数据挖掘原理与算法02精品PPT课件

合集下载

数据挖掘第一与第二章PPT课件

数据挖掘第一与第二章PPT课件
散的目标变量;回归,用于预测连续的目标变 量。
预测建模可以用来确定顾客对产品促销活 动的反应,预测地球生态系统的扰动,或根据 检查结果判断病人是否患有某种疾病。
14
数据挖掘任务
• 关联分析 用来描述数据中强关联特征的模式。 关联分析的应用包括找出具有相关功
能的基因组、识别用户一起访问的Web页面、 理解地球气候系统不同元素之间的联系等。
12
数据挖掘任务
• 预测vs.描述 • 预测(Prediction)
– 根据其他属性的值,预测特定属性的值 • 描述(Description)
– 导出概括数据中潜在联系的模式
2020年9月29日星期二
13
数据挖掘任务
• 预测建模 涉及以说明自变量函数的方式为目标变量
建立模型。 有两类预测建模任务:分类,用于预测离
– 使用抽样技术或开发并行和分布算法也可以提高可 伸缩程度
2020年9月29日星期二
7
挑战2
• 高维性
– 具有数以百计或数以千计属性的数据集
• 生物信息学:涉及数千特征的基因表达数据 • 不同地区温度测量:如果在一个相当长的时间周期内进
行测量,维度(特征数)的增长正比于测量的次数
– 为低维数据开发的数据分析技术不能很好地处理高 维数据
异常检测的应用包括检测欺诈、网络攻 击、疾病的不寻常模式、生态系统扰动等。
– Jiawei Han的定义
• 从大型数据集中提取有趣的 (非平凡的, 蕴涵的, 先前未知的并且是潜在有用的) 信息或模式
4
数据挖掘技术的定义
• 定义:数据挖掘就是从大量的、不完全的、有 噪声的、模糊的、随机的实际应用数据中,提 取隐含在其中的,人们事先不知道的、但又是 潜在有用的信息和知识的过程.

数据挖掘PPT2

数据挖掘PPT2
•18
数据转换
所谓数据转换就是将数据转换或归并成一 个适合数据挖掘的描述形式。
数据转换包含以下处理内容:
•19
数据变换
平滑:去除数据中的噪声 (分箱、聚类、回归) 聚集(合计处理):对数据进行总结或合计
操作。例如:每天销售额(数据)可以进行合 计操作以获得每月或每年的总额。这一操作常 用于构造数据立方或对数据进行多细度的分析。
为什么要预处理数据?
数据预处理是数据挖掘(知识发现)过程 中的一个重要步骤,尤其是在对包含有噪 声、不完整,甚至是不一致数据进行数据 挖掘时,更需要进行数据的预处理,以提 高数据挖掘对象的质量,并最终达到提高 数据挖掘所获模式知识质量的目的。
•1
为什么要预处理数据?
现实世界的数据是“肮脏的”
不完整的:有些感兴趣的属性缺少属性值
箱3:29,29,29
用箱边界平滑:
箱1:4,4,15
箱2:21,21,24
箱3:25,25,34
•12
如何处理噪声数据
聚类方法:
通过聚类分析可帮助发现异常数据,相似或相 邻近的数据聚合在一起形成了各个聚类集合, 而那些位于这些聚类集合之外的数据对象,自 然而然就被认为是异常数据。
•13
等等
•11
数据平滑的分箱方法
给定一个数值型属性price:
price的排序后数据(单位:美元):4,8,15,21, 21,24,25,28,34
划分为(等深的)箱:
箱1:4,8,15
箱2:21,21,24
箱3:25,28,34
用箱平均值平滑:
箱1:9,9,9
箱2:22,22,22
•7
如何处理空缺值
人工填写空缺值:工作量大,可行性低 使用一个全局变量填充空缺值:对一个属性的

数据挖掘精品PPT课件

数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。

《数据挖掘》PPT课件

《数据挖掘》PPT课件
➢ 数据挖掘应用系统开发 ➢ 数据挖掘技术的新应用 ➢ 数据挖掘软件发展
2020/12/9
数据库研究所
9
高级数据挖掘
课程的教学目的
➢ 让学生掌握数据挖掘的基本概念、算法和高级技术; ➢ 将这些概念、算法和技术应用于实际问题。
复旦大学计算机科学技术学 院基本情况
➢ 主要研究方向
▪ 媒体计算 ▪ 数据库与数据科学 ▪ 网络与信息安全 ▪ 智能信息处理 ▪ 人机接口和服务计算 ▪ 理论计算机科学 ▪ 软件工程与系统软件
2020/12/9
数据库研究所
6
复旦大学数据挖掘课程的设置
总体目标
➢ 掌握大规模数据挖掘与分析的基本流程 ➢ 掌握数据挖掘的基本算法 ➢ 掌握对实际数据集进行挖掘的系统能力
数据仓库与数据挖掘
数据库系统
2020/12/9
数据库研究所
8
数据仓库与数据挖掘
课程的教学目的
➢ 掌握数据仓库数据挖掘原理、技术和方法,掌握建立数据挖掘应用 系统的方法,了解相关前沿的研究。
教学内容
➢ 数据挖掘、数据仓库的基本概念
▪ 数据仓库设计和应用 ▪ 数据挖掘的基本技术
• 关联分析、分类分析、聚类分析、异常分析和演化分析等;联机分析处理OLAP技术;
➢ involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems.
➢ The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.

数据挖掘课件

数据挖掘课件

07
数据挖掘实践案例
电商用户行为分析
1 2
用户购买行为分析
分析用户的购买记录,识别用户的购买习惯和偏 好,为电商企业提供精准的产品推荐和营销策略 。
用户活跃度分析
分析用户的登录、浏览、搜索等行为,评估用户 的活跃度和兴趣,优化网站内容和结构。
3
用户满意度分析
通过用户评价和反馈,了解用户对产品的满意度 和需求,及时调整产品和服务,提高用户满意度 和忠诚度。
层次聚类算法的优缺点
层次聚类算法能够得到完整的聚类树,但计算复杂度高,且需要预先确定簇的数量或截断 线。
05
分类与回归
决策树算法
决策树算法概述
ID3算法
决策树是一种常见的分类与回归算法,通 过树形结构来表达决策过程。
ID3算法是决策树学习算法的一种,它根据 信息增益来选择划分属性。
C4.5算法
CART算法
C4.5算法是ID3算法的改进版,它引入了增 益率的概念,解决了ID3算法对可取值数目 较多的属性有所偏好的问题。
CART算法是一种采用二叉树结构的决策树 学习算法,概述
距离度量
K近邻算法是一种基本的分 类与回归算法,它根据距离 来衡量样本之间的相似性。
信用卡欺诈检测
01
异常交易检测
监测信用卡交易记录,及时发现 异常交易,如大额交易、异地交 易等,防止欺诈行为。
02
欺诈模式识别
03
实时监控与警报
通过对历史欺诈行为进行分析, 发现欺诈模式和特征,建立欺诈 检测模型。
实时监测信用卡交易,触发警报 机制,及时通知银行和持卡人, 防止欺诈行为。
股票价格预测
填充缺失值
对于缺失的数据,可以采 用不同的方法进行填充, 如用平均值、中位数或模 式匹配等方法。

数据挖掘ppt课件(2024)

数据挖掘ppt课件(2024)

医疗数据类型及特点
电子病历、医学影像、基因测序等 。
数据预处理与特征提取
针对不同类型的医疗数据进行预处 理和特征提取,如文本处理、图像 识别、基因表达谱分析等。
2024/1/29
模型评估与应用
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
贝叶斯分类器应用案例
03
如垃圾邮件识别、新闻分类、情感分析等。
17
神经网络在分类预测中应用
1 2
神经网络基本概念
模拟人脑神经元连接方式的计算模型,通过训练 学习输入与输出之间的映射关系。
神经网络在分类预测中的应用
通过构建多层感知机、卷积神经网络等模型,对 输入数据进行自动特征提取和分类预测。
3
神经网络应用案例
5
数据挖掘与机器学习关系
机器学习是数据挖掘的重 要工具之一。
2024/1/29
数据挖掘包括数据预处理 、特征提取、模型构建等 步骤,其中模型构建可以 使用机器学习算法。
机器学习算法如决策树、 神经网络、支持向量机等 在数据挖掘中有广泛应用 。
6
2024/1/29
02
数据预处理技术
7
数据清洗与去重
推荐模型构建
利用机器学习、深度学习等技 术构建推荐模型,如逻辑回归 、神经网络等。
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
32
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
2024/1/29
数据来源与处理

数据挖掘算法介绍ppt课件

数据挖掘算法介绍ppt课件
❖ 粗糙集对不精确概念的描述方法是:通过上近似概念和 下近似概念这两个精确概念来表示;一个概念(或集合 )的下近似指的是其中的元素肯定属于该概念;一个概 念(或集合)的上近似指的是其中的元素可能属于该概 念。
❖ 粗糙集方法则有几个优点:不需要预先知道的额外信息 ,如统计中要求的先验概率和模糊集中要求的隶属度; 算法简单,易于操作。
❖ 国外现状:
成熟、 产品:SAS、CLEMENTINE、UNICA、各大数据库
❖ 国内现状:
起步 产品:大部分是实验室产品
数据挖掘分类
❖ 挖掘对象
▪ 基于数据库的挖掘 ▪ 基于web的挖掘 ▪ 基于文本的挖掘 ▪ 其他:音频、视频等多媒体数据库
数据挖掘分类
❖ 应用
▪ 响应模型 ▪ 交叉销售 ▪ 价值评估 ▪ 客户分群
遗传算法
❖ 遗传算法(Genetic Algoritms,简称GA )是以自然选择和遗传理论为基础,将生 物进化过程中“适者生存”规则与群体内 部染色体的随机信息交换机制相结合的搜 索算法 ;
❖ 遗传算法主要组成部分包括编码方案、适 应度计算、父代选择、交换算子和变异算 子。
序列模式
❖ 是指在多个数据序列中发现共同的行为模 式。
谢谢
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
Hale Waihona Puke 策树❖ 决策树学习是以实例为基础的归纳学习算 法,着眼于从一组无次序/无规则的事例中 推理出决策树表示形式的分类规则;
❖ 决策树基本算法是:贪心算法,它以自顶向 下递归、各个击破方式构造决策树.
关联规则
❖ 关联规则是形式如下的一种规则,“在购 买面包和黄油的顾客中,有90%的人同时 也买了牛奶”(面包+黄油 → 牛奶);

数据挖掘概述PPT课件

数据挖掘概述PPT课件
还有很多案例都可以印证,现在的社会是一个 信息爆炸的社会。是在信息的潮流中随波逐流 还是“到中流击水,浪遏飞舟”?
第5页/共63页
数据挖掘技术的另一个产生动力 2.数据过量而知识贫乏 现代人了解古代的主要方式主要是通过前人留 下的记录,但是这些记录往往是零碎的、不完 全的。例如?
想象一下,如果后人希望了解现在人们的生活 状况,他们面临的已不再是信息缺失,而是需 要从浩如烟海的资料中有选择性的收集他们认 为有用的信息,若没有一定技术支持,其难度 恐怕可以用“浪里淘金”或“大海捞针”来形 容。
一、引例 例1。如果你在当当的购书网站并购买过书籍或音 像制品,以后再浏览该网站时经常看到类似的提示: “欢迎你,下面是我们给您推荐的新书和VCD。” 然后就可以在网页的某个位置看到几本新书或VCD 的名字及其相关链接。 网站怎么知道读者可能会对这些物品干兴趣?
这是因为网站采用了新的技术来了解顾客的潜在需求, 比如:网站从顾客的购买清单中发现你买的书与张三 买过的书有几本是相同的,但是还有些书张三已经买 了,而你却还没买,网站会据此认为你们的阅读偏好 相近,从而你会对那些书也干兴趣。
6
鲑鱼,尿布,啤酒
7
面包,茶,糖鸡蛋
8
咖啡,糖,鸡,鸡蛋
9
面包,尿布,啤酒,盐
10
茶,鸡蛋,小甜饼,尿布,啤酒
从这个销售数据中可以得出什么结论?
第2页/共63页
简单分析发现,有6个顾客买了啤酒,而其中5个人 买了尿布,或说,5个买了尿布的顾客都买了啤酒。
从数据挖掘的角度就是得到了如下的很强的关联规则:
第18页/共63页
则S2与S6之间的相异度为10,而相似度为1/11, 有min_d=2,max_d=29,因此,也可以定义相似度 为1-(10-2)/(29-2)=19/27。

数据挖掘ppt课件

数据挖掘ppt课件

2021精选ppt
12
实例——科学数据库
Internet已经成为最大的信息源,但缺乏集中统一 的管理机制, 信息发布具有自由性和任意性, 难于控 制和管理 • 分散、无序、无政府、变动、数量、包罗万象 • 真伪并存, 资源信息和非资源信息难于驾御 • 非规范、非结构 • 检索查全和查准提出新的挑战 • 多媒体、多语种、多类型信息的整合提出新的挑 战 • 跨国界数据传递和流动, 带来政治、文化新问题 • 集成多种(正式和非正式等)交流方式
2021精选ppt
5
中医临床数据——结构化数据采集
2021精选ppt
6
中医临床数据——非结构化数据采集
2021精选ppt
7
中医临床数据
2021精选ppt
8
中医临床数据——全文数据库
2021精选ppt
9
中医临床数据——结构化数据库
2021精选ppt
10
数据及数据分类
1)按照数据所属行业类别分类 科学数据,科学研究过程中产生的数据
12, M, 0, 5, 5, 0, 0, 0, ACUTE, 38.5, 2, 1, 0,15, -,-, 10700,4,0,normal, abnormal, +, 1080, 680, 400, 71, 59, F,-,ABPC+CZX,, 70, negative, n, n, n, BACTERIA, BACTERIA
15, M, 0, 3, 2, 3, 0, 0, ACUTE, 39.3, 3, 1, 0,15, -, -, 6000, 0,0, normal, abnormal, +, 1124, 622, 502, 47, 63, F, -,FMOX+AMK, , 48, negative, n, n, n, BACTE(E), BACTERIA

《数据挖掘原理》课件

《数据挖掘原理》课件

整理和探索数据集,包括数据质量
和统计分析,为后续挖掘建立基础。
3
建模
4
选择适合问题的算法并建立模型, 如聚类、分类、关联规则等。
5
模型应用
6
将模型应用于实际业务场景中,并 持续监控和改进模型效果和精度。
业务理解
从业务和应用角度理解挖掘目标和 任务,为挖掘流程提供方向。
数据准备
对数据进行清洗、转换和集成,为 挖掘算法提供结构化和规范化的数 据集。
应用领域
1
金融
数据挖掘可用于金融欺诈检测、交易
商业
2
预测和信用风险评估等。
数据挖掘可用于客户关系管理、市场
分析、产品推广和销售提高等。
3
医疗
数据挖掘可用于疾病诊断、药物研发
和临床治疗等,促进医疗卫生信息化
社交网络
4
建设。
数据挖掘可用于社交媒体分析、用户 画像和个性化推荐等,提高用户体验
和社群吸引力。
模型评估
对建立的模型进行检验和评估,确 定模型的准确性、可靠性和可用性。
常见的技术和方法
分类
将数据集分成类别或标签,用于预测、分类 和识别等,如决策树、支持向量机等。
关联规则
挖掘数据之间的关系和关联,如规律、频率 和趋势等,用于推荐系统、市场分析和交叉 销售等,如Apriori、FP-Growth等。
数据挖掘与商业
许多企业已经将数据挖掘技术应用于市场调查,推广,销售和客户服务等。
历史和发展
起源
发展
数据挖掘技术起源于1980年代, 那时主要应用于统计学和机器 学习领域。
随着数据和计算能力的爆炸性 增长,数据挖掘在20世纪90年 代得到快速发展,应用领域也 得到了拓宽。

数据挖掘算法的ppt

数据挖掘算法的ppt
PCA算法搜索c个最能代表数据的k-维正交向量; 这里c k。这样,原来的数据投影到一个较小的 空间,导致数据压缩。步骤如下:
(1)对输入数据归一化,使得每个属性都落入相同 的区间。
(2)PCA计算c个规范正交向量,作为归一化输入 数据的基。这些是单位向量,每一个都垂直于另 一个:称为主成分。输入数据是主要成分的线性 组合。
(3)广义的数据挖掘是指知识发现的全过程;狭义的数据 挖掘是指统计分析、机器学习等发现数据模式的智能方法, 即偏重于模型和算法。
(4)数据库查询系统和专家系统不是数据挖掘!在小规模 数据上的统计分析和机器学习过程也不应算作数据挖掘。
1.2 机器学习
(1)对于某类任务T和性能度量P,如果一个 计算机程序在T上以P衡量的性能随着经验E 而自我完善,那么这个计算机程序被称为在 从经验E学习。
max min
无限区间的归一化:
v
'
1
1 e
v
模糊隶属度:
2.2-2 核函数
(1)核函数的基本思想是将在低维特征向量线性不可 分的数据映射到线性可分的高维特征空间中去。
(2)映射可以是显式的,也可以是隐式的。显式映射 即找到一个映射关系f,使高维空间的特征向量f (x) 可以被直接计算出来。
(3)隐式映射,即引入一个核函数进行整体处理,就 避免了对的直接求f (x)的计算困难。核函数即某高维 特征空间中向量的内积,是核矩阵中的一个元素。
(4)可视化:将数据、知识和规则转化为图 形表现的形式。
1.6 数据仓库
(1)数据仓库是一个面向主题的、集成的、随时间变 化的、非易失性数据的集合,用于支持管理人员的 决策。
(2)数据仓库是一种多个异种数据源在单个站点以统 一的模式组织的存储,以支持管理决策。数据仓库 技术包括数据清理、数据集成和联机分析处理 (OLAP)。

数据挖掘算法培训课件PPT(共 34张)

数据挖掘算法培训课件PPT(共 34张)

9 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.3 分类技术
分类技术或分类法(Classification)是一种根据输入样本集建立类别模型,并按照类 别模型对未知样本类标号进行标记的方法。
根据所采用 的分类模型
不同
基于决策树模型 的数据分类
基于案例推理的 数据分类
基于神经网络模 型的数据分类
频繁模式树增长算法(Frequent Pattern Tree Growth)采用分而治之的基本思想,将数据库中的 频繁项集压缩到一棵频繁模式树中,同时保持项集之间的关联关系。然后将这棵压缩后的频繁模式 树分成一些条件子树,每个条件子树对应一个频繁项,从而获得频繁项集,最后进行关联规则挖掘。
FP-Growth算法由以下步骤组成:
虽然关联规则挖掘可以发现项目之间的有趣关系,在某些情况下,隐藏的变量可能会 导致观察到的一对变量之间的联系消失或逆转方向,这种现象就是所谓的辛普森悖论 (Simpson’s Paradox)。
为了避免辛普森悖论的出现,就需要斟酌各个分组的权重,并以一定的系数去消除以 分组数据基数差异所造成的影响。同时必须了解清楚情况,是否存在潜在因素,综合 考虑。
4 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.2 频繁项集的产生及其经典算法
格结构(Lattice Structure)常常被用来枚举所有可能的项集。
图3-10 项集的格
5 of 65
3.4 关联规则
第三章 数据挖掘算法
3.4.2 频繁项集的产生及其经典算法
格结构(Lattice Structure)常常被用来枚举所有可能的项集。
生成频繁1项集L1 连接步

数据挖掘——第二章认识数据PPT课件

数据挖掘——第二章认识数据PPT课件

合计
200
1
100
Mo=商品广告
定序数据:中位数(median)
• 排序后处于中间位置上的值
• 用Me表示 • 不受极端值的影响
• 主要用于定序数据,也可用数值型数据, 但不能用于定类数据
• 各变量值与中位数的离差绝对值之和最小
,即
最小 n
Xi Me
i 1
中位数
中位数位置N1 2
Me 12XNX21N2当 NX为 N2奇 1 数 当 时N为偶数时
• 定类尺度(列名尺度):按照事物的某种 属性对其进行平行的分类或分组。
– 例:人口的性别(男、女);企业的所有制性 质(国有、集体、私营等)
• 计量层次最低 • 对事物进行平行的分类 • 各类别可以指定数字代码表示 • 具有=或的数学特性 • 数据表现为“类别”
定类尺度
• 定类尺度只测度了事物之间的类别差,而对各 类之间的其他差别却无法从中得知,因此各类 地位相同,顺序可以任意改变。
四种计量尺度的比较
四种计量尺度的比较
定类尺度 定序尺度 定距尺度 定比尺度
分类(=,≠ )




排序( < ,> )



间距( + ,- )


比值( × ,÷)

“√”表示该尺度所具有的特性
四种计量尺度的区别与联系
• 高层次的计量尺度具有低层次计量尺度的全部特 性,但反之不行
• 可将高层次计量尺度的计量结果转换为低层次计 量尺度的计量结果,但不能反过来
• 对事物分类的同时给出各类别的顺序 • 比定类尺度精确 • 不仅可以测度类别差(分类),还可以测

数据挖掘PPT全套课件

数据挖掘PPT全套课件

记录数据
记录(数据对象)的汇集,每个记录包含固定的数 据字段(属性)集
Tid Refund Marital Taxable Status Income Cheat
1 Yes 2 No 3 No 4 Yes 5 No 6 No 7 Yes 8 No 9 No 10 No
10
Single 125K No
和三维结构的DNA数据)
数据库技术、 并行技术、分 布式技术
数据挖掘的任务
预测 – 使用已知变量预测未知变量的值.
描述 – 导出潜在联系的模式(相关、趋势、聚类、异
常).
数据挖掘的任务
分类 [预测] 聚类 [描述] 关联分析 [描述] 异常检测 [预测]
分类 例子
Tid Refund Marital Taxable Status Income Cheat
矿石硬度、{好, 较好,最好}、 成绩
中值、百分位、 秩相关、游程 检验、符号检 验
日历日期、摄氏、 均值、标准差、
华氏温度
皮尔逊相关、
t和F检验
绝对温度、货币 量、计数、年龄 、质量、长度、 电流
几何平均、调 和平均、百分 比变差
属性类 型
标称
变换 任何一对一变换
序数
值的保序变换
新值 = f(旧值)
– (1)统计学的抽样、估计、假设检验
– (2)人工智能、模式识别、机器学习
的搜索算法/建摸技术、学习理论
– (3)最优化、进化算法、
信息论、信号处理、 可视化、信息检索
统计学
人工智能、 机器学习
– (4)数据库技术、并行计算
和模式识别
、分布式计算
传统的方法可能不适合
数据挖掘

《数据挖掘》课件

《数据挖掘》课件
NumPy、Pandas、 Matplotlib等,能够方便地进 行数据处理、建模和结果展示

Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/10/8
8
数据的选择与整理
没有高质量的数据就不可能有高质量的挖掘结果。为了得 到一个高质量的适合挖掘的数据子集,一方面需要通过数 据清洗来消除干扰性数据,另一方面也需要针对挖掘目标 进行数据选择。数据选择的目的是辨别出需要分析的数据 集合,缩小处理范围,提高数据采掘的质量。数据选择可 以使后面的数据挖掘工作聚焦到和挖掘任务相关的数据子 集中。不仅提高了挖掘效率,而且也保证了挖掘的准确性。
2020/10/8
3
1.问题定义阶段的功能
KDD是为了在大量数据中发现有用的令人感兴趣 的信息,因此发现何种知识就成为整个过程中第 一个也是最重要的一个阶段。
在问题定义过程中,数据挖掘人员必须和领域专 家以及最终用户紧密协作
一方面了解相关领域的有关情况,熟悉背景知识,弄清 用户要求,确定挖掘的目标等要求;
本章也对KDD系统项目的过程化管理、交互式数据挖掘过 程以及通用的KDD原型系统进行讨论,使读者从软件项目 管理角度来更好地理解KDD过程。最后对数据挖掘语言的 类型和特点进行介绍。

2020/10/8
2
知识发现是一个系统化的工作
从源数据中发现有用知识是一个系统化的工作。 首先必须对可以利用的源数据进行分析,确定合 适的挖掘目标。然后才能着手系统的设计和开发。
2020/10/8
7
数据清洗与预处理
在开始一个知识发现项目之前必须清晰地定义挖掘目标。虽然挖掘的 最后结果是不可预测的,但是要解决或探索的问题应该是可预见的。 盲目性地挖掘是没有任何意义的。如果所集成的数据不正确,数据挖 掘算法输出的结果也必然不正确,这样形成的决策支持是不可靠的。 因此,要提高挖掘结果的准确率,数据预处理是不可忽视的一步。
虽然不同企业会有不同的业务逻辑,解决问题的具体方法 有所差异,但是它们进行知识发现的目的和基本思路是一 致的。因此,本章首先对知识发现的基本过程进行分析, 旨在使读者从总体上掌握知识发现的基本步骤和技术。然 后对目前比较流行的KDD过程处理模型进行剖析,使读者 了解KDD系统的应用体系结构。通过对KDD系统的基本技 术环境和主要部件功能分析,使读者对KDD系统的体系结 构有一个更深入的了解。在此基础上对KDD软件和工具进 行归纳、举例和分析,帮助读者在实际应用中学会选择和 使用相应的软件和工具。
2020/10/8
9
数据挖掘阶段的功能
完成从大型源数据中发现有价值知识的过程可以 简单地概括为:首先从数据源中抽取感兴趣的数 据,并把它组织成适合挖掘的数据组织形式;然 后,调用相应的算法生成所需的知识;最后对生 成的知识模式进行评估,并把有价值的知识集成 到企业的智能系统中。
一般地说,KDD是一个多步骤的处理过程,一般 分为问题定义、数据抽取、数据预处理、数据挖 掘以及模式评估等基本阶段。
对数据进行预处理,一般需要对源数据进行再加工,检查数据的完整 性及数据的一致性,对其中的噪音数据进行平滑,对丢失的数据进行 填补,消除“脏”数据,消除重复记录等。
数据清洗是指去除或修补源数据中的不完整、不一致、含噪音的数据。 在源数据中,可能由于疏忽、懒惰、甚至为了保密使系统设计人员无 法得到某些数据项的数据。假如这个数据项正是知识发现系统所关心 的,那么这类不完整的数据就需要修补。
源数据库的选取以及从中抽取数据的原则和具体规则必须 依据系统的任务来界定。主要任务是设计存储新数据的结 构和准确定义它与源数据的转换和装载机制,以便正确地 从每个数据源中抽取所需的数据。这些结构和转换信息应 该作为元数据(Metadata)被存储起来。
来自不同源的数据可能有模式定义上的差异,也可能存在 因数据冗余而无法确定有效数据的情形。此外,还要考虑 数据库系统本身可能存在不兼容的情况
2020/10/8
5
3.数据预处理阶段的功能
数据预处理主要对前一阶段抽取的数据进行再加 工,检查数据的完整性及数据的一致性。包括消 除噪声、推导计算缺值数据、消除重复记录、完 成数据类型转换等。
2020/10/8
6
数据抽取与集成
数据抽取与集成是知识发现的关键性工作。早期的数据抽 取是依靠手工编程来实现的,现在可以通过高效的抽取工 具来实现。即使是使用抽取工具,数据抽取和和装载仍然 是一件很艰苦的工作。
第二章 知识发现过程与应用结构
内容提要
知识发现的基本过程 数据库中的知识发现处理过程模型 知识发现软件或工具的发展 知识发现项目的过程化管理
2020/10/8
1
如何学习本章内容
在上一章我们指出,数据挖掘有广义和狭义两种理解。为 了避免混淆,本章宁愿使用知识发现而把数据挖掘限制在 上面所描述的狭义概念上。
另一方面通过对各种学习算法的对比进而确定可用的学 习算法。后续的学习算法选择和数据集准备都是在此基 础上进行的。
2020/10/8
4
2.数据抽取阶段的功能
数据抽取的目的是选取相应的源数据库,并根据 要求从数据库中提取相关的数据。源数据库的选 取以及从中抽取数据的原则和具体规则必须依据 系统的任务来确定。
利用数据变换或规约等技术可以将数据整理成适合进一步 挖掘的数据格式。数据变换可以根据需要构造出新的属性 以帮助理解分析数据的特点,或者将数据规范化,使之落 在一个特定的数据区间中。数据归约则是在尽可能保证数 据完整性的基础上,将数据以其他方式进行表示,以减少 数据存储空间,使挖掘过程更有效。常用的归约策略有: 数据立方体聚集、维归约、数据压缩、数值压缩和离散化 等。
常见的不完整数据的修补办法有:
使用一个全局值来填充(如“unknown”、估计的最大数或最小数)。 统计该属性的所有非空值,并用平均值来填充空缺项。 只使用同类对象的属性平均值填充。 利用回归或工具预测最可能的值,并用它来填充。
数据不一致可能是由于源数据库中对同样属性所使用的数据类型、度 量单位等不同而导致的。因此需要定义它们的转换规则,并在挖掘前 统一成一个形式。噪音数据是指那些明显不符合逻辑的偏差数据(如 某雇员200岁),这样的数据往往影响挖掘结果的正确性。
相关文档
最新文档