CFG桩复合地基承载力及变形计算
CFG桩复合地基承载力计算2024新规范
CFG桩复合地基承载力计算2024新规范根据2024年新规范,可以按以下步骤计算CFG桩复合地基的承载力:
1.计算CFG桩的承载力
首先,需要计算CFG桩的承载力。
CFG桩的承载力可以通过基于桩侧
摩擦力和桩端阻力的计算方法进行估算。
具体的计算方法可以参考相关的
桩基设计规范。
2.计算复合地基的承载力
接下来,需要计算复合地基的承载力。
复合地基的承载力计算可以分
为两个部分:CFG桩的承载力和软土地基的承载力。
-CFG桩的承载力可以通过桩侧摩擦力和桩端阻力的计算方法进行估算。
-软土地基的承载力可以通过常规的软土承载力计算方法进行估算,
如广义土质分级法、标贯法等。
3.综合计算复合地基的承载力
在计算复合地基的承载力时,需要综合考虑CFG桩的承载力和软土地
基的承载力。
可以采用荷载传递系数的方法进行计算,将荷载按一定比例
分配给CFG桩和软土地基,再分别计算两者的承载力,并将其叠加求和。
4.结果分析
最后,根据得到的承载力计算结果,与设计要求进行对比分析。
如果
计算得到的承载力满足设计要求,则可以认为复合地基的承载力是满足要
求的;如果计算得到的承载力不满足设计要求,则需要进行进一步的加固设计。
总之,CFG桩复合地基承载力的计算遵循2024年新规范的要求,通过计算桩的承载力和软土地基的承载力,然后综合考虑两者的承载力,并与设计要求进行对比分析,以确定复合地基的承载力是否满足设计要求。
CFG桩复合地基承载力分析
CFG桩复合地基承载力分析作者:纪辉来源:《中国高新技术企业》2016年第28期摘要:当前,在岩土工程实际实施过程中,运用CFG桩复合地基工程的地基的承载力比未实施该工程的天然地基承载力更加低下的情况时有发生,这种情况不但影响了工程质量,而且在很大程度上导致了人力、财力和物力的浪费。
文章通过对CFG桩复合地基承载力的分析,期望能够对以后的工程施工提供一定的借鉴作用。
关键词:CFG桩;复合地基;承载力;岩土工程;工程施工文献标识码:A中图分类号:TU472 文章编号:1009-2374(2016)28-0099-02 DOI:10.13535/ki.11-4406/n.2016.28.0501 复合地基技术概述及计算公式1.1 復合地基技术的概述复合地基技术起源于19世纪,当时的主要目的是为了在松散的沙土上打地基。
但是在之后很长时间内都没有适合计算该技术承载力的方法,加上缺少比较先进的工艺和设备,所以其发展非常缓慢。
二战之后,由于相关领域技术的发展,该技术也进入了快速发展期。
现在人们通常把在天然地基上进行人为加固的用来提升地基承载力的加固体都认为是复合地基。
CFG桩通常应用水泥进行浇筑,桩体的柔性和刚性都非常良好,在实际工作中的应用极为广泛。
但是由于当前CFG桩复合地基的计算远远落后于实践,在一定程度上影响了其发展。
1.2 CFG桩复合地基承载力计算公式分析复合地基承载力的计算不能够由天然地基承载能力与复合桩承载能力直接叠加得到,而是必须综合考虑相关的因素,比如:(1)桩之间的岩土是否由于工程的进展而导致土层变形或者减少;(2)施工时是否会对桩之间的岩土承载力产生影响,如果有影响是降低还是升高;(3)CFG复合地基中桩的承载力比自由单桩高很多;(4)桩之间岩土的承载能力都与形变有关系,变形比较小时桩与土层的承载能力都无法充分发挥;(5)桩和土层的承载力的发挥和褥垫层薄厚有关系。
综合上述各种因素,并结合实际经验,可以用以下公式来验证CFG桩复合地基的承载力:%e5%9b%be%e5%83%8f1662171.PNG式中:fspk代表修正之后复合地基的承载能力值;m代表面积置换率;Ra代表单桩承载力值;β代表天然地基承载能力值。
CFG桩法计算书
注:表中承载力指原始土层承载力特征值(kPa)、d 基础埋深的地基承载力修正系数 桩侧阻力指桩侧阻力特征值(kPa)、桩端阻力指桩端阻力特征值(kPa) 桩在土层中的相对位置 土层 1 2 3 4 5 计算厚度 (m) 2.00 4.60 5.10 5.40 1.90 桩侧阻力 kPa 28.00 25.00 50.00 40.00 65.00 桩端阻力 kPa 0.00 0.00 0.00 0.00 2400.00
荷载效应标准组合时偏心荷载作用下 pkmin = Fk+Gk Mkx Mky 202428.00+21218.91 0.00 0.00 = = 137.02kPa A Wy Wx 1632.22 4787.86 25228.74 Fk+Gk Mkx Mky 202428.00+21218.91 0.00 0.00 + + = + + = A Wy Wx 1632.22 4787.86 25228.74 pkmax1.2fa,满足要求
基础底面自重压力为: ch= 0d=6.570.70=4.60kPa 基础底面的附加压力为: p0=pk-ch=130.71 - 4.60 = 126.11kPa 3.2 确定分层厚度
按《建筑地基基础设计规范》 (GB 50007-2002)表 5.3.6: 由 b=17.60 得z=1.00 3.3 确定沉降计算深度 沉降计算深度: zn=20.00m 3.4 计算复合土层的压缩模量 复合土层的分层与天然地基相同, 各复合土层的压缩模量等于该层天然地基压缩模量 的倍 Espi = Esi Espi--复合地基处理范围内第 i 层土修正后的压缩模量(MPa) Esi--复合地基处理范围内第 i 层土原始的压缩模量(MPa) 值按《建筑地基处理技术规范》 (JGJ 79-2002 J220-2002)式(9.2.8-1)确定 = fspk fak 154.35 = 1.929 80.00
刚性桩复合地基计算书(CFG桩)三相岩土
三相岩土—刚性桩复合地基计算程序淘宝有售1 说明:1.高程请输入绝对标高,或统一高程系统。
2.桩边至筏板边距离为采用等效实体法计算沉降时采用。
3.地基承载力修正深度适合建筑周边存在独立基础的地下车库时,修正深度不同于基础埋深时。
4.输入土层各压力段下孔隙比很重要,用于计算不用压力段下压缩模量,输入此值以后,输入的压缩模量值会在计算时被替换。
5.保存数据与读取数据均为EXCEL2003格式,计算书为word2003格式。
6.如有问题可发邮件到2419859460@ 淘宝店名:三相岩土复合地基计算书5号楼一、计算条件基础长度:67.83 m基础宽度:17.73 m地基承载力修正深度:0.50 m基底压力:570kpa准永久荷载:540KN/m3地下水位高程:18.00 m自然地面标高:32.21 m3.桩基参数桩长:26 m桩径:500 mm桩顶标高:21.73 m桩间土承载力发挥系数β:1.0单桩承载力发挥系数λ:0.9桩端阻力发挥系数:1.0桩顶标高: 21.73 m布桩形式:矩形桩间距X方向:1.7 m Y方向:1.8 m二、复合地基承载力计算1.桩在地层中位置主层号 亚层号 土层名称 地层计算厚度(m) 侧阻标准值(Kpa) 端阻标准值(Kpa) 3 0 细砂 4.12 65 — 4 0 粘土 7.90 53 — 5 0 细砂 9.20 70 — 7细砂 0.98 72 25002.单桩竖向承载力特征值计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-3)R a =12 ×(u p ∑q si l i +αp q p A p )=12 ×[π×0.50×(4.12×65+7.90×53+9.20×70+3.80×66+0.98×72)+1.00×π×0.252×2500.00]=1542.80KN R a —单桩竖向承载力特征值(KN) u p —桩周长(m)q si —桩周第i 层土极限侧阻力标准值(Kpa) l i —桩周第i 层土厚度(Kpa) αp —桩端端阻力发挥系数q p —桩的极限端阻力标准值(Kpa) A p —桩的截面积(m 2) 3.面积置换率计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-1) 布桩类型:矩形m= d 2d e2 =0.502/(1.052×1.70×1.80) =0.0640m —面积置换率 d —桩径(m)d e — 一根桩分担的处理地基面积的等效圆直径(m) 4.桩间土承载力基底以下存在软弱下卧层,天然地基承载力按207.8873Kpa 计算主层号 亚层号 土层名称 修正深度(m) 平均重度(KN/m3) 深度修正系数 修正后承载力(Kpa) 4粘土4.1218.751207.89f sk =207.89Kpa 5.复合地基承载力计算根据《建筑地基处理技术规范》(JGJ79)第7.1.5条式(7.1.5-2)f spk =λm R aA p+β(1-m)f sk = 0.90 × 0.0640 ×1542.80/(π×0.252)+0.95×(1-0.0640)×207.89=637.32Kpa f spk —复合地基承载力特征值 (kpa) λ—单桩承载力发挥系数 β—桩间土承载力发挥系数 6.复合地基承载力深度修正不考虑深度修正 f spa =f spk =637.32Kpa f spa —深度修正后复合地基承载力(kpa) 7.桩体试块抗压强度计算达到设计要求的复合地基承载力需要的单桩竖向承载力特征值R a =[f spk -β(1-m)f sk ]A p λm=[ 570.00-0.95×(1-0.0640)×207.89]×π×0.252/(0.90 × 0.0640)=1063.73KN 桩身试块抗压强度,根据《建筑地基处理技术规范》(JGJ79)第7.1.6条式(7.1.6-2)f cu ≥4λR aA p=4×0.90×1063.73/(π×0.252)/1000=24.08Mpaf cu —桩体试块抗压强度(Mpa)三、下卧层承载力验算1.天然地基下卧层承载力验算根据《建筑地基基础设计规范》(GB 50007)第5.2.7条式(5.2.7-1) P z +P cz ≤f azP z —下卧层顶面处附加压力值(kPa)P cz —下卧层顶面处土的自重压力值(kPa)f az —下卧层顶面处经深度修正后承载力特征值(kPa) 计算结果见下表主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加应力 PzKpa自重 应力 Pcz kpa Pz+ Pcz kpa 修正 深度 m 平均 重度 KN /m3 深度 修正 系数 修正后 承载力 kpa 计算 结果 3 0 细砂 21.73 19.70 1.0000 367.09 202.91 570.00 0.50 19.70 3.00 220.00 不满足 3 0 细砂 18.00 9.70 0.9739 357.50 276.39 633.89 4.23 17.37 3.00 414.39 不满足 4 0 粘土 17.61 7.70 0.9661 354.66 280.17 634.83 4.62 16.72 1.00 208.90 不满足 5 0 细砂 9.71 9.70 0.7042 258.52 341.00 599.52 12.52 11.03 3.00 697.74 满足 6 0 粘土 0.51 7.60 0.4613 169.33 430.24 599.57 21.72 10.47 1.00 402.10 不满足 7 0 细砂 -3.29 9.80 0.3936 144.50 459.12 603.62 25.52 10.04 3.00 1063.58 满足 8 0 卵石 -8.39 11.00 0.3226 118.42 509.10 627.52 30.62 10.00 4.40 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.2679 98.35 565.20663.5535.7210.141.60751.56满足10 0 细砂 -14.59 9.90 0.2578 94.63 576.09 670.72 36.82 10.14 3.00 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.2214 81.27 620.64 701.91 41.32 10.11 1.60 860.29 满足 12细砂 -20.19 9.800.213678.40631.53 709.93 42.42 10.10 3.001620.72 满足2.复合地基下卧层承载力验算根据《建筑地基基础设计规范》(GB 50007)第5.2.7条式(5.2.7-1) P z +P cz ≤f az计算结果见下表主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加 应力 Pz Kpa 自重应力 Pcz kpaPz+Pcz kpa修正 深度 m平均 重度 KN /m3深度 修正 系数 修正后 承载力 kpa计算 结果8 0 卵石 -8.39 11.00 0.3226 118.42 509.10 627.52 30.62 10.00 4.40 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.2679 98.35 565.20 663.55 35.72 10.14 1.60751.56 满足 10 0 细砂 -14.59 9.90 0.2578 94.63 576.09 670.72 36.82 10.14 3.00 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.2214 81.27 620.64 701.91 41.32 10.11 1.60 860.29 满足 12细砂 -20.19 9.800.213678.40631.53 709.93 42.42 10.10 3.001620.72 满足3.按桩基模式验算桩端下卧层承载力根据《建筑桩基技术规范》(JGJ 94)第5.4.1条式(5.4.1-1) σz +γm z ≤f azσz —作用于下卧层顶面的附加应力γm —下卧层顶面以上深度修正范围内土层加权平均重度(KN/m 3) z —修正深度(m)σz0=(F k +G k )-3/2(A 0+B 0)∑q sik l iA 0+B 0=[570.00-3/2×(67.83+17.73-4×0.80)×(4.12×65+7.90×53+9.20×70+3.80×66+0.98×72)]/[(67.83-2×0.80)×(17.73-2×0.80)]=212.08kpa σz0—桩端位置附加应力(kpa)F k +G k —建筑荷载与基础覆土重之和,即基底压力(kpa) A 0、B 0—桩群外缘矩形底面的长、短边边长(m) 计算结果见下表 主层号 亚层号 土层名称层顶 标高 m有效 重度 KN/ m3附加应 力系数 附加 应力 σz自重应力 γ·zkpaσz+ γ·z kpa修正 深度 m平均 重度KN/m3深度修正 系数修正后承载力kpa 计算 结果 7 0 细砂 -4.27 9.80 1.0000 212.08 468.72 680.81 26.50 3.00 10.03 1092.41 满足 8 0 卵石 -8.39 11.00 0.9636 204.36 509.10 713.46 30.62 4.40 10.00 1655.25 满足 9 0 粉质粘土-13.49 9.90 0.7938 168.36 565.20733.56 35.72 1.60 10.14 751.56 满足 10 0 细砂 -14.59 9.90 0.7531 159.72 576.09 735.81 36.82 3.00 10.14 1424.35 满足 11 0 粉质粘土-19.09 9.90 0.6043 128.16 620.64 748.80 41.32 1.60 10.11 860.29 满足 12细砂 -20.19 9.800.5733121.59 631.53 753.12 42.42 3.0010.10 1620.72 满足四、沉降计算1.天然地基沉降计算根据《建筑地基基础设计规范》(GB 50007)第5.3.5条式(5.3.5)s=ψs ∑p 0E si(z i αi -z i-1αi-1)s —地基最终变形量(mm) ψs —沉降计算经验系数p 0—准永久组合时基础底面处的附加应力(kpa),p0=337.09kpa z i 、z i-1—基础底面至第i 层土、第i-1层土底面的距离(m)αi 、αi-1—基础底面至第i 层土、第i-1层土底面范围内平均附加应力系数E si —基础底面下第i 层土的压缩模量(Mpa),应取土的自重压力至土的自重压力与附加压力之和的压力段计算,根据《土工试验方法标准》(GBT50123)第14.1.9、14.1.10条E si =(1+e i0)(p i2-p i1)e i1-e i2e 0—初始孔隙比p i1、p i2—第i 层土自重应力、第i 层土自重应力与附加应力之和(Kpa)e i1、e i2—第i 层土自重应力下孔隙比、第i 层土自重应力与附加应力之和作用下孔隙比,根据高压固结试验内插计算 根据《建筑地基基础设计规范》(GB 50007)第5.3.7条,地基变形计算深度z n 应符合式(5.3.7)条规定Δs n '≤0.025∑Δs i ' Δs i '—在计算深度范围内,第i 层土计算变形值(mm)Δs n '—在由计算厚度向上取厚度为Δz 的土层计算变形值(mm) Δz —根据基础宽度b=17.73m ,查表5.3.7,Δz=1m 计算过程见下表主层亚层土层 名称计算 深度 m 有效 重度 KN/ 自重 应力 Pcz 附加 应力 PzPz+ Pcz kpa孔隙比 e1 孔隙比 e2 压缩 模量 Mpa平均附加Ai本层 沉降号 号 m3 kpa Kpa 应力系数 Δs' mm 3 0 细砂 1.00 19.70 202.91 337.09 540.00 19.00 0.9998 0.9998 17.74 3 0 2.00 19.70 222.61 336.87 559.48 19.00 0.9988 0.9978 17.70 3 0 3.00 19.70 242.31 335.41 577.71 19.00 0.9962 0.9910 17.58 3 03.73 19.70 256.69 331.80 588.49 19.00 0.9930 0.7154 12.69 3 0 细砂4.12 9.70 264.37 327.60 591.9719.00 0.9909 0.3783 6.71 4 0 粘土 5.12 7.70 274.07 324.82 598.89 0.683 0.636 12.95 0.9838 0.9545 24.85 4 0 6.12 7.70 281.77 316.13 597.90 0.677 0.636 14.44 0.9746 0.9275 21.66 4 0 7.12 7.70 289.47 305.64 595.11 0.671 0.636 16.39 0.9635 0.8959 18.42 4 0 8.12 7.70 297.17 293.91 591.08 0.665 0.637 19.15 0.9509 0.8614 15.16 4 0 9.12 7.70 304.87 281.50 586.37 0.663 0.637 20.44 0.9372 0.8253 13.61 4 0 10.12 7.70 312.57 268.86 581.43 0.662 0.637 20.34 0.9225 0.7889 13.07 4 0 11.12 7.70 320.27 256.33 576.60 0.661 0.638 20.24 0.9073 0.7529 12.54 4 012.02 7.70 327.20 244.14 571.34 0.661 0.638 20.13 0.8932 0.6477 10.85 5 0 细砂 13.02 9.70 334.90 233.58 568.48 20.00 0.8774 0.6876 11.59 5 0 14.02 9.70 344.60 222.37 566.97 20.00 0.8616 0.6555 11.05 5 0 15.02 9.70 354.30 211.76 566.06 20.00 0.8458 0.6250 10.53 5 0 16.02 9.70 364.00 201.75 565.75 20.00 0.8303 0.5962 10.05 5 0 17.02 9.70 373.70 192.34 566.04 20.00 0.8149 0.5691 9.59 5 0 18.02 9.70 383.40 183.49 566.89 20.00 0.7998 0.5435 9.16 5 0 19.02 9.70 393.10 175.18 568.28 20.00 0.7851 0.5194 8.76 5 0 20.02 9.70 402.80 167.38 570.18 20.00 0.7707 0.4968 8.37 5 0 21.02 9.70 412.50 160.05 572.55 20.00 0.7567 0.4755 8.01 5 021.22 9.70 414.44 153.15 567.5920.00 0.7539 0.0927 1.56 6 0 粘土 22.22 7.60 424.14 151.83 575.97 0.624 0.608 17.44 0.7403 0.4516 8.73 6 0 23.22 7.60 431.74 145.41 577.15 0.623 0.608 17.39 0.7270 0.4328 8.39 6 0 24.22 7.60 439.34 139.37 578.71 0.622 0.607 17.33 0.7142 0.4152 8.08 6 025.02 7.60 445.42 133.67 579.09 0.621 0.607 17.29 0.7041 0.3201 6.24 7 0 桩端 26.00 9.80 452.87 129.34 582.21 21.70 0.6921 0.3783 5.88 7 0 细砂 26.02 9.80 453.06 124.30 577.36 21.70 0.6919 0.0076 0.12 727.029.80462.86124.20587.0621.700.68000.37075.76总沉降计算值s'=334.45mm在基底以下27.02m 以上1m 厚度土层计算变形值 Δs Δs=5.76mm<0.025∑Δs'=8.36mm 沉降计算深度满足要求。
CFG桩复合地基工程特性分析及承载力计算
CFG桩复合地基工程特性分析及承载力计算摘要:CFG桩复合地基加固高等级公路软基就是一种新引入的软基处理方法,具有施工周期短、工后沉降小、无噪音、无振动、不排污、节约钢材等特点而得到广泛的应用。
但是由于自身的复杂性和多样性,致使群桩相互作用机理及其承载力的计算一直没有得到令人满意的研究成果。
文章对CFG桩各个组成部分进行了详细的分析,介绍了复合地基各个参数的合理取值范围,在此基础上结合相关试验进行了承载力计算公式的推演。
关键词:水泥粉煤灰碎石桩、复合地基、软基处理、工程特性、计算参数、承载力计算0 引言CFG桩即为水泥、粉煤灰、碎石等混合料加水拌合在土中灌注形成的竖向增强体。
碎石桩复合地基,处理后承载力提高系数一般在1.2~1.6之间。
而在同样的地质条件下,CFG桩复合地基的承载力提高系数可以高达2倍以上。
CFG桩具有刚性桩特点,可全桩长发挥侧阻力,桩落在好的土层上还具有明显的端承作用。
这样就可以通过增加桩长或改变桩端持力层的方式,使桩进入较坚硬的土层来提高复合地基整体的承载力,以满足不同的设计要求。
同其他刚性桩一样,CFG桩体的刚度及变形量远大于桩间土。
在通常情况下,在桩顶和基底间设置褥垫层有效调节了桩与桩间土在荷载作用下的变形,从而确保了桩与桩间土的共同工作,这充分显示出CFG桩复合地基的柔性桩特征。
CFG桩的沉降远小于桩间土的沉降,桩体上部形成负摩擦区,致使CFG桩的实际受力与基桩有着很大的区别,其计算方法和取值也就区别于传统的基桩。
1 CFG桩复合地基结构分析1.1 褥垫层褥垫层技术是复合地基的核心技术,CFG桩只有通过褥垫层才能够构成桩土复合地基。
褥垫层厚度如果过小,桩顶时将产生非常明显的应力集中,桩间土的承载作用无法得到充分的发挥。
图1 褥垫层结构褥垫层厚度如果过大,桩土的应力比值会接近1,这样桩基就失去了在CFG复合地基中存在的意义。
所以,褥垫层厚度一般设计为10~30cm,特殊情况为50cm。
10-CFG复合地基计算-国标
土层顶 高程
土层底 高程
分段长度 li (m)
分பைடு நூலகம்侧 摩阻力 (kN)
桩端持力层 阻力特征值
q pa (kPa)
2 粉质粘土 3 粉质粘土夹粉土 4 粉土 5 粉质粘土
39.0 29.0 34.0 38.0
23.05 21.73 17.13 8.63
21.73 17.13 8.63 6.13
1.32 4.60 8.50 2.50
满足要求
六、地基处理后各土层的变形模量计算及结果:
土层名称 2 粉质粘土
天然地基承 载力特征值 ƒak(kPa)
220
3 粉质粘土夹粉土
180
4 粉土
210
5 粉质粘土
220
复合地基 承载力特征
值
ƒspk(51k4Pa) 480
506
514
ζ=ƒspk/ƒak
2.34 2.67 2.41 2.34
天然地基 压缩模量
由土层参数计算所得的桩承载力特征值Ra大于实取值Ra',满足要求
备注
桩侧土摩阻力和桩端阻力特征值 按干作业法施工工艺取值
四、桩身强度验算:
桩身混凝土强度等级
C30
由公式 f'cu=4×λ×Ra/AP×[1+γm(d-0.5)/fspa] (做深度修正)得
fcu=
30.0 N/mm2
f'cu=
21.3 N/mm2
fa= 221.85 kPa
fspa=
500 kPa
天然地基承载力不满足设计要求,需要CFG复合地基处理。
二、复合地基计算(按正三角形)
CFG复合地基承载力特征值:
fspk=fa1-γm*(d-0.5)
10-CFG复合地基算例-国标
CFG复合地基计算(G1)一、基本资料CFG复合地基承载力特征值f spk= 480kPa二、计算参数桩径d=0.40m桩身面积A p=πd²/4=3.14×0.42/4=0.1256m2桩身周长u=πd=3.14×0.4=1.26m桩中心距(正三角形布置) s=1.50m桩分担的处理地基面积的等效系数n1=1.05桩分担处理地基面积的等效圆直径d e=n1×s=1.05×1.5=1.575面积置换率计m=d²/d e² =0.42/1.5752=0.0645单桩承载力发挥系数λ=0.85桩间土承载力发挥系数β=0.90桩间土天然地基承载力特征值f sk=180kpa三、CFG复合地基下土层承载力验算天然地基承载力特征值f ak=180KPa,考虑深宽修正后,其承载力fa的计算:f a=f ak+ηb×γ×(b-3)+ηd×γm×(d-0.5);γ=9kN/m3γm=9.0kN/m3ηb=0.3 ηd=1.5基础埋深d取3m(考虑地下室);基础宽度取6mf a=180+0.3×9×(6-3)+1.5×9×(3-0.5)=221.85kPafa=221.85kPa<fspk=500kPa,天然地基承载力不满足设计要求,需要CFG复合地基处理。
四、CFG单桩承载力特征值1. 按复合地基目标承载力特征值推算的CFG单桩承载力特征值因f spk=λ×m×R a/A p+β×(1-m) ×f sk,故CFG单桩承载力特征值R a=(f spk-β×(1-m)f sk) ×A p/(λ×m)R a= (480-0.9×(1-0.0645)×180) ×0.1256 /(0.85×0.0645)=752.45kNCFG单桩承载力特征值实取755kN。
CFG桩应用及计算方法
绷
式 中 : 为 白天 然 地 面 以 下 深 度5 O 围 内 天然 土 层 的加 .0m范
权平 均重度 , 中地下水位下 的重度取浮重度 。 其
丫 0: Yh i = 1 0 8. 0 kN/m
基 础埋 深 d= . 0 经计算 =13 9 P 。 5 0 m, 8. 1k a
灌 注桩 和 C G桩是 两种 完全 不 同的设 计理念 , F 传力 的 机理也完全不 同 , 在选用方案时一定 要从 实际 的工 程需要 出
发。
灌 注桩是基 础 的一个构 件 , 是锚 固在 承 台内 , 的主 桩 桩
筋与承 台的钢筋是连接 的 , 因此桩 可 以传 递压 力 、 力 、 矩 拉 弯
铺 设 一 层 10~ 0 m 的 中 砂 、 砂 、 配 砂 石 或 碎 石 ( 5 3 0m 厚 粗 级 称
种加 固 , 提高地基 的承载 能力 , 别要 注意 的是 在基 础 和 特
C G桩 之间还有褥垫相隔 , F 只能 传递压力 , 可能传 递拉力 、 不 弯矩和剪力 。 不具有抵抗水平力 的能力 。 在评价这两种地基处理方 案 , 应多角 度考虑 。应 用时不 能只考虑桩侧摩 阻 力和 桩端 阻力 , 还应 考 虑 C G桩是 挤 土 F 的 , 注桩是不 挤土 的。 因此在 建筑 物 的荷载 不大 , 平荷 灌 水 载不是控制条件 的 , 而采用 天然 地基 的承 载力 不够 , 有 可 就
=
24 % ; 。为单 桩竖 向承 载力 特征 值 ,R .5 R 。=10 0 N; 0 .0 k / 3
为桩 间土 承载 力 折 减 系 数 , 卢=07 为 处 理 后 桩 问 土 承 载 .0
注: 表中承载力指天然地基承载力特征值 , d 田 为基础埋深的地基承载力修正系数。
CFG桩复合地基承载力公式怎么来的
CFG桩复合地基承载力公式怎么来的理论研究:1.维托里安经验公式:维托里安经验公式是由经验求得的公式,适用于较简单的工程条件。
其公式为:Qs = γsAs + qdA其中,Qs为桩的承载力,γs为土的容重,As为桩的侧阻力面积,qd为桩端抵抗力,A为桩的端面积。
2.布洛赫公式:布洛赫公式是以桩为轴的柱体的变形性态分析的结果得到的,适用于桩的端面积较大的情况。
其公式为:Qs = γsAs + qdA + cpPd其中,cp为桩的端面积与侧壁面积之比,Pd为桩端部分土的重量。
3.梁宽系数法:梁宽系数法是根据桩周土壤的平均强度理论进行计算的。
其公式为:Qs=γbAb+γsAs其中,γb为桩周土壤的容重,Ab为桩的侧壁面积。
现场试验:现场试验是获取CFG桩复合地基承载力公式数据的重要手段。
在实际的工程项目中,对CFG桩进行了大量的复合地基试验以获取相关参数和确定公式。
例如,对于CFG桩的侧阻力,可以通过静力触探试验、沉桩法试验等方法获取。
根据试验数据,可以综合分析得到CFG桩的侧阻力系数。
此外,还可以通过桩载荷试验来确定CFG桩的端阻力以及桩的整体承载力。
通过对试验数据的分析,可以计算出桩身和桩帽的最大弯矩、剪力和轴力等参数。
试验数据的分析和总结有助于得出CFG桩复合地基承载力公式。
总结:CFG桩复合地基承载力公式经过理论研究和现场试验的分析得出。
理论研究主要包括维托里安经验公式、布洛赫公式和梁宽系数法等。
现场试验通过对CFG桩的侧阻力和端阻力进行测量和分析,获取相关参数和确定公式。
理论研究和现场试验相结合,形成了全面且准确的CFG桩复合地基承载力公式。
这些公式为工程设计和施工提供了可靠的依据,能够有效预测CFG桩在实际工程中的承载力。
CFG桩复合地基处理计算
水泥粉煤灰碎石桩(CFG 桩)复合地基方案计算工程实例:本工程回填土较厚,拟采用CFG 桩复合地基。
基础底面的桩间图地基承载力为70KPa 。
CFG 桩直径为500,采用C25混凝土浇筑,单桩竖向承载力特征值为450KN ,单桩承载力发挥系数取λ=0.9,桩间土承载力发挥系数取β=0.8,要求处理后的地基承载力为180KPa 。
根据《建筑地基处理技术规范》7.1.5-2 对有粘结强度增强体复合地基应按下式计算:sk pa spk f m A R m f )1(-+=βλ A p =3.14×0.5×0.5÷4=0.19625m 20.0617670)1(8.019625.04509.0180)1(=⇒⨯-⨯+⨯⨯=⇒-+=m m m f m A R m f sk p a spk βλ 面积置换率m =d 2/d 2e ;d 为桩身平均直径(m ),等边三角形布桩d e =1.05s ,正方形布桩d e =1.13s 当采用三角形布置时, 1.90m s m 92.1CFG )05.1(5.006176.022==⇒==取桩间距s s m 当采用正方形布置时, 1.70m s m 78.1CFG )13.1(5.006176.022==⇒==取桩间距s s m 根据7.1.6条有粘结强度复合地基增强体桩身强度应KPa KPa A R f p acu 7.825419625.04509.041000254=⨯⨯≥⨯⇒≥λ 规范条文:根据《建筑地基处理技术规范》7.7.1水泥粉煤灰碎石桩复合地基适用于处理黏性土、粉土、砂土和自重固结已完成的素填土地基。
7.7.2水泥粉煤灰碎石桩复合地基设计应符合下列规定:1 水泥粉煤灰碎石桩,应选择承载力和压缩模量相对较高的土层作为桩端持力层。
2 桩径:长螺旋钻中心压灌、干成孔和振动沉管成桩宜为350mm~600mm泥浆护壁钻孔成桩宜为600mm~800mm;钢筋混凝土预制桩宜为300mm~600mm。
CFG桩复合地基承载力计算
CFG桩复合地基承载力计算
正确计算步骤
(1)确定CFG桩复合地基的设计单元,获取岩土地层的物理力学性质和桩体尺寸参数,确定桩体的设计负荷。
(2)选择合理的计算模型,根据岩土地层的物理力学性质和桩体尺寸参数、桩体的设计负荷计算桩底的应力和位移,获取夹填砂土层CFG桩的设计参数。
(3)根据岩土地层的物理力学性质和桩体尺寸参数、夹填砂土层CFG桩的设计参数得到夹填砂土层CFG桩的应力应变、位移等参数,并建立夹填砂土层CFG桩的计算模型,建立桩体的计算模型;
(4)采用相应的计算方法对夹填砂土层CFG桩的极限承载力进行计算;
(5)将计算结果与桩体的设计负荷进行比较,判断夹填砂土层CFG 桩的静力承载力是否足以满足设计要求;
(6)确定夹填砂土层CFG桩的最终有效承载力,并记录及留存;
(7)根据有效承载力,确定夹填砂土层CFG桩的弹性变形和其它指标;。
CFG复合地基计算
3
4
5
5、 fspk=0.5λmRa/Ap+β(1-m)fsk= 441.877551 kPa
6
式中:fspk
复合地基承载力特征值(kPa)
7
m= 0.081632653 面积置换率
8
AP= 1.1304
桩的截面积(m2)
9
β= 0.9
桩间土承载力折减系数
fsk= 200
处理后桩间土承载力特征值(kPa)
不大于30mm
。
4、 复合地基(CFG)桩长14.0米,桩端持力层为第③层,桩端端阻力为2200kPa,
桩底标高为-18.7米。
设 计 人:
单位名称
说明(红颜
色部分为设
日期
计人员填
de=1.05s,等边三角形布 (i表示第1层至第桩n) 层)
7.2.8-2 9.2.6
名称 ±0.00 强夯起始面 强夯结束
Ra=upΣqsili+qpAp= 9574.488 kN
(其中de=1.05s,等边三角形布 (i表示第1层至第桩n) 层)
单桩竖向承载力特征值(kN)
up= 3.768
桩的周长(m)
i
AP= 1.1304
桩的截面积(m2)
1
qp= 2200
桩端端阻力特征值(kPa)
2
Σqsili= 1881
i表示第1层土至第n层土
λ= 0.8
单桩承载力发挥系数
三、设计说明
1、 经计算的得出处理后地基承载力特征值取fspk=200kpa,此值仅供参考。
地基处理施工完成后,甲方应委托具有复合地基检测资质单位进行现场
复合地基载荷试验确定其值。
2、 施工图见复合地基处桩布置图
复合地基承载力置换率桩数计算公式
CFG 桩、旋喷桩、水泥搅拌桩、粉喷桩等半刚性桩复合地基承载力计算k s paksp f m A R m f,,)1(•-•+•=β式中:k sp f ,:复合地基承载力特征值(Kpa )m :桩土面积置换率,42d A p π=:桩身的截面面积(m 2)a R :单桩竖向承载力特征值(KN ),有单桩静载试验时取极限承载力之半即a R =U R 21,无单桩静载试验时,按p p i i a q A L d R +•=∑τπ估算,p q 为桩端阻力(Kpa )d 为桩直径,i L 为第i 层土厚(m ),i τ为桩侧第i 层土的侧阻力(Kpa )β:桩间土承载力折减系数,无经验时取0.75~0.95,天然地基承载力高时取较大值 k s f ,:处理后桩间土承载力特征值,按经验取值,无经验时取天然地基承载力(Kpa )灰土桩、碎石桩、震冲碎石桩、砂桩、塑料排水板等柔性桩复合地基承载力计算[]k s k s k p k s pak sp f n m f m f m f m A R m f ,,,,,)1(1)1()1(•-+=•-+•=•-+•= n :为桩土应力比,ks k p f f n ,,=,或wed d n =,e d 为等效当量圆直径,正三角布桩D d e 05.1=、正方形布桩D d e 13.1=、矩形布桩2113.1D D d e =;w d 桩直径,粉土n =1.5~3,粘性土n =2~4,k p f ,为桩的承载力特征值,余同前。
◆复合地基弹性模量:[]S SP E n m E •-+=)1(1,S E 为桩间土的地基弹性模量◆复合地基摩阻力:[]s c n m ττ•-+=)1(1,s τ为桩间土的地基摩阻力◆桩的应力增加系数:)1(1-+=n m n c μ,桩间土应力折减系数:βμ=-+=)1(11n m s ◆塑料排水量等效圆直径πδα)(2+•=b d P ,α为渗透能力折减系数,取0.75,b 板宽,δ板厚。
基桩承载力计算公式
fa=fak+η br(b-3)+η drm(d-0.5)
参数 结果 fak 170 η b 0.3 η d 1.6 r 9.2 260.26 rm 8.4 b 6 d 6.6
CFG桩承载力特征值计算公式 Ra=μ p∑qs1l1+qs2l2+qs3l3+…+qsnln)+α pqpAp fcu≥4Ra/Ap,fspk=λ mRa/Ap+β (1-m)fsk
1 Qsi Lsi λ 0.9 36 7.5 s 1.5 d 0.4 703.36 2 40 5.5 μ p 1.256 2 0 0 Ap 0.1256 4 0 0 m 0.056 20.16 5 0 0 Qp 700 6 0 0 fsk 280 7 0 0
Ra
fcu
fspk
固始蓼城美景(中苑)L11#楼
Σ qsili= 576
α p=
5、
fspk=λ mRa/Ap+β (1-m)fsk= 540.3941838 kPa
式中:fspk m= 0.055690431 AP= 0.1256 β =1 fsk= 240 λ = 0.9
复合地基承载力特征值(kPa) 面积置换率 桩的截面积(m2) 桩间土承载力折减系数 处理后桩间土承载力特征值(kPa)
复合地基(CFG桩)计算文件
一、设计依据 《建筑地基处理技术规范》JGJ79-2012 J220-2012
二、计算过程 1、 2、 3、 4、
式中: Ra
(米) 选取CFG桩直径 d= 0.4 (米) 采取正方形布桩桩距 s= 1.5 (其中de=1.13s,正方形布桩) 面积置换率 m=d²/de²= 0.055690431
CFG复合地基计算书
CFG 桩复合地基计算书一、计算依据:拟建场地的《岩土工程勘察报告》 《建筑地基处理技术规范》(JGJ79-2002)。
二、设计参数取值:设计桩径:400mm ,设计有效桩长:15m ,桩布置见图纸。
三、单桩承载力特征值设计计算:按照规范中 ∑=+=ni p p i si p a A q l q u R 1 (9.2.6)计算:其中:R a 为单桩承载力特征值;u p 为桩周长,取值1.256m ;q si 为桩周摩阻力特征值,根据勘察报告及经验数据,取值为20kPa ,25kPa ,30kPa ,25kPa ;l i 为桩长,取值6.7m ,3.1m ,4.2m ,1m ; q p 桩端端阻力特征值,按照勘察报告取值450kPa ; A p 桩端截面积,取值0.1256m 2。
R a =1.256×(20×6.7+25×3.1+30×4.2+25×1)+450×0.1256=512kN 。
取15.0m 桩长单桩承载力特征值为510kN 。
四、复合地基承载力特征值设计计算:按照规范中 ()sk paspk f m A R mf -+=1β (9.2.5) 其中:f spk 为复合地基承载力特征值,上部结构要求处理后的地基承载力特征值不小于220kPa ;R a 为单桩竖向承载力特征值,取值510kN ;A p 桩端截面积,取值0.1256m 2;m 为面积置换率,m=d 2/de 2=0.4x0.4/(1.13x1.13x1.8x1.8)=0.0387; β为桩间土承载力折减系数,取值为0.75,f sk 为处理后桩间土承载力特征值,按照勘察报告取天然地基承载力特征值100kPa 。
经过计算,复合地基承载力特征值为229kPa ,取值225 kPa ,大于设计要求的220kPa 。
五、桩体试块抗压强度平均值计算:按照规范中 pacu A R f *3≥ (9.2.7) 其中:f cu 为桩体混合料试块(边长150mm 立方体)标准养护28d 立方体抗压强度平均值(kPa )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩径 d=0.60m 截面积 A p =0.28m²周长 u p =1.9m 桩长 l=25.0m
桩端承载力折减系数 α=0.60
cu28a cu28p 矩形布桩
桩间距S1=2.00m
桩间距S2=2.00m
桩间土层为:2.26m 面积置换率 m=(d 2/d e )2=0.070
桩间土承载力特征值 f sk =40Kpa
λ=0.9
β=0.9
复合地基承载力如需进行深度修正时:
深度修正系数 ηd =1.5
基底以上土加权平均重度 γm =20 kN/m²f spa =f spk +ηd γm (d-0.5)=161 kN/m² 桩身抗压强度还需满足:
f cu28≥
6.81 MPa
可压缩地基深度 Z n =40.00 m 桩底标高:-25.00 m
地基处理深度25.0m 8.14 MPa
复合地基顶面附加压力值 p z =60 kPa
ψ = 0.657
沉降量变形:S=ΣS i +ΣS j =95.8 mm
3.地基变形计算
1.增强体单桩承载力计算
单桩承载力特征值Ra=572kN 取Ra=570kPa
复合地基承载力特征值f spk = λmR a / A p +β(1-m)f sk =2.复合地基承载力计算
161KPa
1杂填土
单桩分担的处理地基面积的等效圆直径 d e =水泥粉煤灰碎石桩(CFG)复合地基承载力及变形计算。