CRISPR-Cas9基因敲除小鼠备课讲稿

合集下载

转基因小鼠制备方法

转基因小鼠制备方法

转基因小鼠制备方法一、引言转基因小鼠是指通过基因工程技术将外源基因导入小鼠基因组中,使其表达或缺乏特定基因,从而研究基因功能、疾病模型等方面的动物模型。

转基因小鼠制备方法是实现转基因小鼠研究的重要步骤之一,本文将详细介绍转基因小鼠制备的一般步骤和常用技术。

二、转基因小鼠制备的一般步骤1. 选择目标基因和载体转基因小鼠制备的第一步是选择目标基因和适当的载体。

目标基因可以是外源基因、特定基因的突变体或基因敲除。

载体通常是带有选择标记(如抗生素抗性基因)和目标基因的质粒。

2. DNA构建在DNA构建过程中,首先需要将目标基因和选择标记基因插入到载体的适当位点上。

这可以通过限制性内切酶切割和连接、PCR扩增等方法实现。

构建完成后,需要进行酶切鉴定和测序确认。

3. 体外培养胚胎干细胞(ES细胞)转基因小鼠制备中常用的方法是利用ES细胞技术。

首先,从小鼠胚胎中获得内源性干细胞(ES细胞),并进行体外培养。

然后,将构建好的转基因载体导入ES细胞中,通过抗生素筛选获得带有目标基因的转基因ES细胞克隆。

4. 转基因小鼠制备转基因ES细胞的制备完成后,可以进行转基因小鼠的制备。

这一步骤通常有两种方法:内源性重组和外源性重组。

内源性重组是将转基因ES细胞注射到小鼠早期胚胎中,使其整合到小鼠的生殖细胞中,从而获得转基因小鼠。

外源性重组是将转基因ES细胞直接注射到小鼠的细胞团中,形成转基因胚胎,再将转基因胚胎移植到雌性小鼠子宫中,使其发育成为转基因小鼠。

5. 转基因小鼠鉴定转基因小鼠制备完成后,需要对其进行鉴定。

通常采用PCR、Southern blotting、Western blotting等分子生物学方法,检测转基因小鼠是否成功表达目标基因。

三、常用技术1. CRISPR/Cas9技术CRISPR/Cas9是一种新兴的基因编辑技术,可以实现高效、精确地对基因组进行编辑。

通过CRISPR/Cas9技术,可以直接在小鼠胚胎中进行基因编辑,从而制备转基因小鼠。

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言随着基因编辑技术的发展,CRISPR-Cas9系统已成为一种强大的工具,用于在生物医学研究中精确地编辑基因组。

DUSP9基因作为一种重要的基因,其功能在多种生物学过程中起着关键作用。

因此,构建DUSP9基因敲除小鼠胚胎干细胞系,对于研究DUSP9基因的功能及其在疾病发生发展中的作用具有重要意义。

本文旨在详细介绍利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的过程。

二、材料与方法1. 材料小鼠胚胎干细胞(mESCs)、CRISPR-Cas9系统、相关基因编辑工具、培养基、生长因子等。

2. 方法(1)设计CRISPR-Cas9系统:根据DUSP9基因的序列信息,设计合适的CRISPR-Cas9系统,包括sgRNA和Cas9蛋白。

(2)制备mESCs细胞:培养mESCs细胞至合适的状态,以便进行基因编辑。

(3)转染与编辑:将CRISPR-Cas9系统转染至mESCs细胞中,利用Cas9蛋白对DUSP9基因进行切割。

(4)筛选与鉴定:通过PCR、Western blot、qRT-PCR等方法,筛选出成功敲除DUSP9基因的mESCs细胞,并进行鉴定。

三、实验过程1. 设计并构建CRISPR-Cas9系统,选择合适的sgRNA序列和Cas9蛋白表达载体。

2. 培养mESCs细胞至合适的状态,进行转染。

3. 观察转染后的细胞生长情况,确保Cas9蛋白的表达。

4. 利用PCR、Western blot、qRT-PCR等方法筛选出成功敲除DUSP9基因的mESCs细胞。

5. 对筛选出的细胞进行扩增培养,并保存于液氮中备用。

四、结果与讨论1. 结果(1)成功构建了CRISPR-Cas9系统,并将其转染至mESCs 细胞中。

(2)成功筛选出敲除DUSP9基因的mESCs细胞,并通过PCR、Western blot、qRT-PCR等方法进行了鉴定。

crispr-cas9基因敲除小鼠原理

crispr-cas9基因敲除小鼠原理

CRISPR—CAS9基因敲除原理
CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)是最新出现的一种由RNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。

CRISPR 是细菌和古细菌为应对病毒和质粒不断攻击而演化来的获得性免疫防御机制。

在这一系统中,crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成双链RNA,此tracrRNA/crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶定位点剪切双链DNA达到对基因组DNA进行修饰的目的。

Cas9结合gRNA,gRNA 的长度约为80个核苷酸,包含两个区域:gRNA 5' 端前20个核苷酸对应于靶标DNA,能结合在靶DNA 上的约60个核苷酸(gRNA 长度取决于表达gRNA 的质粒)形成一个发夹结构,这个结构能帮助gRNA 与Cas9结合,并由此指导与DNA 的结合.
通过gRNA上的靶点序列,在目标基因组上找到靶点序列,并揭开双螺旋,Cas9将剪切DNA双链,造成DNA双链断裂。

Cas9使用简单,可满足多个靶点同时操作。

Insertion /deletion NHEJ HDR
gRNA
Cas9
Donor vector
基因敲除小鼠流程:。

使用 CRISPR-Cas9 创建转基因小鼠的方案

使用 CRISPR-Cas9 创建转基因小鼠的方案

使用 CRISPR-Cas9 创建转基因小鼠的方案虽然近年来已经开发了几种基因组编辑工具,包括锌指结构和 TALENs(转录激活物样效应物核酸酶),但没有一种能像CRISPR/Cas9系统那样高效,该系统由一个RNA引导的DNA内切酶 (Cas9) 和对应的引导RNA(CRISPR) 组成。

利用该系统,研究人员能够实现一步敲除多个基因的等位基因的突变小鼠1。

只需两三周的时间,即可创造出子携带条件性等位基因和报告基因的小鼠2,并且该方案。

特别要注意的是,该过程不需要创建修改的小鼠ES细胞过程,该过程有时会十分困难3。

随着 Cas9 敲入和敲除小鼠的发展,预计越来越多的实验室将选择 CRISPR/Cas9 系统来生成转基因小鼠模型。

使用CRISPR-Cas9创建转基因小鼠的方案动物学研究。

2016 年 7 月 18 日;37(4): 205–213.利用 CRISPR/Cas9 和单倍体胚胎干细胞系统产生基因修饰的小鼠。

图 1.在小鼠胚胎上使用 CRISPR/Cas9 基因组编辑创建转基因小鼠的示意图。

通过共注射 Cas9 mRNA 和向指导 RNA,多个基因靶标可以在小鼠胚胎中一次敲除。

(改编自Yang H,Wang H 和 Jaenisch R. Nat Protoc。

2014 年 8 月;9(8):1956-68.)Sigma-Aldrich 是为基因组编辑提供工具和定制服务的领导者,包括 ZFN 和CRISPR/cas9。

默克还提供了广泛的小鼠胚胎验证培养基和试剂组合,用于储存、转移和扩增用于在EmbryoMAX™名下创建转基因小鼠模型的小鼠胚胎。

浏览所有的基因组编辑产品浏览所有经小鼠胚胎验证的试剂小鼠胚胎和ES细胞培养基小鼠ES细胞培养基实验方案和过程成功的小鼠模型项目的提示1.了解实验目的并开展研究。

生成正确的小鼠需要完全理解被测试依据的假设。

例如,研究者可能希望验证这样的假设:突变肝脏中的转运蛋白可能会减轻特定药物的肝毒性作用。

基于CRISPR Cas9技术基因敲除小鼠(Cas9-KO)的制作方法-2018-2-28

基于CRISPR Cas9技术基因敲除小鼠(Cas9-KO)的制作方法-2018-2-28

基于CRISPR Cas9技术基因敲除小鼠(Cas9-KO)的制作方法一、CRISPR/Cas9靶向基因敲除小鼠制作的基本技术原理:通过CRISPR/Cas9基因敲除技术,crRNA通过碱基配对与tracrRNA(trans-activating RNA)结合,形成双链RNA。

这一tracrRNA:crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶标的特定位点剪切双链DNA。

在与crRNA引导序列互补的位点,Cas9蛋白的HNH核酸酶结构域剪切互补链而Cas9 RuvC-like 结构域剪切非互补链,实现敲除目的基因的功能,制备基因敲除小鼠模型。

二、具体步骤如下:一)模型制作策略制作:利用生物信息学手段(NCBI&IMPC&MGI),分别仔细分析目的基因敲除后小鼠的生存能力及繁育能力,并结合邻近基因的影响,最终选择合适的敲除区域进行敲除方案的设计,出具相应的制作策略。

二)载体的设计和构建:使用麻省理工学院的CRISPR Design工具(/),依据中靶Score的高低及脱靶Score的高低设计一对长度为20bp的针对靶标DNA的寡聚核苷酸链序列用于制备sgRNA,并在该靶区域设计引物用于后续阳性小鼠的基因鉴定。

1、制备sgRNA的实验方法步骤:1)线性化pUC57-GDNA-T7载体中提pUC57-GDNA-T7载体,用BsaI线性化过夜。

胶回收保存备用。

2)引物退火及加磷酸将上下游引物(干粉)稀释,再进行引物退火及加磷酸。

3)连接&阳性菌落筛选取步骤二中的加磷酸产物与线性化载体pUC57-GDNA-T7进行连接,该连接反应在干式恒温器中进行。

对连接产物进行转化,涂板,37°C培养箱过夜培养。

再用PCR&测序的方法筛选阳性克隆,再将测序正确的克隆进行甘油菌保种,-80°C保存备用4)制备转录模板以构建好的sgRNA载体为模板进行PCR扩增,将PCR产物切胶回收,回收产物离心后倒掉上清留DNA沉淀,再溶解DNA。

CRISPR-Cas9-基因编辑技术简介ppt课件

CRISPR-Cas9-基因编辑技术简介ppt课件

Cpf1切口远离识别位点。
Feng Zhang et al. 2015
Cpf1 Is a Single RNA-Guided Endonuclea精se选版of课a件Cpplat ss 2 CRISPR-Cas System
21
7.视频:基因编辑CRISPR-Cas9原理
精选版课件ppt
22
精选版课件ppt
它与foki酶功能类似但是它并不需要形成二聚体才能发挥作用2crisprcas系统结构crispr基因座的表达包括转录和转录后的成熟加工当该噬菌体再次入侵细菌时crispr簇首先转录为长的crrna前体然后逐步加工成小的成熟的crrnacrisprcas系统活性的发挥或外源遗传物质的干扰crrna结合相关的cas蛋白后形成crrnacas蛋白复合体通过碱基互补配对精确地与目标dna相结合随后cas蛋白对目标dna进行断裂和降解3cris
Cpf1系统更简单一些,它只需要一条 RNA。Cpf1酶也比标准SpCas9要小, 使得它更易于传送至细胞和组织内。
Cpf1以一种不同于Cas9的方式切割DNA。 Cas9切割留下“平端”(blunt ends)。
Cpf1复合物生成的两条链切口是偏 移的,在裸露端留下了短悬端 (overhang)。这预计有助于精确 插入。
精选版课件ppt
3
1.CRISPR/Cas系统概述
1.2CRISPR系统获得:
CRISPR/Cas系统是很多细菌和大部分古细菌的天然免疫系统, 通过对入侵的病毒和核酸进行特异性的识别,利用Cas蛋白进行 切割,从而达到对自身的免疫。
精选版课件ppt
4
2.CRISPR/Cas系统结构
2.1CRISPR/Cas 主要由两部分组成:

用CRISPR Cas9方案构建双基因敲除鼠, 获得双基因敲除纯合子小鼠的交配方案

用CRISPR Cas9方案构建双基因敲除鼠, 获得双基因敲除纯合子小鼠的交配方案

双基因敲除小鼠繁殖工作:CRISPR/Cas9方案构建双基因敲除鼠,得到F0杂合子之后,如何建系才能获得双基因敲除纯合子小鼠?这是经常被问到的问题,下面就简单回答一下。

假设我们的目的基因为A和B,通常用CRISPR/Cas9方法得到的基因敲除鼠为杂合子,双杂合子小鼠基因型为AaBb,大写字母代表野生型(dominant),小写字母代表突变型(recessive)。

得到F0杂合子(AaBb)之后,可以用以下方案之一来获得双基因敲除纯合子小鼠:方案一:1.将双杂合子小鼠(AaBb)与野生鼠(AABB)交配,理论上将得到25%的野生型(AABB),25%基因A单杂合子(AaBB),25%基因B单杂合子(AABb)及25%双杂合子小鼠(AaBb)。

2.将所得到的双杂合子小鼠(AaBb)互交(inter-cross),理论上6.25%的后代将会是双基因敲除纯合子小鼠(aabb),见下图。

3.由于双基因敲除实验中一般都需要单基因敲除动物作为对照,所以在进行上面小鼠breeding的同时可以将基因A单杂合子(AaBB)互交,在后代中鉴定出基因A纯合子(aaBB),同样将基因B单杂合子(AABb)互交,在后代中鉴定出基因B纯合子(AAbb)。

方案二:将双杂合子小鼠(AaBb)与单基因纯合子(如aaBB)交配,所生小鼠中约25%为基因A纯合子而基因B杂合子(aaBb,见下图左)。

然后将aaBb小鼠互交,理论上后代小鼠中25%为双基因敲除纯合子小鼠(aabb),见下图右。

需要特别注意的几个问题:1)上面所讲的方法适用于位于不同的染色体两个基因的基因敲除,如果两个基因位于同一条染色体上,要通过上述方法得到双基因敲除纯合子小鼠很难;2)上述方法有赖于基因特异性的Genotyping PCR assays。

在开始setup breeding之前必须将两个目的基因特异性的Genotyping PCRassays 准备好;3)要事先研究一下目的基因敲除后有无胚胎致死性,是否影响其生长发育等。

CRISPRCas基因敲除小鼠

CRISPRCas基因敲除小鼠

结语
谢谢大家!
• 使得CRISPR-Cas9应用更广泛。
2020/12/5
4
Cre-dependent Cas9 Rosa26 targeting 矢量图
Rosa26,使转 录可被诱导
荧光蛋白
2020/12/5
5
转入Cas9后与野生小鼠对比
2020/12/5
6
神经系统荧光对比
2020/12/5
7
三种实验测试效果:
荧光显示含有 Cre/Cas9的组织中NeuN表 达明显减少,而非转入非 目标的sgRNA则目标蛋白无 影响
15
NeuN被破坏的比例十分大
2020/12/5
Indel=insertions(插入) and deletions(删除) 16
多数为两个等位基因都被破坏,且其 中多为移码突变。
2020/12/5
2020/12/5
23
最终肺中出现肿瘤
2020/12/5
24
2020/12/5
25
总结
• 事实证明将Cre-dependent引入Cas9工具中, 可以大大扩展Cas9的用途。
• 以后用此学作 出贡献。
2020/12/5
26
Thanks!
2020/12/5
2
CRISPR-Cas9系统的原理
sgRNA
通过设计sgRNA来确定剪切位点 设计简单快速,无需重复构建核酸内切酶
2020/12/5
target
3
Cas9的局限性
• 受限于转基因范围,Cas9往往只用与细胞或胚 胎层面的实验。
• 本实验采用Cre-dependent Rosa26 Cas9 knockin mouse克服了这个局限性。

《crisprcas9技术》课件

《crisprcas9技术》课件

CRISPR-Cas9的应用
基因组编辑及修补
CRISPR-Cas9技术可以精确的定位基因组中特定位点 进行编辑和修补,是医学、农业、工业等领域中重 要的基因体系。
基因靶向表达
利用CRISPR-Cas9技术的靶向控制基因表达可以实现 治疗疾病、生产有用生物制品等应用。
基因调控
CRISPR-Cas9技术可选择性、有 Nhomakorabea地进行基因调控,
应用前景
• CRISPR-Cas9技术未来将 广泛用于医疗、农业、 工业、环保等领域,成 为生物技术创新的重要
• 推基动于C力R。ISPR-Cas9技术的 新产品、新技术、新应 用也将成为未来投资的 热点领域。
2
编辑系统的工作原理
CRISPR-Cas9通过识别、结合、切割目标基因位点,进一步实现对基因组的编辑 和修补,使基因组发生特定改变,达到治疗或改良目的。
3
PAM序列的特点
PAM序列指的是Cas9靶序列的附近序列,是单导RNA结合Cas9蛋白并定位于靶点 上的关键信息之一,其特点包括长度和序列的多样性。
农业遗传改良
利用CRISPR-Cas9技术对商业作物进行精准改良是未
CRISPR-Cas9技术的局限和挑战
1 异源物质的干扰
2 细胞外的嵌合酶
CRISPR-Cas9技术会受到外部异源物质的干扰, 影响其在目标细胞内的有效性。
CRISPR-Cas9技术需要有效的嵌合酶才能达到 预期效果,因此嵌合酶的研究一直是制约该 技术发展的瓶颈之一。
应用领域
CRISPR-Cas9技术已广泛应用于基因组编辑、基因表达调控、疾病治疗和药物筛选等领域,且 应用前景广阔。
CRISPR-Cas9系统的构成和原理

小鼠大脑基因实验报告(3篇)

小鼠大脑基因实验报告(3篇)

第1篇一、实验背景随着神经科学研究的深入,理解大脑的基因调控机制对于揭示神经疾病的发生机理和开发新的治疗方法具有重要意义。

本研究旨在通过基因编辑技术,探究特定基因在小鼠大脑发育和功能中的作用,为相关疾病的预防和治疗提供新的思路。

二、实验目的1. 利用CRISPR/Cas9基因编辑技术敲除小鼠大脑中特定基因。

2. 观察基因敲除对小鼠大脑发育、行为和认知功能的影响。

3. 分析敲除基因对小鼠大脑中相关通路和基因表达的影响。

三、实验材料与方法1. 实验材料- 小鼠胚胎干细胞(ES细胞)- CRISPR/Cas9系统- 实验小鼠(C57BL/6小鼠)- 实验试剂:DNA聚合酶、限制性内切酶、DNA连接酶、PCR引物等2. 实验方法(1)基因编辑1. 设计靶向特定基因的CRISPR/Cas9系统,包括sgRNA和Cas9蛋白。

2. 将sgRNA和Cas9蛋白导入小鼠ES细胞,进行基因编辑。

3. 对编辑后的ES细胞进行筛选,获得基因敲除的细胞系。

4. 将基因敲除的细胞系注射到C57BL/6小鼠的受精卵中,获得基因敲除的小鼠。

(2)小鼠行为和认知功能测试1. 观察基因敲除小鼠的生长发育、行为和运动能力。

2. 对小鼠进行认知功能测试,包括Morris水迷宫实验、Y迷宫实验等。

(3)基因表达分析1. 提取小鼠大脑样本,进行RNA提取和cDNA合成。

2. 利用PCR、RT-qPCR等方法检测敲除基因的表达水平。

3. 对小鼠大脑样本进行蛋白质组学分析,检测相关蛋白的表达水平。

四、实验结果1. 基因敲除成功敲除了小鼠大脑中特定基因,并通过PCR、RT-qPCR等方法验证了基因敲除的效果。

2. 小鼠行为和认知功能与野生型小鼠相比,基因敲除小鼠在Morris水迷宫实验中表现出明显的空间学习障碍,提示该基因可能参与小鼠的认知功能。

3. 基因表达分析敲除基因后,小鼠大脑中相关通路和基因表达发生了显著变化。

具体表现为:1. 神经递质合成酶的表达水平降低。

基因敲除小鼠的方法

基因敲除小鼠的方法

基因敲除小鼠的方法
1. CRISPR/Cas9基因编辑技术,CRISPR/Cas9技术是一种高效的基因编辑工具,可以用来精确地敲除小鼠基因。

首先,科学家设计合成一段RNA序列,使其与目标基因序列相匹配,然后将这段RNA和Cas9蛋白复合体导入小鼠胚胎内。

复合体会通过识别并切割目标基因,导致基因敲除。

2. 胚胎干细胞技术,另一种常见的基因敲除小鼠方法是利用胚胎干细胞。

科学家可以将设计好的基因敲除载体导入小鼠胚胎干细胞中,使其发生基因敲除。

然后,这些修改过的干细胞可以被植入小鼠胚胎内,从而产生基因敲除小鼠。

3. 遗传改造小鼠技术,除了CRISPR/Cas9和胚胎干细胞技术,科学家还可以利用遗传改造技术来实现基因敲除。

这种方法涉及到选择性育种和杂交,通过选择性地交配和繁殖,最终得到具有特定基因敲除的小鼠品系。

总的来说,基因敲除小鼠的方法主要包括CRISPR/Cas9基因编辑技术、胚胎干细胞技术和遗传改造小鼠技术。

这些方法都是在实验室条件下进行的,需要经过严格的实验设计和操作流程,以确保
基因敲除的准确性和有效性。

同时,这些方法也为科学家提供了强大的工具,用于研究基因在生物体内的功能和作用机制。

Cre-loxP、CRISPR-Cas9技术与病毒载体在基因敲除中的联用PPT精选课件

Cre-loxP、CRISPR-Cas9技术与病毒载体在基因敲除中的联用PPT精选课件

3. 病毒载体
17
3.1 病毒载体比较
18
3.1 病毒载体比较
19
3.2 病毒载体应用
20 组成型启动子-感染特性决定表达分布
3.2 病毒载体应用
21 特异性启动子-空间和时间精细表达
4 组合应用示例——Cre-loxP与病毒工具结合
22
4.1 Cre-loxP与病毒工具结合应用
23
“条件性基因激活”模式
间发生基因重组。
Cre重组酶无需借助任何辅助因子,可作用于多种结构的DNA底物,如线形、
环状甚至超螺旋DNA。
loxP位点,是locus of X-over P1的缩写,来自P1噬菌体。间隔序列决定loxP
的方向,如下所示: 13bp
8bp
13bp
ATAACTTCGTATA-NNNTANNN-
TATACGAAGTTAT
2.4 CRISPR-Cas9技术优势
16
1. CRISPR-Cas9系统的可用位点更多:理论上基因组中每8 个碱基就能找到一个可用CRISPR-Cas9进行编辑的位点,而 TALEN和ZFN系统则在数百甚至上千个碱基中才能找到一个 可用位点;
2. CRISPR-Cas9系统更具有可拓展性:例如可以通过对 Cas9蛋白的修饰,让它不切断DNA双链,而只是切开单链, 这样可以大大降低切开双链后带来的非同源末端连接造成的 染色体变异风险;此外还可以将Cas9蛋白连接其他功能蛋白, 从而在特定DNA序列上研究这些蛋白对细胞的影响;
基因操作技术一览
4
1. Cre-loxP技术简介
5
Cyclization recombinase
Cre蛋白于1981年从P1噬菌体中被发现,属于λInt酶超基因家族。

CRISPR cas9基因敲除原理及其应用

CRISPR cas9基因敲除原理及其应用

CRISPR cas9基因敲除原理及其应用CRISPR Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) 是一种新兴的基因编辑技术,它利用CRISPR系统和Cas9酶实现对基因组的精确编辑。

本文将对CRISPR Cas9的基本原理进行详细介绍,并探讨其在生物学研究、医学治疗和农业育种等领域的应用前景。

一、CRISPR Cas9基因敲除原理CRISPR Cas9基因敲除是利用CRISPR-Cas9系统对目标基因进行精确编辑的一项技术。

CRISPR是细菌和古细菌天然免疫系统中的一种防御机制,能够通过记录并抵御外源DNA入侵来保护细菌免受病毒感染。

而Cas9是CRISPR系统中的核酸酶,具有裁剪并去除外源DNA的功能。

CRISPR Cas9基因敲除的基本步骤如下:1.设计合适的引导RNA(gRNA),通过与目标基因序列特异性结合,将Cas9酶精确引导到目标基因的靶位点。

2.Cas9酶与gRNA结合后形成复合物,通过靶向性的DNA酶切活性,在目标位点引发DNA双链断裂。

3.在细胞的DNA修复过程中,通过非同源末端连接(Non-Homologous End Joining,NHEJ)机制,导致插入或缺失DNA碱基,从而实现基因的敲除。

二、CRISPR Cas9基因敲除的应用CRISPR Cas9基因敲除技术在生物学、医学和农业领域有着广泛的应用前景。

1.基因功能研究:通过敲除特定基因,科研人员可以深入了解该基因在生物体内的功能以及相关的生理和病理过程。

CRISPR Cas9技术的高效性和精确性使得基因功能研究更加便捷和可靠。

2.疾病治疗:基于CRISPR Cas9技术,科学家可以直接敲除或修复与疾病相关的基因突变,为基因治疗提供了新的途径。

例如,将CRISPR Cas9应用于肿瘤治疗,可以针对肿瘤细胞中的特定基因进行敲除,达到抑制肿瘤生长和扩散的目的。

CRISPR基因编辑技术讲课稿

CRISPR基因编辑技术讲课稿

并引起一系列生物伦理的问题…
基因组编辑技术
• 基因组编辑技术(genome editing)是一种可以在基因 组水平上对DNA序列进行改造的遗传操作技术。也称为基 因打靶(Gene targeting)。
• 技术的原理是构建一个人工内切酶,在预定的基因组位置 切断DNA,切断的DNA在被细胞内的DNA修复系统修复 过程中会产生突变,从而达到定点改造基因组的目的。
TALEN
TALEN(Transcription activator -like effectors):一种源于植物致病菌 的靶向基因操作技术。
科学家发现,来自植物细菌Xanthomonas sp. (黄单胞菌) 的TAL蛋白的核 酸结合域的氨基酸序列与其靶位点的核酸序列有恒定的对应关系,一个模块 单元识别一个碱基,简单且特异性极好。
DNA识别域:由一系列TAL蛋白串联组成(一般20个左右),每个TAL蛋白识 别并结合一个对应的碱基。 核酸内切酶: 非特异性核酸内切酶FokI,形成二聚体时切割双链DNA
TALEN原理
全长为34aa的Tal 蛋白的第12、13位氨基 残基可以特异性识别核苷酸碱基。 • NG可以识别T • HD可以识别C • NI可以识别A • NN可以识别G或A 通过这种特异性识别,将多个Tal蛋白组 装在一起,就可以构成可以识别目的片 段的Tale蛋白。
• DNA识别域虽然具有较强的特异性识别能力,但是其识别的序列长度 比较有限。
• 因为ZFN剪切的过程不完全依赖同源二聚体的形成,所以一旦形成异 源二聚体,就很可能造成脱靶效应;
• 如果出现脱靶,可能导致DNA的错配和序列改变,产生较强的细胞毒 性。当这些不良影响积累过多,超过细胞修复机制承受的范围时,便 会引起细胞的凋亡。

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《2024年利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》范文

《利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系》篇一一、引言基因编辑技术为现代生物学研究带来了巨大的突破。

在众多基因编辑技术中,CRISPR-Cas9系统以其高精度、高效率的特性备受关注。

本篇论文旨在探讨利用CRISPR-Cas9系统构建DUSP9基因敲除小鼠胚胎干细胞系的过程、结果以及相关讨论。

二、材料与方法1. 材料小鼠胚胎干细胞系、DUSP9基因序列信息、CRISPR-Cas9系统相关试剂等。

2. 方法(1)设计并合成针对DUSP9基因的CRISPR-Cas9系统指导RNA(gRNA)。

(2)将gRNA与Cas9蛋白共同转入小鼠胚胎干细胞中。

(3)通过PCR、Western Blot等方法检测DUSP9基因的敲除情况。

(4)对敲除后的胚胎干细胞进行扩增、培养,并分析其生物学特性。

三、实验结果1. DUSP9基因敲除效率分析通过PCR和Western Blot等方法,我们成功检测到DUSP9基因的敲除情况。

在转导了CRISPR-Cas9系统的胚胎干细胞中,DUSP9基因的敲除效率达到了XX%。

2. 胚胎干细胞的生物学特性分析通过对敲除后的胚胎干细胞进行扩增、培养,我们发现其增殖能力、分化能力等生物学特性均与野生型胚胎干细胞无显著差异。

3. 基因敲除小鼠模型的构建与验证将敲除DUSP9基因的胚胎干细胞注射到小鼠囊胚中,成功构建了DUSP9基因敲除小鼠模型。

通过对小鼠进行基因检测,验证了DUSP9基因的敲除情况。

四、讨论本实验利用CRISPR-Cas9系统成功构建了DUSP9基因敲除小鼠胚胎干细胞系,为进一步研究DUSP9基因的功能及其在相关疾病中的作用提供了有力工具。

同时,本实验也证明了CRISPR-Cas9系统在基因编辑领域的广泛应用和可靠性。

在实验过程中,我们注意到以下几点:首先,gRNA的设计与合成是影响基因敲除效率的关键因素之一,需要针对目标基因的序列信息进行精确设计。

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型

一文教你如何利用CRISPRCas9技术建立小鼠敲除模型作者:Ryan来源:科研小助手公众号Manipulation of mouse genome with minimal off-target by microinjection of one-cell embryos with paired sgRNAs and nickaseWhile CRISPR/Cas9 technique has been widely used in genome editing regarding multiple organisms, the off-target effect can’t be neglected. Subsequently, to conquer the off-target effect, many strategies have been applied including longer sgRNA (about 26bp) and nickase combined with paired sgRNAs. Here we described a good menthod for generating the mutant mice/conditional knockout mice with minimal off-target by microinjection of one-cell embryos with paired sgRNAs and Cas9 nickase. Moreover, paired sgRNAs and nickase can also mutate multiple genes simultaneously, or to generate large deletions up to at least 10kb or more.Comparison of Cas9 and nickase (Cas9D10A)Figure 1. Cas9 nickase strategy. Cas9 nickase induces a double strand break adjacent CRISPR sites (TS1 and TS2) onopposite DNA strands. Constrastly, single-stand nicks at off-target sites (OTS) for either sgRNA will be corrected by the base-excision repair pathway, thus minimizing off-target mutations. P, PAM site.Plasmidsused in the protocolT7-Nickase(Cas9-D10A):T7-sgRNA:ReagentsPlasmids: T7-Nickase(Cas9-D10A) and T7-sgRNAmMESSAGE mMACHINE®T7 Ultra kit (Ambion, AM1345)MEGAshortscript TM Kit(Ambion, AM1354)RNeasy Mini Kit (QIAGEN,74104)MEGAclear TM Kit(Ambion, AM1908)RNAsecure TM Reagent(Ambion, AM7005)QIAprep Spin Miniprep Kit(QIAGEN, 27104)MiniElute PCRPurification Kit (QIAGEN, 28004)BsaI (NEB, R0535S)AgeI (NEB, R0552S)DraI (TAKARA, D1037A)T4 DNA Ripid ligation Kit(NEB,M2200S)PMSG (Sansheng, China,50IU/ml in normal saline, Aliquot and store at -80℃)HCG (Sansheng, China,50IU/ml in normal saline, Aliquot and store at -80℃)EmbryoMax® Injection Biffer (Millipore, MR-095-10F)ProteinaseK(Merck,1245680100, 20 mg/ml in water, Aliquot and store at -20℃)Lysis buffer (10 μMTris-H Cl, 0.4 M NaCl, 2 μM EDTA, 1% SDS) Phenol (Tris-saturated),Chloroform and alcoholPCR clearing Kit (Axygen,AP-PCR-50)T7EN1 (NEB, M0302L)PrimerSTAR HS DNA Polymerase (TAKARA, DR010A)pMD19T-vector kit(TAKARA, 3271)EquipmentCentrifuge(RT and 4℃)VortexOneDrop OD-1000+ SpectrophotometerThermocyclerThermomixerThermo-controlledwater bath(37℃,42℃ and 58℃)ProcedureConstructionof sgRNA expression vectors1. Design of paired sgRNA oligos.Select paired sgRNAs in a tail-to-tail orientation and separated by 10-30 bp, which have the sequence 5’-CCN(52-72)GG.All possible paired sites for mouse and human exons are available on website(/htgt/wge/). For each sgRNA, the 5’-GGN(19)GGmotif is preferred, however, 5’-GN(20)GG or 5’-N(21)GG are also satisfactory. BLAT or BLAST the sgRNA target sites in UCSC or ENSEMBL genome browsers to find those with few or no highly related sites in the genome.Order oligos as below:For 5’-GGN(19)GGmotifTop strand oligo:Bottom strand Oligo:For 5’-GGN(20)GG motifFor 5’-GGN(21)GG motif2. Annealing oligos prior to cloning.4.5μl Top Oligo (100 μM)4.5μl Bottom Oligo (100 μM)1μl NEB buffer 2Annealing oligos using a thermocycler with the following program:95℃,5 min; 95-85℃ at -2℃/s; 85-25℃ at -0.1℃/s; hold at 4℃.3. Preparation of T7-sgRNA plasmid.2 μg T7-sgRNA plasmid.1 μl CutSmart Buffer1 μl BsaIAdd H2O up to 50 μl and incubate at 37℃ for 2 h with occasional shake.Purify the digeston product using MinElutePCR Purification Kit.4. Ligation of annealed oligos with BsaI-digested T7-sgRNA4 μl annealed oligos2 μl (25 ng/μl) digested T7-sgRNA10×NEB ligation buffer 1 μlddH2O 2 μlNEB T4 DNA ligase 1 μlUp to 10 μlncubate at 22℃for 30 min5. Transformation and plate on Kan+plate (50 μg/ml).6. Confirm correct Insertion of sgRNA oligosby sequencing using M13-47 primer.7. Mini-prep T7-sgRNA plasmid using QIAprepSpin Miniprep Kit.Transcriptionof sgRNAs in vitro1. Ensurethat reagents, tubes and tips are RNase-free and that the work is done in aribonuclease-free enviroment.2. Digestpaired sgRNA plasmids with DraI and purify the digestion fragment.10 μg paired sgRNA plasmids (5 μg each)10 μl 10×Mbiffer5 μl DraI (15 U/μl)Add H2O up to 100 μl and incubate at 37℃ for 3 h with occasional shake.Check plasmids were digested completely bygel electrophoresis, loading 2 μl in 1% agarose gel.Two bands (1621 and 1152 bp) will beobserved. It is not necessary tio gel-purify the band harboring the sgRNAsequence.Add 4 μl RNAsecure and incubate at 60 ℃ for 10 min in a thermomixer.Purify and elute the digestion product with 10 μl RNase-free water usingMinElute PCR Purification Kit, 5-8 μg of DNA will be recovered.For mutiplexing experiments, two or more paired sgRNAs may be digested simultaneously in one tube.Alternatively, the transcription template containing the T7 promoter sgRNAsequence may be prepared by PCR amplification from a bacterial colony using thefollowing primers and PCR program:sgRNA-For:5’-TCTCGCGCGTTTCGGTGATGACGGsgRNA-Rev:5’-AAAAAAAGCACCGACTCGGTGCCACTTTTTCProgram:94℃,5min; ((98 ℃ ,10s; 72-62℃, -1℃/cycle, 15s; 72 ℃, 30s) 10 cycles, (98℃, 10s;62 ℃, 15s; 72 ℃, 30s) 25 cycles); 72 ℃, 5 min; hold at 4℃.Inactivate RNases byadding RNA secure and purify the PCR product using the MinElute PCR PurificationKit.3. Invitro transcription of sgRNAs using MEGAshortscriptTMKit.1 μl T710× Reaction Buffer1 μl T7 ATP Solution (75 mM)1 μl T7 CTP Solution (75 mM)1 μl T7 GTP Solution (75 mM)1 μl T7 UTP Solution (75 mM)4 μl purified template (more than 2 μg for plasmids, 700 ng-1000 ng for PCR products)1 μl T7 Enzyme Mix10 μl of transcription volume is OK.Incubate the reaction at 37 ℃ for 4-6 h in water bath or Thermocycler (Set thehot lid to 50 ℃).Add 1 μl TURBODNase and incubate at 37 ℃ for 15 min to remove the DNA template.4. Purify the sgRNAs by MEGAclearTM Kitaccording to the manufacturer’s instructions.RNA elutionoption 2 in the manual is preferred.Precipitatewith 5 M Ammonium Acetate and ethanol.Resuspendthe pellet using the 30 μl RNase free water.20-50 μgRNA will be obtained depending on the quality of DNA template.5.Assess sgRNA yield using the One Drop OD-1000+Spectrophotometer (or equivalent) and sgRNA quality by gel electrophoresis. RNAis loaded in DNA loading buffer and run on 1% agarose gel (180 V for 10 min).6.Aliquot and store at -80 ℃. The sgRNAs are stablefor one year without freeze-thaw cycles.Transcription of Nickase (Cas9-D10A) in vitro1. Ensure that reagents, tubes and tips are RNase-freeand that the work is done in a ribonuclease-free enviroment.2. Digest T7-Nickase (Cas9-D10A) plasmid with AgeIandpurify the digestion product.10 μgT7-Nickase (Cas9-D10A)10 μl NEBbuffer I4 μl AgeIAdd H2O upto 100 μl and incubate at 37 ℃ for 3 h with occasional shake.Add 4 μlRNAsecure and incubate at 60 ℃ for 10 min in a thermomixer.Check for complete digestion of the plasmid byelectrophoresis, loading 2 μl in 1% agarose gel.Purify and elute the digestion product with 10 μlRNas e-free water using MinElute PCR Purification Kit, 5-8 μg DNA will berecovered.3.In vitro transcribe Cas9-D10A using mMESSAGE mMACHINE® T7 Ultra Kit according to the manufacturer’s instruction.4. Purify the Nickase (Cas9-D10A) mRNA by RNeasy MiniKit ac cording to the manufacturer’s instructions.5. Assess sgRNA yield using the One Drop OD-1000+Spectrophotometer (or equivalent) and sgRNA quality by gel electrophoresis. RNAis loaded in DNA loading buffer and run on a 1% agarose gel (180V for 10 min).A yield of 30-60 μg mRNA is expected.Note: Due to the size of the Nickase (Cas9-D10A) mRNA, no visible size shift is seenafter poly-A tailing. The mRNA quality is good if a smear is not observed.6. Aliquot and store at -80 ℃. Nickase (Cas9-D10A)mRNA is stable for one year without freeze-thaw cycles.Collection of zygotes1. Superovulate 4-week-old female C57BL/6J (about12-14g) mice by intraperitoneal injection with PMSG (5 IU/100 μl) at 14:00 ofday 1 and with HCG (5 IU/100 μl) at 13:00 of day 3.2. Cross superovulated females with males (C57BL/6J orCBA).3. Identify plugged females at 9:00 of day4. Collectone-cell embryos as decribed in Reyon, D. et al, 2012.Preparation of microinjection mixture1. Thaw aliquot of the Cas9-D10A mRNA and sgRNAs onice. Dilute the Cas9-D10A mRNA with Embryo Max® Injection Buffer to a concentration of 20 ng/μl and sgRNAs (5 ng/μl each) in a final volume of 50 μl. Pipette the mixture upand down several times2. Centrifuge at 4 ℃ for 1 min at top sped, andcarefully transfer 45 μl supernatant to a new tube. Always keep the tube onice.Microinjection and embryo transferMicroinjection and embryo transfer are performed using standard methods for generation of transgenic mice as described in Andras,N. et al., 2003, Cold Spring Harb Protoc. We prefer to inject the RNA mixture into both the cytoplasm and larger (male) pronucelus.Genotyping founders1. Tail tips from founders (5-day-old) are collected and digested overnight at 55 ℃ with lysis buffer containing 100 μg/ml Proteinase K. Genomic DNA is extracted by phenol-chloroform and purified by ethanol precipitation.2. Target region(300-700 bp) are PCR amplified from genomic DNA and the products are purified with the PCR Cleanup Kit. Purified PCR products are denatured and reannealed in NEB buffer 2 in a thermocycler using the following programme;95℃,5 min; 95-85 ℃ at -2℃/s; 85-25 ℃ at -0.1℃/s; hold at 4℃.3. Hybridized PCR products are digested with 0.5 μlT7EN1 at 37℃ for 30 min and separated by 2% agarose gel. Mutant founders will yield lower molecular weight cleavage bands.4. Cloning and sequencing of PCR amplicons from genimic DNA of mutant founders is used to characterize the mutations. T-A cloning of PCR products us performed using the pMD19T kit (TAKARA) according to manufacturer’s instructions.TroubleshootingProblemSolution SgRNA expression plasmid does not contain insertpUC57-sgRNA vector is not digested completely.Extend the incubation time and shake thedigestion product occasinally. Colony PCR canbe used to identify the positive coloniesusing 5’-TTGTACTGAGAGTGCACCATATG-3’ and the bottom strand sgRNA oligoLow yield of sgRNAsa. Use the recommended kits to improve the quality of plasmids and templateb. Increase the amount of template or use the PCR product as template. Electrophoresis of sgRNAs shows more than one band a. sgRNAs can form dimers. Always keep sgRNAson ice. A low amount of dimer will not affectthe function of sgRNA.b. DNA template is incompletely digested.Circular template can produce longertranscripts. Extend the incubation time and shake the digestion product occasionally. c. DNA template contamination. Add more TURBO DNase and extend incubation time.Cas9-D10A mRNA produces a smear on an agrose gel a. Use RNAsecure to inactivate RNase contaminationb. Use the recommended kits to improve thequality of the DNA template.(QIAGEN Mini-prepand PCR clean-up kits are recommended)Time Taken4 days for the construction of sgRNA expression vectors.1 day for the in vitro transcription and preparation of sgRNAs. 1 day for the in vitro transcription and preparation of Cas9-D10A mRNA.4 days for the superovulationb of females, collection of 1-cell embryos and microinjections1 week for the genotyping of founder animals.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
三、腺病毒转入肺
2020/5/28
18
sgKra s
sgp53
sgLkb Kras同源
1
修补
2020/5/28
19
P53的基因变化
2020/5/28
• 多为移码突变
20
Lkb1的基因变化
2020/5/28
• 多为移码突变
21
Kras的基因变化
2020/5/28
22
P53和Lkb1不断被损坏, Kras则被修补变得越发 优势
2020/5/28
23
最终肺中出现肿瘤
2020/5/28
24
2020/5/28
25
总结
• 事实证明将Cre-dependent引入Cas9工具中, 可以大大扩展Cas9的用途。
• 以后用此方法可以更好的对基因进行修整, 已达成更多的实验,为人类医学和生物学作 出贡献。
2020/5/28
26
Thanks!
11
2020/5/28
有转入目的基因的 小鼠大多细胞目的基 因发生移码突变,目 的基因转录和翻译都 明显下调。
12
二、腺病毒转入大脑皮层额叶
2020/5/28
目标基因是NeuN
13
目的基因发生的改变
✓ 缺失一位 ✓ 缺失多位 ✓ 插入一位 ✓ 插入多位
2020/5/28
14
2020/5/28
荧光显示含有 Cre/Cas9的组织中NeuN表 达明显减少,而非转入非 目标的sgRNA则目标蛋白无 影响
15
NeuN被破坏的比例十分大
2020/5/28
Indel=insertions(插入) and deletions(删除) 16
多数为两个等位基因都被破坏,且其 中多为移码突变。
2020/5/28
• 使得CRISPR-Cas9应用更广泛。
2020/5/28
4
Cre-dependent Cas9 Rosa26 targeting 矢量图
Rosa26,使转 录可被诱导
荧光蛋白
2020/5/28
5
转入Cas9后与野生小鼠对比
2020/5/28
6
神经系统荧光对比
2020/5/28
7
三种实验测试效果:
2020/5/28
2
CRISPR-Cas9系统的原理
sgRNA
通过设计sgRNA来确定剪切位点 设计简单快速,无需重复构建核酸内切酶
2020/5/28
target
3
Cas9的局限性
• 受限于转基因范围,Cas9往往只用与细胞或胚 胎层面的实验。
• 本实验采用Cre-dependent Rosa26 Cas9 knockin mouse克服了这个局限性。
CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling
CRISPR-Cas9系统的原理
crRNA( CRISPR-derived RNA )通过碱基 配对与 tracrRNA (trans-activating RNA )结合 形成 tracrRNA/crRNA 复合物,此复合物引导核 酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点 剪切双链 DNA。而通过人工设计这两种 RNA, 可以改造形成具有引导作用的sgRNA (short guide RNA ),足以引导 Cas9 对 DNA 的定点 切割。
三种转接方法: 纳米粒子、腺病毒转导、 慢病毒转导。 三个系统(器官):/28
8
一、慢病毒转入树突状细胞
2020/5/28
——转入树突状细胞实验过程
9
通过荧光蛋白EGFP可以鉴别 Cas9是否转导成功
2020/5/28
10
设计了两个剪切位点
2020/5/28
相关文档
最新文档