与管板之间的胀接设定为液袋柔性胀接,其作用原理如下:当液体压力不断上升过程中,换热管受到压力后会出现变形,并且随着压力的增大变形程度也会加大(此变形属于弹性变形),之后在达到塑性变形程度时会被挤压至管板孔壁部位。
双管板U形换热器设计
![双管板U形换热器设计](https://img.taocdn.com/s3/m/1cece40aad51f01dc381f15b.png)
双管板U形换热器设计发表时间:2016-11-07T14:07:39.223Z 来源:《电力设备》2016年第15期作者:刘雪冰岳冬冬邱梅唤[导读] 换热器是炼油、化工行业生产中的重要设备,针对双管板U型换热器的设计实例。
(江苏德邦工程有限公司南京 211153)摘要:换热器是炼油、化工行业生产中的重要设备,针对双管板U型换热器的设计实例,对设计过程中换热器结构、型式、选材、强度计算及检验进行介绍。
关键词:换热器双管板设计检验引言:换热器作为一类重要的化工特种设备,被广泛应用于炼油、化工行业中,据统计,换热器占总设备量和设备投资的40%左右【1】。
换热器的主要作用是维持或改变介质的操作温度或相态,从而使热量在不同温度的介质之间进行传递,以达到工艺操作的要求。
换热器结构型式有很多种,虽然管壳式换热器在传热效率、结构紧凑性等方面不如一些新型高效紧凑式换热器,但它具有明显的特点,即结构紧固、可靠性高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范围广、换热表面的清洗比较方便、且能承受较高的操作压力和温度,使其成为目前使用最广泛的类型。
根据管壳式换热器的结构特点,可分为固定管板式、浮头式、U形管式、填料函式和釜式重沸器五类。
本文将结合某项目中一具体的双管板U形换热器的设计,对换热器的选型、选材、排管方式、折流板形式等进行介绍。
如图1所示:换热器结构形式的选择U形管式换热器在换热器中是唯一适用于适用于高温、高压和高温差的换热器。
U形管式换热器具有以下优点【2】:(1).U形管尾端可以自由浮动,无须考虑温差应力,可用于高温差的场合;(2).只有一块管板,法兰数量少,结构简单且泄漏点少,制造成本低;(3).可以进行抽芯清洗。
综上,本设备应选用U形管式结构。
同时,考虑介质影响,为了禁止管壳程介质混合,产生强腐蚀性的盐酸或次氯酸,对设备造成更严重的腐蚀,本设备采用双管板结构。
设备详细设计换热器材质选择(1).换热器受压元件用钢应同时考虑容器的使用条件(设计温度、设计压力、介质特性和操作特点等)、材料的性能(力学性能、工艺性能、化学性能和物理性能)、容器的制造工艺、经济合理性(材料的价格、制造费用)以及设计使用寿命。
分离式双管板热交换器的设计及制造要点
![分离式双管板热交换器的设计及制造要点](https://img.taocdn.com/s3/m/ef92441786c24028915f804d2b160b4e767f8114.png)
板孔的合理 间 隙.考 虑 到 双 管 板 结 构 的 特 殊 性,
管板孔表面粗糙度 Ra 应不大于 12.
5μm,有利于
加,不 利 于 整 台 热 交 换
2)管板 孔 与 管 板 密 封 面 的 垂 直 度 要 求. 对
g 为隔离腔长度.
本文结合工程实例讨论分离式双管板热交换
收稿日期:
2020
G
10
G
28.
作者简介:许伟,男,
2002 年 毕 业 于 浙 江 大 学 过 程 装 备 与 控
制工程专业,工 学 学 士,主 要 从 事 静 设 备 设 计 工 作,高 级 工
程师.
Ema
i
l:
xuwe
i@s
e
i.
c
om.
cn.
2
石 油 化 工 设 备 技 术
2021 年
表 1 E
G
308 设计参数
质中,会引起后续的吸附塔中吸附剂含水量超标,
影响吸附剂性能,故 该 热 交 换 器 采 用 分 离 式 双 管
项目
壳程
管程
板结构,以避免管、壳程介质的窜漏.为了便于管
操作介质
中压蒸汽
束抽 出 清 洗,内、外 管 板 均 兼 做 设 备 法 兰,分 别 与
244 ℃ 考 虑,内 管 板 平 均 金 属 温 度 按 182 ℃ 考
虑,内、外 管 板 间 距 按 GB/T151 中 公 式 (
7
G
135)
计算的值约为178mm,设计取g=190mm,计算
结果偏于保守.
2 分离式双管板热交换器的制造要点
毕业设计(论文)流量为200th双管程固定管板式换热器设计(全套图纸)
![毕业设计(论文)流量为200th双管程固定管板式换热器设计(全套图纸)](https://img.taocdn.com/s3/m/c9bd50e5ee06eff9aff80748.png)
Compute in the traditional craft in include to transmit heat an area calculation, spread a calories calculation and transmit heat coefficient to really settle and change hot path inside the tube and change hot tube model number of choice, and transmit heat coefficient, press to decline and checking of wall calculate etc. problem.
Key word: Change a hot machine; Float to take care of plank; Transmitheat a calculation; The strength school checks
双管板换热器的设计及制造
![双管板换热器的设计及制造](https://img.taocdn.com/s3/m/93045948a8956bec0875e30d.png)
图 3 变形 示 意图
1 外侧 管板 . 2 内侧管 板 .
之问距 。穿入全部换 热管后 ,以外侧管 板面 为基 准 ,调 整换热 管伸 出管 板面 的长 度为 2~3 m。双 管板与换 热 a r 管连接的顺 序为 ,先胀接 内侧 管板与换 热管 ,后焊接 外
()管子伸 出管板 面长 度 为确 保焊 接 的可 靠性 , 2 避免水压试验 时部分连接接头 泄漏 , 选择 了如 图 2 故 所 示的结构。管子伸出管板 面 的长 度为 2 m a r 。这 种结构 既 可使管板与管 子焊缝高度增 加 ,又不会熔 化管头 ,从 而 增加了连接接头的强度及密封性能,保持管端 圆整无缺。
体 , 图样压力进行水压及 气密性试验 。最后 对管程进 按
行气 压试验 。
压胀 。对于碳素钢及其合金钢保持管板 与管子之 间一定
的硬度差是改善胀接质量的重要途径 之一 ,通常将 硬度
四、建议
1 )严 格控 制可能影 响双 管板 同心度 、平行度 、扭
差控制在 30 R 0H C左右。对 于奥 氏体 不锈钢 ,虽然 因材
穿。
受设备的机 械载荷 与热载荷 。承载能力主要取 决于双 管
板问距 。并且对 固定式双管板进 行壳程水压 试验时 ,内
侧管板 与换热管连接处可 能存 在泄漏 ,故在确 定双管板
问距时必须考虑观察 、检漏所需要 的最小空 问。综合考
虑 ,隔离腔 问距为 5 r 0 m。 a
2
()管束 与 壳体 组 装 在 壳体 内组装 拉 杆 、折 流 2
G M 通 用 螽i nl I 霾
27 7 …3 0 ̄ 2 0 期 7
W W tx nt W .y .e j
双管板换热器的制造工艺
![双管板换热器的制造工艺](https://img.taocdn.com/s3/m/ba785c0d001ca300a6c30c22590102020740f2e1.png)
双管板换热器的制造工艺我对这双管板换热器的制造工艺啊,那可算是有不少的了解。
这双管板换热器,可不像那些普通的东西,制造起来讲究可多着呢。
我就先从材料说起吧。
这材料的选择就像选媳妇一样,得精挑细选。
你看啊,那钢材得是质量上乘的,表面得光滑得像那刚磨好的镜子似的,不能有一点瑕疵。
我去那材料库看的时候,那管板的材料堆在那儿,每一块都泛着那种金属特有的冷光,就好像在说“我可是很厉害的,选我准没错”。
管板的厚度也有讲究,太薄了可不行,就像纸糊的一样,根本经不住里面那些流体的折腾。
然后就是切割工艺。
那切割师傅站在切割机旁边,眼睛瞪得大大的,就像两颗铜铃,紧紧盯着那材料。
手里拿着操控杆,就跟拿着个魔法棒似的。
机器“嗡嗡”一响,那火花就像过年放的烟花一样四处飞溅。
这切割的尺寸可不能有一点偏差啊,差个一毫米,那这双管板换热器可能就废了。
我就跟那师傅说:“师傅啊,您可得仔细着点儿,这就跟绣花似的,一针绣歪了,这花可就不好看了。
”师傅就咧着嘴笑着说:“放心吧,我心里有数。
”再说说焊接。
焊接那就是把各个部件连起来的关键工序。
那焊接工人啊,戴着个大面罩,只露出两只眼睛,眼睛里透着一股专注的劲儿。
焊接的时候,那焊条就像个小火龙一样,在管板之间穿梭。
焊接的地方得均匀,不能这儿厚那儿薄的。
我在旁边看着的时候,那热浪一波一波地向我扑来,就像要把我烤熟了似的。
我就问那工人:“这热得慌吧?”工人就说:“习惯了,这要是不热啊,这活儿就干不好喽。
”还有那钻孔。
钻孔的时候啊,那钻头就像个小钻头兵一样,朝着管板进军。
每个孔的位置都得精确,就像棋盘上的棋子,得各就各位。
那负责钻孔的小伙子,额头上豆大的汗珠不停地往下掉,他也顾不上擦,就盯着那钻头,生怕出一点差错。
我就在旁边给他递个毛巾,说:“小伙子,擦擦汗,别累坏了。
”小伙子就接过毛巾,胡乱擦了一把,又接着干。
这双管板换热器的制造工艺啊,每一步都像是一场战斗,每个工人都是战场上的勇士,一点一点把这个复杂的东西制造出来。
固定式双管板换热器的设计方法
![固定式双管板换热器的设计方法](https://img.taocdn.com/s3/m/e2904afc87c24028915fc3d9.png)
固定式双管板换热器的设计方法摘要]双管板换热器的使用越来越普及,但是双管板换热器的设计在标准里并没有明确的说明,这样就要求设计者必须在设计过程中根据双管板换热器在操作以及设计工况对其进行设计,在没有成熟的设计标准的情况下,本文针对双管板换热器的管板受力情况并结合一些设计经验进行详细的设计说明。
[关键词]固定式换热器;双管板;积液程;管程;壳程;苛刻工况在换热器的设计中,若管程和壳程中的两种介质相混合会引起重大的事故,而双管板换热器的结构可以有效的杜绝这种情况的发生。
但是目前由于没有具体的设计标准,因此双管板的设计都是由设计者自己根据自己的理解进行设计的,有些设计方法没有按照双管板在操作工况下的具体受力来设计,导致双管板的设计不准确,由于双管板换热器内部介质的特殊性,因此这样是非常不安全,为以后在设备使用过程中埋下了极大的安全隐患。
本文综合各种设计方法,找出一种有效的设计思路,使得双管板的设计更偏于安全。
1 双管板换热器的结构介绍积液程的作用就是把管程和壳程由于双管板换热器的壳程管程之间是由两块管板组成的,由此形成三个程,即管程、壳程、管程管板和壳程管板之间形成积液程。
详见见图FIG.1。
由于较为苛刻的介质一般在管程,换热管在管程侧管板采用强度焊或强度焊加强度胀的连接方式,壳程侧管板采用强度胀的连接方式,积液程侧硬设计放空口和排净口。
3. 具体计算举例3.1假定设计工况为了使得管板的设计思路更加清晰准确,现假定一种设计工况,管程的介质是高度危害,根据工艺条件,管程和壳程的介质不能相混合。
根据这个要求设计一台双管板的换热器。
壳程管程积液程操作温度(℃) 100~150 140~160 20操作压力(MPa) 0.3 0.22 atm设计温度(℃) 170 180 170 (1)设计压力(MPa) 0.6 0.6 atm金属壁温(℃) 120 150 20(2)注(1)由于在操作中换热管的作用导致这个程的温度不会为常温因此可以考虑为壳程的设计温度,这样会比较苛刻。
双管板换热器的设计和制造 2
![双管板换热器的设计和制造 2](https://img.taocdn.com/s3/m/9850a0d8d15abe23482f4dd5.png)
则壳程的设计压力 PS 为 :
ps
=
1105~111
×P [2 ] SW
管程的工作压力 Ptw 是与其相连的管道中的压力 。在此设计中 (见图 1) ,管板 1 管程一侧直接与大
气相连 ,即 : Pt w = 0
故此时的管程设计压力为 : pt = 0 ,则 : pd = ps
管板计算厚度 :
[3]
1 工艺参数
所谓双管板换热器就是在换热器一端设有一定间隙的两块管板或相当于有一定间隙的两块管板的 换热器见图 1 。
图 1 双管板换热器
收稿日期 :2006 - 06 - 02 作者简介 :王桂红 (1974 —) ,女 ,河北玉田人 ,讲师 ,硕士 。
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
Ptw :管程工作压力 ,MPa ; q :换热管与管板连接的拉脱力 ,MPa ; [ q ] :许用拉脱力 ,MPa ;
δ1 :管板计算厚度 ,mm ;δt :换热管管壁厚度 ,mm ;μ:管板强度削弱系数 ,一般取 μ= 014 ;
σt :换热管轴向应力 ,MPa ;σr :换热管径向应力 ,MPa ;
,即 σmax
=
σ s
,则
:
l间距 ,mm ;
σs :换热管材料的屈服限 ,MPa ; E :换热管材料的弹性模数 ,MPa ;
J :换热管截面的轴惯性矩 ,mm4 ; d :换热管外径 ,mm ;
f
:换热管挠度
,mm ; f
=
Db 2
al ( tl - t0 ) - as ( ts - t0 )
双管板换热器的设计和制造
![双管板换热器的设计和制造](https://img.taocdn.com/s3/m/f45ec214650e52ea5518982c.png)
2 3 壳程 管板 与换热管的 强度胀 .
a壳 程管 板与 换热 管 的强度 胀应 采用 液压 胀 。 . 液 压胀 可靠 性好 , 热 管 不 易 产 生 过胀 , 接 的部 换 胀 位 不产 生窜 动 , 热管 与管 板 的连接 处在 整个 长度 换
A = ×7 c× do× Z
为安全起见, L实际取值应按计算值再放大
式 中 : 为换热 管数 量 ;0为换热 管外 径 , z d m; 为
1% 左 右。一 般 情 况 下 , 取 值 在 2 0 m ~ 2 L 0m
3 0 m。 0 r a
两壳程管板 内侧的间距 , m。 由此可见 , 双管板换热器的换热面积对于换热 管整体 长度 的利 用率较低 , 设计 时应 予注意 。
板, 由此形成了 3 个程 , 即壳程、 管程和壳程管板与 管 程管板 之 间形 成 的聚液程 。计算 管板厚 度时 , 应
考 虑 3个 程 的工况 , 不 同工 况进行 计算 。下 面以 按 双 管板 固定管板 换热 器为例 , 简述管 板强度 计算 中
的参数确定原则 。
a管程 管板 的设计参 数 。 .
竟程管板 聚液亮 譬程管拔
图 1 双 管板 固定管板换 热器
壳程管板 聚液壳 管程管板
图 2 双 管板 U 形 管 式换 热 器
介质 的流 动 方 向 为 逆 流 , 热 系 数 较 高 。U 形 管 传
定 的硬 度 差 , 般 管 板 比换 热 管 硬 度 高 HB 0~ 一 2
压试验等 , 出了双管板换热器在设计计算和制造方面应注意的问题 , 指 供设计人 员参考。 关键词 : 热 器 ; 管板 ; 换 双 计算 ; 构 ; 造 结 制
双管板换热器设计、计算和制造工艺
![双管板换热器设计、计算和制造工艺](https://img.taocdn.com/s3/m/17709316fc4ffe473368ab21.png)
与第二种流体接触后 , 会改变催化剂性能或与
催 化剂 起化 学反 应 。
1 4 产 品不 纯 .
l
…
{ I l I - : - l - _  ̄- -- 4 … ~ ri _ ‘ -- --
l
…
I
l I}
.
; # 。 { … …# =
I
—
r1 l
混合时, 将会 产 生严重 后果 , 管板换 热器 主要在 下 双
列 情况 下采 用 。
1 1 防腐 性 .
§ I l 1 l l I . I j 1 l l l . 1 l I -一 I I I 目 。— ’ l I l i ’ I — l l l l ) L
般 采用强 度焊加 贴 胀 , 工 作 条件 苛 刻 可 采 用 强 度 若
焊 加强度 胀 。 3 2 双 管板换 热器 材料 选用 设计 .
设 计 时应 注 意管 板 与 管子 须 有 一定 的硬 度 差 ,
一
般管板 比换 热 管 硬 度 高 HB 0 3 , 两 者 硬 度 2 ̄ 0 当
摘 要
分析说明了双管板换热器在结构设计、 强度计算 、 材料选择和制造、 胀管方法 、 水压试验等方面
应 注意 的 问题 。
关键词 : 换热器 双管板
结构设计 强度计算
胀管方法
1 双 管板换热器的概述
双管板换 热器一般有两种型式 : 普通型双管板 和整块式双管板。在实际应用 中, 采用普通型双管 板较为普遍 , 而整块式 管板加工复杂 , 以很少使 所
(6 1Mn锻件 ) 则选 用 强 度 等级 较 高 的 材 料 作 换 热 ,
管 (0 1 #无缝 钢管 ) 。
双管板换热器的设计与制造探讨
![双管板换热器的设计与制造探讨](https://img.taocdn.com/s3/m/19953d074a7302768e993969.png)
宴乏妻j ;篓凰,双管板换热器的设计与制造探讨曲斌(沈阳仪表科学研究院,辽宁沈阳110043)c}商要]换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。
本文探讨了双管板换热器的设计与制造问题。
鹾键词]双管板;设计;制造换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一,因此换热设备的研究备受世界各国政府及研究机构的高度重视。
面|f 缶着资源日益枯竭的难题,如何提高设备的使用效率已成为—个迫切的问题。
目前,管壳式换热设备在化工生产中仍占据主要地位,尤其在高温或有腐蚀性介质的作业中更能显出优势。
但多数管壳式换热器达不到制冷要求的现状,因此本文选择双管板换热器为研究对象。
1换热器的分类工业生产中使用的换热器型式很多,而且仍在不断发展。
按使用目的不同,换热器可分为加热器、冷凝器、蒸发器和再沸器等。
由于使用的条件和工作的环境不同,换热器又有各种各样的型式和结构。
按传热原理和实现热交换的方法,换热器可分为间壁式、混合式和蓄热式3类,其中以间壁式换热器应用最为普遍。
问壁式换热器种类很多,如夹套式换热器、套管式换热器、蛇管式换热器、板式换热器、板翅式换热器和列管式换热器,列管式换热器又D H 做管壳式换热器,是目前应用最广泛的一种换热器。
2双管板换热器及其特点简介双管板换热器是在换热器一端设有一定间隙的两块管板或相当于有~定间隙的两块管板的换热器。
在工业应用中,主要在两种环境下采用双管板换热器。
其一是要求百分百防止管壳程间介质混串的场合,这时通常会加排液倒淋装置在内外管板之间的空腔上,使得管壳程介质切实被内外两层管板隔离,方便日常观测和排放内管板的泄露。
其二是在管壳程间介质压差很大的场合,为了喇氏管壳程间介质的压差,—般采取在内外管板之间的空腔中加入某种介质。
目前,单管板换热器最常见,但其在使用中经常出现一些问题,比如垫片螺栓法兰接头密封泄漏外,管板上的管口泄漏,以及焊接裂纹等、单管板换热器管板上的管日泄漏大部分出现在焊接收弧处一焊接收弧时气体未放干净,有砂跟。
双管板换热器制造工艺方案
![双管板换热器制造工艺方案](https://img.taocdn.com/s3/m/b1f9ff1ece2f0066f43322c7.png)
双管板换热器制造工艺方案摘要:本文首先简单阐述了双管板换热器的设备结构特点,分析了结构材料质量控制,研究了结构设计要点以及制造工艺,并在此基础上提出了几点注意事项。
旨在完善双管板换热器制造模式,提升其使用安全性与稳定性。
关键词:双管板换热器;结构设计;制造工艺一、设备结构特点:本头塔再沸器设备是大型管壳式双管板结构换热器,规格尺寸φ2300*14,换热面积:647.3m2。
设计压力MPa(壳程/管程):0.981/FV/0.755/FV,工作压力MPa(壳程/管程):0.588/0.108,设计温度℃(壳程/管程)214 /175,工作温度℃:壳程:170/163.3,管程:108.1/108.1,工作介质:壳程:蒸汽,管程:二氯乙烷(为中易燃、中度危害)。
设备主材:换热管BFe30-1-1、内外管板16MnⅢ、设备法兰16MnⅡ、管壳程筒体、封头、膨胀节Q345R。
为确保设备在设计要求下安全有效地运行,我公司在制造过程中采取了以下主要工艺措施,保证了产品质量。
二、双管板换热器材料质量控制1、按规定严格做好原材料、焊材、外购外协件的采购、检查、复验、验收、保管与发放、材料标记与移植等工作,以确保容器用材准确无误、具有可追溯性。
2、双管板换热器用管板、换热管、筒体、封头、法兰等主材及焊材,严格按图纸要求的材料向有信誉保证、合格的供应商采购及检验。
白铜BFe30-1-1换热管应符合GB8890标准要求,其外径、壁厚允差按图样要求,管板、法兰16Mn锻件应符合JB4726-2000标准要求,Q345R钢板应符合GB713-2007标准要求。
材料进厂后,由检查员对材料外观质量、标记、材质证明书等进行核对、检查、材料复验,经材料责任师确认,合格后方可入库。
经检查合格的材料方可投入生产。
三、双管板换热器的制造工艺方案本双管板换热器中筒体、封头、管板(内、外)制造、管束组装、壳体组装,换热管与内管板的强度胀及试压检漏、换热管与外管板的焊接与胀接是设备制造的关键和难点。
分离式双管板列管换热器的设计与制造
![分离式双管板列管换热器的设计与制造](https://img.taocdn.com/s3/m/a61fff0f03d8ce2f006623a6.png)
1 9 8 ・
工 程 科 技
分离式双管板列管换热器 的设 计与制造
王艳武 白 光
( 中化 吉林长 山化工有限公 司, 吉林 前郭 1 3 1 1 0 9 )
摘 要: 本文对双 管板换热器的设计和制造情 况进行 了论述 , 在设计 方面主要介绍 了结构设计、 材料选择以及管板 强度 的计 算方 法; 在制造方面主要介 绍了管板加工、 折流板加 工、 胀接 以及水压实验 。同时指 出了在换热器的设计与制造过程 中应注意的问题 , 以供参考 。 关键词: 双管板; 双管板换热 器; 设计 ; 制造; 胀接
双管板结构具有可迅速检测 出管壳程任意一 端介 质是否发生 聚液程。 计算管板厚度的时候 , 应考虑 3个程的工况 , 按实际工况计 了泄露 、 完全分割管 壳程介质并使其无法相互 串通 的优点 , 目前 受 算 。 到 了介质危害性很 高 、 管壳程介质必须分割开的用户的欢迎。由于 3双管板换热器 的制造 3 . 1管 板 加 工 双管板 的结 构 比较独特 , 在设 计和制造过程中难度较大 , 也需要 一 定 的技巧 。 有鉴于此 , 必须要对 双管板换热器的结构设计 、 材料选择 为 了保证 管孑 L 的垂直度 、 直径 以及 管 口间距 , 加工管板孔 的时 以及制造检验等各个环节进行严格控制 , 尽可能提高设计制造的质 候最好采用数控钻床。钻孑 L 时应尽可能降低切削和退刀的速度 , 管 量 和水平 , 使双管板换热器达到相应的使 用要求 。 孔 的表面粗糙度  ̄ >R a 6 . 3 ,同时还应 留有一定的铰孔余 量 .通常为 1 双 管板 换 热 器 的 结构 0 . 0 1 m m。为 了消除管孔上的纵 向划痕 , 钻孔之后还应对管板进行铰 通常情况下 , 可将双管板换热器分为固定管板式换热器 和 U型 孔 , 从 而将管 口的表面粗糙度保持在 R a 3 . 2或之上 。 完成铰孔之后 , 管式换热器 。 固定管板式换热器共包括四块管板 , 这种换热器的管 、 应按 图样规定的要求调整管孔公 差 , 使用止规和通规对 每块管板 的 严禁管孔 内 壳程介质呈逆流方 向流动 , 具有较高 的传热系数 , 也能获得 较好 的 管孔进行仔细的检测 。当管板有强度胀或贴胀要求时 , 传热效果 。而一台 u型管式换热器只有两块管板 , 从 内外介质的流 存在纵 向条痕或贯通 的螺旋形 。 3 . 2 折 流板 加 工 动方 向来说 , 这种换热器管可分为一半管束为并流 , 另 一半 管束为 逆流等两种 , 这也是其传热系数较低的主要原 因。虽然就传热系数 使用 电焊将管板与折流板固定 好同时还要标 记好 方位 , 以管板 而言 , U型管式换热器 比固定管板式换 热器低 , 但其管板只有两块 , 孑 L 为导向钻折流板管孔 。最好使钻孔方 向与穿管方 向一致 , 这样可 因此泄露点也少 。同时 , 在壳程水压试验之后也易于烘干。因此 , 如 为穿管提供便利。 清除掉折流板正 、 反两面的管孔上的毛刺 , 而且还 果换热面积不大 、 壳管程具有较大的温差或需要经常性 的对壳程介 要仔 细倒角 , 以防换热管外表面在穿管时遭受损伤。 质进行清理并管束表面 , 可选择使用 U型管式换热器 。 3 . 3强度胀 2双管板换热器 的设计 液压胀具有可靠性强 的特点 ,换热管产生过胀的可能性小 , 胀 2 . 1换 热 器 的 结 构设 计 接的部位也 比较稳定 , 同时在整个长 度上管板与换热管连接处的应 固定管板式换热器作为加热器或冷却器 的时候 , 壳程 的介质应 力分布 比较均匀 。因此换热管与壳程管板的强度胀 应采用液压胀 。 为水蒸 汽或水 , 这样 除了可 以避 免设 置聚液壳之外 , 在壳程水压试 另外 , 通常应在胀管前进行胀接评定试验 , 这样可 以保证胀接 的质 验之后还可 以减 少烘干的环节。 聚液壳在实现 U型管式换热器双管 量 。 板之 间的彼此连接 中发挥着重要作用 。 在管板间距 的调整并使管板 3 . 4水压试验和气密性试验 之 间保持相互平行等方面 , 聚液壳也发挥着重要作用。 同时 , 还可以 般来说 , 在 双 管 板 换 热 器 的压 力 试 验 中 应 按 相 应 的 步 骤 来 进 使 用其 对相邻两管板之间泄漏 出的气f 液) 体进行封 闭 , 以避免有 毒 行 。 在壳程水压试验 的过程中应按照设计图样规定的压力试验值来 气( 液) 体外溢。 可将放空 口和放净 口设置于聚液壳 的最高和最低处 , 进行 ,可通过 聚液腔 的空间检查内侧壳程管板与换热 管的连接质 以便于渗漏气f 液) 体 的及时导出。如果壳 、 管程之间有很大 的温差 , 量。 水压试验合 格后 , 还要按要求的压力试验值进行气密性试验 , 并 为了有效 的降低换热管与管板连接处的应力 , 应尽可能的降低短节 将透 明的 U形管检验工装分别安装在 聚液腔下方的 2个排泄孔处 , 的壁厚 , 如有必要或情况允许 的时候还可增加一个膨胀节。 同时为 了保持水平液位 , 还需要往 U形管内加水 。出现试验气体微 u形管内的水平液位会发生一定的变化 。因此 , 在气 在设计 壳程管板 的过程 中,带法 兰的固定式管板是 最为适宜 泄漏 的情况时 , 的, 也 比较常用 。 如果不带法兰 , 在对管板与壳程简体之间的接头施 密性试验过程中 u形管如保持液位水平则为合格。 壳程氨渗漏试验 焊时 , 易 因焊 接变形而无法使管孔与管板保持垂直 , 从而导致 强度 的过程 中可使用试纸在聚液腔的排泄孔试漏 , 如果试纸颜色没有改 胀难以达到预期 的效果。在连接换热管与管程管板时 , 强度焊加贴 变则为合格 。 另外 , 在做聚液腔气密性试验的时候应按要求进行 , 对 胀的使用 比较普遍 , 如有必要还可采用强度焊加 强度胀 。 换热管接头与管程管板 的连接质量进行仔 细的检查 , 然后再对管程 2 . 2 材 料 的选 择 进行水压试验和气密性试验 。 设 计时 , 换热管与管板应保持一定 的硬度差。 一般来说 , 管板 的 结束 语 综上所述 , 作为一种较 为特殊的换热器结构 , 双管 板换热器 可 硬度要 比换热管高 H B 2 0~H B 3 0 。因此用于制作管板 的材料应具备 定 的强度等级( 比如 1 6 Mn锻件) , 但用 于制作换热管 的材料 的强 以解决壳程与管程中介质相互泄露 的问题 , 而双管板换热器的制造 因此 , 必须要保证换热管 的质量。 为了 度等级要相对较低f 比如 1 0号无缝钢管) 。 如果两者在硬度上比较接 质量是解决这一问题的前提 。 近, 可进行退火处理 , 以降低换热管 的硬度。 更好地应用和推广双管板换热器 , 必须要在各个环节 中进行必要的 2 . 3设计计算 控制 , 从而为产品的质量提供保证 。 参 考 文 献 在使用温度方 面,双 管板换 热器的两块管板存 在着一定 的差 异。 发生径 向位移时 , 换热管会 随之产生弯曲应力和剪应力。 而管板 [ 1 】 朱 东梅. 双管板换 热器的设计与制 造l J 1 _ 中国制造业信 息化, 2 0 1 0 与换热管连接处 的应力易使介质发生泄漏 , 因此为 了避免此类 事件 f 9 1 . 的发生 , 可在计算壳 、 管程管板之 间的间隙长度 时适 当考虑这方 面 I 2 】 王 向 军. 分 离式 双 管 板 列 管 换 热 器 的设 计 与制 造 [ J 】 . 化 学 工 业 与 工 的影 响 。 程技术. 2 0 0 3 ( 1 ) . 由于双管板换热器 的壳程与管程之间共 有 2 快管板 , 这样就形 [ 3 1 4 - - 3 " _ z - . 伟, 李岩 , 王 雷. 双管板换 热器的设 计及 制造要点 f J ] . 石油和化 2 0 1 3 ( 2 ) . 成了 3个程 , 即壳程 、 管程 以及形 成于壳程 管板与管程管板 之间的 工设 备 ,
双管板换热器制作工艺
![双管板换热器制作工艺](https://img.taocdn.com/s3/m/e99b0ddfaff8941ea76e58fafab069dc50224792.png)
双管板换热器制作工艺第一篇:双管板换热器制作工艺双管板换热器制造工艺近年来,本厂成功制造了数台固定管板式和U形管式双管板换热器。
2003年为上海某公司制造的四氯化碳装置中的急冷器是1台固定管板式换热器,属于第三类压力容器。
换热面积为573m2,其结构见图1,技术参数见表1。
急冷器壳体尺寸Dg1065mm×14mm×5855mm,材料为16MnR。
外侧管板尺寸1210mm×60mm,内侧管板尺寸1093mm×55mm,材料均为16Mn(锻Ⅲ)。
总共有1643根19mm×2mm×6100mm的换热管,材料为10号优质碳素钢。
急冷器为双管板结构,具有一定的制造难度,现对其制造工艺进行简要介绍。
双管板结构双管板是目前较新的结构,见图2。
在位于换热管的端部有1块管板,称为外侧管板,兼作设备法兰,分别与换热管及管箱法兰相连接。
在距换热管端部比较近的位置还有1块管板,称为内侧管板,分别与换热管及壳程相连接。
外侧管板与内侧管板之间有一定的距离,用哈呋短节相连,组成不承受压力的隔离腔。
双管板结构的特征是,2块管板把管程与壳程的介质完全分隔开。
每块外侧管板的背面均有和隔离腔相连通的位置对称的2个排泄孔。
内侧管板2背面(与壳体焊接面)有12个拉杆螺孔。
外侧管板1和内侧管板1组成第1组双管板,外侧管板2和内侧管板2组成第2组双管板。
(1)双管板间距隔离腔不与管程、壳程相连通,不承受介质压力,但承受设备的机械载荷与热载荷。
隔离腔的承载能力主要取决于双管板间距。
对固定式双管板进行壳程水压试验时,内侧管板与换热管连接处可能存在泄漏,故在确定双管板间距时必须考虑观察、检漏所需要的最小空间。
图样中的双管板间距为13mm,根据制造经验,将其调整为50mm。
(2)内侧管板管孔的胀管槽尺寸内侧管板与换热管的连接质量是双管板结构换热器制造的关键,而拉脱力与密封性能是衡量接头连接质量的主要指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双管板换热器的设计与制造(通用版)Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-0056双管板换热器的设计与制造(通用版)换热器是在不同温度物料之间进行热量传递的设备,其主要作用是维持或改变物料的工作温度和相态,满足工艺操作要求,提高过程能量利用效率进行余热回收。
在换热器设备中,管壳式换热器应用最为广泛。
在实际操作中换热器的换热管和管板连接处最容易发生泄漏,从而使壳程物料和管程物料有少许混合,而且这种泄漏目前还没有有效的方法完全防止。
在有些场合,某些泄漏是允许的,但在以下的场合,这些泄漏是不允许的:1)产生严重的腐蚀;2)使一方物料产生严重的污染;3)产生燃烧和爆炸;4)产生固溶化,形成设备的污垢;5)使催化剂中毒,降低或消除催化剂的性能;6)限制另一程的反应;7)使产品不纯。
在这些场合,我们通常采用双管板换热器,以减小泄漏,能有效防止两种物料混合,从而杜绝上述事故的发生。
所谓双管板换热器就是在换热器一端设有一定间隙的两块管板或相当于有一定间隙的两块管板的换热器。
双管板换热器的结构一般有两种。
一种为固定管板式换热器,一台换热器共有四块管板。
这种换热器的壳程及管程中两种介质的流动方向为逆流,其传热系数较高,传热效果较好。
另一种为U型管式换热器,一台换热器共有两块管板。
这种换热器有一半管束管内外介质的流动方向为并流,另一半管束管内外介质的流动方向为逆流,因此其传热系数较低。
示例:此再沸器为固定管板式的双管板换热器,换热器的管、壳程物料接触后会使物料固化,凝结在管壁上,故选用双管板结构,具体参数如下表:表1再沸器技术参数名称壳程管程设计压力/MPa2.7-0.1最高工作压力/MPa 4.0/-0.10.35/-0.1设计温度/℃265230进口工作温度/℃236190出口工作温度/℃230198物料水蒸汽溶剂+顺酐管子与管板连接形式强度胀强度焊+贴胀程数11腐蚀裕度/mm焊接接头系数0.850.85由于此再沸器的管、壳程的操作参数比较高,前期设计制造的再沸器使用后一个月左右就泄漏,无法使用,严重影响生产。
为此从设计、试验、制造多方面进行了改进。
设计鉴于该再沸器的高参数,及双管板换热器结构的特殊性,在设计时,换热管与管板的连接则是换热器安全运行的关键。
在换热器的内管板处,两侧均与换热管连接,必须采用强度账接的形式,而此处又是密封壳程和固定换热管的部位,该处强度账接的质量将直接影响整个设备的使用,尤其是在较高的操作条件下。
胀接是靠管子的塑性变形和管板的弹性变形来达到密封和紧固的一种机械连接方法。
对于换热管的账接通常有两种,液压胀和机械胀。
液压胀管时,胀接区的管子是在高液压内压的作用下产生弹性变形,然后产生塑性变形而被挤压到管板孔壁上。
随着压力的增加,在管子与管板之间的接触压力作用下,管板首先产生弹性变形,然后产生塑性变形。
压力撤消后,如果管板的自由弹性恢复量比管子的大,就会在管子与管板之间产生残余接触压力,实现胀接连接。
这种账接方式适合于操作压力不高的情况,当操作压力大时,账接的强度不足,并且在账接的过程中所用的账接的附件的损坏率也比较高。
因此本台双管板换热器采用机械账。
机械胀接是一种传统的胀接技术,又称为滚轧法,实施机械滚胀时,由胀珠胀撑滚压管内壁,管壁径向扩大,首先胀满间隙,之后进行紧胀,胀珠轧碾管内壁,管壁被胀珠和孔壁挤压,挤压区中的局部管壁发生塑变;进行径向扩大的同时,金属轴向流动。
孔壁在胀率小时,处于弹性状态;胀率增大,孔端抗挤压强度小,先塑性变形,成喇叭口;当管外壁被胀珠挤压,其接触压力使得管壁中间接触区的局部层面开始塑性变形,产生径向扩大和轴向流动。
层面之下的孔壁仍处于弹性状态。
施胀中,该层面上的变形随同胀珠的螺旋运动进行变形过程,但每次重复,层面加深,层层深入。
管壁和孔壁的受轧碾层面,晶粒破碎,晶格畸变,而硬度增加。
撤去胀管器后,管端和板孔进行回弹,由于管桥厚度远大于管壁而弹性变形量大,则管孔弹压管端。
此时,实现了以胀接的严密性、抗拉脱性的牢固性为目的的胀接要求,完成胀接。
现在生产的机械胀管机运用起来方便,并且效率也高。
在GB151-1999《管壳式换热器》中,胀管槽的宽度规定为3mm,但也指出,根据不同的胀接方法可以适当修改。
按通常方式图样中的内侧管板管孔的胀管槽宽度是3mm,深度是0.5mm,胀管槽距管板端面8mm,胀管槽的尺寸链为8mm-3mm-6mm-3mm如图3所示。
为解决本双管板换热器的操作压力比较大的难题,我们增加了一个胀管槽,增大拉脱力的承载能力,将胀管槽的尺寸链改为8mm-3mm-6mm-3mm-6mm-3mm。
在对该换热器的管板强度计算时,将固定双管板换热器分解成两个固定管板换热器,运用SW6固定管板换热器模块分别进行计算。
2.1首先不考虑壳程外管板的加强作用(即去掉壳程外管板),看成一个固定管板换热器,根据设计条件计算壳程管板的厚度。
2.2将管程管箱设为一个管箱、聚液壳设为壳程(这里聚液壳作为壳程,设计温度取环境温度、设计压力按常压,取作0.001MPa因为取0无法计算),不考虑另一侧管箱和双管板的加强作用,将剩下的部分设为另一个管箱(设计压力和温度按原壳程取)。
根据管程和壳程的不同温度及压力,分别计算壳程管板和壳程外管板的厚度。
2.3(最后,壳程管板和壳程外管板分别取计算中的较大值,这样保证固定管板的安全可靠。
同时,为了改善内管板强度胀的受力,在壳程又设置了两个波形膨胀节。
这样在结构的关键点处进行优化,达到了提高设备使用能力的要求。
试验为了保证胀接质量,我公司在胀管前做胀接评定试验。
3.1试验准备:首先制作模拟换热器,其管板厚度按产品实际管板厚度确定,管板间距、管孔排列形式按设计图纸要求。
管壳程管板间距、管孔尺寸、换热管尺寸、管间距均与产品相符。
模拟换热器壳程筒体厚度应能承受产品双管板换热器的壳程试验压力。
3.2试验过程:①测量内管板1管孔尺寸D和胀前换热管3外径d0、内径di和壁厚t,见表2;②根据要求,强度胀接率p应控制在10%~20%,由胀接率公式p=[(d-di)-(D-d0)]/t×100%推算出胀后换热管内径d的范围,胀接时,先将外管板4胀焊合格,再根据d值对内管板进行强度胀接,记录下胀管仪的扭矩M。
3.3试验结果:对模拟换热器进行壳程水压试验,试验压力5.85MPa,经检查,换热管与管板连接处无任何泄漏现象,说明此胀接工艺能够满足该双管板换热器的强度胀接要求。
制造控制4块管板的同心度、平行度、扭曲度及其与壳体轴线的垂直度,可保障设备的制造质量,也可保障换热管与管板的连接性能。
而确保内侧管板与换热管液压胀接的拉脱力和密封性及其检验,是保证再沸器制造质量的关键。
4.1管板及折流板为增加两块管板管板管孔及折流板管孔的对中性,在满足制造能力的前提下,把折流板、两组管板按工作位置顺序定位焊焊好,再进行划线钻孔。
采用数控钻床加工管孔,以保证管孔直径、垂直度及管孔间距。
钻孔时,切削和退刀速度应尽量慢,以保证管孔的表面粗糙度为Ra3.2~Ra6.4,钻孔时还应留有0.1mm的铰孔余量。
钻孔后对管板孔进行铰孔,以消除管孔上的纵向划痕,保证管孔的表面粗糙度为Ra1.6~Ra3.2。
每块折流板正、反面的管孔均要仔细倒角,清除毛刺,防止穿管时损伤管子的外表面。
把双管板和折流板按钻孔的方向顺序叠置,用换热管逐孔预穿。
4.2管束与壳体组装在壳体内组装拉杆、折流板,并进行穿管。
先组对第1组双管板,调整第1组双管板与壳体的垂直度和同心度。
在壳体内把拉杆装于内侧管板上,按钻孔的顺序组对折流板。
每装一块折流板,就从外侧管板密封面方向穿入梅花形的数组换热管。
其目的是自然调整折流板与管板的同心度。
待用螺母紧固折流板之后,可从折流板朝外侧管板方向穿入全部换热管。
最后组装另一组双管板,测量外侧管板和内侧管板的同心度、平行度和扭曲度及双管板之间距。
穿入全部换热管后,以外侧管板面为基准,调整换热管伸出管板面的长度为2~3mm。
双管板与换热管连接的顺序为,先胀接内侧管板与换热管,后焊接外侧管板与换热管。
4.3外侧管板与换热管焊接按焊接工艺要求,采用氩弧焊,先焊接第1层,进行压力为0.05MPa的气密性试验。
然后采用氩弧焊再焊接第2层,进行100%PT检查。
4.4压力试验首先按图样压力进行壳程的水压试验,从隔离腔的空间检查管子与内侧管板的连接质量。
壳程水压试验合格后,组焊隔离腔使之成为密闭的腔体,按图样压力进行水压及气密性试验。
最后对管程进行气压试验。
使用经过从设计、试验、制造等一系列的严格运行下,最终圆满的完成了该再沸器的设计和制造,完成了最终的试验和检验,并在设备使用中收到良好的社会效益和经济效益。
XXX图文设计本文档文字均可以自由修改。