数字信号处理-第一章
《数字信号处理》 完整加精版
![《数字信号处理》 完整加精版](https://img.taocdn.com/s3/m/06604b0210a6f524ccbf85a1.png)
采用抽象算法表达:由软件程序虚拟实现。 在采用硬件电路实现时,由于不需要考虑 物理环境对信号的影响,可以在设计中尽可
能采用低功耗高密度集成。
数字系统的特点
信号采用数字序列表达后,对模拟信号难以 进行的很多处理能够方便地实现,例如: 对信号的乘法调制和各种编码调制、信号的时 间顺序处理、信号的时间压缩/扩张、复杂标准 信号的产生…
时间变量与对应的函数值采用两个相等长度的序列 (一维向量)表示。 两个序列可以进行直接数值设臵:
例:n=[0 1 2 3 4 5 6 7];
x=[1 2 4 6 5 3 1 0];
数字信号的MATLAB表达
坐标区间设臵: n=[n1:n2] 只取整数,设定起点和终点;
信号函数设臵:其序列长度由n序列限定; x=3*n x=exp(j*(pi/8)*n)
设臵好坐标序列t和信号序列x后,可以采 用下列作图语句画出连续时间信号图形: plot(t,x) 该语句通过将离散的信号点之间用直线连 接得到连续图形。
模拟信号的作图表达
例:MATLAB程序
t=[0:0.1:10];x1=[zeros(1,30) ones(1,40) zeros(1,31)]; x2=2-0.3*t;x3=exp(j*(pi/8)*t);x4=exp(-0.2*t).*cos(2*pi*t);
欠采样导致的问题
s N
若原始频谱与镜像频谱混叠,产生混叠失真,则
信号不可恢复!
采样定理
待采样信号必须为带限信号
X 0
M
采样频率应大于信号最高频率的2倍
2 s 2M N Ts
Nyquist 频率
重建滤波器(低通)截止频率应满足:
数字信号处理第一章课后答案
![数字信号处理第一章课后答案](https://img.taocdn.com/s3/m/d295db560640be1e650e52ea551810a6f524c8b8.png)
第 1 章 时域离散信号和时域离散系统
n
(7) y(n)= x(m) 令输入为m0
x(n-n0)
输出为
n
y′(n)= =0[DD)]x(m-n0)
m0
nn0
y(n-n0)= x(m)≠y′(n) m0
故系统是时变系统。 由于
n
T[ax1(n)+bx2(n)]=
[ax1(m)+bx2(m)
第 1 章 时域离散信号和时域离散系统
解:
x(n)=δ(n+4)+2δ(n+2)-δ(n+1)+2δ(n)+δ(n-1)
+2δ(n-2)+4δ(n-3)+0.5δ(n-4)+2δ(n-6)
2. 给定信号:
2n+5
-4≤n≤-1
(x(n)= 6 0
0≤n≤4 其它
(1) 画出x(n)序列的波形, 标上各序列值;
(2) y(n)=x(n)+x(n+1)
n n0
(3) y(n)= x(k) k nn0
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
第 1 章 时域离散信号和时域离散系统
解:(1)只要N≥1, 该系统就是因果系统, 因为输出 只与n时刻的和n时刻以前的输入有关。
如果|x(n)|≤M, 则|y(n)|≤M, (2) 该系统是非因果系统, 因为n时间的输出还和n时间以 后((n+1)时间)的输入有关。如果|x(n)|≤M, 则 |y(n)|≤|x(n)|+|x(n+1)|≤2M,
第 1 章 时域离散信号和时域离散系统 题2解图(四)
数字信号处理第1章
![数字信号处理第1章](https://img.taocdn.com/s3/m/f12101cfc1c708a1284a445a.png)
…
x(n )
01 11
y(n )
11 21
z- 1 z- 1
并联型结构
0F 1F
1F 2F
z- 1 z- 1
…
数字信号处理基础-实现结构(IIR)
FIR的特点:
单位脉冲响应序列为有限个; 可快速实现; 可得到线性相位 滤波器阶数较高 IIR的特点: 滤波器阶数较低 可利用模拟滤波器现有形式
a N- 1 aN
x(n -N)
z- 1 b N
z- 1 y(n -N)
直接Ⅰ型结构
…
数字信号处理基础-实现结构(IIR)
y (n) bi x(n 1) ai y (n i )
i 0 i 1
b0 a1 a2 z- 1 z- 1 b1 b2 x(n ) y(n )
M
N
… … …
若ai不等于0,输出依赖于以前的输出信号, 称为递归系统(有反馈)
y(n) ai y (n i) bl x(n l )
i 1 i 0
N
M
通常此时n趋于无穷大时,h(n)也不为0,对 脉冲响应无限长的系统称为IIR(无限长单 位脉冲响应滤波器)
数字信号处理基础-系统实现结构
数字信号处理基础-实现结构(IIR)
y(n) bi x(n i) ai y (n i)
i 0 i 1
x(n) x(n- 1) x(n- 2) b0 z- 1 b 1 z
- 1
M
N
y(n ) a1 a2 z- 1 z
- 1
y(n- 1) y(n- 2)
b2
…
…
…
…
数字信号处理第一章
![数字信号处理第一章](https://img.taocdn.com/s3/m/a3aaebfe0242a8956bece48a.png)
-1 0
1
2
n
1/4 -1 0 1 n
2012/11/3
大连海事大学信息学院电子信息基础教 研室
11
7、序列的时间尺度变换运算(2)
(2)插值: x(n/m)
例 m=2,x(n/2)相当于两个点之间插一个点,依此类 推。通常,插值用 I 倍表示,即插入(I-1)个值。
x(n) 2 1/2 -1
2012/11/3
大连海事大学信息学院电子信息基础教 研室
10
7、序列的时间尺度变换运算(1)
若序列为 x(n) ,其时间尺度变换序列为x(mn) 或x(n/m),m是正整数。 (1) 抽取: x(mn) 例m=2,x(2n)相当于两个点取一点,依此类推。
x(n) 2 1/4 -2 1/2 1 1 3 x(2n) 3
2012/11/3
大连海事大学信息学院电子信息基础教 研室
23
•三、单位样值响应与零状态响应 定义:在零初始条件下,输入为单位样值 序列时系统的响应。
即 h(n) T [ (n)] 显然h(n)是系统对 (n)的零状态响应。
• 若已知h(n),则当任意输入x(n),响应为:
y ( n)
x(n) xa (nT ),
2012/11/3
n
n为整数
2
大连海事大学信息学院电子信息基础教 研室
2.
1) 2) 3)
序列的表示方法:
公式表示法; 图形表示法; 集合符号表示法:如果x(n)是通过观测得到的一组离散 数据,则其可以用集合符号表示。
例如:
x(n) x(0) x(-1) x(1) x(-2) x(2) n
当n=0时
x(n)*h(n)=1
数字信号处理 第一章
![数字信号处理 第一章](https://img.taocdn.com/s3/m/198f8e0fbb68a98271fefa7c.png)
x(n + N) = Asin[ω0 (n + N) +ϕ]
k N = (2π / ω0 ) K
13
具体正弦序列有以下三种情况: (1) 当2π/ω0为整数时,k=1,正弦序列是以 2π/ω0为周期的周期序列。
2π π π 例如, sin( n) , ω 0 = , = 16 , 该正弦序列 ω0 8 8
δ ( n)
1, δ (n) = 0,
n=0 n≠0
-2 -1 0
1
1 2
n
6
时域离散信号与系统 几种常见的序列 2.单位阶跃序列 2.单位阶跃序列 u (n) u(n)
1, u(n) = 0,
∞
n≥0 n<0
...
-1 0 1 2 3 n
δ (n) = ∇u(n) = u(n) − u(n −1)
38
时域离散信号与系统
[例]:已知两线性时不变系统级联,其单位抽样响应 已知两线性时不变系统级联, 分别为h (n)=δ(n)-δ(n-4); 分别为h1(n)=δ(n)-δ(n-4);h2(n)=an u(n), |a|<1, x(n)=u(n)时 求输出y(n) y(n)。 当输入 x(n)=u(n)时,求输出y(n)。 [解 ]: x(n) w(n)
????
33
时域离散信号与系统
二:时不变系统
若系统响应与激励加于系统的时刻无关, 若系统响应与激励加于系统的时刻无关,则为时不变 系统,又称移不变系统。 系统,又称移不变系统。
T [ x ( n )] = y ( n ) T [ x ( n − m )] = y ( n − m )
例:判断y(n)=ax(n)+b所的系统是否为时不变系统? 判断y(n)=ax(n)+b所的系统是否为时不变系统? y(n)=ax(n)+b所的系统是否为时不变系统
第1章-数字信号处理-孙明-清华大学出版社
![第1章-数字信号处理-孙明-清华大学出版社](https://img.taocdn.com/s3/m/76e8c909b14e852459fb571d.png)
1.2 典型的数字信号处理系统
完整的数字信号处理系统如图所示
PrF:前置预滤波(pre-filter)或抗混叠滤波器(anti-aliasing filter) 。 ADC:模拟数字转换器(analog to digital converter),A/D转换一般要经过 采样、保持、量化及编码四个过程。 DSP:数字信号处理系统的核心,可以是通用计算机、专用处理器,或 者数字硬件电路等等。 DAC:数字模拟转换器(digital to analog converter,DAC),与ADC运算相 反,是将二进制数字量形式的离散信号转换成以标准量(或参考量)为基 准的模拟量的转换器,将二进制数序列转换成阶梯波形。 PoF:后置滤波(post-filter)或平滑滤波器(smoothing filter),将阶梯波形平 滑后产生所需的模拟信号。
1.4 数字信号处理的主要特点
数字信号处理的局限性如下:
(1)实时性 数字信号处理系统在很多情况下不能达到实时的要求,取决 于计算的处理速度决定。如果前端的ADC采样频率太高的话, 那么在实时系统中会由于来不及处理而导致数据的拥塞。
(2)高频信号处理:受采样频率的限制,处理频率范围有 限。
(3)模拟和数字信号的转换: 有限字长效应。 当模拟信号比较弱时,在十分之几毫伏内,数字化后无法放 大信号。
1.3 数字信号处理学科的发展
1.4 数字信号处理的主要特点
数字信号处理与传统的模拟信号处理相比具有以下明显 的优点:
1.精度高 数字系统明显具有高精度的特点。 2.灵活性好 数字信号处理系统可以通过改变乘法器系数或寄存 器数据等方法来改变参数,从而改变系统特性。 3.可靠性&可重复性高 数字系统的部件比模拟系统部件的稳定性好,受环 境温度、湿度、噪声、电磁感应等影响小 4.多路复用 DSP可以同时处理几个通道的信号。
数字信号处理第一章离散时间信号和离散时间
![数字信号处理第一章离散时间信号和离散时间](https://img.taocdn.com/s3/m/fccc6870767f5acfa0c7cd1c.png)
离散卷积的计算
计算它们的卷积的步骤如下: (1)折叠:先在哑变量坐标轴k上画出x(k)和h(k),将h(k)以纵坐标为对称轴折 叠成 h(-k)。 (2)移位:将h(-k)移位n,得h(n-k)。当n为正数时,右移n;当n为负数时,左 移n。 (3)相乘:将h(n-k)和x(k)的 对应取样值相乘。 (4)相加:把所有的乘积累加 起来,即得y(n)。
第一章 时域离散信号和时域离散系统
内容提要
离散时间信号和离散时间系统的基本概念 –序列的表示法和基本类型 –用卷积和表示的线性非移变系统 –讨论系统的稳定性和因果性问题 –线性常系数差分方程 –介绍描述系统的几个重要方式
离散时间信号的傅里叶变换和系统的频率响应 模拟信号的离散化
–讨论了模拟信号、取样信号和离散时间信号(数字 序列)的频谱之间的关系
根据线性系统的叠加性质 y(n) x(m)T[ (n m)] m
根据时不变性质:T[ (n m)] h(n m)
y(n) x(m)h(n m) x(n) h(n) m=-
(1.3.7)
通常把式(1.3.7)称为离散卷积或线性卷积。这一关系常用符 号“*”表示,即:
y(n n0 ) T[kx(n n0 )], 是移不变系统 (2) y(n) nx(n), 即y(n n0 ) (n n0 )x(n n0 ) 而T[x(n n0 )] nx(n n0 ) y(n n0 ),不是移不变系统
1.3.3 线性时不变系统及输入与输出的关系 既满足叠加原理,又满足非移变条件的系统,被称为线性 非移变系统。这类系统的一个重要特性,是它的输入与输 出序列之间存在着线性卷积关系。
§1. 2 时域离散信号
数字信号处理 (1)
![数字信号处理 (1)](https://img.taocdn.com/s3/m/07bfabc27f1922791688e8c5.png)
用2e-jw乘以分子和分母,得
则
[1+2.2e-jw+e-2jw]Y(ejw)=2X(ejw)
利用性质,求得差分方程为
y(n)+2.2y(n-1)+y(n-2)=2x(n)
3.系统单位采样响应h(n)=&(n)-a&(n-1),a是实数,求系统的幅值、相位和群时延。
【解】H(ejw)=1-ae-jw=1-acosw +jasin w
②|z|>2时,右边序列
x(n)=[3×( )n+2×2n]u(n)
③0.5<|z|<2时,双边序列
x(n)=3×( )nu(n)-2×2nu(-n-1)
2.一个线性时不变系统具有频率响应H(e)= ,求表示输入输出关系的系统方程。
【分析】为把H(e)变换为一个差分方程,首先将H(ejw)表示为复数的形式,然后利用性质求解。
【分析】①有限长序列收敛域为
0<|z|<∞,n1≤n≤n2
特殊情况:
当n1≥0,n2>0时,ROC:0<|z|≤∞
当n1<0,n2≤0时,ROC:0≤|z|<∞
当n1<0,n2>0时,ROC:0<|z|<∞
②右边序列:
n≥n1≥0,ROC:Rx-<|z|≤∞
当n1<0时,ROC:Rx-<|z|<∞
左边序列:
所以,幅值平方是
|H(ejw)|2=H(ejw)H*(ejw)=(1-aejw)(1-ae-jw)=1+a2-2acosw
相位: ψk(w)=arctan
群时延 τ(w)=
3.一个离散线性时不变系统的差分方程y(n)=0.5y(n-1)+bx(n),求出b使得|H(e)jw|在w=0时等于1,并求出半功率点(即|H(ejw)|2等于其峰值一半时的频率,这个峰值出现在w=0)。
数字信号处理-第一章(new)
![数字信号处理-第一章(new)](https://img.taocdn.com/s3/m/9087be04cc1755270722087c.png)
2 n , n 3 x(n) 3 0, n 3 2 n 1 , n 2 x(n 1) 3 0, n 2 2 n 1 , n 4 x(n 1) 3 0, n 4
1数字信号处理第一章离散时间信号与系统11离散时间信号序列本节涉及内容序列的运算序列的周期性序列的能量几种常用序列用单位抽样序列表示任意序列2数字信号处理第一章离散时间信号与系统1离散时间信号定义??nntxnxnntxtxaanttan取整数3数字信号处理第一章离散时间信号与系统离散时间信号序列的表示形式nx表示离散时间信号序列如图1所示示0时刻的序列值表表示1时刻的序列值0x1x图14数字信号处理第一章离散时间信号与系统一序列的运算1移位m0时该移位
3、矩阵序列
RN (n) u(n) u(n N )
例如N=4
1,0 n N 1 RN ( n ) 0, 其它 n
19
数字信号处理-第一章 离散时间信号与系统
4、实指数序列
a 1 a 1
x(n) a u(n) x(n) 收敛
n
x ( n)
发散
例如a=1/2及a=2时
1 n , n 1 例: x ( n) 2 0, n 1
在-6<n<6范围内求: x(n) ,x(n)
9
数字信号处理-第一章 离散时间信号与系统 n01=-1; n02=0; ns=-5; nf=5; nf1=6; ns1=-6; n1=n01:nf1; n2=ns:nf; n3=ns:nf1; x=(1/2).^n1; x=[zeros(1,(n01-ns)),x]; for n=1:11 y1(1,n)=x(1,n+1)-x(1,n); end
胡广书-数字信号处理-第1章-1
![胡广书-数字信号处理-第1章-1](https://img.taocdn.com/s3/m/6e662b46e97101f69e3143323968011ca300f734.png)
k
)
1 0
nk nk
如何
表达
p(n)
(n k)
k
单位冲激信号(Drac 函数)
(t)dt 1
(t) 0, t 0
x(t) (t )dt x( )
脉冲串: p(n) (n k)
k
或写为 p(n) ={… , 1 , 1 , 1 , …}
冲激串: p(t) (t kTs ) k
第1章 离散时间信号与离散时间系统基础
一、 常用的离散时间信号; 二、信号的分类; 三、噪声; 四、信号空间; 五、离散时间系统; 六、 LSI系统输入、输出关系; 七、 LSI系统的频率响应; 八、确定性信号的相关函数
1.1 常用的离散时间信号
(Kronecker 函数)
(n)
1 0
n0 n0
(n
1.3 噪声(Noise)
(一)噪声的种类:
1.白噪声:
White Noise
频谱为一直线;
自相关函数为 函数
各点之间互不相关
白噪声是信号处理中最常用的噪声模型!
histogram of u(n) u(n)
1 0.8 0.6 0.4 0.2
0 0
1500
1000
500
0 0
均匀分布白噪声
20
40
60
80
100
(a) n=1--- 100
0.2
0.4
0.6
0.8
1
(b) bins of x axis
直方图
高斯分布白噪声
u(n) histogram of u(n)
1.5 1
0.5 0
-0.5 -1 0 x 104 5 4 3 2 1 0 -1.5
数字信号处理第一章,序列
![数字信号处理第一章,序列](https://img.taocdn.com/s3/m/efaf081d03d8ce2f00662340.png)
x(m)h(n m)
等效为翻褶、移位、相乘和相加四个步骤。 1)翻褶: x(n) x(m) h(n) h(m) h(m) 2)移位: h(m) h(n m) 3)相乘: x(m) h(n m) m
第 一 章 离 散 时 间 信 号 与 系 统
第 一 章 离 散 时 间 信 号 与 系 统
1 1 1
x( m) xx 1(m) x(m)
1
线性卷积的计算
m m m m
-3 -2 -1 0 1 2 3 -3 -2 -1 -3 -2 -1 0 1 2 30 1 2 3 -3 -2-1 0 1 2 3 h(m )) h(-m) x (m 2 1h(-m) 1 1 1 -3 -2-1 0 -3 -2-1 0
如sin( n), 0 , 8 N 4 4 0 该序列是周期为8的周期序列
2
离 散 时 间 信 号 序 列 ——
第 一 章 离 散 时 间 信 号 与 系 统
1.1
2)当
2
0
为有理数时,
P 表示成 ,P,Q为互为素数的整数 0 Q 取k Q,则N P,x (n)即是周期为P的周期序列
1.1 离 散 时 间 信 号 序 列 ——
N 即满足 2 k,且N,k 为整数 6 而不论k取什么整数,N 12 k 都是一个无理数 x(n)不是周期序列
课堂练习 1.4(1)(2)
第 一 章 离 散 时 间 信 号 与 系 统
讨论: 若一个正弦序列是由连续信 号抽样得到,则抽样时间间 隔T 和连续正弦信号的周期 T0之间应是什么关系才能使 所得到的抽样序列仍然是周 期序列?
第一章 离散时间信号与系统
数字信号处理第一章差分方程、抽样
![数字信号处理第一章差分方程、抽样](https://img.taocdn.com/s3/m/069897f6524de518964b7d52.png)
2 T ( jW) DTFT [ T (t )] T
k
(W k W )
s
1 ˆ ˆa (t )] X a ( jW) DTFT [ x [ X a ( jW) * T ( jW)] 2
天津科技大学应用文理学院 13
2.频域分析 (1)冲激函数序列δT(t)的频谱
y(-1)= a-1[y(0)-δ(0)]=- a-1
……
y(n)=ay(n-1)=-an
因此,h(n)=y(n)=-anu(-n-1),是非因果系统。
天津科技大学应用文理学院
5
以上结果说明:
(1)一个常系数线性差分方程不一定代表一个因果系统。
(2)一个常系数线性差分方程,如果没有附加的起始条件,
1 Xˆa(jW) [X a(jW) * P(jW)] 1 2 T
X a(jW jkWs ) k
上式表明: (1)频谱产生周期延拓。 即采样信号的频谱是频率的周 期函数,其周期为Ωs。 (2)频谱的幅度是Xa(jΩ)
-W c 0
^
Xa(jW)
1
Wc Xa(jW) W
的1/T倍。
2)阶数: 差分方程的阶数是由方程y(n-k)项中的k取值
最大与最小之差确定的。 3)线性:y(n−k)和x(n −r)项都只有一次幂且不存在 相乘项。
天津科技大学应用文理学院
2
二、差分方程的求解
时域经典法:类似于解微分方程,即求齐次解和特解,
过程繁琐,应用很少,但物理概念比较清楚。
迭代法(递推法):比较简单,且适合于计算机求解,但 不能直接给出一个完整的解析式作为解答(也称闭合形 式解答)。
数字信号处理-第一章离散时间信号与系统ppt课件
![数字信号处理-第一章离散时间信号与系统ppt课件](https://img.taocdn.com/s3/m/8cfe39fba417866fb94a8e64.png)
1
n0
δ(n)和u(n)间的关系为u(n)0
n0
(n )u (n ) u (n 1 )
u (n ) (n m ) (n ) (n 1 ) (n 2 )
令n-m=k代m 0 入上式,得(1-6)式
n
u(n) (k)
问:上两实的区别是什么?
k
实际系统一般无n<0的情况,但理论分析需要,故 实际信号可用理想信号乘阶跃序列来分析
如果y(n)=T[x(n)]满足比例性和可加性,则 该系统是增量线性系统。
.
24
1.2.2移不变系统
系统的输出随输入的位移而位移,则该系统为移 不变系统。
即若输入x(n)产生输出y(n),则输入x(n-m)产生 输出 y(n-m)
表达:移不变系统 y(n)T[x(n)]
则
y(nm )T [x(nm )]
1、交换律 卷积和与卷积序列的次序无关,有
y(n)=x(n)*h(n)=h(n)*x(n)
即:把单位冲击响应h(n)作为输入,将输入x(n) 作为系统单位冲击响应,其输出相同。
x(n) h(n) y(n) = h(n)
x(n)
y(n)
.
30
2、结合律(串联)
x(n)*h1(n)*h2(n)=[x(n)*h1(n)]*h2(n) =x(n)*[h1(n)*h2(n)]=[x(n)*h2(n)]*h1(n)
证明:
x(n)*[h1(n)h2(n)] x(m)[h1(nm)h2(nm)] m
x(m)h1(nm) x(m)h2(nm)
m
m
x(n)*h1(n)x(n)*h2(n)
x(n)
h1(n)
h2(n)
y(n)
数字信号处理第一章
![数字信号处理第一章](https://img.taocdn.com/s3/m/a403c0faf705cc17552709d2.png)
时间ms
量化误差
0
数字信号代码: 0 1 1
101
110
111
111
111
110
101
011 010
数字代码流: 011101110111111111110101011010
图1.1.6 三比特A/D转换及串行数字比特流
一般地说,用离散时域序列x(n)表示数字信号更好,因为x(n)直观的反映了信号的增减 变化,而编码后的数字信号则不能。因此,在对数字信号分析时大多采用离散时域序列x(n) 进行分析。在不混淆的情况下,我们也将离散时间序列称为数字信号。 对于数字序列,一个重要的概念就是数字频率。如果x(n)是由一个周期为Ta = 2π 的模 Ωa
图1.1.11 图1.1.10 数字图像灰度值
数字信号处理及实现方法
信号处理的目的就是对观测到的信号进行分析、变换、 综合、估计和识别等,使之容易为人们所使用,如语 音识别、语音合成、图像压缩、地震波分析及高清晰 电视等。数字信号处理就是对数字信号用数值计算的 方法来实现信号处理的,这里“处理”的实质是“运 算”。 模拟信号处理也可用数字信号处理系统来完成,但处 理系统需要增加模数(A/D)转换器和数模(D/A)转换器, 图1.1.12反映了模拟信号的数字信号处理过程。
图1.1.10 16 × 16 × 256 数字灰度图
222 207 193 181 171 163 158 158 159 164 171 181 194 204 225 246 207 190 177 161 150 140 133 137 144 150 169 177 186 200 225 244 195 176 166 155 144 133 120 115 103 100 135 147 159 168 199 200 188 176 166 153 140 132 110 101 115 120 135 140 145 156 168 188 177 164 153 142 140 130 101 099 066 077 083 096 120 136 148 155 168 155 149 132 122 110 088 076 057 059 071 073 086 099 120 133 155 140 130 111 101 099 078 064 023 025 026 055 074 084 092 101 130 120 110 100 098 076 066 053 024 010 023 025 036 047 066 088 130 120 110 100 098 076 066 053 024 010 026 025 036 047 066 088 155 140 130 111 101 099 078 064 023 025 026 055 074 084 092 101 168 155 149 132 122 110 088 076 057 059 071 073 086 099 120 133 177 164 153 142 140 130 101 099 066 077 083 096 120 136 148 155 188 176 166 153 140 132 110 101 115 120 135 140 145 156 168 188 195 176 166 155 144 133 120 115 103 100 135 147 159 168 199 200 207 190 177 161 150 140 133 137 144 150 169 177 186 200 225 244 222 207 193 181 171 163 158 158 159 164 171 181 194 204 225 246
数字信号处理第一章知识总结
![数字信号处理第一章知识总结](https://img.taocdn.com/s3/m/bf4877eaaff8941ea76e58fafab069dc50224730.png)
数字信号处理第⼀章知识总结数字信号处理第⼀章总结1.1 引⾔ (3)1.2 时域离散信号 (3)1)离散信号: (3)2)常⽤序列: .................................................................... 错误!未定义书签。
3)正弦序列: (3)4)周期序列: (4)1.3 时域离散系统 (4)1.3.1 线性系统 (4)1.3.2 时不变系统 (5)1.3.3 线性时不变系统输⼊与输出之间的关系 (5)1.3.4 系统的因果性和稳定性 (5)1.4 时域离散系统的输⼊输出描述法——线性常系数差分⽅程 (6)1.4.1线性常系数差分⽅程: (6)1.4.2线性常系数差分⽅程的求解 (6)1.5 模拟信号数字处理⽅法 (7)摘要:信号通常是⼀个⾃变量或⼏个⾃变量的函数。
如果仅有⼀个⾃变量,则称为以维信号;如果有两个以上的⾃变量,则称为多维信号。
通常把信号看做时间的函数。
实际中遇到的信号⼀般是模拟信号,对它进⾏等间隔采样便可以得到时域离散信号。
关键词:模拟信号;等间隔采样;时域离散信号1.1 引⾔信号分为三类:1)模拟信号:⾃变量和函数值都是连续的。
2)时域离散信号:⾃变量离散,函数值连续。
它来源于对数字信号的采样。
3)数字信号:⾃变量和函数值都是离散的。
它是幅度化的时域离散信号。
1.2 时域离散信号离散信号:模拟信号(时域连续)经过“采样”变成时域离散信号,公式是:x(n)=x a (nT),-∞<n <∞这⾥,x(n)称为时域离散信号,式中的n 取整数,显然,x (n )是⼀串有序的数字的集合,因此时域离散信号也可以称为序列。
时域离散信号有三种表⽰⽅法:(1)⽤集合符号表⽰序列(2)⽤图形表⽰序列(3)⽤公式表⽰序列常⽤典型序列(时域离散信号):1)单位采样信号:0001n ≠==n n )(δ 2)单位阶跃信号:0001n u <≥?=n n )(3)(n R N =u )(n -u )(N n -:(N 是矩形序列的长度)实指数序列:a n x =)(n )(n u ,a 为实数。
数字信号处理-程佩青-PPT第一章
![数字信号处理-程佩青-PPT第一章](https://img.taocdn.com/s3/m/feabb2ee68dc5022aaea998fcc22bcd126ff42fe.png)
7)任意序列
x(n)能够表达成单位取样序列旳移位加权和,也可表达 成与单位取样序列旳卷积和。
x(n) x(m) (n m) x(n) (n)
m
例:x(n) 2 (n 1) (n) 1.5 (n 1) (n 2) 0.5 (n 3)
3、序列旳周期性
若对全部n存在一种最小旳正整数N,满足 x(n) x(n N ) n
m
x(m)T[ (n m)],线性性
T[ ai xi (n)] i
m
x(m)h(n m),
移不变性
aiT[xi (n)] i
m
x(n) h(n)
h(n) T[ (n)] h(n m) T[ (n m)]
x(n)
LSI y(n)
h(n)
y(n) x(n) h(n)
一种LSI系统能够用单位抽样响应h(n)来表征,任意输 入旳系统输出等于输入序列和该单位抽样响应h(n)旳 卷积和。
结论: 若有限长序列x(n)旳长度为N,h(n)旳长度为M, 则其卷积和旳长度L为:
L=N+M-1
互换律
4、LSI系统旳性质
x(n)
y(n)
h(n)
h(n)
y(n)
x(n)
y(n) x(n) h(n) h(n) x(n)
结合律
x(n) h1(n)
y(n) h2(n)
x(n) h2(n)
例:
x(n)=0.9
ne
j 3
n
6)正弦序列
x(n) Asin(0n )
模拟正弦信号:
xa (t) Asin(t )
x(n) xa (t) tnT Asin(nT )
0 T / fs 0:数字域频率
数字信号答案
![数字信号答案](https://img.taocdn.com/s3/m/d791297f5acfa1c7aa00cce5.png)
6.试判断: 是否是线性系统?并判断(2),(3)是否是移不变系统? 分析:利用定义来证明线性:满足可加性和比例性,
T [ a 1 x1 ( n ) + a 2 x 2 ( n )] = a 1T [ x1 ( n )] + a 2 T [ x 2 ( n )]
移不变性:输入与输出的移位应相同 T[x(n-m)]=y(n-m)。
┇
y1 (n) = 1 [ y1 (n + 1) − x1 (n + 1)] = − a n a 综上 i ) , ii ) 可知: y1 (n) = − a n u (− n − 1)
(b ) 设 x ( n ) = δ ( n − 1) i ) 向 n > 0 处递推 , 按 y 2 ( n ) = ay 2 ( n − 1) + x 2 ( n ) y 2 (1) = ay 2 (0) + x 2 (1) = 1 y 2 ( 2) = ay 2 (1) + x 2 ( 2) = a
( 4) x ( n ) = 2 n u( − n − 1) 当n ≥ 0 当 n ≤ −1
h ( n ) = 0.5n u ( n )
y (n) = y (n) =
m = −∞ n
∑ 0.5n − m 2m = 3 ⋅ 2 − n ∑ 0.5n − m 2m = 3 ⋅ 2n
, 0 < a < 1 ,通过直接计算卷积和的办法,试确定
y(n) = 0
∞
当 n0 ≤ n ≤ n0 + N −1 时 , 部分重叠
m = n0
∑ x ( m )h ( n − m )
0
m = n0
∑ β m−n α n −m =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 1) 乘法和加法:同序号的序列值逐项对应相乘和相加。
电信学院通信教研室
2) 移位、翻转及尺度变换 设序列x(n)如图所示
①其移位序列x (n-n0) (当n0 =2时) 如图所示。 当n0 >0时称为x (n)的滞后序列(延时序列); 当n0 <0时,称为x (n)的超前序列。
电信学院通信教研室
数字信号和时域离散信号的区别:
对连续时间信号 xa(t) =0.9 sin (50πt ),每隔0.005s采样一点,得到:
x(n)={…,0.0,0.6364,0.9,0.6364,0.0,-0.6364,-0.9,-0.6364,…} 如果用4位二进制数表示x(n)的幅度,二进制编码形成的信号 x[n]={… 0.000,0.101,0.111,0.101,0.000,1.101,1.111,1.101,…} 如果把x[n]再换算成十进制 x[n]={… 0.0,0.625,0.875,0.625,0.0,-0.625,-0.875,-0.625,…} 数字信号用有限位二进制数表示,时域离散信号不是!
数字信号处理-第一章
1.1 引言
信号可以分为三种: 时域连续信号、时域离散信号和数字信号。
1. 自变量和函数值都取连续值的信号称为时域连续信号 (模拟信号);
2. 自变量取离散值,而函数值取连续值的信号称为时域 离散信号(序列);
3. 自变量和函数值均取离散值,称为数字信号。 4. 5. 数字信号——幅度离散化了的时域离散信号。
电信学院通信教研室
例 判断下列信号是否是周期信号? 若是,试求出周期T。
(1) f [n]=sin(n/6)
(2) f [n]=sin(n/6)+sin(n/2)
电信学院通信教研室
3. 任意序列的表示
x (t)
(n m)
m
加权表示
x (n )
x(n) x(m)(nm) m 电信学院通信教研室
例如,通过观测得到的一组离散数据x(n) ,可以用集合符号表示为 x(n) ={…1.3,2.5,3.3,1.9,0,4.1…}。 例如,对模拟信号xa(t) 等间隔采样,采样间隔为T,得到
x a ( t ) t n T x a ( n T ) , n ( 1 . 2 . 1 )
注意:当 x(n)整数时,x(n)无定义,但是不
电信学院通信教研室
2) 移位、翻转及尺度变换 设序列x(n)如图所示
②其翻转序列x(-n)如图所示。
电信学院通信教研室
2) 移位、翻转及尺度变换 设序列x(n)如图所示
③x(mn)的尺度变换运算相当于时间轴n压缩了m倍。 当m=2时,其波形如所示。
电信学院通信教研室
1.3 时域离散系统
o 时域离散系统 o 线性系统 o 时不变系统 o 线性时不变系统输入/输出关系 o 卷积运算 o 系统的因果性和稳定性
(4). 正弦序列 x(n) = sin (ωn )
式中ω称为正弦序列的数字域频率,单位是弧度
如果正弦序列是由模拟信号xa (t)采样得到的,那么有 xa(t)=sin(Ωt);xa (t)|t=nT=sin(ΩnT); x(n)=sin(ωn)
数字角频率ω与模拟角频率Ω之间的关系:
ω=ΩT
数字频率ω的单位为弧度(rad), 模拟角频率Ω的单位为弧度/秒(rad/s)
复习:连续信号的分解
f(t)
f()(t)d
物理意义:
任意的信号都可以分解为冲激函数的加权积分。
电信学院通信教研室
连续信号的时域分解:
f(t)
f()(t)d
离散序列的时域分解:
f[n] f[k][nk] k
电信学院通信教研室
3. 任意序列的表示 可将任意序列用单位采样序列的移位加权和表示。
则称序列 x (n )为周期性序列,周期为N,其中 N为整数。
电信学院通信教研室
x(n)A si n n ()
x ( n N ) A sin n N ( )
如果要求: A sin n ) ( A sin n N ()
那么: N2M N 2 M
电信学院通信教研室
判断指数序列,正余弦序列周期性的方法: 1. 2π/ω=N/M 为有理数时,周期 2. 2π/ω =N/M为无理数时,非周期
电信学院通信教研室
按自变量与函数值的取值形式不同分类:
时间 幅度
连续时 间信号
连续 连续
离散时 间信号
离散 连续
数字信 离散 号
量化
电信学院通信教研室
1.2 时域离散信号--序列
o 时域离散信号 o 常用典型序列 o 任意序列的表示方法 o 序列的运算
电信学院通信教研室
1. 时域离散信号是一个有序的数字序列,记为 x(n)。
为零(非整数倍T时刻未采样,并非为零)
电信学院通信教研室
序列的表示法
x(3T )
xa (t)
x(2T )
x(1T ) x(0T)
0 1T 2T 3T
T x(nT)
t
n
0 1 2 3
对一个模拟信号进行理想采样,可以得到一组有序的数列
x(0T) x(1T ) x(2T) x(nT) x(0) x (1) x(2) x(n)
电信学院通信教研室
s in ( n ) s in ( 2 )n
正弦序列对ω变化以2π为周期。 数字频域考虑问题,只取数字频率的主值区: 【- π ,+ π】或者【0 ,2 π】
电信学院通个最小的正整数N,使下面等式成立:
x(n)=x(n+N), -∞<n<∞
(1.2.12)
电信学院通信教研室
1. 时域离散系统: 设时域离散系统的输入为 x (n),系统输出序列用y (n) 表示。 设运算关系用T[·]表示,输出与输入之间关系用下式表示:
y(n)=T[x(n)]
其框图 x(n)
T[•]
图1.3.1 时域离散系统
y(n)
电信学院通信教研室
2. 线性系统: 若系统的输入序列为 x1(n)、x2(n) , 其输出分别为y1(n)和y2(n)表示,即 y1(n)=T[x1(n)],y2(n)=T[x2(n)]
电信学院通信教研室
2. (1). 单位采样序列δ(n) 。
电信学院通信教研室
2. (2). 单位阶跃序列u (n) δ(n)与u(n)之间的关系如下式所示:
电信学院通信教研室
(3). 矩形序列RN(n)
R4(n) 1
n 01 23
上式中N称为矩形序列的长度。
矩形序列可用单位阶跃序列表示如下:
电信学院通信教研室