最新数字图像处理第三章答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 a 为正常数的指数式

e

ar -2

对于构造灰度平滑变换函数是非常有

用的。由这个基本函数开始,构造具有下图形状的变换函数。所示的常数是输入参数,并且提出的变换必须包含这些参数的特定形式(为了答案曲线中的L 0不是所要求的参数)。 解:由(a )图所示,设e ar A r T -=2

)(,则 在r=0时,T(r)=A 在r=L 0时,T(r)=A/2 联立,解得L L a 0

693

.00

2

ln 2

2

=

则C r

L

C D r T s e K

+--==-)1)(()(2

2

由(b )图所示,可以由(a)图翻转得到,所以(b )图的表达式 s=)1()(2

20

693

.0r

L

B r T e --=

(c )图是(b )图沿y 轴平移得到,所以(c )图的表达式

C

r

L C D r T s e K

+--==-)1)(()(2

20

3.19 (a)在3.6.2节中谈到,分布在图像背景上的孤立的亮和暗的像素团块,当它们小于中值滤波器区域的一半时,经过中值滤波器处理后会被滤除(被其邻值同化)。假定滤波器尺寸为n n ⨯,n 为奇数,解释这种现象的原因?

(b )考虑一副有不同像素团块的图像,假设在一个团块的所有点都比背景凉或者暗(但不是同时既比背景亮又比背景暗),并且每个团块的尺寸不大于22

n 。试求当n 符合什么条件时,有一个或多个这样的团块像(a )中所说的那样被分离出来?

答:在A 的结论下,我们考虑的团块的像素个数不可能超过2

)1(2

-n

两个相近的或亮或暗的团块不可能同时出现在相邻的位置。在这个

n n ⨯的网格里,两个团块的最小距离至少大于)1(2-n ,也就是说至

少在对角线的区域分开跨越(n-1)个像素在对角线上。

3.29 CCD 电视摄像机用于每天24小时,每月30天对同一区域进行长期观测研究。5分钟拍一次数字图像并传送到中心场所。场景的照明,白天为自然光,晚上为人造光,没有无照明的时间,因此摄像机本身并不需要使用任何补偿装置。另外,使用数字技术对图像进行后处理并归一化,这样就使图像与恒定照明是等效的。对此,设计一种方法。可以在实验室内使用希望的任何方法,但要在设计中明确列出所做的所有假设。

答:本题是考虑到范围的照明停留在线性部分的相机的反应范围,

3.3提出一组能够产生8比特单色图像所有独立位平面的灰度分成变换(例如,变换函数T (r )=255,当r 在[0,127]范围内时,T(r)=0,而当r 在[128,255]范围内,T(r)=255,此时的函数可以产生一幅8比特图像的第7位平面图像) 解:

0000000000111111010000000111111110000000101111111

1

1

1

1

1

1

1

1100000006364127128191255

192

()01T r ⎧=⎨⎩

063,128191

64127,192255r r r r ≤≤≤≤≤≤≤≤ 3.10一幅图像的灰度PDF,

()r p r 示于下图。现在对比此图像

进行灰度变换,使其灰度表达式为下面右图的z ()p z 。假设灰度值连续,求完成这一操作的变换(r 到z )。

r p 2

z p 2

解:由左图可知20

()()(22)2r

r

r s T r p w dw w dw r r ===-+=-+⎰⎰

由右图得到:20

()2z z

r v p z dz wdw z ===⎰⎰

即: z =

由图可知:z s =

故:

z =

3.20(a )提出一种过程来求一个n n ⨯l 领域中值?

(b )试提出一种技术,逐像素地移动邻域的中心来更新中值。

解:(a)设n n ⨯的中值为m ,其中最大值设为a

2

[(1)/2]m n a =+- (b)一旦值已经被分类一次,我们仅仅是删除在缓慢移动向领域的值,插入首要领域的值到分类排列的最恰当的位置。

2.18在下一章中我们将讨论算子,其函数在一个很小的子图像区S 计算像素总数。说明这些都是线性算子。

答:让H 表示领域的求和运算符,让f 和g 表示两个不同的小子图像领域,让f+g 表示f 图像和g 图像里的相应像素值的总和,H 是在给定一个领域里计算像素值总和的算子,将f 和g 分别乘以两个常量a 、b ,所以)(bg af H +表示f 图像的像素值得a 倍加上g 图像的像素值得b 倍,所以我们可以推导:

)()(21,21

∑∈∈+=+g

p f p bp ap bg af H

=

∑∑∈∈+g p f

p bp

ap 212

1

=∑∑∈∈+g

p f

p p

b p a

212

1

=)()(g bH f aH +

正如式(2.6.1)所示,所以这些计算图像区域像素总数的算子都为线性算子。

Prob4:

(a)通常,如果将低阶比特面设为零值,对一幅图像的直方图有何影响?

答:如果将低阶比特面设为零值,该图像会丢失细节。即不同灰度值的像素个数将减少,这会导致直方图的成分数减少。由于像素个数不会改变,这将在总体上导致直方图峰值高度上升。通常,较低的灰度值变化将减少对比度。 (b)如果将高阶比特面设为零值,对直方图有何影响? 答:如果将高阶比特面设为零值,该图像会丢失轮廓,即丢手视觉上的很多数据。最明显的影响是使图像非常模糊,根据灰度变换函数,将0~127之间的所有灰度映射为0,下降的最高位将限制到127的8位图像中最亮的水平。由于像素数将保持不变,一些直方图峰值的高度会增加。一般直方图

相关文档
最新文档