VOCs的催化燃烧
催化燃烧技术处理工业 voc 废气的技术原理和工业化应用案例
催化燃烧技术处理工业 voc 废气的技术原理和工业化
应用案例
催化燃烧技术处理工业VOCs废气的技术原理和工业化应用案例如下:
技术原理:
催化燃烧是一种处理VOCs废气的方法,通过催化剂的作用,使废气中的有机物在较低的温度下氧化分解成无害的物质,如二氧化碳和水。
具体过程包括吸附和催化燃烧两个阶段。
在吸附阶段,废气被吸附在催化剂表面,然后在催化燃烧阶段,吸附在催化剂表面的有机物被氧化分解。
工业化应用案例:
1. 某化工企业:该企业采用催化燃烧技术处理其生产过程中产生的VOCs 废气。
通过使用合适的催化剂和优化工艺参数,实现了废气的有效处理,同时降低了能耗和成本。
经过处理后的废气达到了国家排放标准,为企业带来了明显的经济效益和环境效益。
2. 某家具制造企业:该企业采用催化燃烧技术处理其家具生产过程中产生的VOCs废气。
通过选用合适的催化剂和处理工艺,实现了废气的净化处理,
减轻了对环境的负担。
同时,催化燃烧技术还为企业节省了处理成本,提高了经济效益。
催化燃烧技术在处理VOCs废气方面具有明显的优势,包括高效、低能耗、环保等。
然而,实际应用中仍需根据企业具体情况进行技术选型和方案设计,以确保处理效果和经济效益。
同时,企业也需加强技术研发和管理,持续优化处理工艺和技术水平,以适应不断变化的环境要求和市场变化。
希望以上信息能帮您解决问题。
如果还有其他问题,请随时告诉我。
vocs催化燃烧工艺原理
vocs催化燃烧工艺原理1 催化燃烧的基本概念催化燃烧工艺是一种通过利用催化剂将有毒有害气体转化为无害物质的技术。
其中,VOCs(挥发性有机化合物)是指温度较低时可揮發到空气中的有机化合物。
这些有机化合物在一定条件下与氮氧化物发生反应,将导致环境问题,如雾霾、酸雨等等。
催化燃烧通过催化剂的作用将有机化合物转化为CO2和水蒸气,使得它们被转化为无害物质。
2 催化燃烧工艺原理催化燃烧工艺是一种先进的催化氧化技术。
一般情况下,VOCs的燃烧需要高温和高压空气,这导致了高能耗和大量的二氧化碳排放。
而在催化燃烧工艺中,催化剂通过降低燃烧温度和活化能,使得VOCs在较低的温度下被直接氧化,从而有效地减少了能源消耗和环境污染。
3 催化剂的作用在催化燃烧工艺中,催化剂是关键因素,它能够加快反应速度,同时保持较低的反应温度。
这种催化剂一般是一种金属氧化物催化剂,例如铂Pd、铜Cu、镍Ni等。
当有机化合物通过催化剂时,化学反应能够在催化剂表面上发生,因为催化剂为有机分子提供了反应活性中心,从而在较低的温度下进行反应。
4 催化燃烧的应用催化燃烧工艺非常适用于挥发性有机物的去除。
一些常见的污染排放源,如CFC、甲醛、挥发性有机废气等都可以通过这种方法得到有效去除。
随着技术的发展,催化燃烧不仅得到广泛的应用于工业领域,还在城市环境中得到了广泛的应用,例如在汽车尾气排放治理、空气净化和卫生设施建设方面.5 结论综上所述,催化燃烧工艺是一种很好的VOCs治理技术,其原理是通过催化剂作用,将有害气体转化为无害物质。
由于技术成熟、成本低廉和治理效果显著,催化燃烧技术正逐渐被广泛应用,在保障公众健康和减少环境损害方面发挥着重要作用。
VOCs治理有哪些方法?
VOCs治理有哪些方法?VOCs治理有哪些方法?众所周知,知名的VOCs治理方案是优先选择成本低、能耗少、无二次污染的废气净化处理方法,充分利用VOCs的余热,实现资源的循环利用。
一般情况下,企业由于其生产活动的特殊性,VOCs排气浓度高,多采用冷凝、吸收、燃烧等方法进行VOCs治理。
下面就由安徽宝华环保科技有限公司来给大家简单介绍下吧!VOCs治理的方法:1.冷凝回收法冷凝法就是将工业生产的VOCs直接引入到冷凝器中,经过吸附、吸收、解析、分离等环节的作用和反应,回收有价值的有机物,回收废气的余热,净化废气,使废气达到排放标准。
当VOCs治理的废弃浓度高、温度低、风量小时,可采用冷凝法进行VOCs治理,一般应用于制药、石化企业。
通常还会在冷凝回收装置后面再加装一级或多级的其他有机废气净化装置,以做到达标排放。
2.吸收法工业生产中多采用物理吸收法进行VOCs治理,就是将废气引入吸收液中进行吸收净化,吸收液饱和后进行加热、解析、冷凝等处理,回收余热。
在浓度低、温度低、风量大的情况下可踩踏吸收法进行VOCs治理,但需要配备加热解析回收装置,投资额大。
涉及油漆涂装作业企业常用的油帘、水帘吸收漆雾的方法,即常见的有机废气吸收法。
3.直接燃烧法直接燃烧法就是利用燃气等辅助性材料将废气点燃,促使其中的有害物质在高温燃烧下转变成无害物质,这种的VOCs治理方法操作易懂好学,并且投资较少,适用于浓度高、风量小的废气,但其安全技术要求较高。
4.催化燃烧法催化燃烧法就是将废气加热经催化燃烧后转变成无害的二氧化碳和水。
该VOCs治理方法适用于温度高、浓度高的有机废气净化处理中,这种VOCs治理的方法具有燃烧温度低、节能、净化率高、占地面积少等优点,但投资较大。
在进行VOCs治理时,还要根据不同的有机废气成分、浓度适用不同等因素来选择不同行业第一的VOCs治理方式,就目前我国VOCs治理技术的成熟性和经济实用性以及设备维护等角度考虑,应用较为广泛的还是催化燃烧法。
贵金属催化剂催化燃烧挥发性有机物(VOCs):活性组分、载体性质等的影响
贵金属催化剂催化燃烧挥发性有机物(VOCs):活性组分、载体性质等的影响讨论背景:挥发性有机物(volatile organic compounds,VOCs)是指常温下沸点为50~260 ℃的一系列有机化合物,是重要的大气污染物。
VOCs不仅参加光化学烟雾的形成,还可导致呼吸道和皮肤刺激,甚至诱使机体产生癌变,对环境和人体健康构成了很大威逼。
因此,VOCs处理技术日益受到重视。
已开展应用的VOCs处理技术包括汲取法、吸附法、冷凝法、膜分别法、生化法、低温等离子体法、光催化氧化法、直接燃烧法和催化燃烧法等。
其中,催化燃烧法可以处理中、低浓度的VOCs,在相对较低的温度下实现催化氧化,降低了能耗,削减了二次污染物的排放,目前已成为消退VOCs最重要的技术之一。
催化剂的设计合成是催化燃烧技术的关键。
贵金属因优异的低温催化活性和稳定性而受到讨论者的广泛关注。
贵金属价格昂贵,储量稀缺,为提高其使用效率,通常将贵金属负载到载体上,得到负载型催化剂。
本文讨论了近期贵金属催化剂对VOCs催化燃烧的文献报道,从活性组分、载体两方面对最新的成果进行综述,将为今后催化燃烧VOCs的讨论供应肯定参考。
一摘要催化燃烧技术是目前处理挥发性有机物(VOCs)最有效的技术之一。
在用于催化燃烧VOCs的催化剂中,贵金属因其优异的催化活性而受到众多关注。
从活性组分和载体两方面,对贵金属催化剂催化燃烧VOCs的最新报道进行综述。
目前,催化剂活性组分的讨论重点在于铂、钯、金等单组分贵金属的改性和双组分贵金属的设计合成;对载体的讨论主要涉及酸性、孔结构以及载体与金属的强相互作用。
将来还需进一步提名贵金属催化剂的抗中毒性能。
二活性组分贵金属催化剂通常以Pt、Pd、Au等金属作为活性组分,其中对Pt、Pd的讨论起步较早,对Au的讨论也在近几年内得到了更多关注。
表1总结了近期关于贵金属催化剂的讨论成果。
1.Pt催化剂总体上看,Pt催化剂对苯、甲苯具有较高的催化燃烧活性,在处理含氯VOCs时有更高的CO2选择性,但难以催化氧化乙酸乙酯,且易受CO中毒的影响。
VOC废气治理工程技术方案的催化燃烧技术环境效益评价
voc废气治理工程案例分析
某化工企业采用催化燃烧技术处理VOCs废气,经过技术改造后,废气处 理效率达到95%以上,满足了环保要求。
在该案例中,催化燃烧技术的优势得到了充分体现,如处理效率高、能 耗低、无二次污染等。
通过对该案例的分析,可以进一步了解催化燃烧技术的实际应用效果和 经济效益,为类似废气处理工程提供参考和借鉴。
02
03
工艺流程优化
智能化控制
通过对催化燃烧技术工艺流程的 持续优化,降低能耗和减少二次 污染。
引入先进的传感器和控制系统, 实现催化燃烧过程的实时监控和 智能调控。
行业标准与规范制定
01
制定voc废气治理工程的技术标准和操作规范 ,确保工程实施的质量和效果。
02
建立voc废气治理工程的验收标准和监测体系 ,确保工程达标排放。
能源消耗与碳排放分析
能源消耗较低
催化燃烧技术采用高效能源利用方式,降低了处理过程中的能源消耗,有助于减少碳排放。
余热回收利用
催化燃烧过程中产生的余热可进行回收利用,提高能源利用效率,进一步降低能耗。
碳排放监测与控制
通过监测和控制催化燃烧过程中的碳排放,可有效降低温室气体排放量,有助于减缓气候变化。
对催化燃烧技术在voc废气治理中的 环境效益进行评价,包括减少污染物 排放、节能降耗等方面的分析。
02
voc废气治理工程技术方案 介绍
催化燃烧技术原理
催化燃烧技术是一种利用催化剂 降低有机物燃烧活化能,实现低 能耗、低成本、高效率的废气处
理方法。
在催化燃烧过程中,催化剂的作 用是降低反应的活化能,使有机 物在较低的温度下迅速氧化分解
03
催化燃烧技术的环境效益评 价
VOCs催化燃烧的催化剂原理、应用及常见问题
VOCs催化燃烧的催化剂原理、应用及常见问题催化燃烧技术作为VOCs废气处理工艺之一,因为其净化率高,燃烧温度低(一般低于350℃),燃烧没有明火,不会有NOx等二次污染物的生成,安全节能环保等特点,在环保市场应用有了很好的发展前景。
催化剂作为催化燃烧系统的关键技术环节,催化剂的合成技术及应用规则就显得尤为重要。
1、催化燃烧反应原理催化燃烧反应原理是有机废气在较低温度下在催化剂的作用下被完全氧化和分解,达到净化气体目的。
催化燃烧是典型的气固相催化反应,其原理是活性氧参与深度氧化作用。
在催化燃烧过程中,催化剂的作用是降低反应的活化能,同时使反应物分子富集在催化剂表面上以提高反应速率。
借助于催化剂,有机废气可以在较低的起燃温度下无焰燃烧并且在释放大量热量,同时氧化分解成CO2和H2O。
催化燃烧的催化剂反应原理图2.什么是低温催化剂低温催化剂性能指标:起燃温度≤200℃,氧化转化效率≥95%,孔密度200-400cpsi,抗压强度≥8MPa。
3.VOCs催化剂在催化燃烧系统中的作用与影响通常VOCs的自燃烧温度较高,通过催化剂的活化,可降低VOCs 燃烧的活化能,从而降低起燃温度,减少能耗,节约成本。
另外:一般(无催化剂存在)的燃烧温度都会在600℃以上,这样的燃烧会产生氮氧化物,就是常说的NOx,这也是要严格控制的污染物。
催化燃烧是没有明火的燃烧,一般低于350℃,不会有NOx 生成,因此更为安全和环保。
4.什么是空速?影响空速的因素有哪些在VOCs催化燃烧系统中,反应空速通常指体积空速(GHSV),体现出催化剂的处理能力:反应空速是指规定的条件下,单位时间单位体积催化剂处理的气体量,单位为m3/(m3催化剂•h),可简化为h-1。
例如产品标注空速30000h-1:代表每立方催化剂每小时能处理30000m3废气。
空速体现出催化剂的VOCs处理能力,因此和催化剂的性能息息相关。
5.贵金属负载量与空速的关系,贵金属含量是越高越好吗?贵金属催化剂的性能与贵金属的含量、颗粒大小和分散度相关。
贵金属催化剂催化燃烧挥发性有机物(VOCs)的研究进展
%BCF ;^
&:%
%B!F ;0
$9C
%B9F ;^ e%BCF ;0
!C
&B"Fe&B9F WP
&$%
$F WP
&%&
!B%F WP
-
!##国家#自#然#科学#基#金#项目! $&"%&&9:$ (
收 稿 日 期 %$%&9 c%9 c%9
氧化"降低了能耗"减少了二次污染物的排放"目前已 成为消除 4?X\最重要的技术之一(
催化剂的设计合成是催化燃烧技术的关键( 贵金 属因优异的低温催化活性和稳定性而受到研究者的广 泛关注( 贵金属价格昂贵"储量稀缺"为提高其使用效 率"通常将 贵 金属 负载到载 体上"得 到 负 载 型 催 化 剂( 本文研究了近期贵金属催化剂对 4?X\催化燃烧的文献 报道"从活性组分+载体两方面对最新的成果进行综述" 将为今后催化燃烧 4?X\的研究提供一定参考( DC活性组分
$F WP
$99
$F WP
9%
8B%F WP
$!%
%B’!F WP
$!8
&B$&F WP
$CC
:BCF WP
&%’
&B!&FWP e$B8’5F;^
&8:
%B’’FWP e&B%%5F;^
沸石转轮浓缩+催化燃烧技术处理VOCs
----------------------------------------------------------------------------------------------------------------------------------------------------------------设计单位:江苏山淼环境工程有限公司沸石转轮浓缩催化燃烧技术处理VOCs(简单.高效.经济.)江苏山淼环境工程有限公司中国盐城随着我国经济的快速发展,有机挥发性物质VOCs大量产生,近年来,挥发性有机物(VOCs)已成为我国大气污染物的主要来源之一,这对人类的健康和生态系统的平衡造成了极大的威胁,VOCs的末端治理工作引起了社会的广泛关注。
在现有单一末端治理技术基础上,对适合于大风量、低浓度VOCs 的吸附浓缩-催化燃烧组合技术的原理、工艺流程、研究现状及发展前景进行了具体论述。
通过不同末端治理技术的对比,发现单一末端治理技术难以有效实现VOCs的减排控制,而组合末端治理技术具有净化率高、投资成本少、能耗低、无二次污染等优势,已成为目前研究的热点。
其中吸附浓缩-催化燃烧技术已经取得广泛应用,其他新兴组合技术还有待研究与创新。
本工作指出了我国VOCs末端治理技术存在的主要问题及今后的发展方向。
咨询了解:l8O-5l55-B2221VOCs简介VOCs(volatile organic compounds),是指常温下饱和蒸汽压大于133.32Pa、常压下沸点在50~260°C以下的有机化合物,或在常温常压下任何能挥发的有机固体或液体,是----------------------------------------------------------------------------------------------------------------------------------------------------------------普遍存在且组成复杂的一类有机污染物的统称。
VOCs的治理技术
VOCs的治理技术1.热破坏法热破坏法是目前应用比较广泛也是研究较多的VOCs治理方法,可分为直接燃烧和催化燃烧。
VOCS的热破坏可能包含一系列分解、聚合及自由基反应;最重要的VOCs的破坏机理是氧化和热裂解、热分解。
直接燃烧是VOCs在气流中直接燃烧和辅助燃烧的方法。
直接燃烧在适当的温度和保留时间下,可以达到99%的热处理效率。
催化燃烧是VOCs在气流中被加热,在催化床层作用下,加快VOCs 的化学反应,催化剂的存在使VOCs比直接燃烧法需要更少的保留时间和更低的温度。
催热破坏能达到的热破坏效率在90%-95%之间,稍低于直接法,是由于VOCE在催化床层的停留时间长,降低了摧化剂有效表面积,从而降低破坏效率。
另外,催化剂常见对特定类型化合物反应,所以,催化燃烧的应用就受到了限制。
用于VO Cs的净化的催化剂主要有金属和金属盐,金属包括贵金属和非贵金属。
目前使用的金属催化剂主要是Pt,P d,技术成熟,催化活性高,但价格昂贵,而且对卤素有机物在含N,P,S等元素时,会发生氧化使催化剂失活。
近年来,催化剂的研制主要集中在非贵金属,并取得了成果。
如V205 + MOx (M:过渡族金属)+贵金属制成的催化剂用于治理甲硫醇废气;Pt+ P d+ C uO催化剂用于治理含氮有机醇废气。
由于 VO Cs废气中常出现杂质,易引起催化剂中毒。
这些杂质有P,Pt ,Bi ,As,Sn,Hg,Fe2+,Zn,卤素等。
催化剂载体起到节省催化剂,增大催化剂有效面积、减少凝结、提高催化活性和稳定性的作用。
能作为载体的有:活性炭、氧化铝、石棉、陶土、金属等,最常见的是陶瓷载体,一般制成网状、球状、蜂窝状或柱状。
而近年来研究较多且成功的有丝光氟石等。
对催化燃烧而言,今后研究的重点与热点是探索高效活性催化剂及其载体,催化氧化机理。
2.吸附法吸附法的应用广泛,具有能耗低,工艺成熟,去除率高,净化彻底,易于推广的优点,有很好的环境和经济效益。
VOCs催化净化(燃烧)贵金属催化剂
VOCs催化净化(燃烧)贵金属催化剂北极星VOCs在线讯:本人从1983年开始从事VOCs燃烧催化剂的研发工作,涉及催化剂的基础和应用研究,发表论文100多篇,发明专利30多件。
在燃烧催化剂开发领域,30多年经历了天然丝光沸石负载贵金属(Pt、Pd)催化剂;氧化铝负载负载贵金属(Pt、Pd)催化剂;堇青石蜂窝载体负载贵金属(Pt、Pd、Rh)催化剂和稀土非贵金属催化剂。
今天重点介绍VOCs催化净化(燃烧)贵金属催化剂在使用过程普遍关心的问题。
一、贵金属含量与催化剂性能在贵金属催化剂中,贵金属是构成催化剂成本的主要因素,贵金属含量的高低直接决定了催化剂的成本。
也就是说,高贵金属含量的直接后果是昂贵的催化剂。
贵金属催化剂除了环保上的应用,在石油化工、制药、精细化学品合成等领域也广泛使用。
自从出现催化剂到现在,如何降低贵金属含量是学术界和工业界努力的方向。
贵金属含量是影响催化剂性能的主要因素之一,但并非唯一的。
催化剂性能,除了贵金属含量,还与催化剂的制备工艺、助催化剂的使用、多元贵金属(Pt-Pd、Pt-Pd-Rh、Pt-Pd-Ru 等)的组合等有关。
只有通过不断探索研究,才能获得高性能催化剂配方和制备工艺,实现降低贵金属含量,提高催化剂活性、抗中毒性和使用寿命的目标。
由于影响催化剂性能的因素非常复杂,如活性组分(贵金属)的分布、贵金属的价态、活性组分与助催化剂之间的电子转移、贵金属的粒子尺寸------,因此研发一个高性能催化剂需要长期的努力。
讲一个简单的例子,如果贵金属保持相同,通过不同的制备方法可以获得贵金属分布不同的催化剂。
比如,球形催化剂有蛋壳型(贵金属在催化剂表面);蛋白型(贵金属在中间);蛋黄型(贵金属在最里面);还有贵金属平均分布的催化剂。
这四种形式的催化剂虽然贵金属含量相同,但是催化剂的性能有天壤之别。
此外,对于蛋壳型催化剂的蛋壳的厚薄,也影响着催化剂活性和稳定性。
这个例子说明了贵金属含量不是唯一的决定因素。
催化燃烧治理VOCs和恶臭废气工艺和设备知识简介
催化燃烧治理VOCs和恶臭废气工艺和设备知识简介一、工艺概述催化燃烧是典型的气—固相催化反应,它借助催化剂降低了反应的活化能,使其在较低的起燃温度200~300℃下进行无焰燃烧,有机物质氧化发生在固体催化剂表面,同时产生CO2和H2O,并放出大量的热量。
因其氧化反应温度低,所以大大地抑制了空气中的N2形成高温NOx。
而且由于催化剂有选择性催化作用,有可能限制燃料中含氮化合物(RNH)的氧化过程,使其多数形成分子氮(N2)。
二、技术原理催化燃烧是使有机废气通过催化剂床层,经历催化反应,转化为无害物质的方法。
在贵金属催化剂的作用下,有机废气在较低的温度下进行无焰催化燃烧,将有机成分转化为无毒、无害的CO2和H2O,同时释放出大量的热量。
由于催化剂可加速氧化分解的历程,大多数碳氢化合物在300~450℃的温度时,通过催化剂就可以氧化完全。
三、工艺处理特点起燃温度低,能耗少,燃烧易达稳定,甚至到起燃温度后无需外界传热就能完成氧化反应;净化效率高,污染物(如NOx及不完全燃烧产物等)的排放水平较低;适应氧浓度范围大,噪音小,无二次污染,且燃烧缓和,运转费用低,操作管理也很方便;催化剂易中毒和不耐高温。
易使催化剂中毒的物质有焦油、油烟、粉尘、铅化合物和硫、磷、卤族元素的化合物等。
为了保持催化剂的活性,一般都采用前处理的办法,预先除掉有毒物质。
四、适用范围催化燃烧技术作为一个低温燃烧废气治理工艺,适用于中低浓度废气,被广泛应用于石油化工、油漆、电镀、印刷、涂料、轮胎制造等工业废气的治理,可处理的有机物质种类包括苯类、酮类、酯类、酚类、醛类、醇类、醚类和烃类等等。
对于大风量低浓度的有机废气,可以采取吸附浓缩+脱附催化燃烧的组合工艺。
五、催化燃烧设备简介根据对废气加热方式的不同,催化燃烧工艺可分为常规催化燃烧工艺(简称CO)和蓄热式催化燃烧工艺(简称RCO)如图1和2。
这两种技术的工作原理基本相同,工艺流程大致类似,所以相关的单元设备也基本相同。
RCO催化燃烧法
1 RCO催化燃烧VOCs有机废气处理技术挥发性有机化合物(VOCs)是一类毒性大、污染严重的化学物质。
目前VOCs 的污染问题日益受到各国的高度重视,我国颁布的《大气污染物综合排放标准》,规定了各类有机污染物在空气中严格的排放标准。
国内外VOCs污染控制方法目前主要有吸附法、吸收法、生物处理技术、膜分离技术、直接燃烧法、催化燃烧法等。
其中,催化燃烧法是一种高效清洁燃烧技术,主要利用催化剂使有机废气在较低的温度条件下充分燃烧。
相对其他处理技术,催化燃烧具有显著的优点:起燃温度低能耗少,处理效率高,无二次污染等,使之成为目前前景广阔的VOCs 有机废气治理方法之一。
高效催化燃烧催化剂是催化燃烧技术的关键核心,以块状载体作为骨架基体的催化剂称为规整结构催化剂,也称为整体式催化剂。
由于具有特殊孔道结构,这类催化剂改善了催化反应床层上的物质传递,提高了催化效率,降低了压力,减少了操作费用,在石油化工、精细化工等多相催化反应中得到越来越广泛的应用。
RCO有机废气催化燃烧技术在日本、美国和西欧被广泛地应用于VOCs的治理,工艺设备非常成熟,相关的技术标准和使用规范已经非常完善,一些大公司都有自己的企业标准,对工艺设计、催化剂的性能要求、反应器制造和工程控制措施等都有详细的规定。
不同的燃烧工艺组合,形成4种基本的燃烧工艺方式:催化燃烧(换热),直接燃烧(换热),回热催化燃烧(RCO),回热燃烧(RTO)。
在此基础上还形成了转轮富集燃烧,陶瓷过滤器等方式。
RCO有机废气催化燃 2 烧技术是指在催化剂的作用下,使有机废气中的碳氢化合物在温度较低的条件下迅速氧化成水和二氧化碳,达到彻底治理的目的。
一、RCO有机废气催化燃烧工艺原理:催化净化是典型的气固相催化反应,其实质是活性氧参与的深度氧化作用。
在催化净化过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行;借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H2O,同时放出大量热能,从而达到去除废气中的有害物的方法。
七大VOCs废气处理技术工艺详解
七大VOCs废气处理技术工艺详解当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
实践证明,这种处理方法值得推广应用。
但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。
所以,使用此方法处理废气的关键在于吸附剂。
当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。
此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。
三、VOC废气处理技术——生物处理法从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。
这是一种无害的有机废气处理方式。
一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物吸收的有机废气,在其自身生理代谢过程中,将会被降解,最终转化为对环境没有损害的化合物质。
催化燃烧法在VOCs治理应用中的安全问题及防范措施
2019年第7期VOCs (挥发性有机化合物)是指在常压下沸点在50~260℃、常温下饱和蒸汽压大于133.32Pa 的有机化合物,或者在常温常压下任何能挥发的有机液体和固体[1]。
VOCs 类目复杂,主要包含烯烃、烷烃、醇类、芳香烃、芳烃类、醛类、卤代烃等,主要产生于制药、制鞋、石油炼化和喷漆等行业[2]。
某些VOCs 对臭氧层有破坏作用,如含氢氯氟烃(HCFCls)和氯氟烃(CFCs);VOCs 也是形成雾霾的重要前物,是有毒有害气体的重要来源,环保部已将其列为细颗粒物之外最大的空气污染元凶[3]。
随着工业化进程的加快,VOCs 引起的健康与环境问题引来越来越多的关注,VOCs 的处理也已迫在眉睫。
一、催化燃烧法在VOCs 治理中的重要地位VOCs 治理有较多措施,其治理方法包括源头减量、中间控制和末端处理等[4]。
目前,我国以末端治理为主。
末端治理技术一般分为破坏性处理和回收性处理。
破坏性处理主要包括催化燃烧法和焚烧处理法。
回收性处理包括吸收法、冷凝法、吸附法和膜分离法等[5]。
回收性处理因其技术手段还不成熟,成本较高,目前没有大规模应用。
焚烧法是直接将VOCs 通入焚烧炉中,在炉内充分燃烧,产生二氧化碳和水[6]。
该方法成本较低,运用范围较广,技术线路也比较成熟。
催化燃烧法是在废气燃烧的时候加入某种催化剂,降低VOCs 的燃点,使VOCs 能够充分燃催化燃烧法在V O C s 治理应用中的安全问题及防范措施文/解光春(安徽绿雅环境工程有限公司)炭吸附—脱催化燃烧高效生产提供了有力保障。
参考文献[1]吕兆海.断层破碎区煤岩体失稳机制与协同控制技术研究[J].中国煤炭,2018,44(02):41-47.[2]张盛.林南仓矿轨道石门过断层构造带支护技术[J].煤炭工程,2018,50(08):50-52.[3]王桦.定向钻孔技术在我国煤矿地层注浆改造中的应用及发展[J].煤炭工程,2017,49(09):1-5.[4]冯旭海.深井高压地面预注浆水泥基浆材料改性研究[J].煤炭科学技术,2014,42(09):91-94.[5]孙晓宇,杨红军,董庆欢.压水试验在大贾庄铁矿地面预注浆工程中的应用[J].现代矿业,2016,32(06):11-14.责任编辑:徐东辉研究园地安徽科技53烧,最终生成二氧化碳和水,实现直排。
vocs废气燃烧排放标准
vocs废气燃烧排放标准VOCs有机废气用催化燃烧设备处理排放标准,各级环保部门对VOC污染排放的限制也越来越严格。
如何取得经济效益与环境的和谐统一是人类面临的新问题。
而在现阶段解决VOC污染源的有效措施之一就是对VOC污染源进行治理,使其对周边生态环境的污染影响降到最低,其排放总量及排放浓度达到(或优于)国家和地方相应的法律法规及规范的要求。
经净化后气体排放浓度低于中华人民共和国《大气污染物综合排放标准》(GB16297—1996)和广东省地方标准《大气污染物排放标准》(GB44/27—2001)中“现有污染源大气污染物排放限值”规定的二级排放浓度,排放浓度达到:苯10mg/m3<12mg/m3甲苯35mg/m3<40mg/m3二甲苯60mg/m3<70mg/m33.1经治理后粉尘排放浓度达到广东省地方标准《大气污染物排放标准》(DB44/27----2001)中粉尘最高容许排放浓度(第一时间段)标准:颗粒物10mg/m3<20mg/m3催化燃烧设备是一种能改变化学反应速度,而在反应前后其本身的化学性质没有改变的物质。
催化燃烧设备通常是由催化活性材料和催化载体构成。
催化活性材料一般是金属或金属氧化物。
其中贵重金属催化燃烧设备主要有铂、钯和钌等,普通金属催化燃烧设备主要有铜、铬、镍、钒、锰、铁、钴等金属及氧化物。
催化载体是多孔材料,主要作用是使活性材料具有大的体表面积。
催化载体分为金属载体、陶瓷载体和炭纤维载体。
金属载体一般是以镍或镍铬合金为载体做成的带、片、丸、丝等形状,通过“电镀”或“化学镀”(即溶液浸渍)将铂、钯镀在这些载体上,并制成便于装配、拆卸的模屉。
以陶瓷为载体的催化燃烧设备,一般是以硅—铝氧化物为载体,其结构有片粒状和蜂窝状两种。
一般在陶瓷结构上涂敷一层仅0.13mm厚的α-氧化铝薄层,把活性的铂、钯等金属催化燃烧设备以微晶状态沉积或分散在多孔的氧化铝薄层中,并制成便于装配、拆卸的模屉。
催化燃烧vocs浓度
催化燃烧vocs浓度催化燃烧VOCs浓度VOCs(挥发性有机化合物)是指在常温下易挥发的有机化合物。
它们广泛存在于工业、交通、建筑、印刷等领域中,对环境和人体健康都有潜在的危害。
因此,降低VOCs浓度成为了一个重要的环境问题。
催化燃烧是一种常用的处理VOCs的方法,通过催化剂的作用将VOCs转化为无害的二氧化碳和水。
催化燃烧VOCs浓度的过程可以分为以下几个阶段:1. 挥发:VOCs会从源头挥发到空气中,如汽车尾气、工业废气等。
这些VOCs的浓度决定了环境中的VOCs污染程度。
2. 传输:VOCs在空气中通过扩散和对流的方式传输,随着距离源头的增加,浓度逐渐减小。
传输过程中,VOCs可能会受到风向、风速、温度等因素的影响。
3. 催化燃烧:当VOCs进入催化燃烧装置时,催化剂会加速VOCs 与氧气的反应,将其转化为CO2和H2O。
催化燃烧的效率取决于催化剂的性能以及反应条件的控制。
4. 排放:经过催化燃烧后,VOCs被转化为无害物质,随烟气一起排放到大气中。
排放浓度的监测和控制是保证催化燃烧效果的重要环节。
催化燃烧VOCs浓度的控制需要从源头、传输和催化燃烧三个方面入手:1. 源头控制:通过改进工艺、使用低VOCs含量的材料、加强设备密封等方式降低VOCs的排放量,从根本上减少VOCs浓度。
2. 传输控制:合理规划建筑布局,减少VOCs排放源与人口密集区的距离,降低人群暴露于VOCs的风险。
此外,合理利用风向、风速等气象条件,避免VOCs的扩散和积聚。
3. 催化燃烧控制:选择适宜的催化剂,并控制催化燃烧反应的温度、氧气浓度等条件,以提高催化燃烧效率和降低VOCs残留浓度。
监测和评估是催化燃烧VOCs浓度控制的重要手段。
通过建立完善的监测系统,及时获得VOCs浓度的数据,评估催化燃烧效果,并对催化剂进行维护和更新。
总的来说,催化燃烧VOCs浓度是一项综合性的工程,需要从源头控制、传输控制和催化燃烧控制三个方面入手。
催化氧化燃烧技术完整版
催化氧化燃烧技术标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]【技术名称】高效吸附-脱附-(蓄热)催化燃烧VOCs治理技术【技术内容】利用高吸附性能的活性碳纤维、颗粒炭、蜂窝炭和耐高温高湿整体式分子筛等固体吸附材料对工业废气中的VOCs进行富集,对吸附饱和的材料进行强化脱附工艺处理,脱附出的VOCs进入高效催化材料床层进行催化燃烧或蓄热催化燃烧工艺处理,进而降解VOCs。
该技术的VOCs去除效率一般大于95%,可达98%以上。
采用的关键技术主要包括:(1)高效的吸附材料:高吸附性能的活性碳纤维、颗粒活性炭、蜂窝炭和耐高湿整体式分子筛VOCs吸附材料;(2)高效的催化材料:纳米孔材料、稀土分子筛催化材料;(3)高效的除漆雾技术、安全吸附技术、脱附技术;(4)高效的催化氧化技术、蓄热催化燃烧技术。
工艺流程主要包括:(1)预处理:排放废气中可能含有少量粉尘,因此在吸附净化前端一般需加装高效纤维过滤器或高效干湿复合过滤器,对废气粉尘进行拦截净化。
(2)吸附阶段:去除尘杂后的废气,经合理布风,使其均匀地通过固定吸附床内的吸附材料层过流断面,在一定停留时间内,由于吸附材料表面与有机废气分子间相互作用发生物理吸附,废气中的有机成份吸附在活性炭表面积,使废气得到净化;净化装置设置两台以上吸附床,即废气从其他几台经过,确保一台处于脱附再生或备用,保证吸附过程连续性,不影响实际生产。
(3)脱附-催化燃烧:达到饱和状态的吸附床应停止吸附转入脱附再生。
启动脱附风机、开启相应阀门和远红外电加热器,对(蓄热)催化燃烧床内部的催化剂预热,同时产生一定量热空气,当催化床层温度达到设定值时将热空气送入吸附床,吸附材料床层受热解吸出高浓度有机气体,经脱附风机引入催化燃烧床。
当废气浓度较高、反应温度较高时,补冷风机自动开启,确保催化燃烧床安全、高效运行。
【技术优点】该技术已经在石油、化工、电子、机械、涂装等行业大风量、低浓度或浓度不稳定的有机废气治理中得到应用,处理风量典型规模20000~500000m3/h。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州和风环境技术有限公司 /
VOCs 催化燃烧的好处在于处理效率非常的高,帮助企业做到低效益高回报的一种去除废气的有效办法。
借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO:和H:0,同时放出大量热 1)起燃温度低,反应速率快,节省能源。
催化燃烧过程中,催化剂起到降低VOCs 分子与氧分子反应的活化能,改变反应途径的作用。
2)处理效率高,二次污染物和温室气体排放量少。
采用催化燃烧处理VOCs 废气的净化率通常在95%以上,终产物主要为CO2 和H2O。
由于催化燃烧温度低,大量减少NOx的生成。
辅助燃料消耗排放的CO2 量在总CO2 排放量中占很大比例,辅助能源消耗量减少,显然减少了温室气体CO2 排放量。
3)适用范围广,催化燃烧几乎可以处理所有的烃类有机废气及恶臭气体,适合处理的VOCs 浓度范围广。
对于低浓度、大流量、多组分而无回收价值的VOCs 废气,采用催化燃烧法处理是最经济合理的。
1、催化燃烧催化剂活性组分工业上的催化剂都是由活性成分、助剂和载体等组成,其中活性组分及其分布、颗粒大小、催化剂载体对催化效果和寿命有很大的影响。
用于催化燃烧VOCs的催化剂的活性成分可分为贵金属、非贵金属氧化物。
贵金属是低温催化燃烧最常用的催化剂,其优点是具有较高的活性、良好的抗硫性,缺点是活性组分容易挥发和烧结,容易引起氯中毒、价格昂贵,资源短缺;贵金属催化剂 Pt、Pd、Ru等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长、适用范围广、易于回收,因而是最常用的废气燃烧催化剂。
如我国最早采用的Pt—AI:0,催化剂就属于此类催化剂。
但由于其资源稀少、价格昂贵、耐中毒性差,因此,人们一直在努力寻找替代品,尽量减少其用量。
非贵金属氧化物催化剂主要有钙钛矿型、尖晶石型以及复合氧化物催化剂等,价格相对较低,也表现出很好的催化性能,如钙钛矿型催化
广州和风环境技术有限公司 /
剂高温热稳定性较好,尖晶石型催化剂具有优良的低温活性,但其不足之处在于催化活性相对较低,起燃温度较高。
复氧化物催化剂一般认为,复氧化物之间由于存在结构或电子增刊谭明侠等:VOC催化燃烧技术385调变等相互作用,活性比相应的单一氧化物要高。
主要有以下两大类:(1)钙钛矿型复氧化物。
稀土与过渡金属氧化物在一定条件下可以形成具有天然钙钛矿型的复合氧化物,通式为ABO,,其活性明显优于相应的单一氧化物。
A为四面体型结构,B为八面体形结构;A和B形成交替立体结构,易于取代而产生晶格缺陷,即催化活性中心位,表面晶格氧提供高活性的氧化中心,从而实现深度氧化反应。
常见的有BaCuO:、LaMn03等;(2)尖晶石型复氧化物。
作为复氧化物重要的一种结构类型,以AB2X4表示,尖晶石亦具有优良的深度氧化催化活性。
如对CO的催化燃烧起燃点落在低温区(约80℃),对烃类亦在低温区可实现完全氧化。
其中研究最为活跃的CuMn:O。
尖晶石,对芳烃的活性尤为出色。
如使C,H。
完全燃烧只需260℃,实现低温催化燃烧,这点具有特别实际意义。
过渡金属氢化物催化剂作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对CH。
等烃类和CO亦具有较高的活性,同时降低了催化剂的成本,常见的有MnOx、CoOx 和CuOx等催化剂。
大连理工大学研制的含MnO:催化剂,在一定条件下能消除CH,OH蒸气,对C:H。
O、C3H60、C6H。
蒸气的清除也很有效果。
催化剂载体以及负载方式载体 VOC净化催化剂的载体主要有两类:一类是球状或片状;---是整体式多孔蜂窝状。
金属载体催化剂的优点是导热性能好、机械强度高,缺点是比表面积较小。
颗粒状载体的优点是比表面积大,缺点是压降大以及因载体间相互摩擦,造成活性组分磨耗损失。
蜂窝陶瓷载体是比较理想的载体型式,它具有很高的比表面,压力降较片粒柱状低,机械强度大,耐磨、耐热冲击。
负载方式催化剂活性组分可通过下列方式沉积在载体上:(1)电沉积在缠绕或压制的金属载体上;(2)沉积在颗粒状陶瓷材料上;(3)沉积在蜂窝结构的陶瓷材料上。
催化剂失活失活催化剂在使用过程中随着时间的延长,活性会逐渐下降,直至失活。
催化剂失活主要有3种类型:(1)催化剂完全失活。
使催化剂失活的毒物包括快速和慢速作用毒物两大类。
快速作用毒物主要有P、As等,慢速作用毒物有Pb、zn等。
通常情况下,催化剂失活是由于毒物
广州和风环境技术有限公司 /
与活性组分化合或熔成合金。
对于快速作用毒物来说,即使只有微量,也能使催化剂迅速失活;(2)抑制催化反应。
卤素和硫的化合物易与活性中心结合,但这种结合是比较松弛、可逆且暂时性的。
当废气中的这类物质被去除后,催化剂活性可以恢复;(3)沉积覆盖活性中心。
不饱和化合物的存在导致碳沉积,此外陶瓷粉尘、铁氧化合物及其他颗粒物堵塞活性中心,从而影响催化剂的吸附与解吸能力,导致催化剂活性下降一j。
预防措施预防催化剂活性衰减,可以采取下列相应的措施:(1)按照操作规程,正确控制反应条件;(2)当催化剂表面结炭时,通过吹人新鲜空气,提高燃烧温度,烧去表面结炭;(3)将废气进行预处理,以除去毒物,防止催化剂中毒;(4)改进催化剂的制备工艺,提高催化剂的耐热性和抗毒能力。
催化燃烧工艺流程根据废气预热方式及富集方式,催化燃烧工艺流程可分为3种。
(1)预热式。
预热式是催化燃烧的最基本流程形式。
有机废气温度在100℃以下,浓度也较低,热量不能自给,因此在进入反应器前需要在预热室加热升温。
燃烧净化后气体在热交换器内与未处理废气进行热交换,以回收部分热量。
该工艺通常采用煤气或电加热升温至催化反应所需的起燃温度。
(2)自身热平衡式。
当有机废气排出时温度高于起燃温度(在300℃左右)且有机物含量较高,热交换器回收部分净化气体所产生的热量,在正常操作下能够维持热平衡,无需补充热量,通常只需要在催化燃烧反应器中设置电加热器供起燃时使用。
(3)吸附一催化燃烧。
当有机废气的流量大、浓度低、温度低,采用催化燃烧需耗大量燃料时,可先采用吸附手段将有机废气吸附于吸附剂上进行浓缩,然后通过热空气吹扫,使有机废气脱附成为高浓度有机废气(可浓缩lO 倍以上),再进行催化燃烧。
此时,不需要补充热源,就可维持正常运行引。
对于有机废气催化燃烧工艺的选择主要取决于:(1)燃烧过程的放热量,即废气中可燃物的种类和浓度;(2)起燃温度,即有机组分的性质及催化剂活性;(3)热回收率等。
当回收热量超过预热所需热量时,可实现自身热平衡运转,无需外界补充热源,这是最经济的。
化燃烧的应用 5.1溶剂类污染物的净化处理主要污染物是三苯(苯、甲苯和二甲苯)、酮类、醇类及其它一些含氧衍生物等。
詹建锋¨纠采用吸附—催化燃烧法治理彩印厂三苯废气,治理前废气浓度为 1 320 mg·m一,治理后浓度小于50 mg·m一,达到福建省地方标准DB35/156-93。
广州和风环境技术有限公司 /
刘忠生等¨4 J对主要含烃类污染物的石化污水处理场隔油池散发的废气进行处理,采用蜂窝状Pt、Pd和Ce多组分TC79-2H催化剂,对进口总烃体积分数1 000~6 000pL·L。
1进行催化燃烧,可以使总烃去除率达97%以上,净化排气总烃体积分数小于100 IxL·L~,无恶臭气味。
5.2含N有机污染物的净化含N有机污染物(如RNH2、RCONH:等),大都具有毒性和臭味,必须进行处理。
火箭推进剂(CH。
):NNH:是一种易溶于水和有机溶剂、具有强极性和弱碱性的有机化合物,也是一种剧毒物质。
采用催化燃烧法处理火箭推进剂(CH,):NNH:(含量1%,压力0.25 MPa,气量500 m3·h。
),当催化燃烧温度高于300℃,(CH,):NNH:废气去除率达99%以上,获得很好的处理效果[151。
5.3对含硫有机污染物的净化制药厂、农药厂和化纤厂等在生产中会排出来CH。
SH、CH,CH2SH和Cs:等有机硫污染物,对这类污染物的催化氧化,其中的s原子一般氧化成SO:或SO,,在催化剂表面上易产生强吸附,造成催化剂中毒失活。
新开发的RS一1型催化剂能使反应过程生成的SO:和sO,几乎100%地释放出来,使连续运行时的活性保持稳定。
6结语催化燃烧技术涉及化工、环境工程、催化反应和自动检测控制等领域,在我国仍处于发展阶段。
今后的发展方向为:(1)提高催化剂性能。
研制具有抗毒能力、大空速、比表面积)大及低起燃点的非贵金属催化剂,以降低造价和使用费用;(2)催化燃烧装置向大型化、整体型和节能型方向发展。
如需了解更多的废气处理相关知识,可以咨询广州和风环境技术有限公司,一家以环保工程、产品制造与技术服务三大价值链为核心,以技术进步和科技创新为支撑的产业构架体系,鼻尖下的健康,环境保护刻不容缓,国能创新科技一家致力于节能减排的企业,专注于有机废气处理,VOC废气处理,UV光解设备的研发与销售,公司有一批有梦想,敢拼敢做的同事们,大家想法一致就是在从事一项造福社会的行业,做一家有社会责任感的企业,与梦想同行,感恩有你,和风帮助您。