第9讲变形不均匀原因及防止措施

合集下载

《结构设计原理》叶见曙 第三版 课件第9章 钢筋混凝土受弯构件的应力、裂缝和变形计算

《结构设计原理》叶见曙 第三版 课件第9章 钢筋混凝土受弯构件的应力、裂缝和变形计算
钢筋混凝土梁中裂缝的出现和一定限度的开展并不意 味着构件的破坏,但有一定的危害性:
• 裂缝开展宽度过大,大气中的水汽和侵蚀性气体进入裂缝,
引起主筋锈蚀,使主筋有效截面积减小,导致构件强度降 低; • 由于冰冻和水化作用,日久会影响构件的耐久性,缩短 构件使用寿命。
青海大学 结构设计原理
广州机场立交出现15厘米宽裂缝
青海大学 结构设计原理
9.4 裂缝宽度计算——裂缝控制目的
1、保证使用功能的要求 结构构件的变形较大时,会严重影响甚至丧失它的使用功 能。如桥梁上部结构过大的挠曲变形使桥面形成凹凸的波 浪形,影响车辆行驶,严重时将导致桥面结构的破坏。 2、满足观瞻和使用者的心理要求 构件的变形过大,还引起使用者明显的不安全感。 3、避免对其他结构构件的不利影响 构件的变形过大,会影响到与它连接的其他勾结也发生过 大变形,有时甚至会改变荷载的传递路线、大小和性质。
裂缝宽度计算
《公路桥规》采用的公式是大连工学院海洋工程研究所试验资料基 础上,分析了裂缝宽度的主要因素,舍去次要因素,用数理统计方 法给出的简单适用的公式。
表面形状系数,带肋:1.0 钢筋的直径,采用不同 直径的钢筋时 4 As 按短期效应组合计算的构件裂缝 受力特征系数,受弯 1.0 , 光圆: 1.4 取换算直径: d (MPa) 处纵向受拉钢筋的应力 大偏压0.9 ss 30 d wmax c1c2c3 ( ) (mm) 受拉钢筋的总周长 Es 0.28 10
青海大学 结构设计原理
9.5 受弯构件的挠度验算

钢筋混凝土受弯构件在正常使用极限状态下的挠度,可 根据给定的构件刚度,用结构力学的方法计算。 由图乘法可得,简支梁的挠度计算公式: 承受均布荷载时: 跨中承受集中荷载时:

热处理质量管控CQI9教材课件

热处理质量管控CQI9教材课件

金属学基础知识—铁碳合金
铁素体—碳熔于α-Fe晶格间歇形成的间 歇固熔体,称为铁素体.用F表示。用于铁 素体的含碳量低,所以铁素体的组织与 纯铁相似。具有良好的塑性和韧性,而 强度和硬度较低。
(另有δ铁素体,是碳熔于δ-Fe晶格间歇 中形成的间歇固熔体。)
金属学基础知识—铁碳合金
奥氏体—碳熔于γ-Fe晶格间隙中形成的 间隙固溶体,称为奥氏体。用A表示。由 于奥氏体的溶碳比铁素体多,因此奥氏 体的强度和硬度较铁素体高,并且是单 一的固溶体,所以其塑性较好,变形抗 力较低。绝大多数钢在进行压力加工和 热处理时,都加热到奥氏体区域。
ISO/TS 16949:2002条款8.2.2.2 要求组织 应审核每个制造过程以确定它的有效性。热处 理过程有适用性和有效性应利用CQI-9第二版 特殊过程:热处理系统的评审(Heat Treat
顾客特殊要求
System Assessment,HTSA)来确定,这文件由 AIAG出版。有效性的评估应包括组织的自我评 审、已采取措施,并维护所有的记录。
2007 年9月 4.1.12 热处理过程
ISO/TS 16949:2002条款要求,组织应审 核每一个制造过程以确定其有效性。热处理过 程的适用性和有效性应利用AIAG所发行的CQI9第二版特殊过程:热处理系统评审(CQI-9 Special Process: Heat Treat
顾客特殊要求
SystemAssessment, HTSA)来加以确定,并维 护其记录。其有效性的评估应包括组织的自我 评审、已采取的措施和已被维护的记录。
金属学基础知识—晶格类型
体心立方晶格:他的晶胞是一个立方体,在立 方体的八个角和立方体的中心,各排列一下原 子.属于这类晶格类型的金属有钨/铬/矾及a铁;

冲压件常见质量缺陷及原因分析,整改对策

冲压件常见质量缺陷及原因分析,整改对策

有用!最全的冲压件缺陷产生原因及其预防措施一、图片展示常见的缺陷有9类,分别是:开裂、叠料、波浪、拉毛、变形、毛刺、缺料、尺寸不符、坑、包以及压伤。

二、冲压件缺陷原因及预防1.冲压废品1)原因:原材料质量低劣;冲模的安装调整、使用不当;操作者没有把条料正确的沿着定位送料或者没有保证条料按一定的间隙送料;冲模由于长期使用,发生间隙变化或本身工作零件及导向零件磨损;冲模由于受冲击振动时间过长紧固零件松动使冲模各安装位置发生相对变化;操作者的疏忽,没有按操作规程进行操作。

2)对策:原材料必须与规定的技术条件相符合(严格检查原材料的规格与牌号,在有条件的情况下对尺寸精度和表面质量要求高的工件进行化验检查。

);对于工艺规程中所规定的各个环节应全面的严格的遵守;所使用的压力机和冲模等工装设备,应保证在正常的工作状态下工作;生产过程中建立起严格的检验制度,冲压件首件一定要全面检查,检查合格后才能投入生产,同时加强巡检,当发生意外时要及时处理;>前沿数控技术微信不错,记得关注。

坚持文明生产制度,如工件和坯件的传送一定要用合适的工位器具,否则会压伤和擦伤工件表面影响到工件的表面质量;在冲压过程中要保证模具腔内的清洁,工作场所要整理的有条理加工后的工件要摆放整齐。

2.冲裁件毛刺1)原因:冲裁间隙太大、太小或不均匀;冲模工作部分刃口变钝;凸模和凹模由于长期的受振动冲击而中心线发生变化,轴线不重合,产生单面毛刺。

2)对策:保证凸凹模的加工精度和装配质量,保证凸模的垂直度和承受侧压力及整个冲模要有足够的刚性;在安装凸模时一定要保证凸凹模的正确间隙并使凸凹模在模具固定板上安装牢固,上下模的端面要与压力机的工作台面保持相互平行;要求压力机的刚性要好,弹性变形小,道轨的精度以及垫板与滑块的平行度等要求要高;要求压力机要有足够的冲裁力;冲裁件剪裂断面允许毛刺的高度冲裁板材厚度>0.3>0.3-0.5>0.5-1.0>1.0-1.5>1.5-2.0新试模毛刺高度≤0.015≤0.02≤0.03≤0.04≤0.05生产时允许的毛刺高度≤0.05≤0.08≤0.10≤0.13≤0.153.冲裁件产生翘曲变形1)原因:有间隙作用力和反作用力不在一条线上产生力矩。

第9讲变形不均匀原因及防止措施

第9讲变形不均匀原因及防止措施
202028lessonnine带孔的玻璃锤头镦粗塑料实验带孔的玻璃锤头镦粗塑料实验202028lessonnine侧面翻平变形物体在压缩时由于接触摩擦的作用在出现单鼓形的同时还会出现侧表面的金属局部地转移到接触表面上来的侧面翻平现象
金属塑性变形理论
Theory of metal plastic deformation
2021/7/9
41
Ⅰ区表示由外摩擦影响而产生的难变形区;
Ⅱ区表示与作用力成45°角的最有利方位的 易变形区;
Ⅲ区表示变形程度居于中间的自由变形区。
2021/7/9
5
Lesson Nine
镦粗时摩擦力对变形及应力分布的影响
2021/7/9
6
应力分布不均
Lesson Nine
外摩擦不仅影响变形,而且使接触面上的应 力(或单位压力)分布不均匀,沿试样边缘 的应力等于金属的屈服极限,从边缘到中心 部分,应力逐渐升高。
2021/7/9
20
Lesson Nine
在变形体内因温度不同所产生热膨胀的不同 而引起的热应力,与由不均匀变形所引起的 附加应力相叠加后,有时会加强应力的不均 匀分布,甚至会引起变形物体的断裂。
在热轧中常见到轧件轧出后会出现上翘或下 翘现象,产生此现象原因之一就是轧件的温 度不均所造成的。
2021/7/9
2021/7/9
15
Lesson Nine
双鼓形
2021/7/9
16
工具与工件的轮廓形状
Lesson Nine
工具(或坯料)形状是影响金属塑性流 动方向的重要因素。工具与金属形状的 差异,是造成金属沿各个方向流动的阻 力有差异,因而金属向各个方向的流动 (即变形量)也有相应差别。

第9章-盾构隧道结构

第9章-盾构隧道结构

1986~1988年 复圆、多圆 断面盾构MF
1865年 圆形 挤压式盾构
1976年 铰接式盾构
1993年 球体盾构、 扩径盾构
3、盾构隧道的发展
国内盾构隧道走过的历程
上杨
海浦
上路 海南
地线 铁
延线
上一 海号
安 东
隧 道
双圆盾构
2003年
上路
地线 铁
1994年 泥水平衡式盾构
阜盾
海隧
新构
打道
Φ输

1、 隧道断面形式的选择,根据隧道的使用要求、施工技术 的可能、地层的特性、隧道受力等因素确定。
最常用的盾构隧道断面为圆形: (1)可以等同的承受各个方向
的外部压力,尤其是在饱和含水 的软土地层中修建地下隧道,由 于顶压和侧压较为接近,更可以 显示出圆形隧道断面的优越性;
(2)施工中易于盾构推进; (3)便于管片的制作与拼装; (4)盾构即使发生转动,对断 面的利用也无大碍。
1886年,Great在南伦敦铁路隧道中使用了盾构和压气组合 工法,为现在的盾构工法奠定了基础。
9
3、盾构隧道的发展
1825年 盾构机首次使用
1830年 使用气压的 半机械式盾构
1840年 能够壁后注浆的
机械式盾构
1966年 泥水加压盾构
1974年 土压平衡盾构EPB
1981年 压注混凝土 衬砌工法ECL
盾构法隧道有哪些优点呢?
(1)在盾构支护下进行地下工程暗挖施工,不受地 面交通、河道、航运、潮汐、季节、气候等条件的 影响,能较经济合理地保证隧道安全施工;
(2)在盾 构的掩护下 进行开挖和 衬砌作业, 有足够的施 工安全性;
(3)盾构作业产生的 振动、噪声等环境危害 较小; 对地面建筑物及 地下管线的影响较小

10《土木工程概论》第9讲_土木工程中的力学和结构概念-03

10《土木工程概论》第9讲_土木工程中的力学和结构概念-03
21荷载直接作用荷载是直接以力的形式作用于结构集中力和分布力如结构自重作用于楼面的人群家具设备作用于桥面的车辆人群施加于结构物上的风压力水压力土压力等它们都是直接施加于结构上直接作用工程界习称为荷载另一种是施加于结构上的外加变形或约束变形如地震基础沉降材料收缩和徐变温度变化引起结构产生作用效应它们都是间接作用于结构间接作用
共45张 第29张
土木工程概论
2.3 应力、应变、弹性模量
结构承受荷载为0→P2时,结构构件处于弹性状态;
结构承受荷载为P2→P3时,结构构件处于塑性状态;
结构承受荷载超过P3, 将达其极限应力时,结构
>P3
P2 ~ P3
构件处于破坏失效状态。
不同的结构材料弹、塑性是不 0 ~ P2 同的。有塑性的材料称为塑性材 料,如钢材、砼等,这类材料一旦 出现塑性有发生破坏的预兆;反之 称为脆性材料如石材、玻璃等。
地震对结构施加的 影响属间接作用, 应把结构承受的 “地震荷载”称为 地震作用。
震源、地震波、 震中、震中距的关系
共45张 第17张
土木工程概论
2 荷载、作用和效应
2.2 间接作用(间接荷载)
除直接施加在结构上的外力(即荷载)外,还有一种因间接
施加影响引起结构受力的作用。作用也使结构内部产生内力和变 形。它们也以三类形式出现。
土木工程概论
1 外力、内力和反力
倘若桥的两端曾可能被 锯过又接了起来,当人拿着 重物走上去,桥身必然像被 剪切般地下落。现在桥身没 有被锯,受力后完好无损, 说明桥身还承受有剪切力。
桥身承受剪切
再如果将重物放在桥
桥身承受扭曲
的一侧,全桥还将受 到扭曲。
共45张 第4张
土木工程概论
1 外力、内力和反力

金属材料冷热不均变形的原因

金属材料冷热不均变形的原因

金属材料冷热不均变形的原因主要有以下几点:
1. 热胀冷缩:金属在受热时会膨胀,受冷时会收缩,当金属材料的一部分受热或受冷时,由于温度的不均匀分布,会导致金属材料的冷热不均变形。

2. 内部应力:金属材料在加工或使用过程中会产生内部应力,当金属材料受热或受冷时,内部应力会导致金属材料发生形变。

3. 结构不均匀:金属材料的结构不均匀也会导致冷热不均变形,例如金属材料中存在晶粒大小差异、组织不均匀等情况,会使金属材料在受热或受冷时出现不均匀的变形。

4. 外部约束:金属材料在受热或受冷时,如果受到外部约束限制,会导致金属材料的冷热不均变形,例如在焊接过程中,焊接点受热后会产生热变形,如果受到外部约束,则会导致焊接点出现形变。

高速公路隧道二衬错台原因分析及防治措施

高速公路隧道二衬错台原因分析及防治措施

2019年9月第3期葛洲坝集团科技总第131期高速公路隧道二衬错台原因分析及防治措施张建清中国葛洲坝集团三峡建设工程有限公司摘要:隧道二衬施工时,由于多种因素,两模接头容易出现大量错台,严重影响外观质量。

为解决这一疑难问题,笔者结合工程实践,进行了大量研究,分析了二衬错台产生的主要原因,总结出科学有效的隧道二衬错台防治措施。

关键词:隧道施工;二衬错台;防治措施1概述近年来,随着公路隧道施工新技术的发展和各种先进设备在高速公路隧道上的应用,隧道施工速度和整体施工质量也得到了很大的提高,不过二衬外观质量(作为隧道质量控制的重要指标之一)并没有得到很好的解决。

二衬两模接头经常出现大量错台,无论直线隧道或是曲线隧道皆如此如何减少乃至消除二衬接头错台,提高外观质量成为一个疑难问题。

为此,对隧道二衬台车构造、二衬台车安装定位及莊浇筑过程对台车可能产生的反作用等因素进行了分析,结合草坝隧道二衬施工实际情况,总结并提出二衬错台产生的主要原因及防治措施。

2工程概况草坝隧道位于巴通万高速公路万源分部,为分离式双线隧道,左洞长3084m,右洞长3020m;隧道为二车道单洞,净宽10.25m。

隧道进口段160m位于半径为1410m平曲线上,隧道出口段280m位于半径为1000m平曲线上,中间为直线段。

全隧道为2.2%上坡隧道,分别从两头掘进。

出口段二衬施工为下坡方向,进口段二衬施工为上坡方向,本隧道共计4个施工二衬作业面。

隧道二衬采用全液压自行式整体衬彻台车施工,栓浇筑采用罐车运送、泵送人模,振动采用插入式振搗器与附着式振搗器配合进行,台车模板与前一模栓搭接一般为5cm〜10cm,台车端头采用木模拼装封堵。

台车长度均为1加,台车走行钢轨采用50kg每米轨道,每根钢轨长6.25m,采用鱼尾夹板连接,枕木釆用20cm X20cm X50cm硬质方木,枕木中心间距60cm。

隧道二次衬砌台车结构见图1、图2。

3二衬错台原因分析据对施工完成路段隧道二衬的调查,二衬碇错台主要发生在两侧边墙部位,拱部、拱腰部位错台几率相对较小,现结合现场施工情况,从二衬台车结构影响、安装定位及碇浇筑影响等三方面进行了分析。

第八、九讲加工精度

第八、九讲加工精度
B
δ
①在水平面内的直线度(以卧式车床为例)
Δ1将直接反映在工件加工表面法线方向(误差敏感方向)
上,误差ΔR =Δ1 ,对加工精度影响最大。 刀尖在水平面内的运动轨迹造成工件轴向形状误差。

在垂直面内的直线度
Δ2对工件的尺寸和形状误差影响比Δ1小得多。
对卧式车床 ΔR ≈Δ22/D 若设 Δ2= 0.1mm,D=40mm, 则ΔR =0.00025mm,影响可忽略不计。 而对平面磨床、龙门刨床,误差敏感方向为垂直方向, 误差将直接反映在工件上。
二、调整误差 调整是指使刀具切削刃与工件定位基准间 在从切削开始到切削终了都保持正确的相对位 置。主要包括机床调整、夹具调整、刀具调整。 (一)试切法调整 1.测量误差 1)定义:量具本身的精度、测量方法或使用 条件下的误差。无法精确保证刀具、夹具等调 整位置精确所引起的误差。 2)产生原因:量具量仪制造误差及磨损,环 境温度,读数误差,施力不当引起量具量仪变 形等。
导轨在垂直面内的直线度的特殊情况为斜坡 状,加工的工件轴向形状为鞍形。
◆ 4)影响导轨导向精度的主要因素 (1)机床制造误差; (2)机床安装误差; (3)导轨磨损。
2、机床主轴回转误差
(1)机床主轴回转误差的概念
主轴的实际回转轴线对其理想回转轴线(一般用平均 回转轴线来代替)产生的偏移量。
第三章 机械加工精度
§3-1 概述 ☆ 本讲的研究内容 1.了解有关机械加工精度的基本概念; 2.掌握影响加工精度的因素; 3.掌握分析加工误差的方法;
4.提高加工精度的方法。
☆ 学习的目的
1.解决实际生产中废品处理方法;
2.提出改进和提高产品加工质量的方法; 3.提出工艺系统改进和修复的办法; 4.了解改进产品结构的方法。

土地面积测算

土地面积测算

第九章 土地面积测算土地面积测算是地籍测量中一项很重要的必不可少的工作内容。

它为调整土地利用结构,合理分配土地,收取土地费(税),制定国民经济计划、农业区划以及土地利用规划等提供数据基础。

土地面积测算包括行政管辖区、宗地、土地利用分类等面积的测算。

概括起来,土地面积测算方法有两种,即解析法面积测算(简称解析法)与图解法面积测算(简称图解法)。

根据实测的数值计算面积的方法称解析法面积测算。

包括几何图形法和坐标法,这是城镇普遍采取的面积测算方法。

所谓几何图形法,是根据实地测量有关的边、角元素进行面积计算的方法。

将规则图形分割成简单的矩形、梯形或三角形等简单的几何图形分别计算面积并相加得到所需面积的数据。

计算面积的边长量至厘米。

不具备采用坐标法面积计算的小城镇可采用此法。

所谓坐标法,通常是指对一个不规则的几何地块,测出该地块边界转折点的坐标值,然后用坐标法面积计算公式计算出地块的面积。

从图纸上测算面积的方法称图解法面积测算。

它包括几何要素与坐标测算法、膜片法、求积仪法、沙维奇法、光电求积法以及电算法等。

其共同特点是可以很快地得到图形的面积,没有复杂的计算;但面积测算的精度比解析法低。

目前此法主要用于土地利用调查。

土地面积测算遵循“整体到局部,先控制后碎部”的原则,即以图幅理论面积为基本控制,按图幅分级测算,依面积大小比例平差的原则。

在城镇地籍中通常以平方米为面积的基本单位,大面积可用公顷或平方公里;农村地籍中常以公顷和亩为土地面积测算的基本单位。

面积测算方法的选择主要由面积测算的精度要求决定,同时考虑面积的大小和设备条件。

解析法精度高于图解法的精度;电算法精度高于沙维奇法精度;沙维奇法精度又高于求积仪法精度;求积仪法精度高于膜片法精度。

不过,太小的面积不适于求积仪法,而采用膜片法比较有效。

第一节 土地面积测算方法一、几何要素法所谓几何要素法是指将多边形划分成若干简单的几何图形,如三角形、梯形、四边形、矩形等,在实地或图上测量边长和角度,以计算出各简单几何图形的面积,再计算出多边形总面积的方法。

电火花线切割加工时工件开裂变形的原因分析及预防措施

电火花线切割加工时工件开裂变形的原因分析及预防措施
在使用线切割机床加工较大工件时我们一般变化也由于线切割加工多为工件的最后一道工序因此工件外形大多具有规则的外形为了保证线切割加工所形成的异形表面对工件端面的垂直度可选一个适当的面作为工件的工艺基准面对工艺基准面应当仔细清除其表面毛刺及污物等以免影响定位精度所以我们一般在线切割加工进行之前都应安排平磨工序
图 "
(%)线切割加工前和过程中采取的措施 !根据型腔特点及工件材料热处理状态,选择好切 割路线,即应仔细分析工件加工时可能产生的变形及其 方向,确定合适的切割加工路线,例如:一般应将图形
机 械 工 人 #冷加工
!!!!!!!!!!!!!!!!!!!"
!""# 年 第 $ 期
&"
把工件固定在工作台上两块垫铁上,垫铁托住的部位为 ,虽然线切割机床与切削机床 工件的余料部分(如图 !) 相比,几乎没有切削 力,但随着线切割加 工的逐步进行,工件 逐步脱离余料,失去 支撑,因自重而逐渐 下沉倾斜,因而工件 产生变形和夹丝。另
图 !
外我们在装夹工件时,夹具本身制作不精确,且与工作 台固定不牢靠,或者是出现装夹时定位、找正不准确, 甚至夹紧力不均匀,造成工 件局部受力过大,均会导致 加工 工 件 产 生 变 形。同 样, 在线切割加工较深的不封闭 型面时,因工件本身应力的 变化, 也 会 产 生 变 形 开 裂 (如图 ") 。
机械工人! 为制造业创造价值


!"# $ %&’()
电火花线切割加工时工件 开裂变形的原因分析及预防措施
广东省韶关市花坪镇曲仁技工学院 (!"#"$%) 彭丰年
面对现代制造业的快速发展,异形工件加工任务不 断增加,经常需要使用电火花线切割机床来完成加工任 务。这种利用在工具电极和工件之间施加电压击穿间隙 产生火花放电的工艺方法具有“一特(即特殊材料加 工,尤其是切削工具难以加工的超硬材料)二精(即精 密模具和精密微细加工) ”的鲜明特点,因此多用于加 工轮廓复杂、加工精度要求较高及淬火后高硬度的金属 材料工件。然而在实际生产应用中,经常会发现加工淬 火后的工件容易报废。针对这种情况,经过反复分析和 实践并查阅一些相关资料,总结了一些此类工件在加工 过程中开裂变形的原因及其预防的措施。 !" 工件开裂变形的原因 (!)工件淬火后应力分析的影响 据经验分析,一 般工件在电火花线切割机床上加工,会发生开裂变形的 大多为淬火工件。如果工件在适宜的淬火温度、理想淬 火介质、适当的淬火方法及工件完全淬透的情况下,工 件的截面各处可获得均匀细小的马氏体组织,此时的加 工工件不易开裂变形。但当需要淬火的工件较厚时,工 件不易完全淬透,淬火时,工件截面上的各处冷却速度 不同,表面冷却速度最大,越到中心冷却速度越小,这 样淬火后的工件同一截面各处金相组织不全相同,靠近 工件外表面一定深度可获得马氏体组织,而工件内层则 形成非马氏体组织。又因为在淬火钢中马氏体是比容最 大的组织,淬火后的工件表面受压应力,内层受拉应 力,工件处于应力平衡状态。但在工件进行线切割加工 时,已加工过的部位应力得到释放,其外表面的淬硬层 趋向膨胀,心部的非淬硬层趋向收缩,这种内外应力的 再平衡过程中,容易引起切割工件的电极丝(钼丝)被 工件挤压而折断,严重的则造成工件破裂。当然即使工 件淬透,有时可能也会因工件回火时应力消除不够充 分,导致线切割加工时工件发生开裂变形。 (")在使用线切割机床加工较大工件时,我们一般 机械工人! 冷加工

第九章:钢筋混凝土构件的裂缝和变形

第九章:钢筋混凝土构件的裂缝和变形

MK 2 f =S l ––– 钢筋混凝土梁的挠度计算 B
的要求。 (3)满足公式: f<[f] 的要求。 满足公式:
混凝土结构设计原理
第9章
八.对受弯构件挠度验算的讨论
1.由计算公式可知:截面有效高度的影响最大; 1.由计算公式可知:截面有效高度的影响最大; 由计算公式可知 2.配筋率对承载力和挠度的影响:在适筋范围内, 2.配筋率对承载力和挠度的影响:在适筋范围内,提高配筋 配筋率对承载力和挠度的影响 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 率能提高承载力,但提高刚度不明显,有时甚至加大挠度; 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大, 3.跨高比:一般讲,跨度越大则挠度越大;梁高越大,挠度 跨高比 越小;可选择适当的跨高比,可控制挠度; 越小;可选择适当的跨高比,可控制挠度; 减小挠度措施: 减小挠度措施: 提高刚度的有效措施 h0↑ 或As↑ 增加ρ'
gk+qk A Bmin Bmin(a) (b) Mlmax gk+qk B M Bmin (a) BBmin B1min
+
(b)
混凝土结构设计原理
第9章
七. 挠度计算步骤
(1)根据最小刚度原则确定所求刚度; 根据最小刚度原则确定所求刚度;
Mk B = M q ( θ − 1) + M
Bs
k
(2)代入材料力学公式计算挠度; 代入材料力学公式计算挠度;
混凝土结构设计原理
第9章
裂缝宽度和变形的验算表达式如下: 裂缝宽度和变形的验算表达式如下: 的验算表达式如下
主 页
SK≤RK 式中: 式中:
…9-1 目 录
SK —— 结构构件按荷载效应的标准组合、准永久 结构构件按荷载效应的标准组合、 组合或标准组合并考虑长期作用影响得到的裂缝宽 组合或标准组合并考虑长期作用影响得到的裂缝宽 上一章 度或变形值; 度或变形值;

伸缩缝 纵向 变形不协调

伸缩缝 纵向 变形不协调

伸缩缝纵向变形不协调
伸缩缝纵向变形不协调是建筑工程中常见的问题之一,它通常出现在建筑物的
墙体、地板、天花板等部位的伸缩缝上。

伸缩缝的作用是为了吸收建筑物在不同温度、湿度等环境条件下的变形,防止建筑物出现裂缝和变形。

然而,当伸缩缝纵向变形不协调时,就会引起建筑物的一系列问题,影响建筑物的使用寿命和安全性。

造成伸缩缝纵向变形不协调的原因有很多,其中最常见的是建筑物在施工过程
中未按照设计要求进行设置伸缩缝,或者伸缩缝的设计尺寸不合理。

此外,建筑物在使用过程中受到外部环境的影响,如温度变化、风荷载等,也会导致伸缩缝的变形不协调。

当伸缩缝纵向变形不协调时,建筑物的墙体、地板、天花板等部位就会出现裂缝、变形等问题。

这不仅影响建筑物的美观,还可能影响建筑物的结构安全。

因此,及时发现和解决伸缩缝纵向变形不协调的问题至关重要。

为解决伸缩缝纵向变形不协调的问题,首先需要对建筑物的伸缩缝进行定期检查,发现问题要及时修补。

其次,在建筑物的设计和施工过程中,要严格按照相关规范和标准设置伸缩缝,确保伸缩缝的尺寸和位置符合要求。

此外,建筑物的维护保养也至关重要,要及时清理伸缩缝处的积水、杂物,保持伸缩缝的通畅。

总的来说,伸缩缝纵向变形不协调是建筑工程中常见的问题,但只要及时发现
和解决,就能有效避免建筑物出现严重的结构问题。

建筑物的伸缩缝不仅要设计合理、施工规范,更要定期检查和维护,确保建筑物的安全和稳定。

只有这样,建筑物才能更好地发挥其功能,保持长久的使用寿命。

无缝钢管张力减径过程中内六方的成因分析及解决办法

无缝钢管张力减径过程中内六方的成因分析及解决办法
配 使得 钢 管在 每 个 机 架 上 的 变形 程度 不 一 致 , 易
及 传 动上 的方便 , 邻 机架上 下倒 置摆 放 , 相 这相 当 于将 轧辊 每 次 旋 转 6 。 正 是 这 种 布 置 使 钢 管 的 0, 壁 厚变 化趋 势 叠 加 。如 果 采 用 不 同角 度 布 置 , 最
机 架叠 加后 , 管 金 属 在 沿 轧辊 孔 型 方 向流 动 不 钢 均 匀 。钢管 在 减 径 过程 中 , 薄 的部 位 在 不 断 减 减
2 解 决措 施
薄 , 厚 的部 位 在不 断增 厚 。如果 钢 管 此 时 能 产 增
生 一定 角度 的旋 转 , 则增 厚 和减 薄趋 势不会 叠 加 , 这 样金 属在 沿 轧 辊孔 型方 向 的流 动 趋 于 均 匀 , 内 六 方 问题将 得 到根本 上 的解决 。
中, 沿钢 管孔 型 周 边 壁 厚 的 变 化是 不 均 匀 的。减
的不 均 匀对 内六 方 的影 响。
由于接触传热的复杂性 , 一般将接触传热用
经验 公式 q =h( ) 示 。式 中 g 为 接触 换 iT— 表 i
热热 流 ,; 等 效 接 触 导 热 系数 , 响 接 触 换 热 h为 影
41
No. 2
J n 0l u e2 2
《 中国重型装备》 C N E V Q IME T HIA H A Y E U P N
单机架 轧 制后
第 二机架 轧制 后
图 2 沿 16周长 的 q 分布 图 / ;
F g r q it b t n ao g 1 6 p rmee iue2 Jdsr u i ln / e i tr i o
wih c re e hn l g o diin, v ro s t u r ntt c o o y c n to a iu me s r s o e u i g a d e i ia i ne a h x g n a e e n p fr a u e f r d c n n lm n tng i tr l e a o h v b e uto — n

第9章 钢筋混凝土构件变形及裂缝宽度验算

第9章 钢筋混凝土构件变形及裂缝宽度验算
第9章 钢筋混凝土构件的裂缝及变形 7ຫໍສະໝຸດ 449.1.2 平均裂缝间距
试验分析表明,影响裂缝间距的主要因素是纵 向受拉钢筋配筋率、纵向钢筋直径及外形特征、混 凝土保护层厚度等。采用变形钢筋,纵向受拉钢筋 配筋率越高,钢筋直径越细,裂缝间距越小;混凝 土保护层厚度越大,裂缝间距越大。
第9章 钢筋混凝土构件的裂缝及变形
纯弯段内受拉钢筋的应变分布图
第9章 钢筋混凝土构件的裂缝及变形 13/44
9.1.3平均裂缝宽度
图中的水平虚线表示平均应变 sm 。 为裂缝之间纵向受拉钢 设 筋应变不均匀系数,其值为裂缝间钢筋的平均拉应变 sm 与开裂截面 处钢筋的应变 s 之比,即 = sm s ,又由于 s = sq Es ,则平均 裂缝宽度 wm 可表达为
18/44
9.1.4最大裂缝宽度的计算及验算
2.最大裂缝宽度验算
构件在荷载效应的准永久组合并考虑长期作用的影 响,计算的最大裂缝宽度不能超过《规范》规定的限值, 应满足下式 w max≤wli m 式中: wlim——最大裂缝宽度限值。 (9-10)
第9章 钢筋混凝土构件的裂缝及变形
19/44
9.1.4最大裂缝宽度的计算及验算
8/44
9.1.2 平均裂缝间距
考虑上述诸多因素并根据试验资料, 《规范》给出了平均裂缝间 距计算公式为 d eq lcr (1.9cs 0.08 ) (9-1)
te
式中: lcr——平均裂缝间距。当计算的 lcr 大于构件箍筋间距时,可取 lcr 为构件箍筋间距; cs——最外层纵向受拉钢筋外边缘至受拉区底边的距离 (mm): 当 cs <20mm 时,取 c s =20mm;当 cs >65mm 时,取 cs =65mm; β ——系数, 对轴心受拉构件取β =1.1; 对其他受力构件均 取β =1.0; ρte——按有效受拉混凝土截面面积计算的纵向受拉钢筋配筋率

工程测量学第9讲 工程的变形监测和数据处理

工程测量学第9讲 工程的变形监测和数据处理
4.变形监测的特点: 变形监测的最大特点是要进行周期观测,所谓周期一周期 的观测方案如监测网的图形、使用的仪器、作业方法乃至观 测人员都要一致。
二、变形体的几何模型和监测点布设
1.变形监测实施:变形监测是通过对变形体进行空间上的离 散化和数据获取在时间上的离散化实施的。 (1)前者是用一定数量的有代表性的位于变形体上的目标 点(或称为观测点)来代表变形体的几何模型,变形监测就是 确定目标点之间的相对运动以及相对于变形体周围的绝对运 动(参见图6-3)。
(5)水准基准点有时还设在平峒内,或采用深埋双金属标 等。 (6)目标点的布设应具有一定的密度,具有代表性。 (7)不仅仅布设在变形体的表面,而且还布设在内部的不 同部位,呈立体式分布。应与变形体固连在一起,能反映所 代表部位的变形,且稳定;能长期保存,与变形体共存亡; 便于观测,对外界的其他干扰影响不敏感。 (8)在变形观测时,不可能对建筑物的每一点都进行观
(2)科学上的作用:积累监测分析资料,能更好地 解释变形的机理,验证变形假说,为研究灾害预报的 理论和方法服务检验工程设计的理论是否正确,设计 是否合理,为以后修改设计、制定设计规范提供依。
3.变形监测的内容: 变形监测主要包括水平位移、垂直位移监测,偏距、倾斜、
挠度、弯曲、扭转、振动、裂缝等的测量,主要是对描述变 形体自身形变和刚体位移的几何量的监测。 (1)水平位移:监测点在平面上的变动,它可以分解到某一 特定方向; (2)垂直位移是监测点在铅直面或大地水准面法线方向上的 变动。
若只对目标点的相对变形感兴趣,则可以不设参考点,这时 存在秩亏问题,坐标系的定义也需另定。
3.监测点的布设: (1)对于所有的变形监测都有共性,但具体的要求又不尽 相同,一般要与相邻学科(如地球物理、岩土力学、建筑工程、 机械制造等)人员共同研究决定。 (2)参考点的布设主要应考虑稳定,不受干扰,埋标要求 高,且要考虑测量技术。 (3)在参考点周围一般还要设保护点。当参考点受破坏时 可用保护点来恢复,平时可用于参考点的检核。参考点一般 要钻孔深埋,要求与基岩固结在一起。

注塑常见缺陷的分析与解决

注塑常见缺陷的分析与解决
3)原材料方面:PP/PA料容易变形。
15
解决方法
1.减小射胶压力、射胶时间,加快射胶速度,以降低制品内应力 2. 模具设计时要合理设计运水系统,确保模具型腔各部位模温 均匀。 3.加长冷却时间。 4.确认产品是否在台面堆积过多,或包装方法不当引起挤压变形 5.设计适当的夹具定型,使产品达到要求 6.在产品上增加加强筋
12.注射速度慢。
13.塑料流动性差。
14.模具温度未达到要求
9
3、色差 现象:在标准的光源下,注塑件颜色与标准色样
用肉眼观看有差异,判为色差。
10
产生的原因:
1)原材料方面因素:包括色粉更换、塑胶材料牌号 更改,定型剂更换等因数,造成产品色差。
2)原材料品种不同:如PP料与ABS料或PC料要求同 一种色,但因材料品种不同而有轻微色差,但允 许有一限度范围。
14
原因:
1)模具方面:主要是针对模具设计方面不合理原因造成。 2)成型操作方面:
A、注射压力过高,流体方向和垂直流向方向分子取向相差较大, 塑胶力图恢复原有的卷曲状态,所以流体流动方向上的收缩大于 垂直流动方向上的收缩; B、熔体温度过高; C、保压压力过高:保压压力高时,塑料中的内压力过高,在脱模 后内应力的释放使塑胶件产生翘曲变形; D、熔体流速太慢; E、回火温度过高或时间太长。
2) 原料方面: A、脱模剂用量太多,或使用不符合的脱模剂; B、熔体的流动性差,在成型时易产生熔接痕; C、原料中含水份较多或挥发物含量过高。
3) 成型操作方面: A、熔体温度过低,低温熔体的分流汇合性能较差,容易形成熔接纹; B、熔体注射压力过低,使得注射速度过慢,熔体在型腔中的温度不
相同,这时熔体在分流汇合时就易产生熔接纹。

第9章混凝土结构按变形和裂缝宽度验算

第9章混凝土结构按变形和裂缝宽度验算

南通大学建筑工程学院
第九章 混凝土构件的变形及裂缝宽度验算
式中
ρ , ρ ′ ——分别为受压及受拉钢筋的配筋率。
ρ′ θ = 2.0 − 0.4 ρ
此处反映了在受压区配置受压钢筋对混凝土受压徐 变和收缩起到一定约束作用,能够减少构件在长期荷载 作用下的变形。上述θ适用于一般情况下的矩形、T形、 工字形截面梁,θ值与温湿度有关,对干燥地区,θ值应 酌情增加15%~25%。对翼缘位于受拉区的T形截面,θ 值应增加20%。
Ms = 0.87 As h0
Ns As
σ sk =
式中 Ns 、As——分别为按荷载短期效应组合计算的轴 向拉力值和受拉钢筋总截面面积。 ③偏心受拉构件。大小偏心受拉构件σsk按下式计算: N ss e′ σ sk = As ( h ′ − as′ ) 式中 e′——轴向拉力作用点至受压区或受拉较小边 ′ 纵筋合力点的距离, ′ = e0 + y c + − a ′ e s yc′ ——截面重心至受压或较小受拉边缘的距离。
ψ ——钢筋应变不均匀系数,是裂缝之间钢筋的平均应 变与裂缝截面钢筋应变之比,它反映了裂缝间混凝土受 拉对纵向钢筋应变的影响程度。ψ愈小,裂缝间混凝土 协助钢筋抗拉作用愈强。该系数按下列公式计算
ψ = 1.1 − 0.65
并规定0.4≤ ψ ≤1.0 式中
ρ 钢筋配筋率, te =
ρ teσ sk
f tk
ρ te ——按有效受拉混凝土面积计算的纵向受拉
As Ate

南通大学建筑工程学院
第九章 混凝土构件的变形及裂缝宽度验算
Ate
——有效受拉混凝土面积。对受弯构件,近似取
Ate = 0.5bh + (b f − b)h f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
Lesson Nine
a
b
c
如图所示,在圆形砧或V型砧中拔长圆断面坯料时, 工具的侧面压力使金属沿横向流动受到很大的阻碍, 被压下的金属大量沿轴向流动,这就使拔长效率大大 提高。当采用图c所示的工具时,则产生相反的结果, 金属易于横向流动。
2019/6/20
18
在许多情况下,当工具的 形状已得到了严格的控制 时,为获得变形均匀的产 品,还必须要考虑原始坯 料形状的影响。如果坯料 的尺寸和形状的选择不当 也会使物体产生不均匀变 形。
2019/6/20
20
Lesson Nine
在变形体内因温度不同所产生热膨胀的不同 而引起的热应力,与由不均匀变形所引起的 附加应力相叠加后,有时会加强应力的不均 匀分布,甚至会引起变形物体的断裂。
在热轧中常见到轧件轧出后会出现上翘或下 翘现象,产生此现象原因之一就是轧件的温 度不均所造成的。
36
减轻变形不均的措施
Lesson Nine
正确选定变形的温度-速度制度
变形温度应保证物体在单相区完成塑性变形, 并在整个物体内分布均匀。变形速度制度的 选择也应使变形在物体内分布均匀,如H/d 比较大的厚件,在速度较低的压力机上锻压 较合适。
2019/6/20
37
Lesson Nine
2019/6/20
28
金属性质不均的影响
Lesson Nine
变形金属中的化学成分、组织结构、夹杂物、 相的形态等分布不均会造成金属各部分的变 形和流动的差异。例如,在受拉伸的金属内 存在一团杂质,由于杂质和其周围晶粒的性 质不同,出现应力集中现象,结果这种缺陷 周围的晶粒必须发生不均匀变形,并会产生 晶间及晶内附加应力。
2019/6/20
31
Lesson Nine
使塑性降低 在具有应力不均匀分布的变形物体内,当某
处的工作应力达到金属的断裂强度时,则在 该处将首先产生断裂,从而导致金属的塑性 下降。
2019/6/20
32
Lesson Nine
挤压件上表面裂纹及应力分布图
2019/6/20
33
Lesson Nine
2019/6/20
4
镦粗时的分区
Lesson Nine
圆柱体镦粗时,由于接触面上有摩擦存在, 在接触表面附近金属流动困难,圆柱形坯料 转变成鼓形。在此情况下,可将变形金属整 个体积大致分为三个区:
Ⅰ区表示由外摩擦影响而产生的难变形区;
Ⅱ区表示与作用力成45°角的最有利方位的 易变形区;
2019/6/20
13
Lesson Nine
难变形区
2019/6/20
14
变形区的几何因素
Lesson Nine
在金属塑性加工中存在着外摩擦,变形的不 均匀分布情况与变形区几何因素(如H/d、 H/L、H/B等)有密切关系。实验表明:镦粗 圆柱体时,当试样原始高度与直径比 H/d<2.0时才发生上述的单鼓形不均匀变形。 当坯料高度较大且变形程度甚小时(当H/d> 2.0时),则往往只产生表面变形,而中间层 的金属不产生塑性变形或塑性变形甚小,结 果导致形成双鼓形。
2019/6/20
23
封闭形外端
Lesson Nine
在被压缩体积的外部存在有封闭形外端时,一方面, 被压缩体积的变形要影响到外端的一定区域。另一 方面,外端会阻碍被压缩体积的向外扩展。
若外端的体积甚小时,则在变形过程中,在被压缩 体积变形的影响下,外端的高度也会有所减小,外 端向外扩展。如果外端的体积较大,则被压缩体积 的变形很难进行。若所施的压力非常大时,也可以 把工具(压头)压入变形物体内,此时部分变形金属将 沿工具的周围被挤出。可见,金属在具有封闭形外 端条件下的压缩与无外端时有很大差别。封闭形外 端可以减小被压缩物体的不均匀变形,并可使其三 向压应力状态增强。
2019/6/20
摩擦系数f不同时塑压件退火 后中心轴上晶粒大小分布
35
Lesson Nine
使技术操作复杂 由于变形体内应力的分布不均,使加工工具
的各部分受力不均,以致使工具各部分的弹 性变形和磨损不均。这样就使工具设计、制 造和维护复杂。同时也使对材料进行的热处 理制度复杂化。
2019/6/20
2019/6/20
2
5.2 变形不均匀的原因
接触面上的外摩擦 变形区的几何因素 工具与工件的轮廓形状 变形体内部温度分布不均 变形体的外端 金属性质不均的影响
2019/6/20
Lesson Nine
3
接触面上的外摩擦
Lesson Nine
在工具和变形金属之间的接触面上必然 存在摩擦。由于摩擦力的作用,在一定 程度上改变了金属的流动特性并使应力 分布受到影响。
2019/6/20
27
Lesson Nine
在变形区的中部,由于外端对纵向延伸的 “拉齐”作用使自由延伸减小的结果,使宽 展被迫增大,而在端部由于使自由延伸的被 迫增加,使宽展减小。结果,由于外端对纵 向延伸的“拉齐”作用,使变形区沿高向的 中部产生的宽展最大,端部宽展最小。这样, 由于外端的存在,使变形物体的纵向变形的 不均匀性减小,横向变形的不均匀性增大。
另外,沿物体高度方向由接触面至变形体的 中部,应力的分布是逐渐减小的,这是因外 摩擦的影响逐渐减弱所致。
2019/6/20
7
Lesson Nine
带孔的玻璃锤头镦粗塑料实验
2019/6/20
8
侧面翻平
Lesson Nine
变形物体在压缩时,由于接触摩擦的作用, 在出现单鼓形的同时,还会出现侧表面的金 属局部地转移到接触表面上来的侧面翻平现 象。随着压下率的增加,aa和bb部分由侧表 面逐步地转移到端面上来。此侧面翻平现象 发生在侧表面面积的减小量大于接触面面积 的增加量的时候。如果接触面面积增加量大 于侧面的减小量时,则因新的接触面的形成 将不再吸收侧面的多余面积。
2019/6/20
24
Lesson Nine
封闭形外端
2019/6/20
非封闭形外端
25
非封闭形外端
Lesson Nine
在金属压力加工中属于非封闭形外端的 变形过程较多,例如,锻造延伸,拉拔 等。
2019/6/20
26
Lesson Nine
外端对变形物体的纵向延伸有强迫“拉齐” 作用,使变形物体沿高度方向的纵向延伸趋 于一致。结果,在变形区内于自由延伸大的 中部产生附加压应力,于自由延伸小的端部 产生附加拉应力。此外,变形物体为一整体, 变形物体的纵向延伸的变化也必然会影响着 横向宽展的变化。
2019/6/20
9
Lesson Nine
圆柱体垂直剖面上坐标网格在镦 粗过程中的变化
2019/6/20
10
Lesson Nine
由此可见,物体在压缩时接触面积的增加, 可由接触表面上金属质点滑动和侧面质点翻 平两部分组成。侧面金属翻平量的大小取决 于接触摩擦条件和变形物体的几何尺寸。接 触面上的摩擦越大,接触面上的金属质点越 不易滑动,因而侧面金属转移上来的数量就 越多。试样的高度越大,侧面金属越易于转 移到接触表面上来。当试样的高度大于直径 时,接触面积的增加将主要是由侧面金属的 转移所造成。
2019/6/20
11
Lesson Nine
翻平宽展
2019/6/20
鼓形宽展
12
粘着现象
Lesson Nine
实验结果表明,圆柱体金属在镦粗过程中, 若接触摩擦较大和高径比H/D较大时,则在 端面的中心部位有一区域,在此区域上金属 质点对工具完全不产生相对滑动而粘着在一 起。此现象称为粘着现象。此粘着在一起的 区域称为粘着区。此粘着现象也影响到金属 的一定深度,这样就构成了以粘着区为基底 的圆锥形或近似圆锥形的体积,此体积称为 “难变形区”。
2019/6/20
29
5.3 变形不均的防止措施
变形不均产生的后果 减轻变形不均的措施
Lesson Nine
2019/6/20
30
Байду номын сангаас 变形不均产生的后果
Lesson Nine
使单位变形力增大
当变形不均匀分布时,将使物体内部产生相 互平衡的附加应力,使变形能量消耗增加, 也使单位变形力增大。此外,当应力不均匀 分布时,将使变形体内实际的应力分布情况 与基本应力有很大不同,有时虽然作用着单 向的基本应力,但工作应力却可能变成三向 同名应力状态,此时也会使单位变形力增大。
金属塑性变形理论
Theory of metal plastic deformation
第九讲 Lesson Nine
变形不均匀原因及影响措施
Lesson Nine
第五章 塑性变形的不均匀性
主要内容
Main Content
变形不均匀的基本概念 变形不均匀的原因 减小变形不均匀的措施 残余应力
使产品质量降低
由于变形的不均匀分布使物体内产生附加应 力,若变形后物体的温度较低不足以消除此 附加应力时,则在物体内将存有残余应力, 从而使物体的力学性能下降。同时,由于变 形体内各处的变形不同,其再结晶后各处的 晶粒大小也不同,造成组织与性能分布不均。
2019/6/20
34
Lesson Nine
2019/6/20
21
Lesson Nine
铝—钢双金属轧制时由不均匀 变形产生的弯曲现象
2019/6/20
22
变形体的外端
Lesson Nine
外端(未变形的金属)对变形区金属的影响 主要是阻碍变形区金属流动,进而产生或加 剧附加的应力和应变。在自由锻造中,除镦 粗外的其他变形工序,工具只与坯料的一部 分接触,变形是分段逐步进行的,因此,变 形区金属的流动是受到外端的制约的。
相关文档
最新文档