高考数学专题复习 数列教案 文

合集下载

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

数列教案范文

数列教案范文

数列教案范文一、教学目标1.知识目标:①了解等差数列和等比数列的概念以及它们的发展规律;②掌握求等差数列和等比数列的公式与方法;③了解数列在生活中的应用。

2.能力目标:①能够熟练地运用等差数列及等比数列求解问题;②能够将所学知识应用到实际生活中。

3.态度目标:①激发学生学习数学的兴趣;②培养学生积极探索、勇于创新的精神。

二、教学重点难点1.重点:等差数列和等比数列的概念、求和公式以及应用;2.难点:应用实例的解决。

三、教学内容及方法1.教学内容(1)等差数列及其求和公式;(2)等差数列在生活中的应用;(3)等比数列及其求和公式;(4)等比数列在生活中的应用。

2.教学方法(1)讲解法:讲解等差数列和等比数列的概念、求和公式及应用,通过例题演示方法,引领学生逐步了解并掌握。

(2)归纳法:在学生学习过程中,引导学生进行概念归纳、规律总结,使学生更深入地理解知识点。

(3)练习法:开展各类型的例题练习,让学生熟练掌握所学知识,提高能力。

(4)探究法:利用生活实际问题,让学生自主探索并解决问题,培养学生创新精神。

四、教学步骤1.导入:与学生讲述数学在生活和科技中的应用,引起学生对数学的兴趣。

2.讲解等差数列和等比数列的概念。

3.介绍等差数列及其求和公式,让学生对等差数列有一个深入的了解。

4.介绍等差数列在生活中的应用,例如:物流运输中的时间问题。

5.介绍等比数列及其求和公式,让学生对等比数列有一个深入的了解。

6.介绍等比数列在生活中的应用,例如:光传输中的问题。

7.练习,让学生能够熟练掌握所学的知识。

8.探究性学习,让学生认识数学应用实际中的作用。

五、教学评价1.能在学生生活中讲述数学的应用,并引起学生对数学的兴趣。

2.能在学生心中形成数学发展规律的认识,掌握等差数列及等比数列的求和方法。

3.能培养学生探究问题的能力,使学生在应用实例上更加熟练。

四、教学总结数列是数学中的重要概念,应用广泛,它既是数学教育的基石,也是日常生活中的基础知识,掌握好数列及其应用,能起到事半功倍的效果。

高三数学《数列》复习教案

高三数学《数列》复习教案

1、芯衣州星海市涌泉学校等差、等比数列的概念一、 考纲要求1、理解数列的概念和几种简单的表示方法〔列表、图象、通项公式〕,理解数列是一种特殊函数。

理解通项公式的意义,理解通项公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

2、理解等差数列的概念,掌握等差数列的通项公式。

3、理解等比数列的概念,掌握等比数列的通项公式。

二、知识梳理1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N*或者者其子集{1,2,3,……n}的函数f(n).数列的一般形式为a1,a2,…,an…,简记为{an},其中an 是数列{an}的第项. 2.数列的通项公式一个数列{an}的与之间的函数关系,假设可用一个公式an =f(n)来表示,我们就把这个公式叫做这个数列的通项公式.3、数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥二、等差数列与等比数列三、 课前小题训练1、在等差数列{an}中,〔1〕假设12,3a d ==,那么10a =______,〔2〕假设 71,8,3d a =-=那么1_____a =。

2、 数列{an}为等比数列,2418,8,a a ==那么5____a =。

3、 等差数列{an}中,1251,4,33,_____3n a a a a n =+===则。

4、 在等差数列{an}中,假设345672850,_____a a a a a a a ++++=+=则。

5、 在等比数列{an}中,假设12345630,120,______a a a a a a +=+=+=则。

6、 {an}是等比数列且15,a a =23540_____x x a -+==是方程的两个根,则。

四、例题分析题型一、等差、等比数列的断定1、数列{an}满足以下条件,问数列{an}能否构成等差数列。

〔1〕na knb =+〔k,b 为常数〕〔2〕n s 为数列{an}的前n 项和,2ns an bn =+〔a,b 是常数〕。

数列高考复习教案

数列高考复习教案

数列高考复习教案教案标题:数列高考复习教案教学目标:1. 理解数列的概念和基本特征;2. 掌握数列的通项公式和递推公式的推导方法;3. 熟练运用数列的性质解决高考相关题目;4. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 数列的通项公式和递推公式的推导;2. 数列的性质及其应用。

教学难点:1. 数列的递推公式的推导;2. 运用数列的性质解决复杂问题。

教学准备:1. 教材:高中数学教材;2. 多媒体设备;3. 高考数列相关题目。

教学过程:一、导入(5分钟)1. 引入数列的概念,让学生回顾数列的定义和基本特征;2. 提出一个实际问题,引导学生思考如何用数列解决该问题。

二、知识讲解与示范(20分钟)1. 讲解数列的通项公式和递推公式的概念和推导方法;2. 通过示例演示如何根据数列的性质推导出通项公式和递推公式。

三、练习与巩固(25分钟)1. 分发练习题,让学生独立完成;2. 针对难点问题,进行讲解和讨论;3. 指导学生如何运用数列的性质解决高考相关题目。

四、拓展与应用(15分钟)1. 提供一些高难度的数列问题,让学生尝试解决;2. 引导学生思考数列在实际问题中的应用。

五、总结与归纳(5分钟)1. 总结数列的基本概念和性质;2. 强调数列在高考中的重要性和应用。

六、作业布置(5分钟)1. 布置相关的作业题目,要求学生独立完成;2. 鼓励学生积极思考和解决问题。

教学反思:通过本节课的教学,学生能够全面了解数列的概念和基本特征,掌握数列的通项公式和递推公式的推导方法,并能够熟练运用数列的性质解决高考相关题目。

同时,通过拓展与应用环节,培养了学生的逻辑思维和问题解决能力。

在教学过程中,教师要注重引导学生思考和互动,激发学生的学习兴趣和主动性。

2025年高中数学高考精品备课教案:数列中的构造问题

2025年高中数学高考精品备课教案:数列中的构造问题

数列中的构造问题=pa n+f(n)(p≠1)命题点1形如a n+1例1(1)在数列{a n}中,a1=1,a n+1=3a n-2n-1,则a n=2n-1.=3a n-2n-1,所以r12r1=32·2-14,解析因为a n+1即r12r1-12=32(2-12).因为121-12=0,所以2-12=0,故a n=2n-1.(2)设数列{a n}满足a1=3,a n+1=3a n-4n,则a n=2n+1.-(2n+3)=3[a n-(2n+1)],a n-(2n+1)=3[a n-1-(2n-解析由已知可得a n+11)],…,a2-5=3(a1-3).因为a1=3,所以a n=2n+1.命题拓展[变条件]若例1(2)中的a1=4,则a n=3n-1+2n+1.+x(n+1)+y=3(a n+xn+y),则展开利用对应项系数相等可得出x=解析设a n+1-2,y=-1,所以{a n-2n-1}是以a1-2-1=1为首项,3为公比的等比数列,所以a n-2n-1=3n-1,所以a n=3n-1+2n+1.方法技巧=pa n+f(n)(p≠1)的递推式,一般采用构造法求通项:形如a n+1+x=p(a n+x)的形式(利用待定系数法(1)若f(n)为非零常数,则一般凑配成a n+1求x),构造等比数列;+x(n+1)+y=p(a n+xn+y)(2)若f(n)为关于n的一次函数,则一般凑配成a n+1的形式(利用待定系数法求x,y),构造等比数列;(3)若f(n)为指数幂(如q n)的形式,则一般两边同时除以p n+1或q n+1,再利用累加法或构造法求通项.训练1在数列{a n}中,a1=5,a n+1=3a n-4,则a n=3n+2.=3a n-4,可得a n+1-2=3(a n-2),又a1=5,所以{a n-2}是以a1-2=3解析由a n+1为首项,3为公比的等比数列,所以a n-2=3n,所以a n=3n+2.=B B+命题点2形如a n+1例2[多选/2023江苏镇江中学5月考前模拟]已知数列{a n}满足a1=1,a n+1=2+3,则下列结论正确的有(ABD)A.{1+3}为等比数列B.{a n}的通项公式为a n=12r1-3C.{a n}为递增数列D.{1}的前n项和T n=2n+2-3n-4解析因为a1=1,a n+1=2+3,所以1r1=2+3=2+3,所以1r1+3=2(1+3).又11+3=4,所以数列{1+3}是以4为首项,2为公比的等比数列,所以1+3=4×2n-1=2n+1,即a n=12r1-3,故A,B正确.因为a n+1-a n=12r2-3-12r1-3=(2r1-3)-(2r2-3)(2r2-3)(2r1-3)=-2r1(2r2-3)(2r1-3),n≥1,所以2n+2-3>0,2n+1-3>0,-2n+1<0,所以a n+1-a n<0,所以{a n}为递减数列,故C错误.易知1=2n+1-3,则T n=(22+23+24+…+2n+1)-3n=4(1-2)1-2-3n=2n+2-3n-4,故D正确.故选ABD.方法技巧形如a n+1=B B+的递推式,一般采用取倒数法求通项,先变形为1r1=·1+,再利用累加法或构造法求通项.训练2(1)已知数列{a n}满足a1=1,a n+1=+2,则a10=(C)A.11021B.11022C.11023D.11024解析由a n+1=+2,两边同时取倒数得1r1=+2=2+1,则1r1+1=2(1+1),所以数列{1+1}是以2为公比的等比数列,则1+1=(11+1)·2n-1=2n,所以a n=12-1,故a10=1210-1=11023.故选C.(2)已知数列{a n}满足a1=1,a n+1=2+2,则a n=2r1.解析依题意知a n≠0,由a n+1=2+2可得1r1=+22=12+1,即1r1-1=12,又a1=1,可知数列{1}是以11=1为首项,12为公差的等差数列,则1=1+12(n-1)=r12,即a n=2r1.命题点3形如a n+1=pa n+qa n-1(n≥2)例3已知数列{a n}满足a n+1=5a n-6a n-1(n≥2),且a1=1,a2=4,则数列{a n}的通项公式为a n=2×3n-1-2n-1.解析解法一当n≥2时,令a n+1-xa n=y(a n-xa n-1),即a n+1=(x+y)a n-xya n-1.于是得+=5,-B=-6,解得=2,=3或=3,=2.当x=2,y=3时,a n+1-2a n=3(a n-2a n-1)(n≥2).由于a2-2a1=2≠0,所以数列{a n+1-2a n}是以2为首项,3为公比的等比数列,即a n+1-2a n=2×3n-1①.当x=3,y=2时,a n+1-3a n=2(a n-3a n-1)(n≥2).由于a2-3a1=1≠0,所以数列{a n+1-3a n}是以1为首项,2为公比的等比数列,即a n+1-3a n=2n-1②.由①-②得a n=2×3n-1-2n-1.解法二当n≥2时,由a n+1=5a n-6a n-1得a n+1-2a n=3a n-6a n-1,即a n+1-2a n=3(a n-2a n-1),因为a2-2a1=2≠0,所以数列{a n+1-2a n}是以2为首项,3为公比的等比数列,所以a n+1-2a n=2×3n-1,两边同除以2n+1,得r12r1-2=12×(32)n-1.所以2=(2--12-1)+(-12-1--22-2)+…+(222-121)+121=12×(32)n-2+12×(32)n-3+…+12×(32)0+12=12×1-(32)-11-32+12=(32)n-1-12.故a n=2×3n-1-2n-1.方法技巧形如a n+1=pa n+qa n-1(n≥2)的递推式,一般采用构造法求通项,将原式变形为a n+1+λa n =μ(a n+λa n-1)(n≥2),由待定系数法求出λ,μ,再依据相邻两项的递推关系求通项.训练3已知数列{a n}满足a1=1,a2=2,且对任意n∈N*,都有a n+2=3a n+1-2a n.则{a n}的通项公式为a n=2n-1.解析由a n+2=3a n+1-2a n,得a n+2-a n+1=2(a n+1-a n),又a2-a1=1,易知a n+1-a n≠0,所以r2-r1r1-=2,所以数列{a n+1-a n}是以1为首项,2为公比的等比数列.所以a n+1-a n=2n-1,所以a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1=2n-2+2n-3+…+21+20+1=20+21+…+2n-3+2n-2+1=20×2-1-12-1+1=2n-1,所以{a n}的通项公式为a n=2n-1.思维帮·提升思维快速解题用“不动点法”求数列的通项公式例4已知数列{a n}满足a1=2,a n=-1+22-1+1(n≥2),则数列{a n}的通项公式为a n=3-(-1)3+(-1).解析令x=r22r1,解得x=1或x=-1,令r1-1 r1+1=c·-1+1①,由a1=2,a n=-1+22-1+1,得a2=45,令①式中的n=1,可得c=-13,∴数列{-1+1}是以1-11+1=13为首项,-13为公比的等比数列,∴-1+1=13·(-13)n-1,∴a n=3-(-1)3+(-1).方法技巧利用不动点法求数列通项的步骤对于一个函数f(x),我们把满足f(m)=m的值m称为函数f(x)的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式.设f(x)=B+B+(c≠0,ad-bc≠0),数列{a n}满足a n+1=f(a n),a1≠f(a1).(1)若f(x)有两个相异的不动点p,q,则r1-r1-=k·--(此处k=-B-B).步骤如下:i.令x=B+B+,解出两个根p,q,即两个不动点;ii.构造新数列{r1-r1-},并将已知递推关系a n+1=f(a n)代入化简,得出r1-r1-=k·--,并得出等比数列{--}的通项;iii.解方程得出a n.(2)若f(x)有两个相同的不动点p,则1r1-=1-+k(此处k=2+).训练4已知数列{a n}满足a1=3,a n+1=7-2+4,则该数列的通项公式为a n=4·6-1-5-12·6-1-5-1.解析由方程x =7-2r4,得数列{a n }的不动点为1和2,则r1-1r1-2=7-2+4-17-2+4-2=7-2-(+4)7-2-2(+4)=65·-1-2,所以{-1-2}是首项为1-11-2=2,公比为65的等比数列,所以-1-2=2·(65)n -1,解得a n =12·(65)-1-1+2=4·6-1-5-12·6-1-5-1.学生用书·练习帮P3141.数列{a n }满足a 1=1,a n -a n +1=r1(r1)(n ∈N *),则na n 的最小值是(C )A.0B.12C.1D.2解析由a n -a n +1=r1(r1)(n ∈N *),易知a n ≠0,两边同时除以a n a n +1,得1r1-1=1(r1)=1-1r1,所以当n ≥2时,1=(1-1-1)+(1-1-1-2)+…+(12-11)+11=(1-1-1)+(1-2-1-1)+…+(12-13)+(1-12)+1=2-1,当n =1时,a 1=1,满足上式,故na n=22-1=1-(1-1)2+1,所以当n =1时,na n 取得最小值1.故选C.2.[多选/2023云南玉溪一中7月模拟]已知数列{a n }满足a 1=1,a n +1=1+3(n ∈N *),则(BCD)A.{1}为等比数列 B.a n =13-2C.{a n }为递减数列 D.{1}的前n 项和T n =32-2解析因为1r1=1+3=1+3,所以{1}是以1为首项,3为公差的等差数列,故选项A 错误;因为1=1+3(n -1)=3n -2,所以a n =13-2,故选项B 正确;因为函数y =3x -2在[1,+∞)上单调递增,且3x -2>0,所以函数y =13-2在[1,+∞)上单调递减,所以数列{a n }为递减数列,故选项C 正确;{1}的前n 项和T n =(3-1)2=32-2,故选项D 正确.故选BCD.3.[2024河南焦作统考]已知数列{a n}满足a n+1=3a n+2,a3+a2=22,则满足a n>160的最小正整数n=5.解析由3=32+2,3+2=22,解得2=5,3=17,又a2=3a1+2,所以a1=1.又由a n+1=3a n+2,可得a n+1+1=3(a n+1),所以{a n+1}是首项为a1+1=2,公比为3的等比数列,所以a n =2×3n-1-1,易知{a n}是递增数列,又a4=2×27-1=53,a5=2×81-1=161,所以满足a n>160的最小正整数n=5.4.[2023合肥六中三模]已知在数列{a n}中,a1=5,a2=2,a n=2a n-1+3a n-2(n≥3),则数列{a n}的通项公式为a n=74×3n-1+134×(-1)n-1.解析∵a n=2a n-1+3a n-2(n≥3),∴a n+a n-1=3(a n-1+a n-2)(n≥3),又a1+a2=7,∴{a n+1+a n}是首项为7,公比为3的等比数列,则a n+1+a n=7×3n-1①,又a n-3a n-1=-(a n-1-3a n-2)(n≥3),a2-3a1=-13,∴{a n+1-3a n}是首项为-13,公比为-1的等比数列,则a n+1-3a n=(-13)×(-1)n-1②,由①-②得,4a n=7×3n-1+13×(-1)n-1,∴a n=74×3n-1+134×(-1)n-1.5.[2023厦门双十中学三模改编]已知数列{a n}满足a1=1,r12=10a n(a n>0),则{a n}的通项公式为a n=10×(110)(12)-1.解析已知r12=10a n,等式两边取以10为底的对数可得2lg a n+1=lg a n+1,即lg a n+1-1=12(lg a n-1),所以数列{lg a n-1}是以lg a1-1=-1为首项,12为公比的等比数列,所以lg a n-1=(-1)×(12)n-1=-(12)n-1,即lg a n=1-(12)n-1,即a n=10×(110)(12)-1.6.[2023山东威海三模]已知数列{a n}中,a1=56,a n+1=13a n+(12)n+1,则{a n}的通项公式为a n=32-23.解析解法一(待定系数法)令a n+1+λ(12)n+1=13[a n+λ(12)n],即a n+1=13a n-3(12)n+1,由对应项系数相等得λ=-3,设b n=a n-3×(12)n,则b1=a1-3×(12)1=-23,b n+1=13b n,则数列{b n}是以-23为首项,13为公比的等比数列,则b n=-23×(13)n-1,所以a n=32-23.解法二(变形转化+待定系数法)将a n=13a n+(12)n+1两边同时乘以2n+1,得2n+1a n+1+1=23×(2n a n)+1.令c n=2n a n,则c n+1=23c n+1,可得c n+1-3=23(c n-3),所以数列{c n-3}是首项为c1-3=2×56-3=-43,公比为23的等比数列,所以c n-3=-43×(23)n-1,即c n=3-2×(23)n,所以a n=2=32-23.解法三(累加法)将a n=13a n+(12)n+1两边同时除以(13)n+1,得3n+1a n+1=3n a n++1(32)n+1.令t n=3n a n,则t n+1=t n+(32)n+1,所以当n≥2时,t n-t n-1=(32)n,…,t3-t2=(32)3,t2-t1=(32)2.将以上各式相加,得t n-t1=(32)2+(32)3+…+(32)n(n≥2).又t1=3a1=3×56=52=1+32,所以t n=1+32+(32)2+…+(32)n=2×(32)n+1-2(n≥2),当n =1时也符合上式,故t n=2×(32)n+1-2,所以a n=3=32-23.7.[2024名师原创]设数列{a n}的前n项和为S n,满足2S n=a n+1-2n+1+1(n∈N*),且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{a n}的通项公式.解析(1)2S n=a n+1-2n+1+1,令n=2得2S2=a3-23+1,即2a1+2a2=a3-7①.因为a1,a2+5,a3成等差数列,所以2(a2+5)=a1+a3,即a3=2(a2+5)-a1②,将②代入①可得2a1+2a2=2(a2+5)-a1-7,解得a1=1,故a1的值为1.(2)因为2S n=a n+1-2n+1+1,当n≥2时,2S n-1=a n-2n+1,两式作差可得a n+1=3a n+2n,所以a n+1+2n+1=3(a n+2n),n≥2,(原式难以配凑时,不妨先将原等式变形为r12r1=32·2+12,再令r12r1+λ=32(2+λ),求得λ=1,构造出新的等比数列再继续求解)易知a2=5,所以a n+2n=(a2+22)×3n-2=(5+4)×3n-2=3n,即a n=3n-2n,n≥2,将n =1代入a n=3n-2n得a1=31-21=1,符合题意.故数列{a n}的通项公式为a n=3n-2n.8.[2024浙江宁波模拟]已知数列{a n}满足a1=1,且对任意正整数m,n都有a m+n=a n+a m+2mn.(1)求数列{a n}的通项公式;(2)求数列{(-1)n a n}的前n项和S n.解析(1)对任意正整数m,n都有a m+n=a n+a m+2mn,取m=1,得a n+1=a n+1+2n,所以a n+1-a n=2n+1.当n≥2时,a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=1+3+5+…+2n-1=(1+2-1)2=n2,当n=1时,a1=1,符合上式,所以a n=n2.(2)当n为偶数时,S n=(-12+22)+(-32+42)+…+[-(n-1)2+n2]=3+7+11+…+(2n-1)=2(3+2-1)2=(r1)2=2+2;当n为奇数时,S n=S n-1+(-1)n a n=S n-1-a n=(-1)2-n2=-2-2.综上所述,S n为偶数,为奇数.。

2025年高中数学高考精品备课教案:数列的概念

2025年高中数学高考精品备课教案:数列的概念

数列第1讲数列的概念课标要求命题点五年考情命题分析预测了解数列的概念和表示方法(列表、图象、通项公式),了解数列是一种特殊函数.由a n 与S n的关系求数列的通项公式2023全国卷甲T17;2022新高考卷ⅠT17本讲为高考命题热点,主要考查数列的不同呈现形式及相应形式下的通项求解,常见的形式有a n 与S n 的关系,不同项间的递推关系(常需变形利用累加法、累乘法、构造法求解),题型既有客观题,也有主观题,难度中等.预计2025年高考命题稳定.由递推关系求数列的通项公式2020浙江T20数列的性质及其应用2023北京T10;2021北京T10学生用书P0901.数列的有关概念名称概念数列按照确定的顺序排列的一列数.数列的项数列中的每一个数.通项公式如果数列{a n }的第n 项a n 与它的序号n 之间的对应关系可以用一个式子①a n =f (n )(n ∈N *)表示,那么这个式子叫做这个数列的通项公式.递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.注意{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式;而a n 只表示数列{a n }的第n 项.辨析比较通项公式和递推公式的区别1.通项公式:可根据某项的序号n 的值,直接代入求出a n .2.递推公式:可根据第一项(或前几项)的值,通过一次(或多次)赋值,逐项求出数列的项,直至求出所需的a n .也可通过变形转化,直接求出a n .2.数列的函数特性(1)数列与函数的关系数列可以看成一类特殊的函数a n =f (n ),它的定义域是正整数集N *或正整数集N *的有限子集{1,2,3,4,…,n },所以它的图象是一系列孤立的点,而不是连续的曲线.注意函数a n =f (n )定义域为N *时,对应的数列{a n }为无穷数列.当其定义域为N *的有限子集{1,2,3,…,n }时,对应的数列{a n }为有穷数列.(2)数列的性质a.单调性——对任意的n ∈N *,若a n +1②>a n ,则{a n }为递增数列;若a n +1③<a n ,则{a n }为递减数列.否则为常数列或摆动数列.b.周期性——若a n +k =a n (n ∈N *,k 为常数且为正整数),则{a n }为周期数列,④k 为{a n }的一个周期.3.数列的前n 项和S n 与通项a n 的关系(1)S n =a 1+a 2+…+a n (n ∈N *).(2)若数列{a n }的前n 项和为S n ,则a n =⑤1,=1,⑥--1,≥2.注意利用a n =1,=1,--1,≥2求通项时,对n =1的情形要检验.若当n =1时,a 1符合a n =S n -S n -1(n ≥2),则数列{a n }的通项公式用一个式子表示;否则,用分段形式表示.1.已知递增数列{a n }的通项a n =n 2-kn (n ∈N *),则实数k 的取值范围是(B )A.(-∞,2]B.(-∞,3)C.(-∞,2)D.(-∞,3]解析因为数列{a n }是递增数列,所以a n <a n +1对任意n ∈N *都成立,即n 2-kn <(n +1)2-k (n +1),即k <2n +1对任意n ∈N *恒成立,因此k <3.故选B.2.[易错题]已知数列{a n }的前5项分别为2,-5,10,-17,26,则{a n }的一个通项公式为a n =(-1)n +1(n 2+1)(答案不唯一).解析由题意易得,数列{a n }各项的绝对值为2,5,10,17,26,…,记为数列{b n },则b n =n 2+1,考虑到(-1)n +1具有转换正负号的作用,所以原数列{a n }的一个通项公式为a n =(-1)n +1(n 2+1).3.[教材改编]在数列{a n }中,a 1=-14,a n =1-1-1(n ≥2,n ∈N *),则a 2025的值为45.解析由题意可得,a1=-14,a2=5,a3=45,a4=-14,a5=5,…,所以可观察出数列{a n}为以3为周期的数列.又2025÷3=675,所以a2025=a3=45.4.[教材改编]已知数列{a n}的前n项和为S n=n2+12n+5,则数列{a n}的通项公式为a n=解析当n=1时,a1=S1=132.当n≥2时,a n=S n-S n-1=(n2+12n+5)-[(n-1)2+1(n-1)+5]=2n-12.又2×1-12=32≠a1,所以数列{a n}的通项公式为a n==1,-12,≥2.学生用书P091命题点1由a n与S n的关系求数列的通项公式例1(1)[全国卷Ⅰ]记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=-63.解析因为S n=2a n+1,所以当n=1时,a1=S1=2a1+1,解得a1=-1;当n≥2时,a n =S n-S n-1=2a n+1-(2a n-1+1),所以a n=2a n-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S6=-1×(1-26)1-2=-63.(2)[2023湖北武汉三模]已知数列{a n}的前n项和为S n,a1=-165,且5a n+1+S n+16=0.则a n=-4×(45)n.解析当n=1时,5a2+a1+16=0,∴a2=-6425,+S n+16=0①,得5a n+S n-1+16=0(n≥2)②,①-②得5a n+1=4a n由5a n+1(n≥2),∵a2=-6425≠0,∴a n≠0,∴r1=45(n≥2),又21=45,∴{a n}是首项为-165,公比为45的等比数列,∴a n=-165×(45)n-1=-4×(45)n.方法技巧1.已知S n与a n的关系求a n的思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.2.已知S n =f (n )求a n 的一般步骤(1)先利用a 1=S 1求出a 1;(2)用n -1替换S n 中的n 得到一个新的关系,利用S n -S n -1=a n (n ≥2)便可求出当n ≥2时a n 的表达式;(3)检验a 1是否满足n ≥2时a n 的表达式并得出结论.训练1(1)已知数列{a n }的前n 项和为S n ,且满足S n =2a n +1-1.若a 1=12,则a n =12×(32)n -1;若a 1=1,则a n 解析①若a 1=12.当n =1时,S 1=2a 2-1=12,∴a 2=34.当n ≥2时,S n -1=2a n -1,则a n =S n-S n -1=2a n +1-2a n ,∴a n +1=32a n (n ≥2).又∵a 2=32a 1,∴{a n }是以12为首项,32为公比的等比数列,∴a n =12×(32)n -1.②若a 1=1.解法一当n =1时,S 1=2a 2-1=1,a 2=1.当n ≥2时,S n -1=2a n -1,则a n =S n -S n -1=2a n +1-2a n ,a n +1=32a n ,∴{a n }从第2项起是等比数列,公比为32,∴a n =a 2×(32)n -2=(32)n -2(n ≥2).∵a1=1≠(32)1-2,∴a n =1,=1,(32)-2,≥2.解法二∵S n =2a n +1-1,∴S n =2(S n +1-S n )-1,即S n +1=32S n +12,∴S n +1+1=32(S n +1),∴{S n +1}是以S 1+1=a 1+1=2为首项,32为公比的等比数列,∴S n =2×(32)n -1-1.当n ≥2时,S n -1=2×(32)n -2-1,则a n =S n -S n -1=(32)n -2(n ≥2).∵a 1=1≠(32)1-2,∴a n =1,=1,(32)-2,≥2.(2)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =(2n -1)×3n ,n ∈N *,则a n =解析由a 1+2a 2+3a 3+…+na n =(2n -1)×3n ,n ∈N *得,当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(2n -3)×3n -1,两式作差得na n =(2n -1)×3n -(2n -3)×3n-1=(6n-3)×3n-1-(2n-3)×3n-1=4n×3n-1,则a n=4×3n-1,n≥2.当n=1时,a1=3,不满足a n=4×3n-1,所以a n=3,=1,4×3-1,≥2.命题点2由递推关系求数列的通项公式角度1累加法例2[江西高考]在数列{a n}中,a1=2,a n+1=a n+ln(1+1),则a n=(A)A.2+ln nB.2+(n-1)ln nC.2+n ln nD.1+n+ln n解析由题意可得,a n+1-a n=ln(1+1),∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=ln-1+ln-1-2+…+ln21+2=ln(-1·-1-2·…·21)+2=ln n+2.故选A.角度2累乘法例3已知数列{a n}的前n项和为S n,a1=1,S n=n2a n(n∈N*),则数列{a n}的通项公式为a n=2(r1).解析由S n=n2a n,可得当n≥2时,S n-1=(n-1)2a n-1,则a n=S n-S n-1=n2a n-(n-1)2a n-1,即(n2-1)a n=(n-1)2a n-1,易知a n≠0,故-1=-1r1(n≥2).所以当n≥2时,a n=-1×-1-2×-2-3×…×32×21×a1=-1r1×-2×-3-1×…×24×13×1=2(r1).当n=1时,a1=1满足a n=2(r1).故数列{a n}的通项公式为a n=2(r1).方法技巧1.形如a n+1-a n=f(n)的递推公式,用累加法求通项,即利用恒等式a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)(n≥2)求解.2.形如r1=f(n)的递推公式,用累乘法求通项,即利用恒等式a n=a1·21·32·43·…·-1(a n≠0,n≥2)求解.训练2[浙江高考]已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n=a n+1-a n,c n+1=r2c n,n∈N*.(1)若{b n }为等比数列,公比q >0,且b 1+b 2=6b 3,求q 的值及数列{a n }的通项公式.(2)若{b n }为等差数列,公差d >0,证明:c 1+c 2+c 3+…+c n <1+1,n ∈N *.解析(1)由b 1+b 2=6b 3得1+q =6q 2,又q >0,解得q =12.由c 1=1,c n +1=4c n 得c n =4n -1.由a n +1-a n =4n -1得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a 1+1+4+…+4n -2=4-1+23(n ≥2).当n =1时,a 1=1+23=1,满足上式.故a n =4-1+23.(2)由c n +1=r2c n 得r1=r2,所以c n =c 1·21·32·…·-1=c 1·13·24·…·-1r1=121r1=1+(1-1r1),所以c 1+c 2+c 3+…+c n =1+(1-1r1).由b 1=1,d >0得b n +1>0,因此c 1+c 2+c 3+…+c n <1+1,n ∈N *.命题点3数列的性质及其应用角度1数列的周期性例4若非零数列{a n }满足a n a n +2=a n +1(n ∈N *),则称数列{a n }为“等积数列”.若等积数列{a n }中a 1=4,a 2=5,则a 2025=54.解析由题意知a n a n +2=a n +1,则a n +2=r1,结合a 1=4,a 2=5,可得a 3=21=54,a 4=32=545=14,a 5=43=1454=15,a 6=54=45,a 7=65=4,a 8=76=5,…,故数列{a n }是以6为周期的周期数列,所以a 2025=a 337×6+3=a 3=54.角度2数列的单调性与最大(小)项问题例5(1)[2023北京高考]已知数列{a n }满足a n +1=14(a n -6)3+6(n =1,2,3,…),则(B)A.当a 1=3时,{a n }为递减数列,且存在常数M ≤0,使得a n >M 恒成立B.当a 1=5时,{a n }为递增数列,且存在常数M ≤6,使得a n <M 恒成立C.当a 1=7时,{a n }为递减数列,且存在常数M >6,使得a n >M 恒成立D.当a 1=9时,{a n }为递增数列,且存在常数M >0,使得a n <M 恒成立解析对于A,当a1=3时,a2=14×(-3)3+6,a3=144×(-3)9+6,…,所以{a n}为递减数列.又三次函数y=x3单调递增,所以y=14(x-6)3+6单调递增,则当n→+∞时,a n→-∞,所以a n无最小值,故A错误.对于B,当a1=5时,a2=-14+6,a3=-144+6,a4=-1413+6,…,所以{a n}为递增数列,且n→+∞时,a n→6.取M=6,则对任意n∈N*,都有a n<M=6,故B正确.对于C,当a1=7时,a2=14+6,a3=144+6,易知{a n}为递减数列,且n→+∞时,a n→6,故不存在M>6,使得a n>M恒成立,故C错误.对于D,当a1=9时,a2=334+6,a3=3944+6,易知{a n}为递增数列,且当n→+∞时,a n→+∞,所以a n无最大值,故D错误.(2)若数列{a n}的前n项积b n=1-27n,则a n的最大值与最小值之和为(C)A.-13 B.57 C.2 D.73解析由题意a1a2…a n=1-27n①.当n=1时,a1=1-27=57;当n≥2时,a1a2…a n-1=1-27(n-1)=97-27n②.由①÷②得a n=1-2797-27=7-29-2=1+22-9(n≥2).又a1=57也满足上式,所以a n=1+22-9(n∈N*).作出函数f(x)=1+22-9的图象,如图所示,易知当x∈N*时,f(x)max=f(5),f(x)min=f(4),所以a n的最小值为a4=-1,最大值为a5=3,所以a n的最大值与最小值之和为-1+3=2,故选C.方法技巧1.解决数列单调性问题的3种常用方法作差比较法a n+1-a n>0⇔数列{a n}是递增数列;a n+1-a n<0⇔数列{a n}是递减数列;a n+1-a n=0⇔数列{a n}是常数列.作商比较法当a n符号确定时,利用r1与1的大小关系确定{a n}的单调性.数形结利用数列对应的函数的图象直观判断.注意“函数”的自变量为正整数.合法2.求数列中的最大(小)项的方法(1)利用≥r1,≥-1求数列中的最大项a n ;利用≤r1,≤-1求数列中的最小项a n .(2)结合数列单调性判断数列的最大(小)项.3.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.训练3(1)已知数列{a n }满足a n =n cos 2π,b n =a n +a n +1,则数列{b n }的前50项和为-52.解析解法一由题意得,b n =a n +a n +1=n cos 2π+(n +1)cosr12π=n cos2π-(n +1)sin 2π,则b 4n =4n cos 2n π-(4n +1)sin 2n π=4n ,同理可得b 4n -1=4n ,b 4n -2=2-4n ,b 4n -3=2-4n ,所以b 4n -3+b 4n -2+b 4n -1+b 4n =4,于是数列{b n }的前50项和b 1+b 2+b 3+…+b 48+b 49+b 50=12(b 1+b 2+b 3+b 4)+b 4×13-3+b 4×13-2=12×4+2-4×13+2-4×13=-52.解法二(列举法)由题意可得a 1=0,a 2=-2,a 3=0,a 4=4,则a 1+a 2+a 3+a 4=2.通过列举可知,a 4k -3+a 4k -2+a 4k -1+a 4k =2,且a 2k -1=0,k ∈N *.设数列{a n }的前n 项和为S n ,则S 50=12(a 1+a 2+a 3+a 4)+a 49+a 50=12×2+49cos49π2+50cos50π2=-26.又b n =a n +a n +1,所以{b n }的前50项和为2S 50-a 1+a 51=-52.(2)已知数列{a n }的通项公式为a n =33,当a n 最大时,n =3.(33≈1.44)解析设a n 是数列{a n }的最大项,则r1≤,-1≤,33,≤33,解得n 因为33≈1.44,所以n 的值为3.(3)已知数列{a n }的首项a 1=m ,其前n 项和为S n ,且满足S n +S n +1=2n 2+3n ,若数列{a n }是递增数列,则实数m 的取值范围是(14,54).解析由S n +S n +1=2n 2+3n 可得,S n -1+S n =2(n -1)2+3(n -1)(n ≥2),两式相减得a n +a n +1=4n +1(n ≥2),∴a n -1+a n =4n -3(n ≥3),由此可得a n +1-a n -1=4(n ≥3).∴数列a 2,a 4,a 6,…是以4为公差的等差数列,数列a 3,a 5,a 7,…是以4为公差的等差数列.将n=1及a1=m代入S n+S n+1=2n2+3n可得a2=5-2m,将n=2代入a n +a n+1=4n+1(n≥2)可得a3=4+2m.∵a4=a2+4=9-2m,∴要使得任意n∈N*,a n<a n+1恒成立,只需要a1<a2<a3<a4即可,∴m<5-2m<4+2m<9-2m,解得14<m<54.∴实数m的取值范围是(14,54).1.[命题点1/2023山东菏泽鄄城一中三模]已知数列{a n}的前n项和为S n,且满足S n=4a n-3,则S n=(C)A.4[(25)n-1]B.4[(23)n-1]C.3[(43)n-1]D.4(3n-1)解析当n=1时,S1=4a1-3,得a1=S1=1,当n≥2时,S n=4(S n-S n-1)-3,化简得S n=43S n-1+1,即S n+3=43(S n-1+3)(n≥2),又S1+3=4,所以{S n+3}是首项为4,公比为43的等比数列,所以S n+3=4×(43)n-1,所以S n=4×(43)n-1-3=3[(43)n-1],故选C.2.[命题点2角度1/2023山东济南历城二中模拟]数列{a n}中,a1=2,a n+1=a n+n+1.(1)求数列{a n}的通项公式;(2)设b n=1,数列{b n}的前n项和为T n,证明:T n<2.解析(1)因为a n+1=a n+n+1,即a n+1-a n=n+1,所以当n≥2时,a2-a1=2,a3-a2=3,…,a n-a n-1=n,将以上各式相加,得a n-a1=2+3+…+n=(-1)(r2)2,则a n=2+r22(n≥2),当n=1时也符合上式,故a n=2+r22.(2)由题意知b n=1=22+r2<22+=2(r1)=2(1-1r1).所以T n=b1+b2+…+b n<2(1-12+12-13+…+1-1r1)=2(1-1+1)<2,问题得证.3.[命题点3角度2/2023四川达州三诊]已知数列{a n}满足12+222+…+2=n(n∈N*),b n=λ(a n-1)-n2+4n,若数列{b n}为递增数列,则λ的取值范围是(A)A.(38,+∞)B.(12,+∞)C.[38,+∞)D.[12,+∞)解析由12+222+…+2=n(n∈N*)可得12+222+…+-12-1=n-1(n≥2),两式相减可得2=1(n≥2),则a n=2n(n≥2),当n=1时,由12=1可得a1=2,满足上式,故a n=2n(n∈N*),所以b n=λ(2n-1)-n2+4n.因为数列{b n}为递增数列,即∀n∈N*,b n+1-b n>0,则λ(2n+1-1)-(n+1)2+4(n+1)-[λ(2n-1)-n2+4n]=λ·2n-2n+3>0,整理得λ>2-32,令c n=2-32,则c n+1-c n=2-12r1-2-32=5-22r1(n∈N*),>c n,当n≥3时,c n+1<c n,当n≤2时,c n+1即当n=3时,2-32取得最大值38,从而得λ>38,所以λ的取值范围为(38,+∞).故选A.学生用书·练习帮P3011.[2024江西模拟]记S n为数列{a n}的前n项和,若S n=2,≤5,5-4,>5,则a6=(A)A.1B.5C.7D.9解析因为S n为数列{a n}的前n项和,且S n=2,≤5,5-4,>5,所以a6=S6-S5=(5×6-4)-52=1.故选A.2.[2023安徽淮南第五次联考]若数列{a n}满足a1+2a2+3a3+…+na n=(n-1)·2n+1,则a7=(A)A.64B.128C.256D.512解析由a1+2a2+3a3+…+na n=(n-1)·2n+1①,得a1+2a2+3a3+…+(n-1)=(n-2)·2n-1+1(n≥2)②,①-②,得na n=[(n-1)·2n+1]-[(n-·a n-12)·2n-1+1]=n·2n-1(n≥2),所以a n=2n-1(n≥2),则a7=64.故选A.3.已知数列{a n}的通项公式为a n=3n(2n-13),n∈N*,则数列{a n}的前n项和S n取最小值时,n的值是(A)A.6B.7C.8D.5解析由3n(2n-13)≤0,得n≤132,n∈N*,所以数列{a n}的前6项为负数,从第7项开始为正数,故数列{a n}的前n项和S n取最小值时,n的值为6.故选A.4.已知数列{a n}的通项公式为a n=n+,则“a≤1”是“数列{a n}是递增数列”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若数列{a n}是递增数列,则n+1+r1>n+,化简得a<n2+n.因为函数y=x2+x=(x+12)2-14在[1,+∞)上单调递增,所以a<2,所以“a≤1”是“数列{a n}是递增数列”的充分不必要条件.故选A.5.[斐波那契数列]斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有直接的应用.在数学上,斐波那契数列{a n}是用如下递推方法定义的:a1=a2=1,a n=a n-1+a n-2(n≥3,n∈N*).已知12+22+32+…+2是该数列的第100项,则m=(B)A.98B.99C.100D.101解析由题意得,12=a2a1.因为a n=a n-1+a n-2(n≥3,n∈N*),所以a n-1=a n-a n-2(n≥3,n∈N*),得22=a2(a3-a1)=a2a3-a2a1,32=a3(a4-a2)=a3a4-a3a2,…,2=a m(a m+1-a m-1)=a m a m+1-a m a m-1.则12+22+32+…+2=a m a m+1.因为12+22+32+…+2是斐波那契数列{a n}的第100项,即a m+1是斐波那契数列{a n}的第100项,所以m=99,故选B.6.[2023上海财经大学附属中学模拟]若数列{a n }满足a 1=2,a n +1=3a n +2(n ∈N *),则数列{a n }的前n 项和S n =3r1-3-22.解析由a n +1=3a n +2得a n +1+1=3(a n +1),所以数列{a n +1}是以3为公比的等比数列,其中首项a 1+1=3,所以a n +1=3×3n -1=3n ,所以a n =3n -1,所以S n =a 1+a 2+a 3+…+a n=(31+32+…+3n )-n =3×(1-3)1-3-n =3r1-3-22.7.[2023重庆市三检]已知数列{a n }满足:对任意的正整数m ,n ,都有a m a n =a m +n ,且a 2=3,则a 10=243.解析解法一因为对任意的正整数m ,n ,都有a m a n =a m +n ,所以a 1a 1=a 2,a n a 1=a n +1.又a 2=3,所以a 1=±3,r1=a 1,所以数列{a n }是首项与公比均为a 1的等比数列,所以a n=a 1·1-1=1,所以a 10=110=35=243.解法二由题意,令m =n =2,得a 4=a 2·a 2=32.令m =n =4,得a 8=a 4·a 4=34.令m =2,n=8,得a 10=a 8·a 2=34×3=35=243.8.[2023甘肃白银5月第二次联考]设{a n }是首项为1的正项数列,且(n +1)r12-n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =1.解析解法一(累乘法)将原式分解因式,得[(n +1)a n +1-na n ](a n +1+a n )=0.∵{a n }是正项数列,∴a n +1+a n >0,∴(n +1)a n +1-na n =0,∴r1=r1,∴21×32×43×…×-1=12×23×34×…×-1(n ≥2),即1=1(n ≥2).∵a 1=1,∴a n =1a 1=1(n ≥2),当n =1时也符合上式,故a n =1.解法二(迭代法)由解法一,知r1=r1,∴a n +1=r1a n ,∴a n =-1a n -1=-1·-2-1·a n -2=…=-1·-2-1 (12)·a 1=1a 1(n ≥2).∵a 1=1,∴a n =1(n ≥2),当n =1时也符合上式,故a n =1.解法三(构造特殊数列法)由解法一,知(n +1)a n +1=na n ,∴数列{na n }是常数列,∴na n =1·a 1=1,∴a n =1.9.[2023山东泰安肥城5月适应性训练]数列{a n}的前n项和为S n,满足S n+1-2S n=1-n,且S1=3,则数列{a n-2S n=1-n,∴S n+1-(n+1)=2(S n-n),且S1-1=2≠0,解析∵S n+1=2,∴{S n-n}是以2为首项,2为公比的等比数列.∴S n-n=2·2n-1=2n,S n ∴r1-(r1)-=n+2n.∴当n≥2时,a n=S n-S n-1=n+2n-(n-1+2n-1)=2n-1+1,又a1=3不满足上式,所以a n=3,=1,2-1+1,≥2.10.[2023安徽合肥一六八中学最后一卷]如图所示的形状出现在南宋数学家杨辉所著的《详解九章算法》中,后人称之为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球.根据以上规律引入一个数列{a n},满足a1=1,a n=a n-1+n,n>1且n∈N*.(1)求数列{a n}的通项公式.(2)求证:11+12+…+1<2.解析(1)因为a n=a n-1+n,n>1,所以a n-a n-1=n,n>1,所以当n>1时,a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=(r1)2,又a1=1,当n=1时,上式也成立,所以a n=(r1)2.(2)由1=2(r1)=2(1-1r1),得11+12+…+1=2(1-12+12-13+…+1-1r1)=2(1-1r1)<2,问题得证. 11.[2024云南曲靖模拟]数列{a n}满足a n+1=2-14+2,且a1=1,则数列{a n}的前2024项的和S2024=(C)A.-2536B.-2538C.-17716D.-17718解析因为a n +1=2-14+2,且a 1=1,令n =1,可得a 2=21-141+2=16;令n =2,可得a 3=22-142+2=-14;令n =3,可得a 4=23-143+2=-32;令n =4,可得a 5=24-144+2=1.可知数列{a n }是以4为周期的周期数列,则a 1+a 2+a 3+a 4=1+16-14-32=-712,且2024=4×506,所以S 2024=506×(-712)=-17716.故选C.12.[多选/2023高三名校联考]大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,该数列从第一项起为0,2,4,8,12,18,24,32,40,50,….按此规律得到的数列记为{a n },其前n 项和为S n ,则以下说法正确的是(AD )A.a 2n -1=2n 2-2nB.182是数列{a n }中的项C.a 21=210D.当n 为偶数时,S n +2-2S n +1+S n =n +2解析数列{a n }的偶数项依次为2,8,18,32,50,…,通过观察可知a 2n =2n 2,同理可得a 2n -1=2n 2-2n ,所以a n 为奇数,2为偶数,所以a 21=212-12=220,故A 正确,C 错误;由2-12=182,得n =365,由22=182,得n =291,又n ∈N *,所以方程都无正整数解,所以182不是{a n }中的项,故B 错误;当n 为偶数时,S n +2-2S n +1+S n =(S n +2-S n +1)-(S n +1-S n )=a n +2-a n +1=(r2)22-(r1)2-12=n +2,故D 正确.故选AD.13.[2023河南名校摸底考试]已知数列{a n }满足:a 1=1,(2n +1)2a n =(2n -1)2a n +1(n ∈N *).正项数列{c n }满足:对于每个n ∈N *,c 2n -1=a n ,c 2n -1,c 2n ,c 2n +1成等比数列,则c n 解析依题意,a n ≠0,由(2n +1)2a n =(2n -1)2a n +1可得r1=(2r1)2(2-1)2,所以a n =-1·-1-2·…·32·21·a 1=(2-1)2(2-3)2·(2-3)2(2-5)2·…·5232·3212·1=(2n -1)2(n ≥2),当n =1时,a 1=1,满足上式,所以c 2n -1=a n =(2n -1)2①.因为c 2n -1,c 2n ,c 2n +1成等比数列,所以22=c 2n -1×c 2n +1=(2n -1)2(2n +1)2=(4n 2-1)2,又c n >0,所以c 2n =4n 2-1=(2n )2-1②.由①②可知,c n =2,为奇数,2-1,为偶数.14.[2023江苏省如皋中学模拟]已知数列{a n },a 1=1,且a n ·=,则a 1·a 2·a 3·…·2K2·2K1·2=12r1,a n 解析因为a n ·a n +1=r2,所以a 1·a 2·a 3·a 4·…·a 2n -1·a 2n =13×35×…×2-12r1=12r1.由a n ·a n +1=r2,可得a n +1·a n +2=r1r3,即有r2=(r1)(r2)(r3),由a 1=1,得31=2×31×4,53=4×53×6,75=6×75×8,…,2-12-3=(2-2)(2-1)(2-3)·2,所以当n =2k -1,k ∈N *时,将以上各式相乘可得,a 2k -1=2(2-1)2,即a n =2r1,n =2k -1,k ∈N *.又当n =2k -1,k ∈N *时,a 2k -1·a 2k =2-12r1,所以a 2k =2-12r1·22(2-1)=22(2r1),所以当n =2k ,k ∈N *时,a n =2r2.所以a n ==2-1,=2(k ∈N *).15.[2023福州5月质检]已知数列{a n }满足a 1=a 2=1,a n +2+a n +10=2a n +1+2n .(1)若b n =a n +1-a n ,求数列{b n }的通项公式;(2)求使a n 取得最小值时n 的值.解析(1)依题意,可得b 1=0,b n +1-b n =2n -10,于是当n ≥2时,b n -b 1=∑i=1-1(b i +1-b i )=∑i=1-1(2i -10)=2+4+…+(2n -2)-10(n -1)=n 2-11n +10.即b n =n 2-11n +10,又b 1=0也符合上式,所以b n =n 2-11n +10.(2)由(1)可知b n =a n +1-a n =(n -1)(n -10),当2≤n ≤9时,b n <0,即a n +1<a n ,当n ≥11时,b n >0,即a n +1>a n ,当n =1或n =10时,b n =0,即a n +1=a n ,所以a n 取得最小值时n =10或11.16.[条件创新]在数列{a n}中,a1=1,a2=13,2a n a n+2=a n a n+1+a n+1a n+2,若a k=135,则k=(A)A.18B.24C.30D.36解析由2a n a n+2=a n a n+1+a n+1a n+2,得2r1=1r2+1,所以数列{1}是等差数列,且首项为11=1,公差为12-11=2,所以1=1+(n-1)×2=2n-1,所以a n=12-1.由a k=12-1=135,得k=18,故选A.。

最新高三数学数列复习教案模板

最新高三数学数列复习教案模板

最新高三数学数列复习教案模板实际上,生活中蕴藏着巨大的甚至可以说是无穷无尽的教育资源,一旦教师将生活中的教育资源与书本知识两相融通起来,学生就可能感受到书本知识学习的意义与作用,今天小编在这里整理了一些最新高三数学数列复习教案模板,我们一起来看看吧!最新高三数学数列复习教案模板1一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。

高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。

提高学生的学习能力仍是我们的奋斗目标。

近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。

我们希望在复习课中要认真落实“基础练习”,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养。

特别是要学会把基础知识放在新情景中去分析,应用。

2、高中的‘重点知识’在复习中要保持较大的比重和必要的深度。

原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何中的综合问题等。

在教学中,要避免重复及简单的操练。

新增的内容:算法、概率等内容在复习时也应引起我们的足够重视。

总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习。

3、重视‘通性、通法’的落实。

要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案。

4、认真学习《--省2015 年高考考试说明》,研究近三年的高考试题,提高复习课的效率。

《考试说明》是命题的依据,复习的依据。

高考试题是《考试说明》的具体体现。

高考数学专题复习 数列的综合应用教案 文 教案

高考数学专题复习 数列的综合应用教案 文 教案

福建省漳浦县道周中学2014年高考数学专题复习数列的综合应用教案文1.数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.2.数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、分期付款、合理定价等.3.解答数列应用题的基本步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.4.数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)分期付款模型:设贷款总额为a,年利率为r,等额还款数为b,分n期还完,则b =r1+r n 1+r n-1a.[难点正本疑点清源]1.用函数的观点理解等差数列、等比数列(1)对于等差数列,由a n=a1+(n-1)d=dn+(a1-d),当d≠0时,a n是关于n的一次函数,对应的点(n,a n)是位于直线上的若干个离散的点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减数列. 若等差数列的前n项和为S n,则S n=pn2+qn (p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列:a n=a1q n-1.可用指数函数的性质来理解.①当a1>0,q>1或a1<0,0<q<1时,等比数列是递增数列;②当a1>0,0<q<1或a1<0,q>1时,等比数列{a n}是递减数列.③当q=1时,是一个常数列.④当q<0时,无法判断数列的单调性,它是一个摆动数列.2.解答数列综合问题的注意事项(1)要重视审题、精心联想、沟通联系;(2)将等差、等比数列与函数、不等式、方程、应用性问题等联系起来.题型一等差数列与等比数列的综合应用例1在等比数列{a n} (n∈N*)中,a1>1,公比q>0,设b n=log2a n,且b1+b3+b5=6,b1b3b5=0.(1)求证:数列{b n}是等差数列;(2)求{b n}的前n项和S n及{a n}的通项a n ;(3)试比较a n与S n的大小.探究提高在解决等差数列和等比数列综合题时,恰当地运用等差数列和等比数列的性质可以减少运算量,提高解题速度和准确度,如本例中就合理地应用了等差中项.已知数列{a n}中,a1=1,a2=2,且a n+1=(1+q)a n-qa n-1 (n≥2,q≠0).(1)设b n=a n+1-a n (n∈N*),证明:{b n}是等比数列;(2)求数列{a n}的通项公式;(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,a n是a n+3与a n+6的等差中项. 题型二数列与函数的综合应用例2已知函数f(x)=log2x-log x2(0<x<1),数列{a n}满足f(2a n)=2n (n∈N*).(1)求数列{a n}的通项公式;(2)判断数列{a n}的单调性.探究提高本题融数列、方程、函数单调性等知识为一体,结构巧妙、形式新颖,着重考查学生的逻辑分析能力.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x -1)的图象被f(x)的图象截得的弦长为417,数列{a n}满足a1=2,(a n+1-a n)g(a n)+f(a n)=0 (n∈N*).(1)求函数f(x)的解析式;(2)求数列{a n}的通项公式;(3)设b n=3f(a n)-g(a n+1),求数列{b n}的最值及相应的n.题型三 数列与不等式的综合应用例3 已知数列{a n },{b n }满足a 1=14,a n +b n =1,b n +1=b n1-a 2n .(1)求b 1,b 2,b 3,b 4; (2)求数列{b n }的通项公式;(3)设S n =a 1a 2+a 2a 3+…+a n a n +1,求实数a 为何值时,4aS n <b n .探究提高 由a n +b n =1得到a n 的表达式,然后利用裂项相消法求得S n ,将4aS n <b n 转化为(a -1)n2+(3a -6)n -8<0对任意n ∈N *恒成立.利用二次函数的性质进行分析,设f (x )=(a -1)x 2+3(a -2)x -8,对x 2的系数分a =1,a >1及a <1三种情况进行分类讨论,从而求得使不等式成立的a 的取值范围.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝ ⎛⎭⎪⎫1a n ,n ∈N *,(1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ; (3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0032对一切n ∈N *成立,求最小正整数m .题型四 数列的实际应用例4 某市2008年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2008年为累计的第一年)将首次不少于4 750万平方米? (2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)探究提高 解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题,这恰好是数学实际应用的具体体现.从社会效益和经济效益出发,某旅游县区计划投入资金进行生态环境建设,并以此发展旅游产业,根据规划,2010年投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业有促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(2010年为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入? (参考数据:lg 2=0.301 0)15.用构造新数列的思想解题试题:(12分)已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n ·S n -1 (n ≥2).(1)求数列{a n }的通项公式a n ; (2)求证:S 21+S 22+…+S 2n ≤12-14n.审题视角 (1)从求证内容来看,首先要求出S n .(2)从S n 与S n -1的递推关系看,可考虑构造新数列⎩⎨⎧⎭⎬⎫1S n .(3)可考虑用放缩法证明. 规范解答(1)解 ∵a n =-2S n ·S n -1 (n ≥2),∴S n -S n -1=-2S n ·S n -1.两边同除以S n ·S n -1,得1S n -1S n -1=2 (n ≥2),[2分]∴数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,以d =2为公差的等差数列,[3分]∴1S n =1S 1+(n -1)·d =2+2(n -1)=2n ,∴S n =12n.[5分]将S n =12n 代入a n =-2S n ·S n -1,得a n=⎩⎪⎨⎪⎧12n =1,12n -2n 2n ≥2.[6分](2)证明 ∵S 2n =14n 2<14n n -1=14⎝ ⎛⎭⎪⎫1n -1-1n (n ≥2),S 21=14, ∴当n ≥2时,S 21+S 22+…+S 2n =14+14×2×2+…+14·n ·n<14+14⎝ ⎛⎭⎪⎫1-12+…+14⎝ ⎛⎭⎪⎫1n -1-1n=12-14n;[10分]当n =1时,S 21=14=12-14×1.综上,S 21+S 22+…+S 2n ≤12-14n.[12分]批阅笔记 (1)在数列的解题过程中,常常要构造新数列,使新数列成为等差或等比数列.构造新数列可以使题目变得简单,而构造新数列要抓住题目信息,不能乱变形.(2)本题首先要构造新数列⎩⎨⎧⎭⎬⎫1S n ,其次应用放缩法,并且发现只有应用放缩法才能用裂项相消法求和,从而把问题解决.事实上:14n 2<14n n -1,也可以看成一个新构造:b n =14n n -1. (3)易错分析:构造不出新数列⎩⎨⎧⎭⎬⎫1S n ,从而使思维受阻.不会作不等式的放缩.方法与技巧1.深刻理解等差(比)数列的性质,熟悉它们的推导过程是解题的关键.两类数列性质既有相似之处,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.2.在等差数列与等比数列中,经常要根据条件列方程(组)求解,在解方程组时,仔细体会两种情形中解方程组的方法的不同之处.3.数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有所了解,深刻领悟它在解题中的重大作用,常用的数学思想方法有:“函数与方程”、“数形结合”、“分类讨论”、“等价转换”等.4.在现实生活中,人口的增长、产量的增加、成本的降低、存贷款利息的计算、分期付款问题等,都可以利用数列来解决,因此要会在实际问题中抽象出数学模型,并用它解决实际问题. 失误与防范1.等比数列的前n 项和公式要分两种情况:公比等于1和公比不等于1.最容易忽视公比等于1的情况,要注意这方面的练习.2.数列的应用还包括实际问题,要学会建模,对应哪一类数列,进而求解.专题四 数列的综合应用(时间:60分钟) A 组 专项基础训练题组 一、选择题1.(2011·安徽)若数列{a n }的通项公式是a n =(-1)n·(3n -2),则a 1+a 2+…+a 10等于( ) A.15B.12C.-12D.-152.(2010·福建)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A.6B.7C.8D.93.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n(n ∈N *)的前n 项和是( ) A.n n +1B.n +2n +1C.nn -1D.n +1n二、填空题4.(2011·江苏)设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.5.已知数列{a n }满足a 1=1,a 2=-2,a n +2=-1a n,则该数列前26项的和为_____________.6.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =________. 三、解答题7.已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的最小正整数n 的值.8.某人有人民币1万元,若存入银行,年利率为6%;若购买某种股票,年分红利为24%,每年储蓄的利息和买股票所分的红利都存入银行.(1)问买股票多少年后,所得红利才能和原来的投资款相等?(2)经过多少年,买股票所得的红利与储蓄所拥有的人民币相等?(精确到整年) (参考数据:lg 2≈0.301 0,lg 3≈0.477 1,lg 1.06≈0.025 3)B 组 专项能力提升题组 一、选择题1.{a n }是等差数列,a 2=8,S 10=185,从{a n }中依次取出第3项,第9项,第27项,…,第3n项,按原来的顺序排成一个新数列{b n },则b n 等于 ( )A.3n +1+2 B.3n +1-2C.3n+2D.3n-22.已知数列{a n }的通项公式为a n =log 2n +1n +2 (n ∈N *),设其前n 项和为S n ,则使S n <-5成立的自然数n( )A.有最小值63B.有最大值63C.有最小值31D.有最大值313.已知数列{a n }满足3a n +1+a n =4 (n ∈N *)且a 1=9,其前n 项和为S n ,则满足不等式|S n -n -6|<1125的最小正整数n 是 ( )A.5B.6C.7D.8二、填空题4.(2011·陕西)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为________米.5.将全体正整数排成一个三角形数阵: 1 2 3 4 5 6 7 8 9 10 ………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为__________.6.对正整数n ,若曲线y =x n(1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为____________. 三、解答题7.已知数列{a n }满足a 1=2,a n +1=a n -1n n +1.(1)求数列{a n }的通项公式;(2)设b n =na n ·2n,求数列{b n }的前n 项和S n .8.已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式; (2)设b n =1na n +3 (n ∈N *),S n =b 1+b 2+…+b n ,是否存在最大的整数t ,使得对任意的n 均有S n >t 36总成立?若存在,求出t ;若不存在,请说明理由. 答案题型分类·深度剖析例1 (1)证明 ∵b n =log 2a n ,∴b n +1-b n =log 2a n +1a n=log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q . (2)S n =9n -n 22 a n =25-n (n ∈N *)(3)解 显然a n =25-n>0, 当n ≥9时,S n =n 9-n2≤0,∴n ≥9时,a n >S n .∵a 1=16,a 2=8,a 3=4,a 4=2,a 5=1,a 6=12,a 7=14,a 8=18,S 1=4,S 2=7,S 3=9,S 4=10,S 5=10,S 6=9,S 7=7,S 8=4,∴当n =3,4,5,6,7,8时,a n <S n ; 当n =1,2或n ≥9时,a n >S n .变式训练1 (1)证明 由题设a n +1=(1+q )a n -qa n -1 (n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.由b 1=a 2-a 1=1,q ≠0, 所以{b n }是首项为1,公比为q 的等比数列.(2)a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1n , q =1(3)解 由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1. 由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8, 由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32. 另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n , 即2a n =a n +3+a n +6,n ∈N *.所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.例2 解 (1)由已知得log 22a n -1log 22a n =2n ,∴a n -1a n =2n ,即a 2n -2na n -1=0.∴a n =n ±n 2+1.∵0<x <1,∴0<2a n <1,∴a n <0.∴a n =n -n 2+1.(2)∵a n +1a n =n +1-n +12+1n -n 2+1=n +n 2+1n +1+n +12+1<1, 又∵a n <0,∴a n +1>a n , ∴{a n }是递增数列.变式训练2 (1)f (x )=(x -1)2(2)a n =⎝ ⎛⎭⎪⎫34n -1+1(3)解 b n =3(a n -1)2-4(a n +1-1),令b n =y ,u =⎝ ⎛⎭⎪⎫34n -1,则y =3⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫u -122-14=3⎝ ⎛⎭⎪⎫u -122-34. ∵n ∈N *,∴u 的值分别为1,34,916,2764,…,经比较916距12最近,∴当n =3时,b n 有最小值是-189256,当n =1时,b n 有最大值是0. 例3 (1)b 1=34,b 2=45,b 3=56,b 4=67(2)b n =n +2n +3(3)解 a n =1-b n =1n +3,∴S n =a 1a 2+a 2a 3+…+a n a n +1=14×5+15×6+…+1n +3n +4=⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫1n +3-1n +4=14-1n +4=n 4n +4. ∴4aS n -b n =an n +4-n +2n +3=a -1n 2+3a -6n -8n +3n +4.由条件可知(a -1)n 2+(3a -6)n -8<0在[1,+∞)上恒成立即可满足条件. 设f (x )=(a -1)x 2+3(a -2)x -8, 则a =1时,f (x )=-3x -8<0,恒成立;a >1时,由二次函数的性质知不可能成立; a <1时,对称轴x =-32·a -2a -1=-32⎝ ⎛⎭⎪⎫1-1a -1<0.f (x )在[1,+∞)上为单调递减函数. f (1)=(a -1)+(3a -6)-8=4a -15<0.∴a <154,∴a <1时,4aS n <b n 恒成立.综上知,a ≤1时,4aS n <b n 恒成立.变式训练3 (1)a n =23n +13(2)-49(2n 2+3n ) (3)2 012例4 解 (1)设中低价房面积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50, 则S n =250n +n n -12×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2017年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400×(1.08)n -1.由题意可知a n >0.85b n , 有250+(n -1)×50>400×(1.08)n -1×0.85.当n =5时,a 5<0.85b 5,当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2013年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 变式训练4 (1)a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1(2)解 设经过n 年,旅游业的总收入超过总投入,由此b n -a n >0,即1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1-4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n >0,令x =⎝ ⎛⎭⎪⎫45n ,代入上式得5x 2-7x +2>0,解此不等式,得x <25,或x >1(舍去),即⎝ ⎛⎭⎪⎫45n <25,由此得n ≥5. 答 至少经过5年,旅游业的总收入才能超过总投入. 课时规范训练 A 组1.A2.A3.A4.33 5.-10 6.97.解 (1)设此等比数列为a 1,a 1q ,a 1q 2,a 1q 3,…,其中a 1≠0,q ≠0.由题意知:a 1q +a 1q 2+a 1q 3=28,① a 1q +a 1q 3=2(a 1q 2+2).②②×7-①得6a 1q 3-15a 1q 2+6a 1q =0, 即2q 2-5q +2=0,解得q =2或q =12.∵等比数列{a n }单调递增,∴a 1=2,q =2, ∴a n =2n.(2)由(1)得b n =-n ·2n,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n). 设T n =1×2+2×22+…+n ·2n, ③ 则2T n =1×22+2×23+…+n ·2n +1.④由③-④,得-T n =1×2+1×22+…+1·2n-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2,∴-T n =-(n -1)·2n +1-2.∴S n =-(n -1)·2n +1-2.要使S n +n ·2n +1>50成立, 即-(n -1)·2n +1-2+n ·2n +1>50,即2n>26.∵24=16<26,25=32>26,且y =2x是单调递增函数,∴满足条件的n 的最小值为5. 8.解 设该人将1万元购买股票,x 年后所得的总红利为y 万元,则y =24%+24%(1+6%)+24%(1+6%)2+…+24%(1+6%)x -1=24%(1+1.06+1.062+…+1.06x -1)=4(1.06x-1).(1)由题意,得4(1.06x-1)=1, ∴1.06x=54.两边取常用对数,得x lg 1.06=lg 54=lg 5-lg 4=1-3lg 2.∴x =1-3lg 2lg 1.06≈1-3×0.301 00.025 3≈4.(2)由题意,得4(1.06x-1)=(1+6%)x,∴1.06x=43.解得x ≈5.答 (1)买股票4年后所得的红利才能和原来的投资款相等; (2)经过大约5年,买股票所得的红利与储蓄所拥有的人民币相等. B 组1.A2.A3.C4.2 0005.n 2-n +626.2n +1-27.(1)a n =n +1n,n ∈N * (2)S n =n ·2n +18.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2,d =0(舍). ∴a n =2n -1 (n ∈N *). (2)b n =1na n +3=12n n +1=12⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =b 1+b 2+…+b n=12[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫1n -1n +1] =12⎝ ⎛⎭⎪⎫1-1n +1=n2n +1. 假设存在整数t 满足S n >t36总成立,又S n +1-S n =n +12n +2-n2n +1 =12n +2n +1>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8.。

高三数学第二轮复习教案《数列》

高三数学第二轮复习教案《数列》

数列(第二轮复习)1.等差(比)数列的定义如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列.2.通项公式等差 a n =a 1+(n-1)d ,等比a n =a 1q n -13.等差(比)中项如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab4.重要性质:m+n=p+q ⇔ a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ⇔ a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列)5.等差数列前n 项和等比数列前n 项和6.如果某个数列前n 项和为Sn ,则7.差数列前n 项和的最值(1)若a1>0,d <0,则S n 有最大值,n 可由 ⎩⎨⎧≥≥+0a 0a 1n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ⎩⎨⎧≤≤+0a 0a 1n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法:(1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.(2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法.(3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法.(4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,()()⎩⎨⎧≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 21211-+=+=()()()⎪⎩⎪⎨⎧≠--==111111q qq a q na S n n在求和时一些正负项相互抵消,于是前n项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法.9. 三个模型:(1)复利公式按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x(2).单利公式利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和y=a(1+xr) (3).产值模型原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p) x10.例、习题:1.若关于x的方程x2-x+a=0和x2-x+b=0(a,b∈R且a≠b)的四个根组成首项为1/4的等差数列,则a+b的值为( )A. 3/8B. 11/24C. 13/24D. 31/722.在等差数列{a n}中,a2+a4=p,a3+a5=q.则其前6项的和S6为( )(A) 5 (p+q)/4 (B) 3(p+q)/2 (C) p+q (D) 2(p+q)3.下列命题中正确的是( )A.数列{a n}的前n项和是S n=n2+2n-1,则{a n}为等差数列B.数列{a n}的前n项和是S n=3n-c,则c=1是{a n}为等比数列的充要条件C.数列既是等差数列,又是等比数列D.等比数列{a n}是递增数列,则公比q大于14.等差数列{a n}中,a1>0,且3a8=5a13,则S n中最大的是( )(A)S10(B)S11(C)S20(D)S215.等差数列{a n}中,S n为数列前n项和,且S n/S m=n2/m2 (n≠m),则a n / a m值为( )(A)m/n (B)(2m-1)/n (C)2n/(2n-1) (D)(2n-1)/(2m-1)6.已知{a n}的前n项和S n=n2-4n+1,则|a1|+|a2|+…|a10|=( )(A)67 (B)65 (C)61 (D)567.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为()(A)12 (B)10 (C)8 (D)68.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(111…11)2 (16个1)位转换成十进制形式是( )(A) 217-2 (B) 216-2 (C) 216-1 (D)215-19.{a n}为等比数列,{b n}为等差数列,且b1=0,C n=a n+b n,若数列{C n}是1,1,5,…则{C n}的前10项和为___________.10.如果b是a,c的等差中项,y是x与z的等比中项,且x,y,z都是正数,则(b-c)log m x+(c-a)log m y+(a-b)log m z=_______.11.数列{a n}的前n项和S n=n2+1,则a n=_________________.12.四个正数成等差数列,若顺次加上2,4,8,15后成等比数列,求原数列的四个数.13.已知等比数列{a n }的公比为q ,前n 项的和为S n ,且S 3,S 9,S 6成等差数列.(1)求q 3的值;(2)求证a 2,a 8,a 5成等差数列.14.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,求公差d.15.数列{a n }是由正数组成的等比数列,S n 为前n 项的和,是否存在正常数c ,使得 对任意的n ∈N +成立?并证明你的结论.16.一个首项为正数的等差数列中,前3项和等于前11项和,问此数列前多少项的和最大?17.已知等比数列{a n }的首项a1>0,公比q >0.设数列{b n }的通项b n =a n+1+a n+2(n ∈N*),数列{a n }与{b n }的前n 项和分别记为A n 与B n ,试比较A n 与B n 的大小.()()()c S c S c S n n n -=-+-++12lg 2lg lg18.设等差数列{a n }的前n 项和为S n ,且S 10=100,S 100=10,试求S 110.19.已知数列{a n }和{b n }满足(n ∈N +),试证明:{a n }成等差数列的充分条件是{b n }成等差数列.20.已知数列{a n }中的a 1=1/2,前n 项和为S n .若S n =n 2a n ,求S n 与a n 的表达式.21.在数列{a n }中,a n >0, 2Sn = a n +1(n ∈N) ①求S n 和a n 的表达式;②求证: n a n a a b n n +++⋅++⋅+⋅= 21212121111321<+++nS S S S。

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案

高考数学第二轮专题复习数列教案二、高考要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差〔比〕数列的概念,掌握等差〔比〕数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题.3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明〞这一思想方法.三、热点分析1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四那么运算法那么、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目.2.有关数列题的命题趋势〔1〕数列是特殊的函数,而不等式那么是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点〔2〕数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。

〔3〕加强了数列与极限的综合考查题3.熟练掌握、灵活运用等差、等比数列的性质。

等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即〔a3+a5〕2=25.4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中表达,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。

高中数学数列教案文件

高中数学数列教案文件

高中数学数列教案文件
一、教学目标:
1. 知识目标:了解数列的概念、性质及常见数列的求和公式。

2. 能力目标:掌握数列的概念和性质,能够运用数列的知识解决实际问题。

3. 情感目标:激发学生对数学的兴趣,培养学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点:
1. 教学重点:数列的概念、性质和常见数列的求和公式。

2. 教学难点:能够灵活运用数列的知识解决实际问题。

三、教学过程:
1. 导入:通过提出一个实际问题引入数列的概念,让学生了解数列的定义和常见的数列类型。

2. 讲解:介绍数列的概念和性质,如等差数列、等比数列等,并讲解常见数列的求和公式。

3. 练习:布置练习题让学生通过练习加深对数列的理解和运用。

4. 拓展:引导学生运用数列的知识解决实际问题,拓展学生的思维广度。

5. 总结:总结数列的知识点,强化学生对数列的掌握和应用能力。

四、课堂作业:
1. 完成练习题,加深对数列的理解和掌握。

2. 找出身边的例子,分析是否符合数列的概念。

3. 思考如何运用数列的知识解决实际问题。

五、教学反馈:
及时对学生的作业进行批改和评价,引导学生对数列的理解和应用进行反思和总结,及时
纠正和加强学生的掌握程度。

高中数学数列教案模板范文

高中数学数列教案模板范文

高中数学数列教案模板范文
一、教学目标
1. 理解数列的概念和基本性质;
2. 掌握等差数列和等比数列的概念和计算方法;
3. 能够应用数列的知识解决实际问题。

二、教学内容
1. 数列的定义和基本性质;
2. 等差数列和等比数列的概念;
3. 等差数列和等比数列的通项公式及求和公式;
4. 数列的应用题。

三、教学重点难点
1. 理解并掌握数列的基本概念和性质;
2. 掌握等差数列和等比数列的通项公式和求和公式;
3. 能够应用数列的知识解决实际问题。

四、教学方法
1. 讲解引导法结合示范性问题的讲解;
2. 练习巩固法结合解题方法的展示;
3. 合作探究法促使学生主动思考;
4. 教师引导学生总结归纳,深化理解。

五、教学过程
1. 导入:通过引入实际问题,引起学生对数列的兴趣;
2. 讲解:逐步介绍数列的定义、基本性质和等差数列、等比数列的概念;
3. 练习:让学生进行相关练习,强化理解和记忆;
4. 总结:让学生总结所学知识,理清思路;
5. 拓展:引导学生应用所学知识解决实际问题;
6. 收尾:对所学内容进行总结复习,布置相关作业。

六、教学评价
1. 学生课堂表现;
2. 练习题答题情况;
3. 参与讨论的活跃度;
4. 作业完成情况。

七、教学反思
本节课设计得体,内容难易适中,学生参与度高。

但在练习环节,应该增加一些有难度的题目,引导学生深度理解,提高解题能力。

同时,教师在引导学生解题过程中,要注意启发学生思考,促进他们自主探究。

高中数学数列教案

高中数学数列教案

高中数学数列教案高中数学数列教案5篇在教学工作者开展教学活动前,就不得不需要编写教案,借助教案可以让教学工作更科学化。

教案应该怎么写呢?下面是小编整理的高中数学数列教案,仅供参考,欢迎大家阅读。

高中数学数列教案1教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题.(1)理解公式的推导过程,体会转化的思想.(2)用方程的思想认识等比数列前项和公式,利用公式知三求一.与通项公式结合知三求二.2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.(2)重点、难点分析教学重点、难点等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.(4)编拟例题时要全面,不要忽略的情况.(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.(6)补充可以化为等差数列、等比数列的数列求和问题.教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.教学重点,难点教学重点是公式的推导及运用,难点是公式推导的思路.教学用具幻灯片,课件,电脑.教学方法引导发现法.教学过程一、新课引入:(问题见教材第129页)提出问题:(幻灯片)二、新课讲解:记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.由此对于一般的等比数列,其前项和,如何化简?(板书)等比数列前项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即(板书)③两端同乘以,得④,③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)当时,由③可得(不必导出④,但当时设想不到)当时,由⑤得.于是反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.(板书)例题:求和:.设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.解:,两端同乘以,得,两式相减得于是.说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.公式其它应用问题注意对公比的分类讨论即可.三、小结:1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用.2.用错位相减法求一些数列的前项和.四、作业:略.五、板书设计:等比数列前项和公式例题高中数学数列教案2教学目标1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式认识等比数列的性质,能解决某些实际问题.2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.教学建议教材分析(1)知识结构等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用. 高中数学数列教案3一、知识与技能1.了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2.正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.二、过程与方法1.通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;2.通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性.三、情感态度与价值观通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识.教学过程导入新课师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点.下面我们看这样一些数列的例子:(课本P41页的4个例子)(1)0,5,10,15,20,25,…;(2)48,53,58,63,…;(3)18,15.5,13,10.5,8,5.5…;(4)10 072,10 144,10 216,10 288,10 366,….请你们来写出上述四个数列的第7项.生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78.师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征.生:1每相邻两项的差相等,都等于同一个常数.师:作差是否有顺序,谁与谁相减?生:1作差的顺序是后项减前项,不能颠倒.师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列.这就是我们这节课要研究的内容.推进新课等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差.师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)生:从“第二项起”和“同一个常数”.师::很好!师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考.[合作探究]等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?生:a2-a1=d,即a2=a1+d.师:对,继续说下去!生:a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;……师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了.需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?生:前面已学过一种方法叫迭加法,我认为可以用.证明过程是这样的:因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了.[教师:精讲]由上述关系还可得:am=a1+(m-1)d,即a1=am-(m-1)d.则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)由此我们还可以得到.[例题剖析]【例1】(1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.师:好!下面我们来看看第(2)小题怎么做.生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1).由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项.师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个).说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立.【例2】已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?例题分析:师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?生:只要看差an-an-1(n≥2)是不是一个与n无关的常数.师:说得对,请你来求解.生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,所以我们说{an}是等差数列,首项a1=p+q,公差为p.师:这里要重点说明的是:(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式.课堂练习(1)求等差数列3,7,11,…的第4项与第10项.分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙.解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.评述:关键是求出通项公式.(2)求等差数列10,8,6,…的第20项.解:根据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.评述:要求学生:注意解题步骤的`规范性与准确性.(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由.分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数.解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由.解:由题意可知a1=0,,因而此数列的通项公式为.令,解得.因为没有正整数解,所以-20不是这个数列的项.课堂小结师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1).高中数学数列教案4一、教材分析1、教学目标:A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

高考数学复习知识点讲解教案第38讲 数列的综合问题

高考数学复习知识点讲解教案第38讲 数列的综合问题
◆ 索引:数列实际问题的易错点为项数.
4.某商场为了满足广大数码爱好者的需求,开展商品分期付款活动.已知某商品一次性付款的金额为元,计划以分期付款的形式等额分成 期付清,每期期末所付款是元,每期利率为,则 _ _________.
[解析] 由题意得 ,, .
5.假设每次用相同体积的清水清洗一件衣服,且每次能洗去污垢的 ,那么至少要清洗___次才能使存留的污垢在 以下.
3.[教材改编] 假设某银行的活期存款年利率为 ,某人存入10万元后,既不加进存款也不取款,每年到期利息连同本金自动转存.如果不考虑利息税及利率的变化,经过年到期时的存款余额为万元,那么 ________________________.
,
[解析] 由题意得, ,, ,则易知 .
题组二 常错题
(1) 求数列 的通项公式;
解:因为,所以,,故,,所以等比数列 的公比,故,所以,即等比数列 的通项公式为 .
(2) 记,的前项和分别为,,求满足 的所有数对 .
解: 由已知得,由(1)可知 ,因为,所以 ,则,可得,因为为正整数, ,所以,8,10,则当时,,当时, ,当时,,故满足条件的所有数对为,, .
[总结反思]解决与数列有关的实际问题的一般步骤:首先要认真阅读,学会翻译(数学化),其次考虑用熟悉的数列知识建立数学模型,然后求出问题的解,最后还需验证求得的解是否符合实际.
变式题(1) 某牧场2022年年初牛的存栏数为1200头,计划以后每年存栏数的增长率为 ,且在每年年底卖出100头牛,按照该计划预计_______年年初牛的存栏量首次超过8900头.(参考数据:, )
所以数列是公比为2的等比数列,又 ,,所以,即 ,所以,可得.因为,所以 ,则,由,得 ,可得,所以不等式的解有无限个,故D正确.故选 .

高考数学一轮复习第五章数列5.5数列综合教案

高考数学一轮复习第五章数列5.5数列综合教案

高考数学一轮复习第五章数列5.5数列综合教案【教学目标】1.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 【重点难点】1.教学重点:能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力; 【教学策略与方法】自主学习、小组讨论法、师生互动法 【教学过程】 考纲传真:能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 真题再现;1.(2015·安徽高考)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .【解】 (1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得{ a 1=1,a 4=8或{ a 1=8,a 4=1(舍去).由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 11-q n 1-q =2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.知识梳理:知识点1 解答数列应用题的步骤 (1)审题——仔细阅读材料,认真理解题意. (2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的结构和特征.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到原实际问题中.具体解题步骤用框图表示如下:知识点2 数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目给出了数列前后两项的关系,或前n项和S n与S n+1之间的关系,可考虑通过建立递推数列模型求解.必会结论;银行储蓄中的计算公式(1)复利公式:按复利计算的一种储蓄,本金为p元,每期利率为r,存期为n,则本利和S=p(1+r)n. (2)单利公式:利息按单利计算,本金为p元,每期利率为r,存期为n,则本利和S=p(1+nr).(3)产值模型:原来产值的基础数为N,平均增长率为r,对于时间x的总产值y=N(1+r)x.考点分项突破考点一:等差数列与等比数列的综合应用1.已知{a n}为等差数列且公差d≠0,其首项a1=20,且a3,a7,a9成等比数列,S n为{a n}的前n项和,n∈N*,则S10的值为( )A.-110 B.-90 C.90 D.110【解析】由a3,a7,a9成等比数列,则a3a9=(a7)2,即(a1+2d)(a1+8d)=(a1+6d)2,化简可得2a1d+20d2=0,由a 1=20,d ≠0,解得d =-2.则S 10=10a 1+10×92×(-2)=110.【答案】 D2.设数列{a n }是以3为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ba 1+ba 2+ba 3+ba 4=( )A .15B .60C .63D .72【解析】 数列{a n }是以3为首项,1为公差的等差数列,则a n =3+(n -1)×1=n +2,{b n }是以1为首项,2为公比的等比数列,则b n =2n -1,则ba 1+ba 2+ba 3+ba 4=b 3+b 4+b 5+b 6=22+23+24+25=60. 【答案】 B3.已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列(b n >0),且a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.(1)求数列{a n }与{b n }的通项公式; (2)记T n 为数列{a n b n }的前n 项和,求T n .【解】 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由已知q >0,∵a 1=b 1=2,a 3+b 3=16,S 4+b 3=34.∴{2+2d +2q 2=16,8+6d +2q 2=34⇒{ d =3,q =2,∴a n =a 1+(n -1)d =2+3(n -1)=3n -1,b n =b 1qn -1=2n.(2)T n =2×2+5×22+…+(3n -1)×2n,2T n =2×22+5×23+…+(3n -1)×2n +1,两式相减得-T n =4+3×22+…+3×2n-(3n -1)×2n+1=4+121-2n -11-2-(3n -1)×2n +1=-8-(3n -4)2n +1.∴T n =(3n -4)2n +1+8.归纳: 等差数列、等比数列综合问题的解题策略 1.分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题,如为求和需要先求出通项、为先出通项需要先求出首项和公差(公比)等,确定解题的顺序.2.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的. 考点二: 数列的实际应用1.某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).【解】 (1)由题意得:a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d ,…a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d =…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2整理得:a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d .由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3000-3d )+2d =4 000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 0003m-2m +13m -2m .故该企业每年上缴资金d 的值为1 0003m -2m +13m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元. 跟踪训练:1.现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.【解析】 设对应的数列为{a n },公差为d (d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n ,由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,∴(a 1+5d )2=a 1(a n -1+d ),即(10+5d )2=10(38+d ),解得d =2,∴a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.【答案】 16归纳:解答数列实际应用问题的步骤1.确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型,基本特征见下表:基本特征 均匀增加或者减少指数增长,常见的是增产率问题、存款复利问指数增长的同时又均匀减少.如年收入增长率为20%,每a (常数)作为下年度的开销,即数列{a n }满足a n +2.准确求解模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.3.给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这一点.考点三: 数列与其他知识的交汇问题 ●命题角度1 数列与函数的交汇问题1.已知定义在R 上的函数f (x )是奇函数且满足f (3+x )=f (x ),f (2)=-5,数列{a n }满足a 1=-1,且S n =2a n +n (其中S n 为{a n }的前n 项和),则f (a 4)+f (a 5)=________.【解析】 ∵函数f (x )是奇函数,∴f (-x )=-f (x )且f (0)=0,又∵f (3+x )=f (x ),∴f (x )是以3为周期的周期函数,∴f (2)=f (-1)=-5,∵a 1=-1,且S n =2a n +n ,∴a 2=-3,∴a 3=-7,a 4=-15,∴a 5=-31, ∴f (a 4)+f (a 5)=f (-15)+f (-31)=f (0)+f (-1)=0+f (2)=-5.【答案】 -52.(2014·四川高考)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图象上(n ∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n .【解】 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2. 所以S n =na 1+n n -12d =-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n,a n b n =n2n .所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n所以T n =2n +1-n -22n. ●命题角度2 数列与不等式的交汇问题3.(2014·广东高考)设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a na n +1<13.【解】 (1)令n =1代入得a 1=2(负值舍去). (2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *得[S n -(n 2+n )](S n +3)=0.又已知各项均为正数,故S n =n 2+n .当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n ,当n =1时,a 1=2也满足上式, 所以a n =2n ,n ∈N *.(3)证明:k ∈N *,4k 2+2k -(3k 2+3k )=k 2-k =k (k -1)≥0,∴4k 2+2k ≥3k 2+3k , ∴1a ka k +1=12k2k +1=14k 2+2k ≤13k 2+3k =13⎝ ⎛⎭⎪⎫1k -1k +1. ∴1a 1a 1+1+1a 2a 2+1+…+1a na n +1≤13⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -1n +1=13⎝ ⎛⎭⎪⎫1-1n +1<13. ∴不等式成立.归纳:数列与其他知识交汇问题的常见类型及解题策略1.数列与函数的交汇问题(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,。

数列教案优秀5篇

数列教案优秀5篇

数列教案优秀5篇高三数学数列教案篇一数列§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。

重点:1数列的概念。

按一定次序排列的一列数叫做数列。

数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。

由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。

2、数列的通项公式,如果数列{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做数列的通项公式。

从映射、函数的观点看,数列可以看成是定义域为正整数集N-(或宽的有限子集)的函数。

当自变量顺次从小到大依次取值时对自学成才的一列函数值,而数列的通项公式则是相应的解析式。

由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。

难点:根据数列前几项的特点,以现规律后写出数列的通项公式。

给出数列的前若干项求数列的通项公式,一般比较困难,且有的数列不一定有通项公式,如果有通项公式也不一定唯一。

给出数列的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。

过程:一、从实例引入(P110)1. 堆放的钢管4,5,6,7,8,9,102. 正整数的倒数3、4. -1的正整数次幂:-1,1,-1,1,…5、无穷多个数排成一列数:1,1,1,1,…二、提出课题:数列1、数列的定义:按一定次序排列的一列数(数列的有序性)2、名称:项,序号,一般公式,表示法3、通项公式:与之间的函数关系式如数列1:数列2:数列4:4、分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。

5、实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集N-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。

2025届高考数学一轮复习教案:数列-数列的概念

2025届高考数学一轮复习教案:数列-数列的概念

第七章数列第一节数列的概念【课程标准】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.3.能够利用a n与S n的关系求数列的通项公式.4.能根据数列递推关系求数列的项或通项公式.【考情分析】考点考法:高考题常以数列的概念为载体,考查数列项、前n项和及其与通项公式的关系.S n和a n的关系是高考热点,在各种题型中都会有所体现.核心素养:数学抽象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项与序号n之间的关系式前n项和数列{a n}中,S n=a1+a2+…+a n2.数列的表示法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n与a n+1的关系式或a1,a2和a n-1,a n,a n+1的关系式等表示数列的方法函数法a n=f(n),n∈N*【微点拨】(1)并不是所有的数列都有通项公式;(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.3.数列的分类单调性递增数列∀n∈N*,a n+1>a n递减数列∀n∈N*,a n+1<a n常数列∀n∈N*,a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数k,a n+k=a n【微点拨】(1)数列的单调性可以类比数列的通项公式对应的函数解析式在区间(0,+∞)上的单调性;(2)可以把数列函数化,利用函数方法研究数列的单调性.4.数列的前n项和数列{a n}的前n项和S n=a1+a2+a3+…+-1+a n,则a n=1,=1,--1,≥2.【基础小题·自测】类型辨析改编题号12,3,4 1.(多维辨析)(多选题)下列结论不正确的是()A.数列5,2,0与2,0,5是同一个数列B.根据数列的前几项归纳出数列的通项公式可能不止一个C.任何一个数列不是递增数列,就是递减数列D.如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n=S n-S n-1【解析】选ACD.A中两个数列项的顺序不同,不是同一个数列;B正确;C中数列可能是常数数列或摆动数列;D中当n=1时,a1=S1-S0无意义.2.(选择性必修第二册P5例2·变形式)数列0,23,45,67,…的一个通项公式为()A.a n=-1r1B.a n=-12r1C.a n=2(-1)2-1D.a n=22r1【解析】选C.将0写成01,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*.3.(选择性必修第二册P6例5·变形式)数列1,3,6,10,15,…的递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n≥2,n∈N*C.a n+1=a n+(n+1),n≥2,n∈N*D.a n=a n-1+(n-1),n∈N*,n≥2【解析】选B.设数列1,3,6,10,15,…为,则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,n=2时,A,D不合题意;而C中不包含a2-a1=2,由此可得数列满足a n-a n-1=n,n≥2,n∈N*.4.(选择性必修第二册P4例1·变形式)已知数列{a n}满足a n=(r1)2,则S3=________.【解析】数列{a n}满足a n=(r1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.答案:10【巧记结论·速算】在数列{a n}中,若a n最大,则≥-1,≥r1(n≥2).若a n最小,则≤-1,≤r1(n≥2).【即时练】已知数列中,a n=n2-5n+4,则数列的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项【解析】选D.根据题意,数列中,a n=n2-5n+4,则a n+1-a n=(n+1)2-5(n+1)+4-n2+5n-4=2n-4,当n<2时,有a n+1-a n<0,则有a1>a2,当n=2时,有a n+1-a n=0,则有a2=a3,当n>2时,有a n+1-a n>0,则有a3<a4<……故数列的最小项是第2项、第3项.【核心考点·分类突破】考点一通项公式的探索及应用[例1](1)(多选题)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,是{a n}的项的是()A.21B.33C.152D.153【解析】选ABD.由数列的通项公式得,a1=21,a2=33,a12=153.(2)写出数列的一个通项公式,使它的前4项分别是下列各数.①23,45,87,169;②-12,23,-34,45;③3,4,3,4;④6,66,666,6666.【解析】①4个项都是分数,它们的分子依次为2,22,23,24,分母是正奇数,依次为2×1+1,2×2+1,2×3+1,2×4+1,所以给定4项都满足的一个通项公式为a n=22r1.②4个项按先负数,后正数,正负相间排列,其绝对值的分子依次为1,2,3,4,分母比对应分子多1,所以给定4项都满足的一个通项公式为a n=(-1)nr1.③4个项是第1,3项均为3,第2,4项均为4,所以给定4项都满足的一个通项公式为a n=3,=2-14,=2(k∈N*).④4个项,所有项都是由数字6组成的正整数,其中6的个数与对应项数一致,依次可写为6=23(10-1),66=23(102-1),666=23(103-1),6666=234-1),所以给定4项都满足的一个通项公式为a n=23(10n-1).【解题技法】由数列的前几项求通项公式的方法(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n或(-1)n+1来调整.【对点训练】1.若一数列为1,37,314,321,…,则398是这个数列的()A.不在此数列中B.第13项C.第14项D.第15项【解析】选D.因为1=37×0,37=37×1,314=37×2,321=37×3,因此符合题意的一个通项公式为a n=37(n-1),由37(n-1)=398解得n=15,所以398是这个数列的第15项.2.根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)-11×2,12×3,-13×4,14×5,…;(3)23,415,635,863,1099,…;(4)9,99,999,9999,….【解析】(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式为a n=(-1)n·1(r1).(3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数的乘积,故所求数列的一个通项公式为a n=2.(2-1)(2r1)(4)这个数列的前4项可以写成10-1,100-1,1000-1,10000-1,故所求数列的一个通项公式为a n=10n-1.考点二已知S n或S n与a n的关系求a n[例2]金榜原创·易错对对碰①若数列{a n}的前n项和S n=2n+1,则数列的通项公式为a n=________.②若数列{a n}的前n项和S n=2n-1,则数列的通项公式为a n=________.【解析】①当n=1时,a1=S1=21+1=3;当n≥2时,a n=S n-S n-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.综上有a n=3,=1,2-1,≥2.答案:3,=1,2-1,≥2.②当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.综上有a n=2n-1.答案:2n-1【解题技法】1.已知S n求a n的三个步骤(1)利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的解析式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的解析式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.2.已知S n与a n的关系求a n的两个方法(1)利用S n-S n-1=a n(n≥2)消去S n,转化为a n与a n-1的关系求a n;(2)利用a n=S n-S n-1(n≥2)消去a n,转化为S n与S n-1的关系,求出S n后再求a n.提醒:当n≥2时推出的关系不包含n=1的情况,因此需要验证n=1时是否成立,如果成立,则合并表示,如果不成立,则分段表示.【对点训练】1.已知正项数列{a n}中,1+2+…+=(r1)2,则数列{a n}的通项公式为()A.a n=nB.a n=n2C.a n=2D.a n=2 2【解析】选B.因为1+2+…+=(r1)2,所以1+2+…+-1=(-1)2(n≥2),两式相减得=(r1)2-(-1)2=n(n≥2),所以a n=n2(n≥2),①又当n=1时,1=1×22=1,a1=1,适合①式,所以a n=n2,n∈N*.2.记S n为数列{a n}的前n项和,若S n=2a n+1,则S n=________.【解析】因为S n=2a n+1,所以S n+1=2a n+1+1,所以a n+1=2a n+1-2a n,所以a n+1=2a n,当n=1时,S1=a1=2a1+1,所以a1=-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S n=-(1-2)1-2=1-2n.答案:1-2n【加练备选】1.已知数列{a n}满足a1+2a2+3a3+…+na n=2n,则a n=________.【解析】当n=1时,a1=21=2,因为a1+2a2+3a3+…+na n=2n,①故a1+2a2+3a3+…+(n-1)a n-1=2n-1(n≥2),②由①-②得na n=2n-2n-1=2n-1,所以a n=2-1.显然当n=1时不满足上式,所以a n=1,,≥2.答案=1,≥22.已知数列的前n项和S n=3n+b,求的通项公式.【解析】当n=1时,a1=S1=3+b.当n≥2时,a n=S n-S n-1=2·3n-1,因此,当b=-1时,a1=2适合a n=2·3n-1,所以a n=2·3n-1.当b≠-1时,a1=3+b不适合a n=2·3n-1,所以a n=3+,=1,2·3-1,≥2.综上可知,当b=-1时,a n=2·3n-1;当b≠-1时,a n=3+,=1,2·3-1,≥2.考点三数列的性质及其应用【考情提示】数列作为一种特殊的函数,除考查求通项公式、求和等之外,还考查数列的单调性,项的最值,周期性等,解题时要类比函数的研究方法,结合数列的特性.角度1数列的单调性及项的最值[例3]已知数列{a n}的通项公式为a n=3-23r1(n∈N*).则下列说法正确的是()A.这个数列的第10项为2731B.98101是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列【解析】选C.令n=10,得a10=2831.故选项A不正确,令3-23r1=98101,得9n=300,此方程无正整数解,故98101不是该数列中的项.因为a n=3-23r1=3r1-33r1=1-33r1,又n∈N*,所以数列{a n}是单调递增数列,所以14≤a n<1,所以数列中的各项都在区间[14,1)内,故选项C正确,选项D不正确.【解题技法】关于数列的单调性及项的最值(1)求数列项的最值需要先研究数列的单调性,一是通过列举项找规律;二是利用数列递增(减)的等价条件,求出递增、递减项的分界点处的n值.(2)利用函数方法,令n∈(0,+∞),研究对应函数的单调性、图象确定最值,再回归到数列问题.【对点训练】已知数列{a n}的通项公式为a n=3r2,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】选D.因为a n+1-a n=3r3+2r1-3r2=3-3-2r1,由数列{a n}为递减数列知,对任意n ∈N*,a n+1-a n=3-3-2r1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).角度2数列的周期性[例4]已知数列{a n}满足a n+1=a n-a n-1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2029的值为()A.2029n-mB.n-2029mC.mD.n【解析】选C.根据题意计算可得a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,因此数列{a n}是以6为周期的周期数列,且a1+a2+…+a6=0,所以S2029=S338×6+1=a1=m.【解题技法】关于数列的周期性在求数列的某一项的值,且该项的序号较大时,应该考虑该数列是否具有周期性,一般地,求出数列的前几项,确定周期,然后利用数列的周期性即可求出所求项.【对点训练】已知数列{a n}中,a1=12,a n+1=1+1-,则a2025=()A.-2B.12C.-13D.3【解析】选B.因为a1=12,所以a2=1+11-1=3,a3=1+21-2=-2,a4=1+31-3=-13,a5=1+41-4=12,…,所以数列{a n}是周期数列且周期T=4,所以a2025=a1=12.。

人教版高考数学复习《数列求和(错位相减法)》优质教案

人教版高考数学复习《数列求和(错位相减法)》优质教案

《数列求和(错位相减法)》教学设计教学背景:数列求和是高考数列问题中的一个重难点。

故安排了数列求和总结的专题课,帮助学生归纳数列求和的方法,形成知识体系。

错位相减法是数列求和的一种重要方法,之前在推导等比数列求和公式的时候,学生有教材分析接触过一次,但是没有推广到差比数列的求和。

由于错位相减法的步骤比较多,计算起来也比较复杂,所以学生容易犯错。

所以本节课的目的在于让学生掌握错位相减法,能运用错位相减法求差比数列的和。

教学目标:(1)对例题进行变形,引导学生通过类比等比数列的求和方法,探索差比数列的求和方法,即错位相减法。

从中让学生体会化归与转化的数学思想。

(2)通过课堂练习,让学生熟悉错位相减法的解题步骤。

知识与技能:掌握错位相减法,能够用错位相减法求“差∙比”数列的和。

过程与方法:通过两等式错位相减,将不能求和的问题转化成能用等比数列求和的问题,在探究的过程中让学生体会数学的转化思想。

情感态度与价值观:通过例题变形,引导学生探索差比数列的求和方法,体会化归情感,态度与与转化的数学思想,唤起学生追求真理,乐于创新的情感需求,引价值观发学生渴求知识的强烈愿望。

教学重难点重点:会用错位相减法求通项为等差数列与等比数列对应项乘积的数列前n 项和。

难点:错位相减后的项数、符号问题,以及对转化数学思想的理解。

教学过程:一、课前复习让学生回顾已经学过的数列求和方法:(1)公式法;等差数列 等比数列 2S 2)1(S 1n 1n na a n d n n na +=-+=或通项公式: 一次函数 等差数列 指数型函数 等比数列(2)分组求和法:通项公式是“差+比”型数列的求和注:在求和之前,一定要先判断数列的类型,如何判断?设计意图:回顾数列求和的方法,求和之前先判断数列类型,为接下来研究错位相减法做好复习铺垫工作。

二、方法探究例:已知数列{a n }的通项公式为a n =n , 数列{b n }的通项公式为b n =2n(1)求数列{a n }的前n 项和;(“差”求和)(2)求数列{b n }的前n 项和;(“比”求和)(3)求数列{a n +b n }的前n 项和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省漳浦县道周中学2014年高考数学专题复习 数列教案 文一、高考地位与考查要求一般考察两种常见题型:1、等差等比数列求项求和等问题,主要涉及基本量思想;2、数列的探索性问题,如周期数列、分形等.如果数列出现在解答题的前几题中,往往考察等差等比数列的求项求和,运用累加、累乘法的简单递推数列的求项求和问题,主要考察学生的运算能力.如果数列问题出现在最后一两题,则是综合性很强的问题,大多以数列为考查平台,综合运用函数、方程、不等式、简单数论等知识,通过运用递推、函数与方程、归纳与猜想、等价转化、分类整合等各种数学思想方法,考查学生灵活运用数学知识分析问题、解决问题的能力和数学探索创新的能力.二、基本题型与基本策略基本题型一:运用基本量思想解决等差、等比数列的求项求和问题例1.(1)在等差数列{ a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6= . 说明:这是一道典型的运用基本量思想求数列和的问题,根据a 1+a 2=30,a 3+a 4=120,可以列出关于1a d 和的方程两个二元一次方程方程,通过加减消元或带入消元接出1a d 和的值;同时注意到个方程数列项下标特征,根据等差数列的性质1532642,2a a a a a a +=+=,得到a 5+a 6=34122()()a a a a +-+=210.变式:(2010全国卷Ⅰ理科数学4)已知各项均为正数的等比数列{}n a 中,123a a a =5,789a a a =10,则456________.a a a =说明:表面看这是一道可以用基本量思想解决的问题,但在实际操作过程中发现,使用基本量列出方程组计算量较大,要得到结果还需借助指数幂的运算性质,易出错.如果仔细观察已知条件与所求结论的关系,不难发现2417a a a =,2528a a a =,2639a a a =,运用等比数列的性质可以很快得到456a a a =选择恰当的方法有时可以大大简化我们的计算,为考试赢得宝贵的时间,而恰当方法的选择,借助于我们认真审题和知识的融会贯通.(2)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .说明:这也是一道典型的运用基本量思想求数列和的问题,同时也是一道简单地将等差数列和等比数列组合在一起的问题,通过410a =和3610a a a ,,成等比数列可以直接列出两个关于基本量1a d 和的方程组:12111310(5)(2)(9)a d a d a d a d +=⎧⎨+=++⎩,此方程组是由一个二元一次与一个二元二次方程组合而成,宜采先化简再带入消元法的方法求解,第二个方程可化简为217a d d =,学生特别容易将d 直接消去,导致漏解的错误.最终结果20S =200或330.此种题型方法常规,思路明确,计算量适中,常常出现在填空题的前六题或解答题的前两题,属容易题.例2. 已知数列{a n }的通项公式a n =9-2n ,则| a 1|+| a 2|+…+| a 20|= . 说明:这是一道利用等差数列基本量求分段数列和的问题.关键是引导学生正确写出分段数列的通项公式*92(4)()29(5)n n n a n N n n -≤⎧=∈⎨-≥⎩,分段的依据是|9-2n|=0,利用分段通项公式分段求和得|a 1|+|a 2|+…+|a 20|=2*28(4)()832(5)n n n n N n n n ⎧-+≤⎪∈⎨-+≥⎪⎩.此题不仅考察学生的基本运算能力,也考察了学生分段函数、含绝对值表达式的处理方法. 例3.(2010浙江理科数学卷15)设1,a d 为实数,首项为1a ,公差为d 的等差数列{n a }的前n 项和为n S ,满足56S S ⋅+15=0,则d 的取值范围是__________. 说明:直接运用基本量列出关于1a d 和方程11(10)(615)150a d a d +++=,在列式时注意等差数列求和公式的选择,由于此题中涉及的两个基本量是1a d 和,所以可以选择用1a d 和表示的求和公式,从而化简得2211291010a da d +++=,结合二次函数方程有解判别式大于等于零的性质,得280,d d d ∆=-≥≥≤-即这是一道将数列基本量思想与二次方程知识有机结合的问题,不仅考查学生的计算能力,同时还考查了知识的迁移与转化能力.基本策略:等差、等比数列是两类最基本的数列,它们的通项公式、前n 项和的公式中均含有两个基本量,因此数通过基本量思想求解等差等比的通项和前n 项和是高考考查的重点也是热点.在运用基本量思想解决问题时,要注意以下两个方面:1、基本两思想在解决问题时比较程序化,认真审题选择恰当的方法是关键,有两个性质有时可以简化我们的计算(在等差数列中,若*(,,,),m n p q m n p q N +=+∈则m n p q a a a a +=+在等比数列中若*(,,,),m n p q m n p q N +=+∈则m n p q a a a a ⋅=⋅);2、在计算过程中注意观察表达式的特征,灵活地运用计算方法.在等差数列求和的问题中,首先是确定通项,选择恰当的求和公式,在等比数列求和中要注意q =1的情况单独讨论.基本题型二:递推数列的求项求和问题例4. 设数列{a n }的前n 项和为S n ,已知a n =5S n -3 (n ∈N),求a 1+a 3+…+a 2 n -1的值.说明:在表达式中同时出现a n 和S n 时,我们通常采用的方法是运用公式11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩,将表达式转化为都关于a n 或S n 的式子,然后再进行求解.因此,此题表达式可变形为115()n n n n a a S S ---=-,即15n n n a a a --=,所以{}n a 为等比数列,求和问题迎刃而解.例5.(2010新课标全国理科卷17)设数列{}n a 满足12a =,1132n n n a a -+-=⨯.(1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n S .说明:此题为解答题的第一题,是一道典型的运用递推数列性质求项求和的问题,第一问用到我们熟知的累加法求通项,即2301122113232322n n n n n n n a a a a a a a a -----=-+-++-+=⨯+⨯++⨯+ 1321n -=⨯-;第二问中132n n n b na n n -==⨯-,则采用分组求和的方法求和,在分组求和中的第一个分组则采用错位相减法求和,此题主要考察学生对基本方法的熟悉程度.使用累加法求通项的递推形式为)(1n f a a n n =-+,使用累乘法求通项的递推形式为)(1n f a a nn =+,使用错位相减法求和的通项公式为()(0,0,1)n n c an b q a q =+⋅≠≠.例 6. 设数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),则数列{}n a 的通项为_______________.说明:这个递推通项满足1n n a ca d +=+(0,1,0)c c d ≠≠≠的递推形式,通常可以采用待定系数法构造新数列,如等式两边同时加上1得到a n +1+1=2(a n +1),新数列{a n +1}为首相为2,公比为2的等比数列,从而得到数列{a n +1}的通项公式,自然得到数列{a n }的通项.这种递推形式是较为常见的递推形式.但作为一道数列填空题,我们有时也可采用特殊值法进行简单的推导得到通项,如此题通过递推公式很快可以得到a 2=3,a 3=7,a 4=31,因此,我们可以猜想a n =12-n,再代入验证.这种由特殊到一般的推理方法对于数列的填空题有时也很奏效.*例7.(2007全国数学Ⅰ文科19)在数列{}n a 中,11a =,122n n n a a +=+.(Ⅰ)设12n n n a b -=.证明:数列{}n b 是等差数列;(Ⅱ)求数列{}n a 的前n 项和n S . 说明:这也是一道典型的运用递推数列性质求项求和的问题,递推公式往往形式多样,而通过适当地变形转会为等差等比数列是常用的一个手段,直接转化难度较大,而第一问中的12n n n a b -=给了我们一些暗示,是否122n n n a a +=+两边同时除以2n 就可以构造成一个新的等差数列呢?通过猜想、探索很快验证了我们的想法是正确的.通常我们遇到的运用构造新数列方法求递推数列的通项还有其它形式,如 110(0)n n n n a ma a a m ++++=≠(可采用两边同除以n n a a ⋅+1构造为等差数列),1n n a ca d +=+(0,1,0)c c d ≠≠≠(可使用待定系数法变形为)(1λλ+=++n n a c a 的形式,构造为等比数列),1n n n a c a d b -=⋅+⋅(0,1,0,)c c d b c ≠≠≠≠(两边同除以n b 后再使用待定系数法构造为等比数列).在第二问中,则出现了使用错位相减法求和的常见模型.基本策略:一般数列的求项求和问题大多以递推通项为背景,通过常见的公式、累加、累乘、构造等方法对递推公式进行变形,最终转化为我们熟知的等差、等比数列的定义式进行求解,有时候在构造过程中我们会用到多种构造方法,但最值的目的还是将未知的数列转化为我们已知的数列进行求解.对于理科的学生可以通过列举前几项,猜想通项公式,运用数学归纳法证明的方式求解通项.求递推数列通项是数学中化归思想的重要体现,对学生的能力要求较高,是历年高考中的热点与难点.复习时建议不同层次的学校根据学生特点进行复习,几种基本的递推模型人人掌握,对于变形巧妙,难度较大的问题,讲解时可预设台阶或视学生情况选讲.基本题型三:数列与不等式、函数与方程等知识的综合问题例8. 数列{}n a 是等比数列,1a =8,设n n a b 2log =(n N +∈),如果数列{}n b 的前7项和7S 是它的前n 项和组成的数列{}n S 的最大值,且7S ≠8S ,求{}n a 的公比q 的取值范围.说明:这是一道较为简单的数列与函数、不等式结合的问题,解题步骤如下: 因为{n a }为等比数列,设公比为q ,由18a =则18n n a q -=⋅, 122log (8)(1)log 3n n b q n q -=⋅=-+∴{n b }为首项是3,公差为2log q 的等差数列;由7s 最大,且87s s ≠ ∴876s s s >≤ ∴667678s s b s b b ≤+>++∴70b ≤且80b < ∴{2236log 037log 0q q +≥+< ∴213log 27q -≤<- ∴317222q --≤<即2q ≤<从解题的过程可以看出此题运用到对数运算性质、简单对数不等式的解法,数列在题中作为问题的载体,仅用到基本的等差等比通项知识.例9.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N*).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n ;(3)若对任意n ∈N*,都有a n 2+a n +12a n +a n +1≥4成立,求a 1的取值范围. 说明:这是南京市2011届高三学情分析考试中的压轴题,题目涵盖了数列中的常见思想方法,如第一问运用基本量思想,第二问题分奇偶化归为等差数列求和,第三问是与不等式、函数相结合的恒成立问题.较为全面地考察了学生分析解决问题的能力. 在第二问中,分奇偶讨论通项是求和的前提,而为什么要分奇偶讨论通项是学生理解的一个难点,由已知a n +1+a n =4n -3(n ∈N*),得a n +2+a n +1=4n +1(n ∈N*),两式相减,得a n +2-a n =4,这个表达式是数列的隔项递推公式,也就说明此数列隔一项具备等差数列的形式,那数列中隔项项的下标特点即是奇偶分类,因此,想到分奇偶讨论通项就理所当然.而有些学生可能避开分奇偶讨论通项而直接求和也是很好的,因为已知a n +1+a n =4n -3(n ∈N*),这个表达式传递给我们连续两项的和组成一个新的数列,而这个数列是我们熟知的等差数列这一信息,求和非常方便,但在计算的过程中很容易发现求和时项数还是要分奇偶讨论.当n 为奇数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -2+a n -1)+a n=1+9+…+(4n -11)+2n=n -12×(1+4n -11)2+2n =2n 2-3n +52.(在组合过程中将1a 单独提出可能更为简单,不需要求解通项) 当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=1+9+…+(4n -7)=2n 2-3n 2. 第三问是不等式的恒成立问题,由第二问的提示,处理第三问的前提是找到数列的通项,即 a n =⎩⎨⎧2n -2+a 1,n 为奇数,2n -3-a 1,n 为偶数.①当n 为奇数时,a n 2+a n +12a n +a n +1≥4即为2a 12-2a 1+5≥-8n 2+28n -12, 令f (n )=-8n 2+28n -12=-8(n -74)2+252, 当n =1时,f (n )max =8,所以2a 12-2a 1+5≥8,解得a 1≥1+72或a 1≤1-72. ②当n 为偶数时,a n =2n -a 1-3,a n +1=2n +a 1, a n 2+a n +12a n +a n +1≥4即为2a 12+6a 1+9≥-8n 2+28n -12,令f (n )=-8n 2+28n -12=-8(n -74)2+252, 当n =2时,f (n )max =12,所以2a 12+6a 1+9≥12,解得a 1≥12或a 1≤-3. 综上,a 1的取值范围是a 1≥1+72或a 1≤-3. *例10.(2008陕西卷理科数学22)已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n a x x x ⎛⎫-- ⎪++⎝⎭≥,12n =,,; (Ⅲ)证明:2121n n a a a n +++>+. 说明:这是一道高考压轴题,虽然难度大,但第一问还是常规递推数列求通项问题,寻找正确的数列通项公式是解决此类问题的前提,1321n n n a a a +=+这个表达式可以两边直接取倒数,变形为3213111+⋅=+n n a a 的形式,而这种形式正是我们前面提及的1n n a ca d +=+(0,1,0)c c d ≠≠≠形式,可使用待定系数法变形为)(1λλ+=++n n a c a 的形式,构造为等比数列)11(31111-=-+nn a a 的形式,从而求得233+=n nn a .此种构造法属二次变形构造,第一次先变形为我们熟知的可以使用构造法解决通项的数列递推形式,第二次则变形为我们熟知的等差等比数列模型求解通项,属于难度较大的递推数列求通项问题.后两问是数列与函数、不等式的证明融合一体的综合问题.从第二问的提法中我们可以感知这是个函数与数列结合的恒成立问题,对于不等式的右边进行变形,分离变量求最值是我们通常的手段,但在变形过程中我们发现无法将n 与x 分离,而不等式右边含有n 的表达式与n a 又有着密切的关系,自然想到如下变形方式:,由于,0>n a 则原命题成立.在此问中,既然涉及到函数求最值的问题,我们也可以直接将不等式右边看做关于x 的一个函数,对其进行求导求最值.第三问是数列求和与不等式证明相结合的问题,通常处理方法有以下两种:(1)能直接求和的先直接求和,将所求和的表达式与要证明的式子进行做差或对比证明;(2)将求和的数列通项进行有效放缩,使之变为能够求和的通项进行求和. 本题显然不适用(1),因为n a 的通项不宜直接求和,因此放缩通项使我们的首选,而放缩的形式非常丰富,如n n n n n a 3212321233->+-=+=,很好的一个放缩形式,求和也十分方便,但是整理后得n n n a a a 31121+->+++ ,这比我们所要求的结果略小,说明放过了.此时我们有两个思路,一是对放缩的式子进行微调,使之符合我们的要求,如果行不通我们可以再次审题,发现第二问的结论为我们放缩提供了条件,即.2222)1(1)1(1)1()31(1)1(1x x nx x n x x nx x n n+-+++>+--+++=若关于x 的方程1)1(1)1(1222+=+-+++n n x x nx x n 有解,01>=n x ,则符合对任意的0x >,21121(1)3n n a x x x ⎛⎫-- ⎪++⎝⎭≥这种放缩形式,此时2121n n a a a n +++>+结论成立.在解决数列中的不等式问题时,有时直接使用不等式的知识求解,有时则需用到裂项法、放缩法进行数列求和,有时还会运用函数的单调性、函数的最值等知识进行判断求解,教师在讲解此类问题是尽量避免技巧性过强的放缩类问题,可根据学生情况对原题进行改编,降低难度.基本策略:数列与函数、不等式都是高中数学重要内容,一些常见的解题技巧和思想方法在数列与函数、不等式的综合问题中都得到了比较充分的体现.以其知识交汇处为主干,构筑成知识网络型代数推理题,在高考中出现的频率高、难度大.学生遇到此类问题一般具有为难情绪,因此,建议复习时从入口低的问题入手,让学生找到解决此类问题的基本途径,建议能力稍弱的学生遇到此类问题不必强求.基本题型四:数列的探索型、开放型问题 例11.(2010上海理科10)在n 行n 列矩阵12321234113451212321n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。

相关文档
最新文档