太阳能制冷技术的原理与应用和吸附式制冷的比较
太阳能吸收式制冷的工作原理
太阳能吸收式制冷的工作原理
太阳能吸收式制冷是一种利用太阳能进行制冷的技术。
其工作原理是利用太阳能将热能转化为冷能,从而实现制冷的目的。
太阳能吸收式制冷系统由吸收器、蒸发器、冷凝器和膨胀阀等组成。
其中,吸收器是太阳能吸收的地方,蒸发器是制冷的地方,冷凝器是放热的地方,膨胀阀则是控制制冷剂流量的地方。
在太阳能吸收式制冷系统中,制冷剂首先被吸收器吸收,然后通过加热使其蒸发,从而吸收周围的热量。
接着,制冷剂进入蒸发器,通过蒸发使周围的温度降低,从而实现制冷的目的。
制冷剂在蒸发器中蒸发后,变成了气态,然后进入冷凝器,通过冷凝使其变成液态,同时放出热量。
最后,制冷剂通过膨胀阀进入吸收器,循环再次开始。
太阳能吸收式制冷系统的优点是可以利用太阳能进行制冷,不需要外部能源,同时对环境污染较小。
但是,其制冷效率较低,需要较大的面积来吸收太阳能,同时在夜间或阴天无法正常工作。
太阳能吸收式制冷是一种利用太阳能进行制冷的技术,其工作原理是利用太阳能将热能转化为冷能,从而实现制冷的目的。
虽然其制冷效率较低,但其对环境污染较小,是一种环保的制冷技术。
太阳能制冷技术的原理与应用
太阳能制冷技术的原理与应用随着人们对环境保护与可持续发展的日益重视,太阳能作为一种清洁、可再生的能源备受关注。
除了被广泛应用于发电领域外,太阳能还可以用于制冷技术。
本文将介绍太阳能制冷技术的原理及其应用。
太阳能制冷技术的原理主要基于光热转换和热力循环。
太阳能光热转换利用太阳能将光能转化为热能,然后利用热力循环将热能转化为制冷效果。
具体来说,太阳能制冷系统主要由光热转换器、热力循环系统和制冷装置三部分组成。
光热转换器是太阳能制冷系统的核心部件。
它通常采用太阳能集热器,将太阳光聚焦到吸收体上,使其温度升高。
吸收体的材料通常是选择性吸收薄膜,可以高效地吸收太阳光的能量。
当吸收体温度升高时,其会释放热能。
接下来,热力循环系统将吸收体释放的热能转化为制冷效果。
常见的热力循环方式包括吸收制冷循环和压缩制冷循环。
吸收制冷循环利用吸收剂和溶剂之间的化学反应来完成制冷效果,而压缩制冷循环则利用压缩机将工质压缩,然后通过膨胀阀降低温度来实现制冷。
这两种循环方式都可以利用太阳能提供的热能来驱动。
制冷装置将热力循环系统产生的制冷效果应用到实际生活中。
制冷装置通常由蒸发器、冷凝器、膨胀阀和压缩机等组成。
蒸发器吸收热量从而实现制冷,冷凝器则将热量释放到环境中。
通过膨胀阀和压缩机的协调工作,制冷装置可以实现制冷效果。
太阳能制冷技术的应用非常广泛。
首先,它可以在农业领域中用于保鲜冷藏。
太阳能制冷系统可以为农产品提供稳定的低温环境,延长农产品的保鲜期,减少冷链损耗。
此外,太阳能制冷技术还可以应用于农田灌溉。
通过将太阳能转化为制冷效果,可以降低灌溉水的温度,提高农田的灌溉效果。
太阳能制冷技术在建筑领域也有广泛的应用。
太阳能制冷系统可以为建筑物提供空调制冷服务,减少对传统电力的依赖。
特别是在夏季高温季节,太阳能制冷系统可以通过太阳能的供能来提供舒适的室内温度。
太阳能制冷技术还可以应用于航天领域。
在航天器的长时间太空飞行中,航天器内部的温度调控是非常重要的。
太阳能制冷
太阳能制冷我国能源总量居中,但相对不足,而且能源分布不均,质量低下,优质能源短缺,在我国经济持续高速增长的今天,能源资源和产业愈发不堪重负。
太阳能是分布广泛、使用清洁的可再生能源,有望在未来社会能源结构中发挥更加重要的作用。
我国土地辽阔,幅员广大,太阳能资源相当丰富,具有发展太阳能利用事业得天独厚的优越条件,其中利用太阳能进行供热、采暖和制冷是实现规模化、低成本利用太阳能的重要途径。
特别是,近年来随着集中式太阳能热水和采暖系统的规模化应用,夏季太阳能热量过剩现象十分突出,各国学者都在积极寻找能够实现夏季利用太阳能进行空调制冷的有效方法,目的在于可以提高太阳能集热器的全年利用效率,另一方面可以开辟一条利用太阳能解决空调制冷需求的崭新技术途径。
太阳能空调制冷的最大优点在于它有很好的季节匹配性,天气越热、越需要制冷的时候,太阳辐射条件越好,太阳能制冷系统的制冷量也越大。
一、太阳能制冷技术利用太阳能的可能技术途径如下图所示:可见,实现太阳能制冷主要有两条途径:1、光→热→冷;2、光→电→冷。
其中光电转换的制冷方法由于成本较高,实际推广和应用较少。
光热转换制冷系统主要由两部分组成:太阳能集热器和制冷系统:1、太阳能集热器太阳能集热器是吸收太阳辐射并将产生的热能传递到传热工质的装置,包括非聚焦式的平板型太阳能集热器、真空管太阳能集热器,以及聚焦型太阳能集热器等。
(1)平板集热器具有采光面积大、结构简单、不需要跟踪、工作可靠、成本较低、运行安全、使用寿命长等优点,但是其热流密度低、工质温度低,主要应用于太阳能低温热利用系统中,是当今世界上应用最广泛的太阳能集热产品。
(2)真空管太阳能集热器是在平板型太阳能集热器基础上发展起来的太阳能集热装置。
真空管是这种集热器的核心部件,主要由内部的吸热体和外层的玻璃管所组成。
吸热体表面沉积有光谱选择性吸收涂层。
吸热体与玻璃管之间的夹层保持高真空度,可有效地抑制真空管内空气的传导和对流热损;并且由于选择性吸收涂层的低红外发射率,可明显降低吸热体的辐射热损失。
太阳能制冷技术原理
太阳能制冷技术原理随着气候变暖和能源危机的日益严重,太阳能制冷技术作为一种清洁能源利用方式备受瞩目。
其原理是利用太阳能将热能转化为冷能,实现制冷的目的。
本文将介绍太阳能制冷技术的原理及其应用。
一、太阳能制冷技术原理太阳能制冷技术主要依靠两种原理:吸收式制冷和压缩式制冷。
1. 吸收式制冷原理吸收式制冷是利用溶液在吸热和放热过程中的吸附和脱附作用实现制冷。
其主要组成部分包括吸收器、发生器、冷凝器和蒸发器。
太阳能通过集热器将热能转化为热水或蒸汽,然后通过热交换器将热能传递给溶液,使其发生吸热反应。
吸热后的溶液通过泵送至发生器,经过加热使其脱附吸附剂,生成蒸汽。
蒸汽进入冷凝器冷却凝结,释放出热量,然后液态吸附剂回到吸收器进行下一轮循环。
在这个过程中,太阳能的热能被转化为制冷效果。
2. 压缩式制冷原理压缩式制冷是利用压缩机将气体压缩,产生高温高压气体,然后通过冷凝器将热量散发出去,使气体变为液体。
随后,液体通过膨胀阀进入蒸发器,通过吸热使液体蒸发为气体,从而实现制冷效果。
太阳能通过集热器将热能转化为高温高压气体,然后进入制冷系统进行制冷。
压缩式制冷具有制冷效果好、稳定性高的特点,但对太阳能的热能要求较高。
二、太阳能制冷技术的应用1. 太阳能制冷设备太阳能制冷设备广泛应用于各种场合,如家庭、商业和工业等。
在家庭中,太阳能制冷可以用于制冷空调、冷藏柜、冷冻柜等。
在商业和工业中,太阳能制冷可以用于超市、餐厅、冷库等。
太阳能制冷设备具有环保、节能的优势,能够有效减少对传统能源的依赖,降低能源消耗。
2. 太阳能制冷系统太阳能制冷系统是太阳能制冷技术的实际应用。
它由太阳能集热器、制冷机组、热交换器、储能装置和控制系统等组成。
太阳能集热器将太阳能转化为热能,然后通过热交换器将热能传递给制冷机组,实现制冷效果。
储能装置可以存储多余的太阳能,以便在夜间或阴天使用。
控制系统可以根据需求调节制冷效果,提高系统的运行效率。
三、太阳能制冷技术的优势和挑战太阳能制冷技术具有以下优势:1. 清洁环保:太阳能作为可再生能源,不会产生二氧化碳等有害气体,对环境友好。
太阳能空调制冷原理及分类(收藏)
太阳能空调制冷原理及分类(收藏)太阳能制冷空调系统分类及⼯作原理⼀、太阳能制冷空调的概念利⽤太阳能作为动⼒源来驱动制冷或空调装置有着诱⼈的前景,因为夏季太阳辐射最强,也是最需要制冷的时候。
这与太阳能采暖正好相反,越是冬季需要采暖的时候,太阳辐射反⽽最弱。
⼆、太阳能制冷系统的分类制冷可以通过太阳能光电转换制冷和太阳能光热转换制冷两种途径来实现。
太阳能光热转换制冷是将太阳能转换成热能(或机械能),再利⽤热能(或机械能)作为外界的补偿,使系统达到并维持所需的低温。
1、吸收式制冷的⼯作原理吸收式制冷是利⽤两种物质所组成的⼆元溶液作为⼯质来运⾏的。
这两种物质在同⼀压强下有不同的沸点,其中⾼沸点的组分称为吸收剂,低沸点的组分称为制冷剂。
常⽤的吸收剂⼀制冷剂组合有两种:⼀种是溴化锂-⽔,通常适⽤于⼤中型中央空调;另⼀种是⽔-氨,通常适⽤于⼩型家⽤空调。
太阳能氨⽔吸收式制冷系统所谓太阳能吸收式制冷,就是利⽤太阳集热器将⽔加热,为吸收式制冷机的发⽣器提供其所需要的热媒⽔,从⽽使吸收式制冷机正常运⾏,达到制冷的⽬的。
太阳能吸收式空调系统主要由太阳集热器、吸收式制冷机、空调箱(或风机盘管)、锅炉、贮⽔箱和⾃动控制系统等⼏部分组成。
由此可见,太阳能吸收式空调系统是在常规吸收式空调系统的基础上,再增加太阳集热器、贮⽔箱和⾃动控制系统等主要部件。
太阳能吸附式制冷系统主要由太阳能吸附集热器、冷凝器、蒸发贮液器、风机盘管部分组成。
2、太阳能蒸汽压缩式制冷系统1)蒸汽喷射式制冷的⼯作原理蒸汽喷射式制冷与蒸汽压缩式制冷不同,蒸汽压缩式制冷是通过消耗机械能作为补偿来实现制冷的,⽽蒸汽喷射式制冷是利⽤具有⼀定压⼒的蒸汽消耗热能作为补偿来实现制冷的。
蒸汽喷射原理三、太阳能制冷可以分为两⼤类,⼀类是先利⽤太阳能发电,⽽后再利⽤电能制冷;另⼀类则是利⽤太阳能集热器提供的热能去驱动制冷系统。
最常⽤的制冷系统有吸收式制冷和太阳能吸附式制冷。
太阳能吸收式制冷系统⼀般采⽤溴化锂—⽔或氨—⽔作⼯质。
太阳能制冷技术原理
太阳能制冷技术原理随着全球对可再生能源的需求不断增加,太阳能作为一种清洁、无限的能源,正受到越来越多的关注和开发利用。
太阳能制冷技术就是利用太阳能来实现制冷的过程,具有环保、节能的特点,并且适用于许多地区的热带和亚热带地区。
太阳能制冷技术是一种创新的能源利用方式,通过将太阳能转化为冷量,实现制冷效果,具有重要的应用价值。
本文将详细介绍太阳能制冷技术的原理和应用。
一、太阳能制冷技术的原理太阳能制冷技术主要依靠两种方式实现,一种是利用光热转换原理,另一种是利用光电转换原理。
1.光热转换原理利用光热转换原理实现太阳能制冷,通常采用太阳能热能集热系统,将太阳辐射能转化为热能,然后利用热能驱动制冷循环系统。
这种方式主要依靠太阳能集热器将太阳能转化为高温热量,然后利用热能去驱动吸收式制冷系统或者热力循环蒸发制冷系统。
吸收式制冷系统是利用溶液的吸收和蒸发来实现制冷。
当太阳能集热器将太阳能转化为热能后,这种热能会被用来加热溶液,使溶液中的工质发生蒸发,然后通过蒸发冷却产生制冷效果。
热力循环蒸发制冷系统则是利用太阳能集热器产生的高温热能,直接驱动蒸发器中的工质蒸发,达到制冷效果。
2.光电转换原理光电转换原理是利用光电效应将太阳能直接转化为电能,然后再利用电能来驱动制冷系统。
太阳能光伏板将太阳光转化为电能,然后通过电能来驱动压缩式制冷系统或热泵制冷系统。
这种方式实现的太阳能制冷系统成本较高,但在一些对制冷效果有更高要求的地方,如医药储存和精密仪器保护等领域有着广泛的应用。
二、太阳能制冷技术的应用太阳能制冷技术在各个领域都有着广泛的应用,主要体现在以下几个方面:1. 农业领域在热带和亚热带地区,农业生产中常常需要保鲜和冷藏,例如农产品、水果、蔬菜等。
太阳能制冷技术可以有效地为农业生产提供制冷服务,保障产品的质量和保鲜期,提高农产品的附加值。
2. 医疗领域医疗领域对制冷效果有着更高的要求,特别是在药品储存和输送过程中。
太阳能吸附式制冷系统分析
太阳能吸附式制冷系统分析摘要:吸附式制冷系统利用物理性的变化将热转移,倡导绿色、环保、低碳的系统加快降低碳排放步伐,有利于引导绿色技术创新,提高产业和经济的全球竞争力。
关键词:太阳能空调系统;吸附式制冷0 前言近几年来石油飙涨,节约能源的意识也跟着高涨,一般家庭的全年电费中,空调系统所占比例大约为40%~60%,而办公大楼空调耗电比例约为40%~70%。
也许有人会宿命地以为空调耗电量如此之高是无法改变的事实,再怎么努力也没用,若是牺牲空调质量来达到降低空调耗电量,那是不合现代生活质量要求的作法。
而若是限制空调系统使用来降低空调系统耗电量,那便无法满足生活环境质量;所以我们必须降低空调耗电。
事实上,并没有这么悲观,近几年已经有许多已成熟的技术可用来同时满足空调质量的提升与节约能源或降低空调耗电。
1 研究动机与背景石油高涨替代能源研究与发展、实为当务之急,推动吸附式制冷研究的原因可分为两个方面,一方面在于探索解决能源紧缺的可能途径。
自1973年中东战争引起世界性石油危机以来,能源问题成为了举世瞩目的重大问题。
解决世界能源问题的一个重要途径是有效利用低品位能源,包括可再生能源的开发利用以及各种余热的回收利用。
另一方面,臭氧层的破坏和全球气候变暖,是当前全球所面临的主要的环境问题,所以寻找CFCs和HCFCs等传统制冷剂的替代物(采用天然制冷剂)以及新型制冷方式已成为制冷技术研究的热点。
2 吸附式制冷原理附式制冷原理为利用吸附剂对制冷剂的吸附作用造成制冷剂液体的蒸发,相应产生制冷效应. 吸附式制冷通常包含两个阶段:冷却吸附→蒸发制冷:通过水、空气等热沉带走吸附剂显热与吸附热,完成吸附剂对制冷剂的吸附,制冷剂的蒸发过程实现制冷;加热解吸→冷凝排热:吸附制冷完成后,再利用热能(如太阳能、废热等)提供吸附剂的解吸热,完成吸附剂的再生,解吸出的制冷剂蒸气在冷凝器中释放热量,重新回到液体状态。
吸附式制冷的驱动热源为50℃以上的工业废热和太阳能等低品位热能,同时吸附制冷所采用的制冷剂都是天然制冷剂,如水、氨、甲醇以及氢等,其臭氧层破坏系数(ODP)和温室效应系数(GWP)均为零。
太阳能吸附式制冷综述
太阳能吸附式制冷综述学号姓名摘要:介绍了太阳能吸附式制冷的基本原理与特点,对吸附式制冷技术的研究现状做了简要的分析,包括吸附工质对的性能、吸附床强化、系统循环与结构。
在此基础上,介绍了太阳能吸附式制冷的应用,主要应用的方面有低温储粮、制冷与供热联合、吸附式空调。
关键词:吸附式制冷研究现状应用1. 前言随着能源与环境问题与社会经济发展矛盾的日益突出,新能源的发展越来越受到各国的关注,对风能、水能、潮汐能的开发与研究力度不断增加,而这些能源的利用与发展根本上说是离不开太阳的。
在制冷空调领域,太阳能制冷不仅可以减少电力消耗,同时由于没有采用氟氯烃类物质,不会对大气臭氧层产生破坏,属于清洁能源,符合环保要求。
另外,采用太阳能制冷其热量的供给和冷量的需求在季节和数量上高度匹配,在夏季太阳辐射强、气温高,制冷量就越大。
因此,利用太阳能制冷技术对节约常规能源,保护自然环境都具有十分重要的意义。
太阳能固体吸附式制冷技术由于利用了太阳能而减少了对传统能源的使用,井通过使用天然友好的制冷剂从而避免了对环境的破坏。
太阳能固体吸附式制冷具有结构简单、初投资少、运行费用低、无运动部件、噪音小、寿命长且能适用于振动或旋转等场所的优点。
而且,太阳能在时间和地域上的分布特征与制冷空调的用能特征具有高度的匹配性,因此,利用太阳热能驱动的固体吸附式制冷技术的研究具有极大的潜力和优势[1]。
2. 太阳能固体吸附式制冷基本原理固体吸附式制冷是利用固体吸附剂(如沸石、活性炭、氯化钙)对制冷剂(如水、甲醇、氨)的吸附和解吸作用实现制冷循环的,这种吸附与解吸的过程引起压力的变化,相当于制冷压缩机的作用,吸附剂的再生可以在65~200℃下进行,这很适合于太阳能的利用。
吸附式制冷具有结构简单、运行费用低、无噪音、无环境污染、基本不含动力部件,能有效利用低品味热源等一系列有点[2]。
太阳辐射具有间歇性,因而太阳能吸附制冷系统都是以基本循环工作方式运行制冷的,Critoph把太阳能固体吸附式制冷循环描述成四个阶段,即定容加热过程、定压脱附过程、定容冷却过程、定压吸附过程[4]。
太阳能制冷技术比较
太阳能
制冷技术
王*** 指导老师:梁**
太阳能制冷技术之比较
制冷系统
太阳能制冷系统
普通制冷系统
太阳能吸收式制冷
太阳能吸附式制冷 太阳能蒸气喷射式制冷
太 阳 能金属 氢 化物 制 冷
普通制冷系统
太阳能制冷
太阳能光-热转换实现制冷技术 利用相应的设备首先将太阳光转换成热能,再利 用热能作为外界的补偿,使系统能够达到制冷的目的, 即以热能来制冷。太阳能光-热转换制冷系统主要分 为以下几种类型:太阳能吸收式制冷系统、太阳能吸 附式制冷系统、太阳能除湿式制冷系统。与太阳能光 -电转换技术相比,在相同制冷功率情况下,光-热转 换的成本约为光-电转换的1/5。目前国内外的研究, 以太阳能吸附式制冷和吸收式制冷为主。 太阳光能光-电转换成实现制冷技术 太阳能热泵空调双模冷暖系统 利用电能驱动制冷机制冷;还可以将太阳能先转化成 机械能,带动发电机发电(即光-热-电转换),然后再对 压缩式制冷机做功制冷。由于太阳能电池转化效率较低 (我国目前产业化成品在13%左右),且制作成本较高 (销售价约每瓦40元),目前在经济上还不具有可行性, 难以大面积推广使用。
太阳能制冷技术比较之小结
总体上说 太阳能吸收式制冷较其他几种系统发展早 , 在实际工程应用中已有 不少成功案例 。 该制冷系统体积较为庞大 , 制冷量大 , 但制冷效率尚有 待进一步 提高 , 系统运行稳定性好 , 在大型建筑的集中供冷方面具有其 独特的优势 。 无毒无害 运行安静 太阳能喷射式制冷方面 , 单一的太阳能喷射式制冷系统制冷效率低 , 非常节能 安全可靠 但是新 型的复合式太阳能喷射制冷技术将吸收式 、压缩式与喷射式制 冷方式相结合 , 极大地提高了系统的制冷效率和实用性 。而太阳能金属 氢化物制冷依托金属氢化物的发展 , 随着金属氢化物的发展 , 该制冷技 术也将得到广泛的发展 。尽管太阳能半导体制冷受半导体材料的限制 制冷效率较低 , 但是由于它使用的是电子元件制冷 , 整个制冷装置在尺 寸和结构上有巨大的优势 , 实用性强 , 而且随着太阳能电池价格的降低 , 其成本也大幅下降 , 发展前景良式制冷
吸收式、吸附式太阳能制冷空调的应用探讨
吸收式、吸附式太阳能制冷空调的应用探讨◊江苏省人民政府办公厅后勤服务中心陈伟现如今科技程度的不断提高使得社会的发展程度加快,而且同时也使得人们的生活习惯得到巨大的改变。
例如之前冬天吃冷饮,夏天吃火锅这可能会被很多人认为这是一种不可思议的想法,但是现在这种想法却变得习以为常。
对这一问题进行仔细分析,其实也不难发现,这种现象得到改变的最主要的原因就是空调的出现。
但是事物都是具有两面性的,有利必有弊,现在可以发现空调已经得到全面使用,但是生态环境却变得越来越差。
而且全球变暖这一问题也使得必须要重视能源结构问题,所以对可再生能源使空调运行和使用需要进行深入研究。
从全球变暖这一问题出现以后,很多研究人员对于制冷空调使用的能源开始重视起来,把工作的重心放在了这一方面。
一些科技人员都开始注意绿色清洁能源,而且还使其列为主要发展对象。
如果想要把这种能源的利用率提高,那么在制冷空调方面下手可能会尽快实现这一想法。
经过这段时间细致的研究,科研人员明显可以看到太阳能作为一种可再生能源使用,而且甚至还符合取之不尽,用之不竭的目的。
所以,从种种现象来看,如果将其使用在制冷空调方面效果可能极佳。
经过长时间的积累研究人员发明了太阳能吸收式制冷空调和太阳能吸附式制冷空调这两种产品。
而本文就是对这两种产品进行详细的介绍。
1太阳能吸收式、吸附式制冷空调的工作原理1.1太阳能及其应用范围简介太阳能顾名思义就是通过太阳辐射出的能量,一般通常来说就是太阳光线。
而且由于人类的不断开采,使得地球的化石燃料逐渐减少,所以这就从某种程度来说太阳能占据着人类可使用能源中一个位置,而且经过多年的研究使得其不断发展。
在太阳能进行使用时主要是两种方式,而且从未来发展前景来看太阳能发电可以作为一种新型的可再生能源。
太阳能发电应用特别广泛,例如像太阳能路灯、太阳能杀虫灯等很多方面都有使用,所以这使得人们的日常生活和生产应用都变得极为简洁。
而且根据研究表明太阳能也可以在制冷领域发挥出不可替代的作用,所以也受到很多方面关注。
太阳能吸附式制冷
5.吸附式与吸收式比较
吸附式制冷和吸收式制冷是两种很相近的制冷方式,这里 有必要比较一下它们的相同之处和不同之处,从中可能获取 一些信息,为什么吸收式制冷系统已经形成产业化而吸附式 制冷系统尚未形成较大的产业。 相似之处:原理,工质的环保 ,能量来源 相异之处:安全性,传质差 别,蒸气通道和制冷量
活性炭-甲醇,活性炭-氨制冷工质对等,化学吸附常使用 氯化钙-氨,氯化镍-氨等制冷工质对。这些工质都是天然 工质,大部分对环境无害,比较环保。 三.能量的来源上,两者都可利用热能,特别是低品位的 热能驱动,所以太阳能是个不错的选择,无污染,制冷 系统本身仅需要极少的电量,因此也省电。这两种制冷 方式为节省能源提供了可行的技术手段。
六.蒸气通道上,吸收式制冷循环是一个连续的制冷过程, 发生器与冷凝器,吸收器与蒸发器之间,气流的通道的截面 面积比较大,对制冷剂蒸气的阻力很小,制冷剂蒸气在流动 中的压力损失对整个制冷过程影响不大.但是在吸附式制冷 系统中,由于工作的间歇性,往往需要多台吸附床同时工作 ,这个过程中需要进行管路切换,制冷剂蒸气管路阻力较大, 对制冷量较大的机组影响很大,降低制冷效果。 七.制冷量上,目前吸收式制冷机的制冷量小则几十千瓦, 大则数千千瓦,民用性相对比较差,比较适用于企事业单 位和大型的场所;由于不同功率机组的配件成本相差不大, 成本主要花在传热管的耗材上,机组制冷量越大,单位制冷
脱附:与吸附相反的过程,是指物质将 吸附的周围物质释放的过程,一般需要 吸收热量达到一定的温度或温度范围来 克服作用力。
2.现行制冷方式的不足
臭氧层空洞问题。以前制冷机广泛采用氯氟烃类制冷剂简称 CFC,HCFC,它们会催化分解臭氧,削弱对紫外线的阻挡, 威胁人类健康。我国已在《蒙特利尔议定书》上签字,要取消 这中制冷剂的使用还是任重而道远。 温室效应问题。常规高能耗的制冷需求引起电力紧张,各地兴 建各类发电站,火力占主要,大量烧煤增排CO2引起温室效应, 对环境造成严重影响。CFC也是引起温室效应的气体。 能源短缺问题。近几年夏季经常发生停电现象,很大原因是夏 天酷暑,制冷需求剧增,空调大量使用,引起电力紧张。另一 方面,能源利用率却普遍见低,我国每年100~200℃的废热 排放量折合标准煤达上千万吨,还有大量的太阳和地热能未很 好利用,这方面的研究也备受重视。
太阳能空调制冷技术的应用研究
太阳能空调制冷技术的应用研究摘要:节能是有关我国国计民生的大事,也是制冷空调行业发展的永恒主题。
太阳能固体吸附式制冷技术与蒸气压缩式制冷技术相比还不是很成熟,但随着对太阳能固体吸附式制冷技术的不断深入,太阳能吸附制冷技术已经逐步向实用化推进,由于节能和环保优势,决定了它具有广阔的应用前景。
关键词:太阳能;空调制冷技术;应用一、太阳能空调制冷概述1、太阳能空调制冷的原理太阳能制冷技术并不是局限于某一种技术,因此,文章主要以光热转换制冷方法为例,对太阳能制冷原理进行了分析。
太阳能光热转换主要朝着几个方向发展:吸收制冷、吸附制冷、蒸汽压缩式制冷等等。
下面我们就以吸附制冷为例,分析一下太阳能制冷的原理。
图1太阳能吸附式制冷系统工作原示意图如图1所示,吸附床中的固体吸附(如氯化锶)对制冷剂(如氨)的周期性吸附、解附过程实现制冷循环。
解附过程:当白天太阳辐射充足时,太阳能吸附集热器吸收太阳辐射能后,吸附床温度升高,使吸附的制冷剂在集热器中解附,太阳能吸附器内压力升高。
解附出来的制冷剂进入冷凝器,经冷却介质(水或空气)冷却后凝结为液态,进入储液器。
吸附过程:夜间或太阳辐射不足时,环境温度降低,太阳能吸附集热器通过自然冷却后,吸附床的温度下降,吸附剂开始吸附制冷剂,由于蒸发器内制冷剂的蒸发,温度骤降,通过冷媒水获得制冷目的。
图1太阳能吸附式制冷系统工作原示意图2、太阳能空调制冷技术流程企业在应用太阳能制冷技术过程中,其需要根据太阳能制冷原理设计相应的工艺流程。
下面我们就以日光型太阳能空调制冷技术为例,对其工艺流程进行一个简单的介绍:第一,日光型固体吸附制冷技术的设备类型主要包括:热储器件、鼓风装置、蒸汽凝结冷凝等等。
该工艺流程主要是利用设备的吸热功能,吸收太阳能,从而提高设备内部压力,为后续的气体冷凝做准备工作。
第二,设备内部压力提高后,其内部会解析出相应的制冷制剂,制剂在流入盛液装置后会与相应的物质进行接触、反应,得到的产物就会流入气化系统设备,完成介质气体释放的过程。
太阳能制冷技术原理
太阳能制冷技术原理太阳能制冷技术是指利用太阳能作为能源,通过特定的制冷设备将热能转化为冷能,从而实现制冷效果。
太阳能制冷技术的原理主要包括太阳能的捕捉、转换和利用三个关键步骤。
本文将着重介绍太阳能制冷技术的原理及其应用。
太阳能的捕捉是实现太阳能制冷的第一步。
太阳能最常见的捕获方式是利用光伏电池板转换太阳辐射能为电能,然后再将电能用于驱动制冷设备。
还可以通过太阳能热发电、集热器等方式捕获太阳能。
利用光伏电池板捕捉太阳能是最为普遍的方式,其原理是通过半导体材料产生光生电子,进而产生电流和电压。
这些电能可以直接用于驱动压缩机、风扇等制冷设备,从而实现太阳能制冷。
太阳能的转换是太阳能制冷技术的关键环节之一。
在捕捉到太阳能后,需要将其转换为可用于制冷的形式。
光伏发电装置直接将太阳辐射能转化为电能,并将其存储在电池中,以供给制冷设备使用。
而太阳能热发电装置则将太阳辐射能转化为热能,通过集热器等设备将太阳能转化为热能,然后再利用温差驱动吸收式、压缩式制冷机等制冷设备。
这种方式可以将太阳能直接转化为制冷效果,实现节能环保的制冷。
太阳能的利用是太阳能制冷技术的最终目的。
利用转换后的太阳能,可以驱动各种类型的制冷设备。
目前主要的太阳能制冷设备包括吸收式制冷机、压缩式制冷机和热力式制冷机等。
以吸收式制冷机为例,其工作原理是利用太阳能热量驱动溶液对吸附材料进行蒸发和冷凝,从而实现制冷效果。
而压缩式制冷机则是利用太阳能电能直接驱动压缩机,将制冷剂进行压缩和膨胀,实现制冷效果。
无论是哪种制冷设备,其最终目的都是将太阳能转化为制冷效果,实现节能环保的制冷。
太阳能制冷技术的原理是通过捕捉太阳能,将其转换为可用于制冷的形式,最终利用制冷设备实现制冷效果。
太阳能制冷技术具有节能环保、可再生等优势,对于航天、农业、林业、食品加工、冷库、医药、化工等行业具有重要意义。
未来,随着太阳能技术的不断进步和完善,太阳能制冷技术必将在能源节约和环境保护方面发挥更大的作用。
常见太阳能空调制冷技术的发展
常见太阳能空调制冷技术的发展
随着全球气候变化以及各种环保政策的推行,太阳能制冷技术蓬勃发展。
目前市场上
常见的太阳能空调系统主要有以下几种:
1、吸收式制冷技术:
吸收式制冷技术是一种将热能转化为冷能的制冷方式。
系统由吸收器、发生器、冷凝器、蒸发器组成,其中发生器和冷凝器需外接热源。
与传统压缩式空调相比,吸收式制冷
技术能大大降低对环境的污染,且无噪音、无振动,所以广泛用于一些对噪声有严格要求
的场合如病房、会议室、办公室等。
2、热泵制冷技术:
热泵空调是一种利用环境空气或者地下水源中的水能为制冷机提供冷源并驱动热泵制
冷而实现室内空调的制冷功能的空调系统。
该技术的主要优点有:高效、环保、稳定性好。
同时,由于热泵空调能够在不同环境下稳定工作,越来越受到消费者的认可。
3、太阳能吸附式制冷技术:
太阳能吸附式制冷技术是靠集热器将阳光转化为热能,从而产生气体,再利用吸附-
解吸附现象实现制冷的一种技术。
该技术的优点是比传统的机械式压缩式空调系统更为高效、环保。
另外,太阳能吸附式制冷技术还可以配合多种不同的能源,如化学能源、电子
能源等,从而灵活满足不同的工况要求。
总之,随着科学技术的不断发展,太阳能制冷技术必将得到更加广泛的应用。
未来的
太阳能制冷技术将更加便携、高效以及环保,为人类创造更加舒适的生活环境。
太阳能制冷技术的原理与应用
太阳能制冷技术的原理与应用摘要:太阳能制冷主要有光—电转换和光—热转换两种方式,本文主要介绍了光—热转换中的三种主要方式:太阳能吸收式、吸附式和喷射式制冷技术,以及太阳能制冷技术在生产生活中的应用。
关键词:太阳能制冷;吸收式;吸附式;喷射式;应用Abstract: The main light solar cooling - power conversion and light - heat transfer in two ways, this paper describes the light - heat transfer in three main ways: solar absorption, adsorption, and jet cooling technology, and solar cooling technology production life of the application.Key words: solar cooling; absorption; adsorption; jet; application1 引言太阳能是一种取之不经用之不竭的清洁、可再生绿色能源,合理利用太阳能可以有效缓解能源紧张的问题。
我们熟悉的有太阳能发电、太阳灶、太阳能热水器,特别是太阳能热水器,经年来发展很快,但这种利用太阳能的方式与大自然的规律并不完全一致。
当太阳辐射强、气温高的时候,人们更需要的是空调降温而不是热水,这种情况在我国南方地区尤为突出。
如果可以用太阳能制冷,就可以既给人们带来舒适,又节约了能源。
利用太阳能制冷是太阳能应用的一个重要方面,是一个极具发展前景的领域,也是当今制冷界技术研究的热点之一。
军用、航空、气象、沿海岛屿、远洋捕捞等领域对太阳能制冷有着迫切的需要。
太阳能制冷从能量装换角度可以分为两种,第一种是太阳能光电转换制冷,是利用光伏转换装置将太阳能转换成电能后,再用于驱动普通蒸气压缩式制冷系统或半导体制冷系统实现制冷的方法,即光电半导体制冷和光电压缩式制冷,可以看做是太阳能发电的拓展,这种方法的优点是可采用技术成熟且效率高的蒸汽压缩式制冷技术,其小型制冷机在日照好又缺少电力设施的一些国家和地区已得到应用。
浅析太阳能固体吸附式制冷空调
➢ 能源短缺问题。近几年夏季经常发生停电现象,很大原因是夏 天酷暑,制冷需求剧增,空调大量使用,引起电力紧张。另一 方面,能源利用率却普遍见低,我国每年100~200℃的废热 排放量折合标准煤达上千万吨,还有大量的太阳和地热能未很 好利用,这方面的研究也备受重视。
成本问题
如其他一切新兴科学技术一样,吸附式制冷技术需要 投入大量的科研经费,这势必会增加产品的成本,也就提 高了产品的市场价格,使新生的技术难以竞争。为此,政 府是可以有作为的,一通过政府的方向性的调控引导群众 购买新兴的吸附式制冷空调,增强其市场竞争力,二通过 国家财政来支持吸附式制冷技术的研究,国外这方面做得 不错,给企业补贴我国也应该对该技术在经济上有所支持。 在法律上,今年我国颁布了《可再生能源法》使各项工作 有法可依。
7.前景展望
技术问题 成本问题 普及问题 应用问题
技术问题
对吸附式制冷的研究是在Faraday发现氯化银吸附氨 产生的制冷现象以后,报道最早的吸附式系统是在20世 纪20年代;吸附式制冷技术真正得到发展是在20世纪70 年代,能源危机为吸附式制冷提供了契机,因为吸附式制 冷系统可利用低品位的热源驱动,节能,而且没有臭氧层 问题和温室效应。
6.吸附式制冷的缺点
从以上的比较中,我们可以粗略的知道吸附式制冷系统 存在着一些缺点和不足。
一.固体吸附剂为多微孔介质,比表面积大,导热性能很低 ,因而吸附/解吸时间长。(可以开发新型吸附剂,从吸收 式制冷系统采用液体工质中是否可以有所启发?)
二.单位质量吸附剂的制冷功率较小,使得制冷机尺寸较大, 吸附式制冷系统的功率远不如吸收式制冷系统,原因何在? (强化传热,提高吸附剂的传热性能和单位吸附剂的制冷功 率,减小制冷机的尺寸 )
吸收式制冷和吸附式制冷
制冷技术1、吸收式制冷吸收式制冷是利用某些具有特殊性质的工质对,通过一种物质对另一种物质的吸收和释放,产生物质的状态变化,从而伴随吸热和放热过程。
吸收式制冷的原理:常用的工质对有氨水和水/溴化锂。
吸收制冷的基本原理一般分为以下五个步骤:(1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度的溶液,并使溶液中的大部分低沸点制冷剂蒸发出来。
(2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体,再经节流器降压到蒸发压力。
(3)制冷剂经节流进入蒸发器中,吸收被冷却系统中的热量而激化成蒸发压力下的制冷剂蒸气。
(4 )在发生器A中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。
(5 )吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。
在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。
吸收式制冷机利用溶液在一定条件下能析出低沸点组分的蒸气,在另一条件下又能强烈地吸收低沸点组分蒸气这一特性完成制冷循环。
目前吸收式制冷机中多采用二元溶液作为工质,习惯上称低沸点组分为制冷剂,高沸点组分为吸收剂,二者组成工质对。
原理图:K1倚单吸收氏制冲系统循环吸收式制冷的特点:吸收式制冷以自然存在的水或氨等为制冷剂,对环境和大气臭氧层无害;以热能为驱动能源,除了利用锅炉蒸气、燃料产生的热能外,还可以利用余热、废热、太阳能等低品位热能,在同一机组中还可以实现制冷和制热(采暖)的双重目的。
整套装置除了泵和阀件外,绝大部分是换热器,运转安静,振动小;同时,制冷机在真空状态下运行,结构简单,安全可靠,安装方便。
在当前能源紧缺,电力供应紧张,环境问题日益严峻的形势下,吸收式制冷技术以其特有的优势已经受到广泛的关注。
(1) 无原动力,直接使用热原理,因此机器坚固亦无震动,少噪音,能安装于任何地点,从地室一直到屋顶均可。
太阳能吸附式冷冻技术的发展
浅谈太阳能吸附式冷冻技术的发展【摘要】随着新能源和可再生能源的发展,开发和利用新能源和可再生能源成为可持续发展的重要组成部分。
太阳能吸附式制冷技术系统简单,不需要精馏设备,系统不会再冷凝温度较低的情况下出现烧干状况,当然本文也对这一制冷技术的问题进行了简要讨论。
【关键词】太阳能;吸附式制冷技术1.不同制冷需求的余热制冷技术制冷技术目前最为普遍的应用为空调与冷冻。
其中空调主要用于夏季房间内的制冷,冷冻则广泛地应用于制冰、食品储藏以及化工流程。
目前在空调的应用中,硅胶-水吸附式制冷机组以及溴化锂-水吸收式制冷机组均实现了产业化。
其中硅胶-水吸附式制冷机组的特点是可以应用于50~90℃的余热回收场合,但存在着cop 较低的特点,cop 仅为0.4~0.6。
溴化锂-水系统可以用于90℃~200 ℃余热的回收利用,其中单效系统的cop 为0.6~0.7,双效系统的cop 为1.1~1.2。
200 ~230 ℃的余热可以采用三效系统来回收,三效系统的cop 可以达到1.5~1.6 左右。
但是由于三效系统存在着难以解决的腐蚀问题,所以其实用化仍然需要一个长期的研究过程。
对于冷冻工况,目前余热驱动的制冷技术仍然没有成熟的产业化的产品。
冷冻工况可用的吸收式制冷工质对为氨-水工质对。
氨-水工质对的单效系统驱动热源温度为120 ~130 ℃,在空调工况的cop 为0.6 左右。
对于冷冻工况cop 则为0.2 左右。
氨-水工质对的gax循环可以利用150 ~160 ℃的热源驱动,冷冻工况下的cop 也仅为0.3~0.4。
氨-水工质对用于冷冻工况,其缺点在于精馏过程。
氨-水吸收式制冷系统对精馏设备的要求较高,尤其在冷凝温度较低时,发生器极易出现烧干的状况。
相对于氨-水吸收式制冷,将吸附式制冷技术应用于冷冻工况,其优点在于系统简单,不需要精馏设备,同时系统不会在冷凝温度较低的情况下出现烧干状况。
2.太阳能吸附式制冷技术的研究价值新能源和可再生能源经过多年的发展已经开始在世界能源供应结构中占据一席之地,受到各国政府的广泛重视。
常见太阳能空调制冷技术的发展
常见太阳能空调制冷技术的发展太阳能空调是一种利用太阳能进行制冷的设备,可有效减少对传统电力的依赖,能源更加环保可持续。
经过几十年的发展,太阳能空调的制冷技术已经取得了显著的进步和成就。
下面将介绍一些常见的太阳能空调制冷技术的发展。
1. 热吸收式制冷技术(太阳能吸收式制冷技术)热吸收式制冷技术是一种利用太阳能对吸收剂进行加热,使其从吸收液转变成气体释放热的过程,然后再通过制冷剂进行制冷的技术。
这种技术的核心是吸收剂的选择和设计,目前常用的吸收剂有溴化锂、水、铝硅石等。
该技术可实现稳定可靠的制冷效果,且能量利用率较高,是目前较为成熟的太阳能空调制冷技术之一。
2. 热力压缩式制冷技术(太阳能压缩式制冷技术)热力压缩式制冷技术是利用太阳能对压缩机进行加热,使其产生高温高压气体,然后通过膨胀门控制气体压力,从而实现制冷的技术。
该技术的关键是有效地利用太阳能进行压缩机加热,目前常用的方式有太阳能光热转换和太阳能光电转换。
太阳能压缩式制冷技术具有制冷效果好、温度范围广、结构简单等优点。
3. 光热光电复合制冷技术光热光电复合制冷技术是将太阳能光热和太阳能光电转化技术相结合,以提高太阳能空调的制冷效果和能量利用率。
光热转换技术将太阳能转化为热能,用于提供制冷能源;光电转化技术将太阳能转化为电能,用于驱动制冷系统的电动设备。
通过这种复合技术,太阳能空调可以充分利用太阳能资源,提高整体能源利用效率。
4. 制冷系统优化技术制冷系统优化技术是通过对太阳能空调的制冷系统进行优化设计,提高其能量利用效率和制冷性能。
采用高效的热交换器和换热器,优化制冷剂的循环方式和系统结构,减小能量损失和功耗。
还可以结合智能控制系统,根据室内外温度和太阳辐射度等参数进行智能调节,提高系统的稳定性和舒适度。
随着太阳能技术的不断发展和成熟,太阳能空调的制冷技术也在不断创新和完善,从而提高了其制冷效果、能量利用率和系统稳定性。
未来,随着对可再生能源的需求不断增大,太阳能空调有望成为未来空调领域的重要发展方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能制冷技术的原理与应用摘要:太阳能制冷主要有光—电转换和光—热转换两种方式,本文主要介绍了光—热转换中的三种主要方式:太阳能吸收式、吸附式和喷射式制冷技术,以及太阳能制冷技术在生产生活中的应用。
关键词:太阳能制冷;吸收式;吸附式;喷射式;应用Abstract: The main light solar cooling - power conversion and light - heat transfer in two ways, this paper describes the light - heat transfer in three main ways: solar absorption, adsorption, and jet cooling technology, and solar cooling technology production life of the application.Key words: solar cooling; absorption; adsorption; jet; application1 引言太阳能是一种取之不经用之不竭的清洁、可再生绿色能源,合理利用太阳能可以有效缓解能源紧张的问题。
我们熟悉的有太阳能发电、太阳灶、太阳能热水器,特别是太阳能热水器,经年来发展很快,但这种利用太阳能的方式与大自然的规律并不完全一致。
当太阳辐射强、气温高的时候,人们更需要的是空调降温而不是热水,这种情况在我国南方地区尤为突出。
如果可以用太阳能制冷,就可以既给人们带来舒适,又节约了能源。
利用太阳能制冷是太阳能应用的一个重要方面,是一个极具发展前景的领域,也是当今制冷界技术研究的热点之一。
军用、航空、气象、沿海岛屿、远洋捕捞等领域对太阳能制冷有着迫切的需要。
太阳能制冷从能量装换角度可以分为两种,第一种是太阳能光电转换制冷,是利用光伏转换装置将太阳能转换成电能后,再用于驱动普通蒸气压缩式制冷系统或半导体制冷系统实现制冷的方法,即光电半导体制冷和光电压缩式制冷,可以看做是太阳能发电的拓展,这种方法的优点是可采用技术成熟且效率高的蒸汽压缩式制冷技术,其小型制冷机在日照好又缺少电力设施的一些国家和地区已得到应用。
其关键是光电转换技术,必须采用光电转换接收器,即光电池。
太阳能电池接受阳光直接产生电力,目前效率较低,而光电板、蓄电器和逆变器等成本却很高。
在目前太阳能电池成本较高的情况下,对于相同的制冷功率,太阳能光电转换制冷系统的成本要比太阳能光热转换制冷系统的成本高出许多倍,目前尚难推广应用。
第二种是太阳能光热转换制冷,首先是将太阳能转换成热能(或机械能),再利用热能(或机械能)作为外界的补偿,使系统达到并维持所需的低温。
目前研究重点选择后一种方式,此次我们也主要从以下三个方面进行阐述,即太阳能吸收式制冷、太阳能吸附式制冷和太阳能喷射式制冷。
太阳能集热器是以上三种制冷方法都要用到的一个装置,它是一种吸收太阳辐射并将产生的热能传递到传热工质的装置。
主要的集热器类型有非聚焦型的平板型太阳能集热器、真空管太阳能集热器和太阳能空气集热器。
平板型集热器结构简单、采光面积大、工作可靠、成本低,缺点是提供的热源较低。
真空管太阳能集热器是在平板型太阳能集热器的基础上发展起来的新型太阳能集热器。
由于吸热体和玻璃管之间的夹层保持高度真空而且涂有选择性吸收涂层,真空管太阳能集热器再高温和低温环境下仍有优良的热性能,但是其成本较高。
在目前的太阳能制冷应用中较多采用平板型集热器。
2 太阳能吸收式制冷技术太阳能吸收式制冷系统采用平板型或热管型真空管集热器来收集太阳能,用来驱动吸收式制冷机,制冷是利用两种沸点相差较大物质所组成的二元溶液作为工质来进行的。
其中沸点低的物质为制冷剂,沸点高的物质为吸收剂。
吸收式制冷就是利用溶液的浓度随温度和压力变化而变化,将制冷剂与溶液分离,通过制冷剂的蒸发而制冷,又通过溶液实现对制冷剂的吸收 [1]。
目前常用的两种吸收式制冷机一种是氨吸收式制冷机,其工质对为氨-水溶液,氨为制冷剂,水为吸收剂。
它的制冷温度在+1—-45范围内,多用作工艺生产过程的冷源;另一种是溴化锂吸收式制冷机,以溴化锂为吸收剂,其制冷温度只能在零度以上,可用于制取空气调节用冷水或工艺冷却水,以下是制冷机的主要部件[2]:吸收式制冷机主要由四个热交换设备组成,即发生器、冷凝器、蒸发器、吸收器。
图一简单吸收式制冷系统的组成部件它们组成两个循环线路:制冷剂循环和吸收剂循环。
左半部是制冷剂循环,属于逆循环,由蒸发器、冷凝器和节流装置组成。
高压气态制冷剂在冷凝管中向冷却水放热被凝结成液态后,经节流装置减压降温进入蒸发器,在蒸发器该液体被液化为低压冷剂蒸发,同时吸收被冷却介质的热量,产生制冷效应。
右半部分为吸收剂循环,属正循环,主要由吸收器、发生器和溶液泵组成。
在吸收器中,用液态吸收剂吸收蒸发器产生的低压气态制冷剂,以达到维持蒸发器内低压的目的。
吸收剂吸收制冷剂蒸气而形成的制冷剂-吸收剂溶液,经溶液泵升压后进入发生器,在发生器中该溶液被加热沸腾,其中沸点低的制冷剂汽化形成高压气态制冷剂,又与吸收剂分离。
然后前者去冷凝器液化,后者则返回吸收器再次吸收低压气态制冷剂。
两种吸收式制冷机有各自的优缺点。
氨吸收式制冷机有能够制取低温、溶液不会发生结晶等优点,缺点是氨泄露会产生危害。
现在多采用溴化锂吸收式制冷机,它有很多优点:可利用低位势热能制冷;只有小功率的屏蔽泵为运动部件,运转安静;以溴化锂水溶液为工质,无毒、无臭、无害;制冷机在真空状态下运行,无爆炸危险,安全可靠;制冷量调节范围广,对外界条件变化的适应性强。
主要缺点是溴化锂水溶液对一般的金属有较强的腐蚀性,影响机组的正常运行;因为是水溶液,对机组的气密性要求高;浓度过高或过低时,溴化锂水溶液容易形成结晶,影响正常运行[3]。
由于成本较高,目前太阳能溴化锂吸收式制冷机只应用在大型空调领域。
为了使溴化锂—水吸收式制冷系统得到更为广泛的应用,向广阔的家用空调领域发展,必须积极研究开发各种小型的高效低成本的制冷机,使系统实现空冷化和小型化。
当前对溴化锂-水制冷机组的空冷化研究是其研究的一个重要方向。
而对于溴化锂—水吸收制冷工质的性能研究则集中在改进特性上,主要有以下几个方面:(1)提高溴化锂的溶解度,在较高浓度.较低温度和较低压力的条件下,避免溴化锂结晶的析出,以便采用风冷;(2)在提高溴化锂溶解度的同时,进一步提高溴化锂吸收式制冷循环的性能系数;(3)减轻溴化锂溶液对金属材料的腐蚀作用;(4)采用辅助制冷剂,进一步提高吸收式制冷循环的性能系数(5)采用表面活性剂,,减小吸收界面的传质阻力,改善吸收过程,减小吸收面积。
此外,正在研究的太阳能吸收式制冷系统有无泵溴化锂机、小型氨水制冷及其循环泵、多效吸收制冷、吸收-喷射复合制冷循环系统和吸收-压缩复合式循环系统等 [4]。
3 太阳能吸附式制冷技术太阳能吸附式制冷系统主要由太阳能吸附集热器、冷凝器、储液器、蒸发器、阀门等组成。
如图二[5]所示。
图二太阳能吸附式制冷系统太阳能吸附式制冷系统的制冷原理,是吸附床中的固体吸附(如活性炭)对制冷剂(如甲醇)的周期性吸附、解附过程实现制冷循环。
解附过程:当白天太阳辐射充足时,太阳能吸附集热器吸收太阳辐射能后,吸附床温度升高,使吸附的制冷剂在集热器中解附,太阳能吸附器内压力升高。
解附出来的制冷剂进入冷凝器,经冷却介质(水或空气)冷却后凝结为液态,进入储液器。
吸附过程:夜间或太阳辐射不足时,环境温度降低,太阳能吸附集热器通过自然冷却后,吸附床的温度下降,吸附剂开始吸附制冷剂,由于蒸发器内制冷剂的蒸发,温度骤降,通过冷媒水获得制冷目的[6]。
目前对太阳能吸附式制冷技术主要有三个方向:吸附剂一制冷剂工质对的性能,各种循环方式的热力性能和发生器(吸附床)性能。
吸附式循环关键是利用合适的吸附剂和制冷剂作为工质对,在蒸发器中蒸发制冷。
目前已经开发出的吸附制冷工质对主要有:活性炭—甲醇、分子筛—水、分子筛—氨、硅胶—水、活性炭纤维—甲醇和氯化钙—氨、氯化锶—氨等。
研究的多为沸石—水、活性炭—甲醇和氯化钙—氨。
但在研究中,也碰到了一些较难解决的问题,如制冷量偏小、甲醇在活性炭存在条件下发生催化反应等。
为此,各国研究人员在寻求性能优良的工质对上倾注了大量精力,其中氯化锶-氨这一化学吸附工质对以其优良的性能受到关注[7]。
华南理工大学陈砺等对氯化锶一氨工质对的制冷性能进行了研究,得出了实验研究结果(表一),可以看出在相同的制冷工况下,氯化锶一氨工质对的制冷量远远大于活性炭一甲醇工质对。
在热源温度为100℃时,他们所用的工质对单位质量吸附剂的制冷量是活性炭一甲醇工质对的3.2倍以上,最高达到5.9倍[8]。
表一各类工质对制冷量比较(吸附剂)kj•kg-1热源温度100/℃95/℃90/℃氯化锶-氨889 485 233 活性炭(AC-35)-甲醇275 270 268吸附式制冷的循环类型有基本型、连续型、连续回热型、热波型及对流热波型等。
目前正真成功的只有基本型、连续型、连续回热型三种,热波型和对流热波型正在理论探索和模拟实验。
最简单的连续型循环是采用双床结构,一个床吸附,同时另一个床解吸,这样就得到了连续制冷,避免了传统吸附式制冷白天解吸,夜间吸附的间歇性制冷的缺点。
在热波循环中[9]附床被看作由一系列能独立进行热交换的小吸附床组成,两个吸附床反向运行,各自只有一小部分进行热交换,另一部分保持其温度,这样就有效地减少了热损失,提高了COP值。
实验表明其COP值可达0.9~1.0之间。
对流热波循环则是一种采用吸附床内强迫对流循环方式,它使吸附床内形成良好的传热传质条件。
太阳能驱动的活性炭-甲醇吸附式制冰机已成为商品,而且被国际卫生组织推荐在第三世界无电力设施或缺电的地方用作疫苗保存。
发生器(吸附床)的研究主要是强化它的传热,可采用高导热性能的复合吸附剂。
实验表明,沸石粉与聚苯胺复合吸附剂的导热性能和吸附性能均远优于沸石颗粒。
作为一种不采用氟利昂制冷剂的制冷技术,太阳能固体吸附式制冷技术成为制冷界研究的热门之一,同时它具有结构简单、运行效率高、不消耗常规能源(如煤、电和化石燃料等),而且噪音小、寿命长、安全性好、无须考虑腐蚀问题等优点。
目前太阳能吸附式制冷技术已经成功的用于低温储粮,还有跟多的用途有待研究[10]。
4 太阳能喷射式制冷技术太阳能喷射式制冷循环,以其清洁无污染,系统运行和维护简单的优点,近年来吸引了很多研究人员的关注,但系统性能系数偏低限制了它的发展。
所谓太阳能喷射式制冷器,是由保能层、喷射口、储能器、太阳能恒温腔、温控电磁盘、冷凝器、混合室、自动喷射器、导线、光管接收器、光管固定架、蒸发器、继电控制板、风机、腔内螺旋壁及输导管所组成。