锐角三角函数专题复习资料

合集下载

锐角三角函数(复习巩固)

锐角三角函数(复习巩固)

奇偶性
正弦函数是奇函数(sin(-A) = sinA),余弦函数是偶函数 (cos(-A) = cosA)。
图像特征
正弦和余弦函数的图像是连续的 波浪形曲线,正切函数的图像是 间断的折线。在直角坐标系中, 可以通过五点作图法绘制出这些
函数的图像。
02
三角函数关系式及诱导公 式
同角三角函数关系式
平方关系
锐角三角函数(复习 巩固)
目录
• 锐角三角函数基本概念 • 三角函数关系式及诱导公式 • 三角恒等变换与证明 • 解三角形相关知识点回顾
目录
• 锐角三角函数在几何中应用 • 复习策略与备考建议
01
锐角三角函数基本概念
正弦、余弦、正切定义
正弦(sine)
正切(tangent)
在直角三角形中,锐角的正弦等于对 边长度除以斜边长度,即sinA = a/c。
重点难点突破
在知识体系梳理的基础上,要针对重点难点进行突破。例如,对于正弦、余弦、正切等基本概念的理 解和应用,可以通过多做练习题来加深理解;对于与三角形相关的定理和公式,可以通过分析典型例 题来掌握解题方法。
常见题型分类及解题技巧总结
常见题型分类
锐角三角函数的常见题型包括求值题、证明题、应用题等。在复习时,要对各种题型进行分类,并总结相应的解 题技巧。
05
锐角三角函数在几何中应 用
相似三角形判定定理
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相似。
相似三角形判定定理
如果两个三角形的两组对应角分别相等,则这两个三角形相似。
相似比
相似三角形对应边之间的比值称为相似比。
勾股定理及其逆定理
勾股定理
在直角三角形中,直角边的平方 和等于斜边的平方。

专题01 锐角三角形函数和特殊角的三角函数值(解析版)(重点突围)

专题01 锐角三角形函数和特殊角的三角函数值(解析版)(重点突围)

专题01锐角三角形函数和特殊角的三角函数值考点一正弦、余弦、正切的概念辨析考点二求角的正弦值、余弦值、正切值考点三已知正弦值、余弦值、正切值求边长考点四求特殊角的三角函数值考点一正弦、余弦、正切的概念辨析A.sinBCAAB=B.【变式训练】A.CDACB.BDCB【答案】C【分析】根据已知可得∠B=∠ACD 【详解】A.∵CD⊥AB,考点二求角的正弦值、余弦值、正切值【变式训练】【答案】5 5【分析】连接AC,根据格点特点得出答案.(1)求证:四边形OCEB是矩形;AB=,(2)连接DE,当5【答案】(1)见解析Q 四边形ABCD 是菱形,OA OC \=,OB OD =在Rt AOB △中,5AB =考点三 已知正弦值、余弦值、正切值求边长Q ∠C =90°,AB =sin 8BC BC A AB \===解得:6BC =,故选:A .【变式训练】【答案】5【分析】根据5sin 13A =,可设【详解】解:∵5sin A =,sin【点睛】本题考查锐角三角函数和勾股定理,熟练掌握锐角三角函数的定义和勾股定理的计算是解答本题的关键.3.(2022·安徽宿州【答案】46【分析】首先根据考点四求特殊角的三角函数值【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【变式训练】化简.A.43B【答案】B【分析】依据折叠的性质以及矩形的性质,易得股定理易得BF的长.根据三角函数的定义,易得A.55【答案】D【分析】先根据圆周角定理可得【答案】1【分析】连接AB ,由勾股定理求得【详解】解:连接AB 由勾股定理得:AB =∴AB =AO ,22OA AB +∴△ABO 是以OB 为斜边的等腰直角三角形,∴tan tan 45AOB а==【答案】53【分析】根据直角三角形的边角关系可求出MC NC MN 、、,再根据角平分线的定义以及等腰三角形的判定得出【详解】解:在ABC V 中,=90C Ð∴10BCAB ==,2AC AB BC =-【点睛】本题考查直角三角形的边角关系,角平分线的定义,相似三角形的判定和性质以及平行四边形的判定和性质,掌握直角三角形的边角关系以及相似三角形的判定和性质是解决问题的前提,用含有数式表示MC、NC、MN是正确解答的关键.三、解答题11.(2022·吉林·长春市第五十二中学九年级阶段练习)计算:【答案】4sin 5B =(1)求证:AE=AC;(2)若cos∠E=35,CE=12,求矩形【答案】(1)见解析(2)矩形ABCD的面积为48(1)求证:△ABE∽△DEC(2)当AD=25时,且AE<DE时,求(3)当BP=9时,求BE·EF的值.【答案】(1)见详解1∥,BF=PG=BP=9,AB=12∵BE PG∴四边形BPGF是菱形,∥,GF=BP=9,∴BP GF∴∠GFE=∠ABE,(1)求证:AM FM=;(2)如图2,若点B¢恰好落在对角线AC上,求tan F的值;(3)当2BE CE=时,求线段AM的长.【答案】(1)见解析;(2)1 tan2F=;(3)线段AM的长为14518或736.由AB CF ∥,,ABE FCE BAE \Ð=ÐÐΔΔABE FCE \∽,\2AB BE CF CE ==,即6CF=由AB CF ∥:,ABE FCE BAE CFE\Ð=ÐÐ=ÐΔABE FCE \D ∽,\2AB BE CF CE ==,即62CF=,3CF \=,则633DF =-=,解题时注意分类思想与方程思想的运用.。

锐角三角函数 复习

锐角三角函数 复习

C.扩大4倍
D.没有变化
2.(2013•温州)如图,在△ABC中, ∠C=90°,AB=5,BC=3,则sinA的值是( C )
A. 3
B. 4
C. 3
4
3
5
D. 4 5
3
3.在△ABC中,∠C=90,BC=6cm,sinA= ,
则AC的长为( B )
5
A.3cm B.8cm C.10cm D.5cm
边为c,a,b分别是∠A的对边和邻边,则
正弦:sinA=______=_______; A
b
余弦:cosA=______=_______;
C
正切:tanA=______=_______.
c aB
考点二:特殊角的三角函数 值30°、45°、60°角的正弦值、余弦值和正切值如下表:
角度 三角函数
sinA
BE 5
AE
ABC为等腰直角三角形, AB AC 6, B 且A 45,在RtAED中,AE DE x,
由AB AE EB得 : 62 62 x 5x 解得x 12
AD AE2 DE2 122 122 12 2
14.如图,在某建筑物AC上,挂着“美丽家园”的宣传条 幅BC,小明站在点F处,看条幅顶端B,测的仰角为,再往 条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角 为,求宣传条幅BC的长,(小明的身高不计,结果精确到 0.1米)
D
A
O
B
C
11.(2008 泰安)直角三角形纸片的两直
角边长分别为6,8,现将如图那样折叠,
使点 A 与点 B重合,折痕为DE,则
tan CBE 的值是

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.

第16讲锐角三角函数复习课件(共42张PPT)

第16讲锐角三角函数复习课件(共42张PPT)

解:原式= 3+ 2× 22+ 3--3-2 3+1= 3+1+ 3 +3-2 3+1=5.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
4.在△ABC 中,若|cos A-12|+(1-tan B)2=0,则∠C 的
度数是
(C )
A.45°
B.60°
C.75°
D.105°
5.式子 2cos 30°-tan 45°- (1-tan 60°)2的值是
∵CE=EF,∴CAEC=
m= 5m
55,
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
∴tan∠CAE= 55. 解法二:∴在 Rt△ABC 中,
tan
B=ABCC=
2m = 5m
2, 5
在 Rt△EFB 中,EF=BF·tan B=2m,∴CE=EF=2m,
5
5
2m
∴在 Rt△ACE 中,tan∠CAE=CAEC=2m5= 55,
∴tan∠CAE= 55.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
7.如图5-16-4,在Rt△ABC中, ∠C=90°,∠A=30°,E为线段AB上 一点且AE∶EB=4∶1,EF⊥AC于F, 连结FB,则tan∠CFB的值等于 ( C )
3 A. 3
53 C. 3
23 B. 3 D.5 3
大师导航 归类探究 自主招生交流平台 思维训练
第五章 解直角三角形
第16讲 锐角三角函数
全效优等生
全效优等生

大师导航 归类探究 自主招生交流平台 思维训练
月球有多远? 如图,如果从地球上A点看, 月球S刚好在地平线上(即AS和地 球半径OA垂直),而同时从地球上B点看,S刚好在天顶处(即S 在地球半径OB的延长线上),那么∠S就叫做月球S的地平视 差,根据一个天体的地平视差,可以算出这个天体的距离. ∠S可以从∠AOB算出,而∠AOB可以从地球上A,B两点 的经纬度算出. 月球S的地平视差(∠S),就是从月球S看来,垂直于视线 (SA)的地球半径(OA)所对的角.

锐角三角函数复习讲义

锐角三角函数复习讲义

锐角三角函数复习讲义一、知识性专题专题1:锐角三角函数的定义 1. 如图28-123所示,在Rt △ABC中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 ( )A .sin A =32B .tan A =12C .cos B =32D .tan B =3 2. 在△ABC 中,∠C =90°,cos A =35,则tan A 等于 ( ) A .35B .45C .34D .43 专题2 特殊角的三角函数值3.计算|-2|+(cos 60°-tan 30°)0+8.4. 计算312-⎛⎫ ⎪⎝⎭-(π-3.14)0-|1-tan 60°|-132-.专题3 锐角三角函数与相关知识的综合运用5. 如图28-124所示,在△ABC 中,AD 是BC 边上的高,E 为AC 边的中点,BC =14,AD =12,sin B =45.(1)求线段DC 的长;(2)求tan ∠EDC 的值.6.如图28-125所示,在△ABC 中,AD 是BC 边上的高,tan B =cos ∠DAC .(1)求证AC =BD ;(2)若sin C =1213,BC =12,求AD 的长.7.如图28-126所示,在△ABC 中,∠B =45°,∠C =30°,BC =30+303,求AB的长.专题4 用锐角三角函数解决实际问题8.如图28-127所示,小山上有一棵树,现有一测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚的水平地面上测出小树顶端A到水平地面上的距离AB.(1)画出测量示意图;(2)写出测量步骤(测量数据用字母表示);(3)根据(2)中的数据计算AB.9.如图28-131所示,我市某中学数学课外活动小组的同学利用所学知识去测量沱江流经我市某段的河宽.小凡同学在点A处观测到对岸C点,测得∠CAD=45°,又在距A处60米远的B处测得∠CBA=30°,请你根据这些数据算出河宽是多少?(结果保留小数点后两位)10.如图28-132所示,某边防巡逻队在一个海滨浴场岸边的A点处发现海中的B点有人求救,便立即派三名救生员前去营救.1号救生员从A点直接跳入海中;2号救生员沿岸边(岸边可以看成是直线)向前跑到C点再跳入海中;3号救生员沿岸边向前跑300米到离B点最近的D点,再跳入海中,救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若∠BAD=45°,∠BCD=60°,三名救生员同时从A点出发,请说明谁先到达营救地点B.(参考数据2≈1.4,3≈1.7)11.如图28-133所示,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在它的北偏东60°方向上,该货船航行30分钟后到达B处,此时再测得该岛在它的北偏东30°方向上;已知在C岛周围9海里的区域内有暗礁,若货船继续向正东方向航行,该货船有无触礁危险?试说明理由.12.如图28-134所示,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8米的A,B两处测得D点和C点的仰角分别为45°和60°,且A,B,F三点在一条直线上,若BE=15米,求这块广告牌的高度.(3≈1.73,结果保留整数)13.如图28-135所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4 m,背水坡的坡度是1:1,迎水坡的坡度是1:1.5,求坝底宽BC.二、规律方法专题专题5 公式法14. 当0°<α<90°时,求21sincosαα-的值.三、思想方法专题专题6 类比思想15. 在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,已知a=52,b=152,解这个直角三角形.专题7 数形结合思想16.如图28-137所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-33x+33,则cosα等于( )A.12B.22C.32D.33专题8 分类讨论思想17. 一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30 km,B,C间的距离是60 km.要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C的距离相等,求交叉口P与加油站A的距离.(结果可保留根号)专题9 转化思想18. 如图28-139所示,某校教学楼的后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB的长为22 m,坡角∠BAD=68°,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离;(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC改到F点处,则BF至少是多少米?(结果保留小数点后一位,参考数据:sin 68°≈0.9272,cos 68°≈0.3746,tan 68°≈2.4751,sin 50°≈0.7660,cos 50°≈0.6428,tan 50°≈1.1918)19.如图28-140所示,A,B两城市相距100 km.现计划在这两座城市中间修筑一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上.已知森林保护区的范围在以P点为圆心,50 km为半径的圆形区域内.请问计划修筑的这条高速公路会不会穿越保护区.为什么?(参考数据:3≈1.732,2≈1.414)20.小鹃学完解直角三角形知识后,给同桌小艳出了一道题:“如图28-141所示,把一张长方形卡片ABCD放在每格宽度为12 mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果保留整数;参考数据:sin 36°≈0.6,cos 36°≈0.8,tan 36°≈0.7)。

锐角三角函数全章复习

锐角三角函数全章复习

B
D
C
专题二、锐角三角函数的性质
1.锐角三角函数的增减性: (1)当角度在00~900之间变化时, 正弦和正切值随角度的增大而增大; 余弦随角度的增大而减小。 (2)当∠A为锐角时, 0<sinA<1;0<cosA<1; tanA>0 2.互余两角的三角函数之间关系 ∠A为锐角时,sinA=cos(900-∠A) cosA=sin(900-∠A)
• 例4.若∠A为锐角,且 cosA≤0.5,则∠A的范围是( ) A.00<∠A≤600 B.600≤∠A<900 C.00<∠A≤300 D.300≤∠A<900
• 例5.当锐角A>450时,下列不等式 中不成立的是 ( )
2 A. sin A 2 2 B. cos A 2 C. t an A 1 D. t an A 1
• 例6.下列不正确的是(
A. sin 48 37 cos 41 21
0 / 0 / 2

B.RtABC中,C=90 ,则sin A sin B 1
0 2
C.RtABC中,C=90 ,则AB=ACsinB
0
1 D.RtABC中,C=90 ,则 sinB cosB tanB
0
专题三、解直角三角形及其应用
1.定义; 2.直角三角形边角关系; 3.解直角三角形的应用 (1)在测量距离方面的应用; (2)在工程建筑、航空、航海等 方面的应用.
• 例7.在△ABC中,
BC 1 3, B 60 ,
0
∠C=450,求AB的长
A
B
C
• 例8.A、B之间有条河,原来从A到B需 过桥CD:A→D→C→B。 A 现建桥EF,可沿直线AB 从A到B.已知 D ∠A=450, C ∠B=300,BC= E 11km,CD∥AB, F 则现在从A到B比 原来少走多少路程?

锐角三角函数复习题

锐角三角函数复习题

锐角三角函数复习题1. 锐角三角函数的概念- 锐角三角函数包括正弦(sin)、余弦(cos)和正切(tan)。

- 锐角三角函数是直角三角形中锐角的三角比。

2. 锐角三角函数的定义- 正弦函数定义为直角三角形中,锐角的对边与斜边的比值。

- 余弦函数定义为直角三角形中,锐角的邻边与斜边的比值。

- 正切函数定义为直角三角形中,锐角的对边与邻边的比值。

3. 特殊角的三角函数值- 30°角的正弦值为1/2,余弦值为√3/2,正切值为√3/3。

- 45°角的正弦值和余弦值均为√2/2,正切值为1。

- 60°角的正弦值为√3/2,余弦值为1/2,正切值为√3。

4. 锐角三角函数的增减性- 正弦函数在第一象限内随着角度的增大而增大。

- 余弦函数在第一象限内随着角度的增大而减小。

- 正切函数在第一象限内随着角度的增大而增大。

5. 锐角三角函数的周期性- 正弦函数和余弦函数的周期为360°。

- 正切函数的周期为180°。

6. 锐角三角函数的互余关系- 两个互余角的正弦值互为倒数。

- 两个互余角的余弦值互为倒数。

- 两个互余角的正切值互为相反数。

7. 锐角三角函数的和差公式- sin(A + B) = sinAcosB + cosAsinB- sin(A - B) = sinAcosB - cosAsinB- cos(A + B) = cosAcosB - sinAsinB- cos(A - B) = cosAcosB + sinAsinB- tan(A + B) = (tanA + tanB) / (1 - tanAtanB)- tan(A - B) = (tanA - tanB) / (1 + tanAtanB)8. 锐角三角函数的倍角公式- sin2A = 2sinAcosA- cos2A = cos² A - sin² A = 2cos² A - 1 = 1 - 2sin² A- tan2A = (2tanA) / (1 - tan²A)9. 锐角三角函数的应用- 在解决实际问题中,如测量、建筑、航海等领域,锐角三角函数有着广泛的应用。

锐角三角函数总复习ppt课件.pptx

锐角三角函数总复习ppt课件.pptx

基础自主导学
1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的 是( )
A.sin
A=
3 2
C.cos
B=
3 2
答案:D
B.tan A=12 D.tan B= 3
2.在正方形网格中,△ABC的位置如图,则cos B的值为( )
A.
1 2
C.
3 2
答案:B
B.
2 2
D.
┃ 知识归类
解直角三角形
1.三边关系:a2+b2=c2
2.三角关系:∠A=90°-∠B
a
3.边角关系:sinA=cosB= c


b
,cosA=sinB=c ,tanA
sinA
sinB
= cosA ,tanB= cosB
.
4.面积关系:sABC
1 2
ab
1 2
ch
(2)直角三角形可解的条件和解法
条件:解直角三角形时知道其中的2个元素(至少有一个是边), 就可以求出其余的3个未知元素.
[思路分析]设每层楼高为x m,由MC-CC′求出MC′的 长,进而表示出DC′与EC′的长,在直角三角形DC′A′中, 利用锐角三角函数定义表示出C′A′,同理表示出C′B′, 由 C′B′-C′A′求出 AB 的长即可.
解:设每层楼高为 x m, 由题意,得 MC′=MC-CC′=2.5-1.5=1(m). ∴DC′=5x+1,EC′=4x+1. 在Rt△DC′A′中,∠DA′C′=60°, ∴C′A′=tDanC6′0°= 33(5x+1).
1 2
,sin45°=
2 2
,sin60°=
3 2

中考专项复习锐角三角函数

中考专项复习锐角三角函数

与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函

汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度

(完整版)锐角三角函数超经典学习资料

(完整版)锐角三角函数超经典学习资料

(完整版)锐角三角函数超经典学习资料锐角三角函数是数学中重要的概念之一,它们在几何、物理和工程等领域都有广泛的应用。

通过研究锐角三角函数,我们可以更好地理解和解决各种相关问题。

一、正弦函数正弦函数是锐角三角函数中最基本的函数之一,在数学中常记作sin。

正弦函数的定义如下:$$ \sin(\theta) = \frac{opposite}{hypotenuse} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$hypotenuse$ 表示斜边的长度。

正弦函数有许多重要的性质和关系,比如:- 正弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \sin(\theta) \leq 1$。

- 正弦函数是一个周期函数:即 $\sin(\theta)$ 的周期是 $2\pi$,即在每个 $2\pi$ 的区间内,$\sin(\theta)$ 的值重复。

二、余弦函数余弦函数也是锐角三角函数中的一种重要函数,在数学中常记作cos。

余弦函数的定义如下:$$ \cos(\theta) = \frac{adjacent}{hypotenuse} $$其中,$\theta$ 表示角度,$adjacent$ 表示邻边的长度,$hypotenuse$ 表示斜边的长度。

余弦函数同样有许多重要的性质和关系,比如:- 余弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \cos(\theta) \leq 1$。

- 余弦函数也是一个周期函数:即 $\cos(\theta)$ 的周期是$2\pi$,即在每个 $2\pi$ 的区间内,$\cos(\theta)$ 的值重复。

三、正切函数正切函数是锐角三角函数中的另一种常见函数,它经常用于计算角度的斜率。

正切函数的定义如下:$$ \tan(\theta) = \frac{opposite}{adjacent} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$adjacent$ 表示邻边的长度。

锐角三角函数应用与复习

锐角三角函数应用与复习
锐角三角函数应用与 复习
目录
• 锐角三角函数基本概念 • 锐角三角函数应用 • 锐角三角函数与其他知识点联系 • 复习策略与方法 • 模拟试题与解析
01
锐角三角函数基本概念
正弦、余弦、正切定义
正弦(sine)
正切(tangent)
在直角三角形中,正弦值等于对边长 度除以斜边长度,即 sin(θ) = 对边/ 斜边。
在一些复杂的几何问题中,可以将勾股定理和锐角三角函数结合起来使用,相互 补充,从而更高效地解决问题。
在平面直角坐标系中应用
在平面直角坐标系中,锐角三角函数可以用于描述点的坐标 、线的方程以及图形之间的位置关系等。
利用锐角三角函数可以方便地求解与坐标轴成一定角度的直 线的方程,以及求解一些与角度和距离相关的几何问题。
04
复习策略与方法
梳理知识体系,形成知识网络
回顾锐角三角函数的基本概念, 包括正弦、余弦、正切等定义及
性质。
梳理锐角三角函数与其他数学知 识的联系,如与三角形、圆、方
程等内容的关联。
构建锐角三角函数的知识网络, 明确各知识点之间的逻辑关系。
精选典型例题,强化训练
选择涵盖不同知识点 和难度的典型例题, 进行有针对性的训练。
选择题
A. 90° B. 105°
C. 120°
选择题
D. 135°
答案:B
填空题
01
题目1:在△ABC中,∠C=90°, 若sinA=2/3,则cosB= _______.
02
答案:2/3
03
题目2:已知锐角α满足 2tan(α-15°)=1,则α=
_______.
04
答案:60°
解答题
题目1

锐角三角函数复习.ppt

锐角三角函数复习.ppt
又BC-CD=BD
解得x=6
∴CD=6
A
B
C
D
例题解析
(2) BC=BD+CD=4+6=10=AD
在Rt△ACD中
在Rt△ABC中z x xk
问题2 要解一个直角三角形,除一个直角的已知元素外,还需要几个元素?为什么这些元素中至少要有一条边?试给出可以求解直角三角形的两个条件.
A
B
C
D
问题3 如果题中给出的图形不是直角三角形而是一个综合图形,我们用什么方法进行处理,就能把它转化为可以解的直角三角形?
问题4 你认为需要具备哪些知识、掌握哪些方法,就能较顺利地解决有关实际问题?请总结实际问题的一般步骤和注意点.
锐角三角 函数z x xk
特殊角的三 角函数
解直角三 角形
简单实际 问题
c
a
b
A
B
C
知识
特殊角的三 角函数
2
1
30°
1
1
45°
2
1
60°
30°+ 60°= 90°
返 回
解直角 三角形
∠A+ ∠ B=90°
a2+b2=c2
三角函数 关系式
计算器
由锐角求三角函数值
由三角函数值求锐角
返 回
简单实 际问题
数学模型
直角三角形
等腰梯形
组合图形
等腰三角形
构建

作高转化为直角三角形

返 回
问题1 已知:如同,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AD=3,CD= ,怎样求sinA和cos∠BCD的值?怎样求∠B的正切值?
已知:如图,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC= ,求:(1)DC的长;(2)sinB的值.

锐角三角函数专题复习资料

锐角三角函数专题复习资料

知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222cba2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值范围关系正弦斜边的对边A Asin c a Asin 1sin 0A (∠A 为锐角)B A cos sin B A sin cos 1cos sin 22AA余弦斜边的邻边A A cos c b Acos 1cos 0A (∠A 为锐角)正切的邻边的对边A tan A A b a Atan 0tan A (∠A 为锐角)B A cot tan BA tan cot AAcot 1tan (倒数)1cot tan A A 余切的对边的邻边A A A cot ab Acot 0cot A (∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数0°30°45°60°90°sin0212223 1 cos 12322210tan 0 33 1 3-cot-313306、正弦、余弦的增减性:当0°≤≤90°时,sin随的增大而增大,cos随的增大而减小。

BA cos sin BA sin cos )90cos(sin A A )90sin(cos A A B A cot tan BAtan cot )90cot(tan A A)90tan(cot A AA90B90得由B A 对边邻边斜边ACBbacA90B90得由B A7、正切、余切的增减性:当0°<<90°时,tan随的增大而增大,cot随的增大而减小。

锐角三角函数知识点总结与复习

锐角三角函数知识点总结与复习

锐角三角函数知识点总结与复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方;2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为∠A 可换成∠B :3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值;4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值;5、0°、30°、45°、60°、90°特殊角的三角函数值重要A 90B 90∠-︒=∠︒=∠+∠得由B A邻边A90B 90∠-︒=∠︒=∠+∠得由B A直角三角形中 的边角关系解直角三角形当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小; 7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小;一、知识性专题专题1:锐角三角函数的定义例 1 在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是 A .sin A B .tan A =12C .cos BD .tan B 分析 sin A =BC AB =12,tan A =BC AC ,cos B =BCAB =12.故选D.例2 在△ABC 中,∠C =90°,cos A =35,则tan A 等于 ; 分析 在Rt △ABC 中,设AC =3k ,AB =5k ,则BC =4k ,由定义可知tan A =4433BC k AC k ==. 分析 在Rt △ABC 中,BC =3,∴sin A =35BC AB =.故填35.例312·哈尔滨在Rt △ABC 中,∠C=900,AC=4,AB=5,则sinB 的值是 ; 解析本题考查了锐角三角函数的意义.解题思路:在直角三角形中,锐角的正弦等于对边比邻边,故sinB=54. 例42012内江如图4所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为 ;解析欲求sinA,需先寻找∠A 所在的直角三角形,而图形中∠A 所在的△ABC 并不是直角三角形,所以需要作高.观察格点图形发现连接CD 如下图所示,恰好可证得CD ⊥AB,于是有图4图4sinA =CD AC =210=55.例5 2012宁波,Rt △ABC,∠C=900,AB=6,cosB=错误!,则BC 的长为 ;解析cosB=错误!=错误!,又∵AB=6∴BC=4例62012贵州铜仁如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作ctan α, 即ctan α=BCAC=的对边角的邻边角αα,根据上述角的余切定义,解下列问题:1ctan30◦= ;2如图,已知tanA=43,其中∠A 为锐角,试求ctanA 的值.分析1可先设最小边长为一个特殊数这样做是为了计算方便,然后在计算出其它边长,根据余切定义进而求出ctan30◦;2由tanA=43,为了计算方便,可以设BC=3 AC=4根据余切定义就可以求出ctanA 的值.解析1设BC=1, ∵α=30◦∴AB=2∴由勾股定理得:AC=3ctan30◦=BCAC=32 ∵tanA=43∴设BC=3 AC=4∴ctanA =BC AC =34例72012山东滨州把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值 A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 解析因为△ABC 三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A 的大小没改变,所以锐角A 的正弦函数值也不变.答案选A .例82012湖南观察下列等式 ①sin30°= cos60°=②sin45°=cos=45°=③sin60°= cos30°=根据上述规律,计算sin 2a+sin 290°﹣a= .解析:根据①②③可得出规律,即sin 2a+sin 290°﹣a=1,继而可得出答案. 答案:解:由题意得,sin 230°+sin 290°﹣30°=1;sin 245°+sin 290°﹣45°=1; sin 260°+sin 290°﹣60°=1;故可得sin 2a+sin 290°﹣a=1.故答案为:1.点评:此题考查了互余两角的三角函数的关系,属于规律型题目,注意根据题意总结,另外sin 2a+sin 290°﹣a=1是个恒等式,同学们可以记住并直接运用.例9 2012山东德州为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:22题图①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有哪 组解析对于①,可由公式AB=BC ×tan ∠ACB 求出A 、B 两点间的距离;对于②,可设AB 的长为x,则BC=x tan ACB ∠,BD=xtan ADB ∠,BD-BC=CD,可解出AB .对于③,易知△DEF ∽△DBA,则DE BDEF AB=,可求出AB 的长;对于④无法求得,故有①、②、③三组点评此题考查解直角三角形和三角形相似的性质与判定.在直角三角形中至少要有已知一边和一角才能求出其他未知元素;判定两三角形相似的方法有:AA,SAS,SSS,两直角三角形相似的判定还有HL . 例102012江苏泰州18如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P,则tan ∠APD 的值是 .解析 要求tan ∠APD 的值,只要将∠APD 放在直角三角形中,故过B 作CD 的垂线,然后利用勾股定理计算出线段的长度,最后利用正切的定义计算出结果即可. 答案作BM ⊥CD,DN ⊥AB 垂足分别为M 、N,则2,易得:10,设PM=x,则PD=22-x,由△DNP ∽△BMP,得:PN DN PM BM =,即10102PN x =,∴PN=55x,由DN 2+PN 2=PD 2,得:110+15x 2=22-x 2,解得:x 1=24,x 2=2舍去,∴tan ∠APD=2224BM PM ==2.例11. 2011江苏苏州如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等ABCDEFF于 .分析:根据三角形的中位线定理即可求得BD 的长,然后根据勾股定理的逆定理即可证得△BCD 是直角三角形,然后根据正切函数的定义即可求解.解答:解:连接BD .∵E 、F 分別是AB 、AD 的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC= 43例122011山东日照在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1解答:解:根据锐角三角函数的定义,得 A 、tanA•c otA=a b b a ⋅=1,关系式成立;B 、sinA=c a ,tanA•cosA=cac b b a =⋅,关系式成立; C 、cosA=,cotA•sinA=c b a b c a =⋅,关系式成立;D 、tan 2A+cot 2A=b a 2+ab 2≠1,关系式不成立.故选D .点评:本题考查了同角三角函数的关系.1平方关系:sin 2A+cos 2A=1 2正余弦与正切之间的关系积的关系:一个角的正切值等于这个角的正弦与余弦的比,即tanA=BAcos sin 或sinA=tanA•cosA.3正切之间的关系:tanA•tanB=1. 例132011•贵港如图所示,在△ABC 中,∠C=90°,AD 是BC 边上的中线,BD=4,AD=2,则tan∠CAD 的值是 .解答:解:∵AD 是BC边上的中线,BD=4,∴CD=BD=4,在Rt△ACD中,AC===2,∴tan∠CAD===2.故选A .例142011烟台如果△ABC 中,sin A =cos B 2,则下列最确切的结论是 A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形 解:∵sinA=cosB=22,∴∠A =∠B =45°,∴△ABC 是等腰直角三角形.故选C . 例152011四川如图所示,在数轴上点A 所表示的数x 的范围是A 、330sin 602sin x ︒︒<< B 、3cos302x ︒︒<<cos45C 、3tan 302x ︒︒<<tan45D 、3cot 4502x ︒︒<<cot3 解答:故选D .同步练习12011甘肃如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC ’B ’,则tanB ’的值为 .解答:解:过C 点作CD ⊥AB ,垂足为D .根据旋转性质可知,∠B′=∠B .在Rt△BCD 中,tanB= CD :BD =13,∴tan B′=tan B = 13. 2 2011甘肃兰州点M -sin60°,cos60°关于x 轴对称的点的坐标是 . 解:∵sin60°=32,cos60°= 12,∴点M -32,12.∵点P m ,n 关于x 轴对称点的坐标P′m ,-n ,∴M 关于x 轴的对称点的坐标是-32,-12.故选B . 32011广东已知:45°<A <90°,则下列各式成立的是A 、sinA =cosAB 、sinA >cosAC 、sinA >tanAD 、sinA <cosA解答:解:∵45°<A <90°,∴根据sin 45°=cos 45°,sinA 随角度的增大而增大,cosA 随角度的增大而减小,当∠A >45°时,sinA >cosA ,故选:B .4、2011•宜昌教学用直角三角板,边AC=30cm,∠C=90°,tan∠BAC=33,则边BC 的长为 .cm解:在直角三角形ABC 中,根据三角函数定义可知:tan ∠BAC=BCAC,又AC=30cm,tan ∠3则BC=ACtan 33cm .故选C . 5、 2011福建莆田如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的点F 处,若AB =4,BC=5,则tan ∠AFE 的值为 .ABCC ’ B ’解答:解:∵四边形ABCD 是矩形,∴∠A =∠B =∠D =90°,CD =AB =4,AD =BC =5,由题意得:∠EFC =∠B =90°,CF =BC =5,∴∠AFE +∠DFC =90°,∠DFC +∠FCD =90°, ∴∠DCF =∠AFE ,∵在Rt △DCF 中,CF =5,CD =4,∴DF =3,∴tan ∠AFE =tan ∠DCF =DFDC =34 .6、2012连云港小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD 沿过点B的直线折叠,使点A 落在BC 上的点E 处,还原后,再沿过点E 的直线折叠,使点A 落在BC 上的点F 处,这样就可以求出°的角的正切值是 .EC DA BF答案设AB=x,则BE=x,在直角三角形ABE 中,用勾股定理求出AE=EF=2x,于是2在直角三角形ABF 中,tan ∠FAB=21)BF xAB x=2°.选B; 7、2012福州如图15,已知△ABC,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D,则AD 的长是 ,cosA 的值是 .结果保留根号解析:由已知条件,可知△BDC 、△ADB 是等腰三角形,且DA=DB=BC,可证△BDC ∽△ABC,则有BC DC AC BC =,设BC=x,则DC=1-x,因此21,101x xx x x -=+-=即,解方程得, 125151x x ---==,舍去,即AD=512;又cosA=512451512AB AD===--⨯答案:5151,24 8、2012南京如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合.OB 与尺上沿的交点B 在尺上的读书恰为2厘米,若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为 厘米.结果精确到厘米,参考数据sin370≈,cos370≈,tan370≈C B AO4321解析:由于∠AOB=45°,B 点读书为2厘米,则直尺的宽为2厘米,解直角三角形得点C 的读数为2÷tan370≈2÷≈厘米.答案:9、2012·湖南张家界黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=23千米,请据此解答如下问题:1 求该岛的周长和面积结果保留整数,参考数据2≈ 73.13≈45.26≈ 2 求∠ACD 的余弦值.解答1结AC,∵AB=BC=15千米,∠B=90°,∴∠BAC=∠ACB=45°,AC=152千米. 又∵∠D=90°, ∴AD=2222)23()215(-=-CD AC =123千米∴周长=AB+BC+CD+DA=30+32+123=30++≈55千米. 面积=S △ABC +S △ADC =21×15×15+21×123×32=2225+186≈157平方千米. 2cos ∠ACD=5121523==AC CD . 10、2012甘肃兰州在建筑楼梯时,设计者要考虑楼梯的安全程度;如图1,虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图2,设计者为了提高楼梯的安全程度,要把楼梯的倾角1θ减至2θ,这样楼梯占用地板的长度由d 1增加到d 2 ,已知d 1=4米,140θ∠=,236θ∠=,楼梯占用地板的长度增加了多少米 计算结果精确到米;参考数据:tan40°=,tan36°=AC解析:根据在Rt△ACB中,AB=d1tanθ1=4tan40°,在Rt△ADB中,AB=d2tanθ2=d2tan36°,即可得出d2的值,进而求出楼梯占用地板增加的长度.解:由题意可知可得,∠ACB=∠θ1,∠ADB=∠θ2在Rt△ACB中,AB=d1tanθ1=4tan40°,在Rt△ADB中,AB=d2tanθ2=d2tan36°,得4tan40°=d2tan36°,∴d2=4tan40tan36≈,∴d2-d1==≈,答:楼梯占用地板的长度增加了米.11、2012贵州为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.参考数据:sin54°≈,cos54°≈,tan54°≈,≈,精确到个位解析:首先过点C作CD⊥AB于D,然后在Rt△BCD中,利用三角函数的知识,求得BD,CD的长,继而在Rt△ACD 利用∠CAB的正切求得AD的长,继而求得答案.答案:解:过点C作CD⊥AB于D∵BC=200m,∠CBA=30°,∴在Rt△BCD中,CD=BC=100m,BD=BC•cos30°=200×=100≈173m,∵∠CAB=54°,在Rt△ACD中,AD=≈≈74m,∴AB=AD+BD=173+74=247m.答:隧道AB的长为247m.12、2011新疆建设兵团如图,在△ABC中,∠A=90°.1用尺规作图的方法,作出△ABC绕点A逆时针旋转45°后的图形△AB1C1保留作图痕迹;2若AB=3,BC=5,求tan∠AB1C1.第22题图d2解答:解:1作∠CAB 的平分线,在平分线上截取AB 1=AB ,作C 1A ⊥AB 1,在AC 1上截取AC 1=AC ,如图所示即是所求.2∵AB =3,BC =5,∴AC =4,∴AB 1=3,AC 1=4,tan∠AB 1C 1=错误!=错误!. 专题2 特殊角的三角函数值例12012,湖北孝感计算:cos 245°+tan30°·sin60°=________.答案1例22012陕西计算:(02cos 45-38+1-2=︒ .解析原式2=2-322+1=-52+12⨯⨯答案-52+1 例32012广安计算:---)32(218cos45o +13- ; 解析:1182()cos 4533---︒+=322212323+-+21 例4 计算|-3|+2cos 45310. 解:原式=3+22-122. 例5 计算-12⎛⎫- ⎪⎝⎭9+-12007-cos 60°.解:原式=12+3+-1-12=3-1=2. 例6 计算|2+cos 60°-tan 30°08 21十+221. 例7 计算312-⎛⎫ ⎪⎝⎭-π-0-|1-tan 60°|32-.解:原式=8-13132=10. 例82012呼和浩特计算:11|122sin 45--+︒解析三角函数、绝对值、乘方答案11|12sin 45--+︒11)2211232=-+=+=例92011天水计算:si n 230°+tan 44°tan 46°+si n 260°= . 分析:根据特殊角的三角函数值计算.tanA •tan 90°﹣A =1. 解答:解:原式=14+1+34=2.故答案为2. 例102011•莱芜若a=3﹣tan60°,则196)121(2-+-÷--a a a a = ;33-解答:解:a=3﹣tan60°=3﹣3,∴原式=23-a 1-a 121)(⨯---a a =31-a =33313331-=-=--故答案为:33-. 练习1、2011浙江计算:|-1|5-π0+4cos45°. 解原式=1-122练习2、2011浙江衢州1计算:|﹣2|﹣3﹣π0+2c os45°;解答:解:1原式=2122-+⨯,=1 练习3、计算:20110+8-2sin45°;原式=1+22-2=1+2;练习3、观察下列各式:①sin 59°>sin 28°;②0<cos α<1α是锐角;③tan 30°+tan 60°=tan 90°;④tan 44°<1.其中成立的有A .1个B .2个C .3个D .4个 练习3、C 提示:sin 59°>sin 28°成立,0<cos α<1α是锐角成立,tan 30°+tan 60tan 90°,tan 44°<tan 45°,即tan 44°<1.练习4、计算2sin 30°-tan 60°+tan 45°= .练习5、如图28-146所示,在△ABC 中,∠A =30°,tan B =13,BC 10则AB 的长为 . 练习6、当x =sin 60°时,代数式2242x x x -+·22244x x x x +-++42xx-的值是 .练习7、已知cos 59°24′≈,则sin 30°36′≈ .练习8、若∠A ,∠B 互余,且tan A -tan B =2,则tan 2A +tan 2B = .练习9、如图28-147所示,在菱形ABCD 中,AE ⊥BC 于E ,EC =1,cos B=513,则这个菱形的面积是 . 10.已知正方形ABCD 的边长为1,若将线段BD 绕着点B 旋转后,点D落在DC 延长线上的点D ′处,则∠BAD ′的正弦值为 . 11.如图28-148所示,若将四根木条钉成的矩形木框变为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角等于 .12.在△ABC 中,∠B =30°,tan C =2,AB =2,则BC = .13.设θ为锐角,且x 2+3x +2sin θ=05.则θ= . 14.如图28-149所示,在△ABC 中,∠C =90°,点D 在BC 边上,BD =4,AD =BC ,cos ∠ADC =35. 1求DC 的长;2求sin B 的值.练习4、23 提示:2sin 30°-tan 60°+tan 45°=2×1231=23 练习5、33提示:过点C 作CD ⊥AB ,垂足为D ,在Rt △BDC 中,tan B =13.∴13CD BD =,∴BD =3CD ,∵BC 10∴CD 2+3CD 210,∴CD =1,BD =3.在Rt △ADC 中,tan A =CDAD,∴AD 3∴AB =AD +BD =33 练习632242x x x -+·22244x x x x +-++42xx-=2x ,∴原式=2sin 603练习7、提示:sin 30°36′=cos 59°24′.练习8、6提示:∵∠A ,∠B 互余,∴tan A ·tan B =1,tan 2A +tan 2B =tan A -tan B 2+2tan A ·tan B =22+2=6. 练习9、3916提示:∵cos B =513,设BE =5x ,则AB =13x ,∴AE 22AB BE -12x .∵AB =BC =BE +CE ,∴13x =5x +1,∴x =18,则AE =12x =12×18=32,BC =5x +1=5×18+1=138,∴S =32×138=3916.10.5提示:如图28-155所示,根据题意得DD ′=2DC ,设正方形的边长为x ,则AD =x ,DD ′=2x .∵∠ADD ′=90°,根据勾股定理得AD 22AD DD '+5x .∵AD =x ,∴sin ∠AD ′D =ADAD '=555x x=.∵AB ∥DD ′,∴∠BAD ′=∠AD ′D ,∴sin ∠BAD ′=55.11.30°提示:如图28=156所示,∵S ABCD=12S 矩形BEFC ,且BC =BC 底相同, ∴GC =12FC .∵CF =DC ,∴GC =12DC ,12CG DC =.∵∠DGC =90°,sin 30°=12,∴∠CDG =30°,即这个平行四边形的一个最小内角为30°. 12.12+3 13.30°提示:x 1·x 2=2sin θ,x 1+x 2=-3,则x 1-x 22=x 1+x 22-4x 1x 2=9-8sin θ=52,∴sin θ=12,∴θ=30°. 14.解:1∵cos ∠ADC =35,∴设CD =3x ,则AD =5x ,AC =4x ,∴BC =AD =5x .∵BD =BC-CD ,∴5x -3x =4,∴x =2,∴CD =3x =6. 2∵AC =4x =8,BC =5x =10,∴AB =2222810241AC BC +=+=,∴sin B =844141241AC AB ==. ★ 专题三:题型一俯角与仰角仰角:视线在水平线上方的角;★ 俯角:视线在水平线下方的角;仰角铅垂线水平线视线视线俯角例1、2012湖北襄阳在一次数学活动中,李明利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图5,已知李明距假山的水平距离BD 为12m,他的眼睛距地面的高度为,李明的视线经过量角器零刻度线OA 和假山的最高点C,此时,铅垂线OE 经过量角器的60°刻度线,则假山的高度为 m .解析如下图,过点A 作AF⊥CD 于F,则AF =BD =12m,FD =AB =.再由OE∥CF 可知∠C=∠AOE=60°.所以,在Rt△ACF 中,CF =tan 60AF=43,那么CD =CF +FD =43+m .例2、2012珠海如图,水渠边有一棵大木瓜树,树干DO 不计粗细上有两个木瓜A 、B 不计大A O BE D CF图5 CDA BO E小,树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO.结果精确到1米参考数据:41.12,73.13≈≈第16题图D BA OC解析如图,根据题意,得∠COD =90°, ∠ACO =45°, ∠BCO =30°, AB =2,求CO.设CO 为x 米, 根据AO =CO,列方程,解得即可.答案解:设CO 为x 米在Rt △BCO 中,tan30°=BO CO ,则BO =33x 在Rt △ACO 中,AO =CO,得方程33x +2=x 解得x ≈5.答: CO 长大约是5米. 例3、2012江苏盐城如图所示,当小华站立在镜子EF 前A 处时,他看自己的脚在镜中的像的俯角为450 :如果小华向后退米到B 处,这时他看自己的脚在镜中的像的俯角为300.求小华的眼睛到地面的距离;结果精确到米,参考数据:3≈.答案设AC=BD=x,在Rt △ACA 1中,∠AA 1C=450,∴AA 1=x,在Rt △DBB 1中,BB 1=tan30x=3x ,又∵12BB 1-12AA 1=12,即12×3x -12x=12,解得:x=312+≈米. 例4、2012山西如图,为了开发利用海洋资源,某勘测飞机预测量一岛屿两端A .B 的距离,飞机在距海平面垂直高度为100米的点C 处测得端点A 的俯角为60°,然后沿着平行于AB 的方向水平飞行了500米,在点D 测得端点B 的俯角为45°,求岛屿两端A .B 的距离结果精确到米,参考数据:解析解:过点A 作AE⊥CD 于点E,过点B 作BF⊥CD 于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE 为矩形.第24题图∴AB=EF,AE=BF.由题意可知:AE=BF=100米,CD=500米.…2分 在Rt△AEC 中,∠C=60°,AE=100米.∴CE===米. …4分在Rt△BFD中,∠BDF=45°,BF=100. ∴DF===100米.…6分∴AB=EF=CD+DF﹣CE=500+100﹣≈600﹣×≈600﹣≈米. …8分答:岛屿两端A .B 的距离为米.例5、2012呼和浩特22如图,线段AB 、DC 分别表示甲、乙两建筑物的高;某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B 处测得D 点的仰角为α,在A 处测得D 点的仰角为β;已知甲、乙两建筑物之间的距离BC 为m ;请你通过计算用含α、β、m 的式子分别表示出甲、乙两建筑物的高度;答案解:过点A 作AM ⊥CD 于M在Rt △BCD 中,tan α=CD BC ∴CD =BC ·tan α=m tan α在Rt △AMD 中,tan β=DMAM∴DM =AM ·tan β=m tan β∴AB =CD –DM =mtan α–tan β例6、2012湖北随州,20在一次暑假旅游中,小亮在仙岛湖的游船上A 处,测得湖西岸的山峰太婆尖C 处和湖东岸的山峰老君岭D 处的仰角都是45°,游船向东航行100米后B 处,测得太婆尖、老君岭的高度为多少米3 1.732 ,结果精确到米;解析:设太婆尖高h 1米,老君岭高h 2米;可分别在直角三角形中利用正切值表示出水平线段的长度,再利用移动距离为AB=100米,可建立关于h 1、h 2的方程组,解这个方程组求得两山峰高度;答案:设太婆尖高h 1米,老君岭高h 2米,依题意,有FE第20题图60304545D (老君岭)C (太婆尖)BAβα乙甲ADB M C⇒⎪⎪⎩⎪⎪⎨⎧=-=-10060tan 45tan 10045tan 30tan 2211h h h h 1376.136)1732.1(50)13(5045tan 60tan 1001≈=+=+=-=h 米33110030tan 45tan 1002-=-=h 2376.236)732.13(50)33(50)13(350≈=+=+=+=米答:太婆尖高度为137米,老君岭高度为237米;题型二方位角问题1、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;2、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角;如图4:OA 、OB 、OC 、OD 的方向角分别是:北偏东30°东北方向,南偏东45°东南方向,南偏西60°西南方向,北偏西60°西北方向;例1、2011山东省潍坊轮船从B 处以每小时海里的速度沿男偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在观测灯塔A 北偏东60°方向上,则C 处与灯塔A 的距离是 .海里解答: BC=50×=25海里;根据方位角知识得,∠BCD=30°,=75°-30°;CB=∠BCD+∠ACD=30°+60°=90°;∠A=∠CBD=45°所以CA=CB 所以CB=25海里例2、2012年四川德阳某时刻海上点P 处有一客轮,测得灯塔A 位于客轮P 的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏西60°方向航行32小时到达B 处,那么tan ∠ABP=A.21 C.55 D.552解析如图6所示,根据题意可知∠APB=90°.且AP=20, PB=60×23=40. 所以tan ∠ABP=201402PA PB ==例3、2012连云港已知B 港口位于A 观测点北偏东°方向,且其到A 观测点正北方向的距离BD 的长为16km;一艘货轮从B 港口以40km/h 的速度沿如图所示的BC 方向航行,15min 后到达C 处;现测得C 处位于A观测点北偏东°方向;求此时货轮与A 观测点之间的距离AC 的长精确到.25东北CBDCBH解析过点B 作AC 的垂线,把所求线段AC 换为两线段的差;利用Rt △ABH 和Rt △BCH 求线段AH 、CH 的长,利用AH -CH 确定AC 的长; 答案BC=40×1560=10.在Rt△ADB 中,sin ∠DAB=DB AB , °≈;所以AB=DAB DB ∠sin ≈1.60.8=20.如图,过点B 作BH⊥AC,交AC 的延长线于H;在Rt△AHB 中,∠BAH=∠DAC -∠DAB=°―37°=°,tan∠BAH=BH AH ,=BH AH,AH =+CH 2=AB 2,BH 2+2BH 2=2025所以AH=85,在Rt△AHB 中, BH 2+CH 2=BC 2,CH=2108025-=所以第22题图APCB °°AC=AH―CH=85―25=65≈.例4、2012四川攀枝花如图6,我渔政310船在南海海面上沿正东方向匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场.若渔政310船航向不变,航行半小时后到达B 处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值.答案作CD⊥AB于D,设BD=x,∵∠BCD=30°,∴CD=3x,因为∠CAD=45°,∴AD=CD3,AB3–x,依据题意3x–x=,x 31+,31+小时,离渔船C的距离最近;例5、2012山东东营如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西°方向,求此时轮船所处位置B 与城市P的距离参考数据:°≈35,°≈34,°≈1213,°≈125解析过点P作PC⊥AB,构造直角三角形,设PC=x海里,用含有x的式子表示AC,BC的值,从而求出x的值,再根据三角函数值求出BP的值即可解答.答案过点P作PC⊥AB,垂足为C,设PC=x海里.在Rt△APC中,∵tan∠A=PCAC,∴AC=5tan67.512PC x=︒.在Rt△PCB中,∵tan∠B=PCBC,∴BC=4tan36.93x x=︒.∵AC+BC=AB=21×5,∴54215123x x+=⨯,解得60x=.∵sinPCBPB∠=,∴60560100sin sin36.93PCPBB===⨯=∠︒海里.∴向阳号轮船所处位置B与城市P的距离为100海里.例6、2012山东省青岛如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE ;而当光线与地面夹角是45°时,教学楼顶A 在地面上的影子F 与墙角C 有13米的距离B 、F 、C 在一条直线上 ⑴求教学楼AB 的高度;⑵学校要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离结果保留整数.参考数据:sin22°≈错误!,cos22°≈错误!,tan22°≈错误! 答案解:⑴过点E 作EM ⊥AB,垂足为M.设AB 为x.Rt △ABF 中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13在Rt △AEM 中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,∴tan22°= 错误!, 错误!=错误!,x=12.即教学楼的高12m.⑵由1可得ME=BC=x+13=12+13=25.在Rt △AME 中,cos22°= 错误!, ∴AE= 错误!≈ 错误!≈27.即AE之间的距离约为27m.题型三、坡比是垂直高度与水平距离的比值,即是坡角的正切值应用举例: 坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等;把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==;例1、2012广安如图2,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m,则迎水坡面AB 的长度是 .m解:tan∠BAC=13,∠BAC=30°,sin∠BAC=12, sin∠BAC=BC AB ,AB=2BC=100m例2、小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角为60°,已知办公大楼高46米,CD =10米.求点P 到AD 的距离用含根号的式子表示.图2:i h l=hlαABCDPN M解析连结PA 、PB ,过点P 作PM ⊥AD 于点M ;延长BC ,交PM 于点N则∠APM =45°,∠BPM =60°,NM =10米………1分设PM =x 米 在Rt △PMA 中,AM =PM ×tan ∠APM =x tan 45°=x 米…3分在Rt △PNB 中,BN =PN ×tan ∠BPM =x -10tan 60°=x -103米…5分 由AM +BN =46米,得x +x -103 =46……6分解得,4610313x +=+ ,∴点P 到AD 的距离为4610313++米.结果分母有理化为()1838-米也可……8分答案4610313++结果分母有理化为()1838-米也可例3、2012湖北如图,某公园入口处原有三级台阶,每级台阶高为18cm,深为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度1:5i =,则AC 的长度是 cm .解析如图,过点B 作BD ⊥AC 于D,依题意可求得AD =60cm,BD =54cm ;由斜坡 BC 的坡度i =1:5,求得CD =270cm,故AC =CD -AD =270-60=210cm .例4、2012浙江省绍兴,19如图1,某超市从一楼到二楼的电梯AB 的长为米,按坡角∠BAC 为32°.1求一楼与二楼之间的高度BC 精确到米;2电梯每级的水平级宽均是米,如图2.小明跨上电梯时,该电梯以每少上升2级的高度运行,10秒后他上升了多少米精确到米 备用数据:sin 32°=,cos 32°=,tan 32°=.解析1在Rt△ABC 中,已知∠B AC=32°,斜边AB 的长为米,根据锐角三角函数的定义即可求得第20题图MPDCBA第12题A BC3018一楼与二楼之间的高度BC .2先计算1级电梯的高,再根据10秒钟电梯上升了20级可计算10秒后他上升的高度.答案解:1∵sin ∠BAC =ABBC ,∴BC =AB ×sin32°=×≈米. 2∵tan32°= 级高级宽,∴级高=级宽×tan32°=×=,∵10秒钟电梯上升了20级,∴小明上升的高度为:20×米. 例5、2012浙江丽水,19学校校园内有一小山坡,经测量,坡角∠ABC=30°,斜坡AB 长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD 的坡比是1:3即为CD 与BC 的长度之比,A,D 两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.解析:∴AD=AC-CD=6-23.答:开挖后小山坡下降的高度AD 为6-23米.例6、2012深圳小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为 .米解答:如图3—1,根据坡角易求树的下半部分的高为2米,树的上半部分所在直角三角形的水平距离为(+823米,由两个直接三角形相似易求树的上半部分高度为(43米,知树的高度为()63米,选择A例72012江苏泰州24如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡角为45°的山坡上走到C 处,这时,PC=30m,点C 与点A 在同一水平线上,A 、B 、P 、C 在同一平面内.1求居民楼AB 的高度;2求C 、A 之间的距离.精确到,参考数据:2≈,3≈,6≈60° CA B 45°图330°21图3-1第24题图解析过C作BP的垂线,垂足为G,利用特殊Rt△PCG和Rt△ABP中的边角关系,我们容易计算出CG即AB的长,最后用AC=BP+PG,就是C、A之间的距离.答案1过C作BP的垂线,垂足为G,在Rt△PCG中,CG=PCsin450=30×2所以=m2PG= PCcos450=30×2=所以C、A之间的距离例82012四川水务部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图9所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为,加固后大坝的横截面为梯形ABED,CE的长为8米.1已知需加固的大坝长为150米,求需要填土石方多少立方米2求加固后大坝背水坡面DE的坡度.解析1求出横截面△DCE的面积,然后乘以坝堤长度即可得出体积.可以分别过点A,D 作BC边上的高将问题转化为解直角三角形问题.2求大坝背水坡面DE的坡度就是求坡面DE上一点到BE的铅直高度与它到点E的水平宽度的比,这一点通常取梯形的顶点.答案解:1过点A作AG⊥BC于G,过点D作DH⊥BC于H,∴AG=DH.在Rt△ABG中,AG=sin60°·AB×16=∴DH=S△DCE=12·DH·CE=12×8=∴需要填土石方150=3.2在Rt△DHC中,HC24,∴HE=HC+CE=24+8=32.∴加固后大坝背水坡面DE的坡度=DHHE.AB CD图9E例9 2012江苏苏州如图,已知斜坡AB 长60米,坡角即∠BAC 为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体用阴影表示修建一个平行于水平线CA 的平台DE 和一条新的斜坡BE .请讲下面2小题的结果都精确到米,参考数据:≈.1若修建的斜坡BE 的坡角即∠BEF 不大于45°,则平台DE 的长最多为 米;2一座建筑物GH 距离坡角A 点27米远即AG=27米,小明在D 点测得建筑物顶部H 的仰角即∠HDM 为30°.点B 、C 、A 、G 、H 在同一个平面内,点C 、A 、G 在同一条直线上,且HG⊥CG,问建筑物GH 高为多少米解答: 解:1∵修建的斜坡BE 的坡角即∠BEF 不大于45°,∴∠BEF 最大为45°当∠BEF=45°时,EF 最短,此时ED 最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF ﹣EF=15﹣1≈;2过点D 作DP⊥AC,垂足为P .在Rt△DPA中,DP=AD=×30=15,PA=AD•cos30°=×30=15. 在矩形DPGM 中,MG=DP=15,DM=PG=15+27,在Rt△DMH 中,HM=DM•tan30°=×15+27=15+9. GH=HM+MG=15+15+9≈.答:建筑物GH 高为米.A B C DE GH。

专题01 锐角的三角函数重难点题型专训(7大题型)(原卷版)

专题01 锐角的三角函数重难点题型专训(7大题型)(原卷版)

【题型目录】题型一题型二【经典例题一1.(22·235.(2021秋·河北石家庄5AB=,3AC=.(1)求AD的长;(2)求sin DABÐ的值.【经典例题二求角的正弦值1.(22·23下·沈阳·开学考试)如图,6BD=,则sin ACDÐ的值是(A.34B.32.(22·23上·青岛·期末)如图,值为( )A.5B.3.(21·22下·哈尔滨·阶段练习)在5.(2023·浙江温州<),连接(AE EC(1)求证:四边形DEBF为菱形.(2)记菱形ABCD的面积为1S,菱形长.【经典例题三1.(22·23D,若A.22.(22·23下·深圳·阶段练习)如图,的距离是( )A.556B.6553.(22·23下·绵阳·阶段练习)如图,在上,1BAE ABCÐ=Ð,点F4.(22·23下·合肥·三模)在Rt上,将BDE△沿直线DE翻折,使得点(1)求证:CE是Oe的切线;(2)若2sin,53E AC==,求DF 【经典例题四求角的余弦值A.11 152.(2022春·福建福州格点.已知菱形的一个角为A.13B.123.(2023秋·全国·九年级专题练习)如图,在AC于点D、E,且13AB AC==,4.(2023·黑龙江齐齐哈尔的两边长分别是2和3,则5.(2022秋·黑龙江大庆·八年级校考期末)沿着过点B的某条直线折叠,使点(1)求点A、B、C、D的坐标;(2)求ABCÐ的余弦值.【经典例题五已知余弦值求边长】1.(2023·广西北海·统考模拟预测)如图,在直角梯形3 BD=,2cos3CDBÐ=,则下底AB的长是(A.212B.92.(2023春·四川南充·九年级校考阶段练习)如图,A.94B.1253.(2023·山东聊城·统考三模)在Rt ABC△5.(2023秋·山东聊城·九年级校考阶段练习)于点E .(1)求证;BEA ADC V V ∽(2)求证:··CD AD AC BE =(3)若2AD =5,cos ABE Ð【经典例题六1.(2023点F 在边A .272.(2023秋·重庆沙坪坝90BAC EAD Ð=Ð=°的值为( )A .13B 3.(2023秋·江苏常州·九年级统考期末)如图,连接BD ,将BCD △沿BD4.(2022春·湖北武汉AB AC =,CD AB ^的值是.5.(2022春·黑龙江绥化等腰Rt CEF △的直角顶点与正方形线FE 与AD 交于点P ,与(1)求证:CDE CBF △△≌;(2)求CF 的长;【经典例题七1.(2022落在边A .53B .22.(2023·广东深圳·深圳市高级中学校考二模)如图,平行四边形4tan 3BAD Ð=,点O 为对角线A .4033B .33403.(2023秋·全国·九年级专题练习)如图,在1tan 3ABG Ð=,那么BC 的长等于4.(2022秋·黑龙江哈尔滨5OP =,点M ,(1)求证:四边形BCEF^于点G,连结(2)BG CE①求CG的长.②求平行四边形BCEF【重难点训练】1.(21·22A.42.(23·24上·长春上,且90Ð=°AEFA.273.(22·23下·江门·期中)在A.247B.4.(22·23下·株洲·自主招生)的值为()A.3 35.(21·22下·深圳·模拟预测)如图,已知平行四边形A.12B.136.(23·24上·黄浦·期中)如图已知在7.(21·22·武汉·模拟预测)如图,E为AB边上一动点,DEFV为等边三角形,则线段8.(22·23下·深圳·模拟预测)如图,在1tan 2A =,8BC =,CF AB ∥9.(21·22·武汉·模拟预测)如图,在矩形GBE V ,BG 的延长线交则cos DEC Ð的值为10.(23·24上·专题练习)如图,在四边形点M 、N 分别在AB11.(21·22·哈尔滨·模拟预测)如图,在小正方形的边长均为方形的顶点上.(1)在图1中画一个以线段AB 为一边的平行四边形ABCD 的面积为8;(2)在图2中画一个钝角三角形ABE ,点E 在小正方形顶点上,直接写出AE 的长.13.(21·22下·宜昌·模拟预测)如图,已知平行四边形(1)如图当点E 在边AD 上时.①求证AEF BGF V V ∽.②当4DCE BFG S S =V V 时,求:AE ED 的值.(2)当点E 在边AD 的延长线上时,是否存在这样的点E 使AEF △与五、作图题14.(23·24上·哈尔滨·期中)如图,在边长为1的小正方形网格中,ABC V 的三个顶点均在格点上,坐标分别为()2,4A ,()1,2B ,()5,3C . 请解答下列问题:(1)画出ABC V 关于y 轴的对称图形111A B C △.(2)将ABC V 绕点O 顺时针旋转90°得到222A B C △,画出222A B C △.(3)连接1B B 、12B C ,写出12BB C Ð的正切值.六、证明题15.(23·24上·齐齐哈尔·期中)已知,四边形ABCD 是正方形,DEF V 绕点D 旋转()DE AB <,90,EDF DE DF Ð=°=,连接AE ,CF ;直线AE 与CF 相交于点G 、交CD 于点P .(1)如图1,猜想AE 与CF 的关系,并证明:(2)如图2,BM AG ^于点M ,^BN CF 于点N ,则四边形BMGN 是________形;(3)如图3,连接BG ,若4,2AB DE ==,直接写出在DEF V 旋转的过程中,①当点E 在正方形ABCD 的内部,且EF CD ^时BG =_________;②线段BG 长度的最小值__________;。

锐角三角函数(总复习)

锐角三角函数(总复习)

锐角三角函数一、 考点聚焦1.锐角三角函数定义=A sin ,=A cos ,=A tan 。

2.特殊角三角函数值3、解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 4.解直角三角形的类型:已知____________;已知___________________. 5.如图:解直角三角形的公式:(1)三边关系:__________________. (2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____.二、 典例精析例1、在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .30° 45° 60° sin α cos α tan α例2、计算:4sin 302cos 453tan 60︒-︒+︒.例3、等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的三角函数值.例4、Rt ABC ∆的斜边AB =5, 3cos 5A =,解这个直角三角形。

例5(2012上海市)如图,在Rt △ABC 中,∠ACB =90°,D 是边AB 的中点,BE ⊥CD ,垂足为点E .已知AC =15,cosA =35. (1)求线段CD 的长; (2)求sin ∠DBE 的值.三、 课堂练习一、选择题1. (2012天津市)2cos60︒的值等于【 】(A)1 (B)2(C)3(D)22. (2012浙江杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则【】A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°3. (2012浙江宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为【】A.4 B.2C.181313D.1213134. (2012江苏无锡)sin45°的值等于【】A.B.C.D.1二、填空题1.(2012湖北武汉)tan60°=.2.(2012宁夏区)在△ABC中∠C=90°,AB=5,BC=4,则tanA=3.(2012江苏常州)若∠α=600,则∠α的余角为,cosα的值为。

专题16 锐角三角函数及其应用(5大考点)(学生版)

专题16 锐角三角函数及其应用(5大考点)(学生版)

第四部分三角形专题16锐角三角函数及其应用(5大考点)核心考点核心考点一特殊角的三角函数值及其计算核心考点二由三角函数值求锐角核心考点三锐角三角函数的增减性核心考点四解直角三角形及其应用核心考点五三角函数的综合新题速递核心考点一特殊角的三角函数值及其运算(2021·贵州黔东南·统考中考真题)如图,在边长为2的正方形ABCD中,若将AB绕点A逆时针旋转60︒,使点B落在点B'的位置,连接B B',过点D作DE⊥BB',交'BB的延长线于点E,则BE'的长为()A1B.2-C D.(2022·黑龙江绥化·统考中考真题)定义一种运算;sin()sin cos cos sinαβαβαβ+=+,sin()sin cos cos sinαβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin4530︒+︒=1222+=,则sin15︒的值为_______.(2022·山东潍坊·中考真题)(121032103=41627316+-+=-2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①224-=;②10(1)1-=-;③66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根.知识点:特殊角的三角函数值1.图表记忆三角函数α图形记忆30°45°60°sin α212223cos α232221tan α33132.规律记忆30°,45°,60°角的正弦值的分母都是2,分子依次为1;30°,45°,60°角的余弦值分别是60°,45°,30°角的正弦值。

锐角三角函数复习题

锐角三角函数复习题

锐角三角函数复习题锐角三角函数是数学中非常重要的概念,主要用于解决与直角三角形相关的问题。

以下是一些锐角三角函数的复习题,帮助同学们巩固和加深理解。

# 锐角三角函数复习题问题1:定义理解锐角三角函数包括正弦(sine)、余弦(cosine)和正切(tangent)。

请解释这些函数的定义。

问题2:基本公式给出锐角\( \theta \)的正弦、余弦和正切的基本三角函数公式。

问题3:特殊角的三角函数值计算下列角度的正弦、余弦和正切值:- \( 30^\circ \)- \( 45^\circ \)- \( 60^\circ \)问题4:三角函数的增减性说明正弦和余弦函数在第一象限内的增减性。

问题5:同角三角函数关系给出正弦和余弦函数之间的关系式,并解释其几何意义。

问题6:和差公式列出正弦和余弦的和差公式,并给出一个例子说明如何使用这些公式解决实际问题。

问题7:二倍角公式给出正弦和余弦的二倍角公式,并解释它们如何帮助简化复杂角度的三角函数计算。

问题8:应用题在一个直角三角形中,已知一个锐角为\( \alpha \),对边(opposite side)长度为3,邻边(adjacent side)长度为4。

求:- 斜边(hypotenuse)的长度- 另一个锐角的大小- 正切、余切、正割和余割的值问题9:三角函数的图像描述正弦和余弦函数的图像特征,包括它们的周期性、振幅和相位。

问题10:三角恒等变换给出几个三角恒等式的例子,并解释它们在解决几何问题中的应用。

结束语:通过这些复习题,同学们应该能够更好地理解锐角三角函数的概念、公式和应用。

锐角三角函数不仅在数学领域有着广泛的应用,也是解决物理、工程和建筑等领域问题的重要工具。

希望同学们能够通过练习这些题目,提高自己的数学能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 A90B 90∠-︒=∠︒=∠+∠得由B A7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

8、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)9、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。

边角专项复习一.填空题1.计算:sin 60︒= ;tan 60︒= 。

2.在Rt ABC ∆中,已知3sin 5α=,则cos α= ;α≈ 。

(精确到1秒)3.等腰直角三角形的一个锐角的余弦值等于 。

4.比较下列三角函数值的大小:(用“<”小于号连接)sin5,sin85,sin 65︒︒︒,它们的大小为: 。

5.若A ∠是锐角,1cos 3A =,则sin(90)A ︒-= 。

:i h l =hlαA6.若A ∠是锐角,cos A =,则A ∠= 。

7.如图,B ,C 是河岸边两点,A 是对岸边上的一点,测得30ABC ∠=︒,60ACB ∠=︒,BC 50=米,则A 到岸边BC 的距离是 米。

8.0tan 30(tan1525'19")︒+︒= 。

9.一天在升旗时小苏发现国旗升至5米高时,在她所站立的地点看国旗的仰角是45︒,当国旗升至旗杆顶端时国旗的仰角恰为60︒,小苏的身高是1米6,则旗杆高 米。

(将国旗视作一点,保留根号)10.化简:sin 30tan 60sin 60︒-︒=︒。

11.在ABC ∆中,若90C ∠=︒,1sin 2A =,12AB =,则ABC ∆的周长为 。

12.在ABC ∆中,若A ∠为锐角,且sin 0.53A =,tan 0.82B =, 则C ∠= 。

(精确到1秒)二.选择题1.在一个钝角三角形中,如果一个三角形各边的长度都扩大3倍,那么这个三角形的两个锐角的余弦值( )A .都没有变化B .都扩大3倍C .都缩小为原来的13 D .不能确定是否发生变化2.在ABC ∆中,::1:2:1A B C ∠∠∠=,,,A B C ∠∠∠对边分别为,,a b c ,则::a b c 等于( )A .1:2:1B .C .1:2D .1:23.解Rt ABC ∆,90C ∠=︒,,,A B C ∠∠∠对边分别为,,a b c ,结果错误的是( ) A .cos b c A = B .tan a b A = C .sin a c A = D . tan a b B = 4.计算22sin 60tan 45(-︒︒-结果是( ) A .94 B .114 C . 94- D .114-5.若sin cos A A +=A 等于( )A .30︒B .45︒C .60︒D .90︒6.等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是( )A .120+B .120+C .150+D .150+7.在ABC ∆中,90C ∠=︒,且两条直角边,a b 满足22430a ab b -+=,则tan A 等于( ) A .2或4 B .3 C .1或3 D .2或38.在ABC ∆中,,,A B C ∠∠∠对边分别为,,a b c ,5,12,13a b c ===,下列结论成立的是( )A .12sin 5A =B .5cos 13A =C .5tan 12A =D .12cos 13B = 三.不用计算器计算:(1)sin 30cos 45cos 60sin 45︒-︒︒-︒ (2)2(tan 45)︒(3)sin 353tan 3012sin 60cos55︒︒--+︒︒四.解答题1.如图,在Rt ABC ∆中,90BCA ∠=︒,CD 是中线,6,5BC CD ==,求sin ,cos ACD ACD ∠∠和tan ACD ∠。

2.如图,甲楼每层高都是3.1米,乙楼高40米,从甲楼的第6层往外看乙楼楼顶,仰角为30︒,两楼相距有多远?(结果精确到0.1米)2.一艘船由A 港沿东偏北30︒方向航行20千米至B 港,然后再沿东偏南60︒方向航行20千米至C 港,求:(1)A ,C 两港之间的距离(结果精确到0.1千米) (2)确定C 港在A 港的什么方位?3.如图,Rt ABC ∆是一防洪堤背水波的横截面图,斜坡AB 的长为13米,它的坡角为45︒,为了提高防洪堤的防洪能力,现将背水坡改造成坡比1:1.5的斜坡AD ,求DB 的长(结果保留根号)B A4.如图,气象大厦离小伟家80米,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是42︒,而大厦底部的俯角是34︒5.燕尾槽的横断面是等腰梯形,如图是一个燕尾槽的横断面,其中燕尾角B 为65︒,外口宽AD=150mm ,燕尾槽的深度为60mm ,求它的里口宽BC (精确到1mm )直角三角形的边角关系测试题1一:选择题1、ABC Rt ∆中,∠C=90°,AC=4,BC=3,B cos 的值为…………………【 】A 、51 B 、53 C 、 34 D 、 432、已知∠A +∠B = 90°,且A cos =51,则B cos 的值为……………………【 】A 、 51B 、54 C 、 562 D 、 523、在菱形ABCD 中,∠ABC=60° , AC=4,则BD 的长是…………………【 】 A 、 38 B 、34 C 、32 D 、84、在ABC Rt ∆中,∠C=90° ,A tan =3,AC=10,则S △ABC 等于………【 】 A 、 3 B 、300 C 、350D 、150 5、一人乘雪橇沿坡度为1:3的斜坡滑下,滑下距离S(米)与时间t (秒)之间 的关系为S=2210t t +,若滑动时间为4秒,则他下降的垂直高度为……【 】A 、 72米B 、36米C 、336米D 、318米6、在ABC Rt ∆中,∠C=90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c 三边,则下列式子一定成立的是………………………………………………………………【 】 A 、B c a sin ⋅= B 、B c a cos ⋅= C 、Bac tan =D 、A a c sin ⋅= 7、若∠A 为锐角,132tan tan =⋅A ,则∠A 等于…………………………【 】 A 、32 B 、58 C 、)321(D 、 )581( 8、如果把ABC Rt ∆的三边同时扩大n 倍,则A sin 的值……………………【 】 A 、不变 B 、扩大n 倍 C 、缩小n 倍 D 、不确定 9、ABC ∆中,∠C=90°,AC=52,∠A 的角平分线交BC 于D ,且AD=1534, 则A tan 的值为【 】 A 、1558 B 、3 C 、33 D 、3110、如图ABC ∆中,A D 是B C 上的高,∠C=30°,BC=32+,21tan =B , 那么AD 的长度为【 】 A 、21B 、1C 、2321+D 、331+二:填空题11、如图P 是α∠的边OA 上一点,P 的坐标为(3,4), 则=αsin 。

12、等腰三角形的腰长为10cm ,顶角为120,此三角形面积为 。

13、已知方程01272=+-x x 两根为直角三角形的两直角边 ,则其最小角的余弦值为 。

14、如图甲、乙两楼之间的距离为40米,小华从甲楼顶测乙楼 顶仰角为α=30,观测乙楼的底部俯角为β=45,试用含α、β的 三角函数式子表示乙楼的高=h 米。

15、在ABC Rt ∆中,∠C=90° ,CD 是AB 边上的中线,BC=8, CD=5,则=∠ACD tan 。

三:计算16、计算0)12(60tan 45tan 30cos 2-+-+18、在ABC Rt ∆中,∠C=90° ,且21sin =A ,AB=3,求BC ,AC 及B ∠.19、已知,四边形ABCD 中,∠ABC = ∠ADB =090,AB = 5,AD = 3,BC = 32,求四边形ABCD 的面积S 四边形ABCD .四:解答题20、欲拆除一电线杆AB ,已知电线杆AB 距水平距离14m 的D 处有有大坝,背水坡CD 的坡度1:2=i ,坝高C F 为2m ,在坝顶C 处测地杆顶的仰角为30,D 、E 之间是宽度位2m 的人行道。

试问:在拆除电线杆AB 时,为确保行人安全是否需要将此人行道封闭?请说明你的理由(在地面上以B 为圆心,以AB 为半径的图形区域为危险区域,414.12,732.13≈≈)。

直角三角形的边角关系测试题21、在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosB 的值是( ) A.4/5 B.3/5 C.3/4 D.4/32、在Rt △ABC 中,如果各边长度都扩大为原来的2倍,那么锐角A 的正弦值( ) A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3、等腰三角形的底角为30°,底边长为23,则腰长为( ) A .4B .23C .2D .224、如图1,在菱形ABCD 中,∠ABC =60°,AC =4,则BD 长为( ) A .83B .43C .23D .85、在△ABC 中,∠C =90°,下列式子一定能成立的是( )A .sin a cB = B .cos a b B =C .tan c a B =D .tan a b A =6、△ABC 中,∠A ,∠B 均为锐角,且有2|tan 3|2sin 30B A -+-=(),则△ABC 是( ) A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形7、已知tan 1α=,那么2sin cos 2sin cos αααα-+的值等于( )A .13B .12C .1D .168、如图2,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B ,取∠ABD =145°,BD =500米,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55°米 B .500cos55°米 C .500tan55°米 D .500tan35°米9、如图3,在矩形ABCD 中,D E ⊥AC ,垂足为E ,设∠ADE =α,且cos α=35,AB =4, 则AD 的长为( ) A .3B .163C .203D .16510、如图4,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) A .1B .2C .22D .3二、耐心填一填:11.等腰直角三角形的一个锐角的余弦值等于 12、在△ABC 中,∠C =90°,sinA=35,cosA 13、比较下列三角函数值的大小:sin400sin50014、化简:sin 30tan 60sin 60︒-︒=︒15、若A ∠是锐角,cosA >23,则∠A 应满足 16、小芳为了测量旗杆高度,在距棋杆底部6米处测得顶端的仰角是600,小芳的身高不计,则旗杆高 米。

相关文档
最新文档