2020年高考数学第8讲二次函数

合集下载

《高三数学二次函数》课件

《高三数学二次函数》课件

3 二次函数的单调性
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
4 二次函数的极值
二次函数的一般形式为$f(x) = ax^2 + bx + c$,其中 $a neq 0$。二次函数的开口方向由系数$a$决定,当 $a > 0$时,开口向上;当$a < 0$时,开口向下。
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 0)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递减,求$a$的取值范围。
提高习题2
已知二次函数$f(x) = ax^2 + bx + c$的图象经过点$(0, 1)$和$(1, -1)$ ,且在区间$( - infty, - frac{b}{2a})$ 上单调递增,求$a$的取值范围。
04
下一步学习计划
01
深入学习其他类型的函数,如 三角函数、指数函数等,进一 步拓展数学知识面。
02
加强数学练习,通过大量的习பைடு நூலகம்题训练提高自己的解题能力和 数学思维能力。
03
学习数学中的其他重要概念和 定理,如导数、积分等,为后 续的学习打下坚实的基础。
04
参加数学竞赛或课外活动,与 其他同学一起探讨数学问题, 共同进步。
基础习题2
已知二次函数$f(x) = ax^2 + bx + c$在$x = 2$处取得最小值,求$a$的取值范围。
基础习题3

专题08分类讨论思想在二次函数最值中的应用-备战2020高考技巧大全之高中数学黄金解题模板(原卷版)

专题08分类讨论思想在二次函数最值中的应用-备战2020高考技巧大全之高中数学黄金解题模板(原卷版)

【高考地位】分类讨论思想是一种重要的数学思想方法,它在人类的思维发展中起着重要的作用. 分类讨论思想实际上是一种化整为零、化繁为简、分别对待、各个击破的思维策略在数学解题中的运用. 二次函数在闭区间上最值问题在高考各省市的考题中经常出现,由于二次函数分类讨论参变量取不同的值时,可引起函数性质的变化,因此研究二次函数在区间上的最值问题常见处理方法是有必要的.【方法点评】类型求二次函数最值问题使用情景:二次函数在区间上的最值问题解题模板:第一步通过观察函数的特征,分析二次函数的表达式中是否具有参数,且参数的位置在什么位置;第二步通过讨论二次函数的对称轴和已知区间之间的关系进行分类讨论;第三步根据二次函数的图像与性质可判断函数在区间上的单调性,并根据函数的单调性求出其最值;第四步得出结论. 例1已知函数()yf x 是二次函数,且满足(0)3f ,(1)(3)0f f (1)求()yf x 的解析式;[来源:学*科*网](2)若[,2]x t t ,试将()y f x 的最大值表示成关于t 的函数()g t .例2 已知函数2(=(0,,)f x ax bx c a b R c R ),若函数()f x 的最小值是(1)0,(0)1f f 且对称轴是1x ,()(0)()()(0)f x xg x f x x .(1)求(2)(2)g g 的值;(2)在(1)条件下求()f x 在区间,2t t ()t R 的最小值.【变式演练1】已知函数2()21f x x ax ,[来源:Z&xx&](1)求()f x 在区间1,2的最小值()g a ;(2)求()f x 在区间1,2的值域【变式演练2】设函数2(),,f x x ax b a b R .(1)当2a 时,记函数|()|f x 在[0,4]上的最大值为()g b ,求()g b 的最小值;(2)存在实数a ,使得当[0,]xb 时,2()6f x 恒成立,求b 的最大值及此时a 的值.[来源:学,科,网]【变式演练3】记函数2()f x ax bx c (a ,b ,c 均为常数,且0a ).(1)若1a ,c f bf (c b ),求2f 的值;(2)若1b ,a c 时,函数x f y 在区间[1,2]上的最大值为()g a ,求()g a .【变式演练4】已知二次函数2()y f x x bx c 的图象过点)13,1(,且函数y 1()2f x 是偶函数.(1)求()f x 的解析式;(2)已知2t ,x x x f x g ]13[2,求函数x g 在]2,[t 上的最大值和最小值;(3)函数()y f x 的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.[来源:学_科_网]【高考再现】1. 【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b<0”是“f (f (x ))的最小值与f (x )的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2. 【2015高考湖北,文17】a 为实数,函数错误!未找到引用源。

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析

高考数学中的二次函数问题解析高考数学是很多学生最为担心的科目之一,其中涉及到的二次函数问题更是令学生头疼不已。

二次函数在高中数学中的重要性不言而喻,其解题方法多种多样,需要学生有一定的数学基础和逻辑思维能力。

在本文中,将着重解析高考数学中的二次函数问题,让学生能够更好地应对考试。

一、二次函数的基本形式二次函数是高中数学的一个重要概念,也是高考的重点内容之一。

二次函数的一般式为:y = ax² + bx + c其中,a、b、c 分别为实数,二次函数的图像为开口朝上或开口朝下的抛物线。

a 的取值决定了二次函数的开口方向和大小,当a > 0 时,抛物线开口朝上,当 a < 0 时,抛物线开口朝下;而 b 和c 的取值则分别影响抛物线的位置和与坐标轴的交点。

二、二次函数的求根公式在解决二次函数的问题时,一个常见的问题是求解方程ax² + bx + c = 0其中,a、b、c 分别为实数。

由于一般的二次方程不易直接求解,因此需要使用二次函数的求根公式:x1,2 = (-b ± √(b² - 4ac)) / 2a其中,+/- 代表正负号取两种情况,√ 表示开方,a、b、c 分别代表一般式中的系数。

需要注意的是,在运用此公式求解时,首先应该对给定方程进行分类讨论,判断它的解的数量与情况。

三、二次函数的最值问题另一个常见的二次函数问题是求取最值。

通过对一般式 y = ax²+ bx + c 的求导,我们可以得到其导函数为:y' = 2ax + b当 y' = 0 时,可以求得此时的 x 值,即为二次函数的极值点。

根据抛物线的开口方向,可以推断出该点是函数的最大值或最小值。

此外,需要注意的是,当 a > 0 时,抛物线开口朝上,其最小值为 y = c - b² / 4a;而当 a < 0 时,抛物线开口朝下,其最大值为y = c - b² / 4a。

2020版高考数学历史专用讲义:第二章 2.4 幂函数与二次函数

2020版高考数学历史专用讲义:第二章 2.4 幂函数与二次函数

§2.4 幂函数与二次函数最新考纲 1.通过实例,了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y=1x ,y =12x 的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较函数y =xy =x 2y =x 3y =12xy =x -1图象性质定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇函数偶函数 奇函数非奇非偶函数奇函数 单调性在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点 (1,1)2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 R R值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性 函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0); (3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b 24a.( × ) (2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(3)函数y =122x 是幂函数.( × )(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 题组二 教材改编2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32 D .2 答案 C解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝⎛⎭⎫12α.∴k =1,α=12.∴k +α=32.3.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3答案 D解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3,故选D. 题组三 易错自纠 4.幂函数f (x )=21023a a x-+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .6 答案 C解析 因为a 2-10a +23=(a -5)2-2, f (x )=2(5)2a x--(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6,又(a -5)2-2为偶数,所以只能是a =5,故选C.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减,∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.若幂函数的图象经过点⎝⎛⎭⎫2,14,则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)答案 D解析 设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).故选D.2.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c 答案 B解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B. 3.已知幂函数f (x )=(n 2+2n -2)23n nx-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.4.(2018·潍坊模拟)若(a +1)13-<(3-2a )13-,则实数a 的取值范围是____________.答案 (-∞,-1)∪⎝⎛⎭⎫23,32 解析 不等式(a +1)13-<(3-2a )13-等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2, ∴f (x )=x 2-2x +3.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1, 得a =1,所以f (x )=x 2+2x .思维升华 求二次函数解析式的方法跟踪训练1 (1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0), 又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2 (2018·重庆五中模拟)一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )答案 C解析 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,选C. 命题点2 二次函数的单调性例3 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0] D .[-3,0]答案 D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a 2a =-1,∴a =-3. 命题点3 二次函数的最值例4 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎨⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题例5 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝⎛⎭⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2)函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎡⎦⎤1a ,a ,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2. 思维升华 解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.跟踪训练2 (1)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是( ) A .b ≥0 B .b ≤0 C .b >0 D .b <0答案 A解析 ∵函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,∴图象的对称轴x =-b2在区间[0,+∞)的左边或-b 2=0,即-b2≤0,得b ≥0.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.1.幂函数y =f (x )经过点(3,3),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是减函数 D .非奇非偶函数,且在(0,+∞)上是增函数 答案 D解析 设幂函数的解析式为y =x α,将(3,3)代入解析式得3α=3,解得α=12,∴y =12x ,故选D. 2.幂函数y =24m mx-(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3答案 C 解析 ∵y =24m mx-(m ∈Z )的图象与坐标轴没有交点,∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 3.若幂函数f (x )=(m 2-4m +4)·268m m x -+在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2 答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.4.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.5.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.6.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a 等于( ) A .2 B .0 C .0或-1 D .2或-1答案 D解析 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.7.已知f (x )=x 2,g (x )=12x ,h (x )=x -2,当0<x <1时,f (x ),g (x ),h (x )的大小关系是________________.答案 h (x )>g (x )>f (x )解析 分别作出f (x ),g (x ),h (x )的图象如图所示,可知h (x )>g (x )>f (x ).8.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________________.答案 f (x )=-4x 2-12x +40解析 设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2 -49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40.9.已知函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,那么f (2)的取值范围是______________.答案 [7,+∞)解析 函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.10.设函数f (x )=-2x 2+4x 在区间[m ,n ]上的值域是[-6,2],则m +n 的取值范围是______________.答案 [0,4]解析 令f (x )=-6,得x =-1或x =3;令f (x )=2,得x =1.又f (x )在[-1,1]上单调递增,在[1,3]上单调递减,∴当m =-1,n =1时,m +n 取得最小值0;当m =1,n =3时,m +n 取得最大值4.11.(2018·河南南阳一中月考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.答案 ⎝⎛⎭⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足 ⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴f (x )的值域为⎣⎡⎦⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3, ∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1.13.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③ 答案 B解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b 2a =-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立,即m <-⎝⎛⎭⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,x ∈(1,2),则函数y =x +4x在x ∈(1,2)上是减函数.∴4<y <5,∴-5<-⎝⎛⎭⎫x +4x <-4,∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,即m ≤-5.15.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,求实数m 的取值范围.解 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m 2≤0,即m ≤0; 当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m 2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由. 解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧ f (-1)=-2,f (1)=2,得a =-1(舍去); 当-1≤a ≤0时,由⎩⎪⎨⎪⎧ f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧f (a )=-2,f (-1)=2,得a 不存在; 综上可得,存在实数a 满足题目条件,a =-1.。

2020年高考数学专题复习二次函数与幂函数

2020年高考数学专题复习二次函数与幂函数

二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质判断正误(正确的打“√”,错误的打“×”)(1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n <0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√(教材习题改编)如图是①y =x a;②y =x b;③y =x c在第一象限的图象,则a ,b ,c的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <b解析:选D.根据幂函数的性质,可知选D.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,120 B .⎝⎛⎭⎪⎫-∞,-120 C .⎝ ⎛⎭⎪⎫120,+∞D .⎝ ⎛⎭⎪⎫-120,0解析:选C.由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.(教材习题改编)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上递减.答案:y =x -12 (0,+∞)(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是________.解析:由g (x )=x 2-2x =(x -1)2-1,x ∈[0,3],得g (x )在[0,1]上是减函数,在[1,3]上是增函数.所以g (x )min =g (1)=-1,而g (0)=0,g (3)=3. 所以g (x )的值域为[-1,3]. 答案:[-1,3]幂函数的图象及性质(1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f (x )=x m 2-2m -3 (m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限是单调递减函数,则m =________.解析:因为幂函数f (x )=xm 2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m <0,故m =1.答案:12.当0<x <1时,f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________.解析:如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )求二次函数的解析式已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:由f (x )是偶函数知f (x )的图象关于y 轴对称,所以-a =-⎝⎛⎭⎪⎫-2a b ,即b =-2,所以f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],所以2a 2=4,故f (x )=-2x 2+4.答案:-2x 2+42.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2+x )=f (2-x )对任意x ∈R 恒成立, 所以f (x )的对称轴为x =2.又因为f (x )的图象被x 轴截得的线段长为2, 所以f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3), 所以3a =3,a =1, 所以所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题.角度一 二次函数图象的识别问题已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错. B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <03-a 2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.角度三 二次函数的最值问题已知函数f (x )=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f (x )的最大值与最小值;(2)f (x )的最小值记为g (a ),求g (a )的解析式以及g (a )的最大值. 【解】 (1)当a =1时,f (x )=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f (x )的最小值为0,x =-1时,f (x )的最大值为4. (2)f (x )=(x -a )2+1-a 2,x ∈[-1,2], 当a <-1时,f (x )的最小值为f (-1)=2+2a , 当-1≤a ≤2时,f (x )的最小值为f (a )=1-a 2, 当a >2时,f (x )的最小值为f (2)=5-4a , 则g (a )=⎩⎪⎨⎪⎧2+2a ,a <-1,1-a 2,-1≤a ≤2,5-4a ,a >2,可知,g (a )在(-∞,0)上单调递增,在(0,+∞)上单调递减,g (a )的最大值为g (0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则实数a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =a ;当0<a <1时,y max =a 2-a +1; 当a ≤0时,y max =1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1a =2或⎩⎪⎨⎪⎧0<a <1a 2-a +1=2或⎩⎪⎨⎪⎧a ≤01-a =2, 解得a =2或a =-1. 答案:-1或23.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f (x )=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f (x 1)-f (x 2)|≥8成立, 只需t =-10a时f (t +1)-f (t )≥8,即a (t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a ≥8.所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2019·金华市东阳二中高三调研)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ). (1)当a =-6时,函数f (x )的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值;(2)当a =-1时在区间[-1,1]上,y =f (x )的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f (x )=x 2-6x +b ,函数对称轴为x =3,故函数f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b ≤6时,f (x )在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b >10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)<f (b2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10. (2)当a =-1时,f (x )=x 2-x +b ,由题意可知x 2-x +b >2x +2b -1对x ∈[-1,1]恒成立, 化简得b <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g (x )min =-1,故b <-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2019·宁波市余姚中学期中检测)设a <0,(3x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A .13B .12C .33D .22解析:选A.因为(3x 2+a )(2x +b )≥0在(a ,b )上恒成立, 所以3x 2+a ≥0,2x +b ≥0或3x 2+a ≤0,2x +b ≤0,①若2x +b ≥0在(a ,b )上恒成立,则2a +b ≥0,即b ≥-2a >0,此时当x =0时,3x 2+a =a ≥0不成立,②若2x +b ≤0在(a ,b )上恒成立,则2b +b ≤0,即b ≤0,若3x 2+a ≤0在(a ,b )上恒成立,则3a 2+a ≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________.解析:f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)幂函数y =x α(α∈R )的图象的特征当α>0时,图象过原点和点(1,1),在第一象限图象从左往右是逐渐上升; 当α<0时,图象过点(1,1),但不过原点,在第一象限图象从左往右是逐渐下降.求解二次函数最值的关键点求二次函数的最值,应抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.二次函数中的恒成立问题与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .易错防范(1)对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.(3)数形结合思想是研究二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(4)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[基础达标]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2解析:选C.因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f (x )=x mn (m ,n ∈N *,m ,n 互质)的图象如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1解析:选C.由图知幂函数f (x )为偶函数,且m n<1,排除B ,D ;当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ;选C.3.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则以下结论中正确的是( )A .f (0)<f (-2)<f (5)B .f (-2)<f (5)<f (0)C .f (-2)<f (0)<f (5)D .f (0)<f (5)<f (-2)解析:选A.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则f (x )=x 2+bx +c 的图象的对称轴为x =1且函数f (x )的图象的开口方向向上,则函数f (x )在(1,+∞)上为增函数,所以f (2)<f (4)<f (5),又f (0)=f (2),f (-2)=f (4),所以f (0)<f (-2)<f (5).4.(2019·瑞安四校联考)定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-2,-1]时,f (x )的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x ∈[-2,-1]时,x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),所以当x ∈[-2,-1]时,f (x )=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f (x )取得最小值,且最小值为-116,故选A.5.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f (x )=x 2-2x +1=(x -1)2,对称轴x =1,因为在区间[a ,a +2]上的最小值为4,所以当1≤a 时,y min =f (a )=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a ≤-1,y min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a <1<a +2,即-1<a <1时,y min =f (1)=0≠4,故a 的取值集合为{-3,3}.6.(2019·温州高三月考)已知f (x )=ax 2+bx +c (a >0),g (x )=f (f (x )),若g (x )的值域为[2,+∞),f (x )的值域为[k ,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f (x ),由题意可得g (x )=f (t )=at 2+bt +c ,t ≥k ,函数y =at 2+bt +c ,t ≥k 的图象为y =f (x )的图象的部分,即有g (x )的值域为f (x )的值域的子集,即[2,+∞)⊆[k ,+∞), 可得k ≤2,即有k 的最大值为2. 故选C.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________.解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5.答案:(3,5)8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.解析:由于函数f (x )的值域为[1,+∞),所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2019·杭州四中第一次月考)已知函数f (x )=x 2+ax +1,若存在x 0使|f (x 0)|≤14,|f (x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f (x )=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g (x )=x 2+h ,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g (-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a24≤0,解得-6≤a ≤-2或2≤a ≤ 6. 答案:[-6,-2]∪[2,6]10.设函数f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f (x )=(m 2-5m +7)x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f (x )是偶函数矛盾,舍去, 所以m =3,所以f (x )=x 2.(2)g (x )=f (x )-ax -3=x 2-ax -3,g (x )的对称轴是x =a2,若g (x )在[1,3]上不是单调函数, 则1<a2<3,解得2<a <6.12.(2019·台州市教学质量调研)已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.解:(1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m ,f (x )max =f (3)=9-6=3,所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1,f (x )max =f (-1)=1+2=3,所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1,f (x )max =f (m )=m 2-2m ,所以f (x )的值域为[-1,m 2-2m ]. [能力提升]1.(2019·台州质检) 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a-b +c >0,③错误;由对称轴为x =-1知,b =2a ,又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.故选B.2.(2019·温州市十校联考)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若任取∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( ) A .⎣⎢⎡⎦⎥⎤-16,16 B .⎣⎢⎡⎦⎥⎤-66,66 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2;当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值为M (a ,b ∈R ,c >0为常数)且存在实数a ,b ,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值M 在端点处或x =-a2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a 24|=2,若在x =c 处取得,则|c 2+ac +b |=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b |≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2019·宁波市余姚中学高三期中)已知f (x )=34x 2-3x +4,若f (x )的定义域和值域都是[a ,b ],则a +b =________.解析:因为f (x )=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b <2时,函数在区间[a ,b ]上递减,又因为值域也是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a , 即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a ,两式相减得34(a +b )(a -b )-3(a -b )=b -a ,又因为a ≠b ,所以a +b =83,由34a 2-3a +4=83-a ,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a <2≤b 时,得f (2)=1=a ,又因为f (1)=74<2,所以f (b )=b ,得34b 2-3b +4=b ,所以b =43(舍),或b =4,所以a +b =5.③当a ≥2时,函数在区间[a ,b ]上递增,又因为值域是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a ,b 是方程34x 2-3x +4=x 的两根,即a ,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a ≥2,故应舍去.综上得a +b =5.答案:55.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x-x 的最小值为0,-1x-x 的最大值为-2.所以-2≤b ≤0.故b的取值范围是[-2,0].6.(2019·宁波市余姚中学期中检测)已知函数f (x )=-x 2+2bx +c ,设函数g (x )=|f (x )|在区间[-1,1]上的最大值为M .(1)若b =2,试求出M ;(2)若M ≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f (x )=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g (-1)和g (1)中较大的一个, 又g (-1)=|-5+c |,g (1)=|3+c |,则M =⎩⎪⎨⎪⎧|-5+c |,c ≤1|3+c |,c >1.(2)g (x )=|f (x )|=|-(x -b )2+b 2+c |,(ⅰ)当|b |>1时,y =g (x )在区间[-1,1]上是单调函数, 则M =max{g (-1),g (1)},而g (-1)=|-1-2b +c |,g (1)=|-1+2b +c |,则2M ≥g (-1)+g (1)≥|f (-1)-f (1)|=4|b |>4,可知M >2.(ⅱ)当|b |≤1时,函数y =g (x )的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g (-1),g (1),g (b )}, 又g (b )=|b 2+c |,①当-1≤b ≤0时,有f (1)≤f (-1)≤f (b ),则M =max{g (b ),g (1)}≥12(g (b )+g (1))≥12|f (b )-f (1)|=12(b -1)2≥12;②当0<b ≤1时,有f (-1)≤f (1)≤f (b ).则M =max{g (b ),g (-1)}≥12(g (b )+g (-1))≥12|f (b )-f (-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M ≥12.而当b =0,c =12时,g (x )=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M ≥k 对任意的b 、c 恒成立的k 的最大值为12.。

SX2020A123高考数学必修_限制区间上二次函数的最值

SX2020A123高考数学必修_限制区间上二次函数的最值

限制区间上二次函数的最值二次函数是最简单的非线性函数,比较基础又比较综合,一直是高考中的热点。

求二次函数的最值,要抛弃一个错误意识:直接求出区间两端点所对应的函数值,然后比较大小写出较大者;坚持一个正确的做法:把二次函数配方画出函数图象,然后保留定义域所对应的有效图象,利用数形结合求解。

1. 定二次函数在定区间上定二次函数在定区间上的最值是指二次函数是给定的,给出的定义域区间上也是固定的,这种情况画出图象,即可解决。

例1:已知二次函数f(x)=x 2+2x -1,求当x ∈[-2,1]上的值域。

解:函数f(x)=x 2+2x -1=(x+1)2-2的图象的顶点为(-1,-2),开口向上,对称轴为x =-1,∵-1∈[-2,1], ∴如图:顶点在给定区间[-2,1]内,且x=1离对称轴较远,∴f(x)min =f(-1)=-2,f(x)max =f(1)=2所以f(x)在[-2,1]上的值域为[-2,2].点评:已知二次函数f(x)=ax 2+bx+c (不妨设a>0)在区间[m,n]上的值域,关键看二次函数的对称轴x=a b 2-是否在定区间[m,n]上:当ab 2-∈[m,n],顶点所在的y 值一定是最小值,离对称轴较远的值是最大值;当a b 2-∉[m,n],f(x)在[m,n]上单调,可以直接根据单调性求出最值。

例题深化:(1)求函数f(x)=sin 2x+sinx -1的值域,(2)求函数f(x)=e 2x +2e x -1的值域(3)已知x 2+4y 2=4x,,求x 2-y 2的值域。

这些问题,都可以转化为定二次函数在定区间上的最值或值域问题问题解决。

答案:(1)[-45,1],(2)(-1,+∞),(3)[51-,16] 2. 定二次函数在动区间上二次函数是确定的,但它的定义域区间是随着参数变化而变化的,这种情况下还是要根据图象讨论区间与对称轴的关系。

例2:设函数f(x)=x 2-4x -4的定义域为[t,t+1],对任意的t ∈R ,求函数f(x)的最小值h(t),并写出h(t)的表达式。

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数

高考数学复习第2章函数导数及其应用第8讲一次函数反比例函数及二次函数
解析:∵函数图象的对称轴方程为 x=--24=2,∴f(x)在 [0,1]上单调递减,最大值为 f(0)=3,最小值为 f(1)=1-4+3= 0,值域为[0,3].当 x∈[0,3]时,f(x)在[0,2]上单调递减,在[2,3] 上单调递增,最大值 f(0)=3,最小值为 f(2)=22-4×2+3= -1,值域为[-1,3].
图象与 x 轴的两个交点的横坐标.
4.二次函数的图象及性质 解析式 f(x)=ax2+bx+c(a>0)
f(x)=ax2+bx+c(a<0)
图象
开口 顶点
对称性 定义域
向上
向下
-2ba,4ac4-a b2 函数的图象关于 x=-2ba对称
(-∞,+∞)
(续表) 解析式
值域
f(x)=ax2+bx+c(a>0) 4ac4-a b2,+∞
2.y= 3-aa+6(-6≤a≤3)的最大值为( B )
9
32
A.9
B.2
C.3
D. 2
3.(2019年河南信阳模拟)函数y=-2x2-4ax+3在区间
[-4,-2]上是单调函数,则 a 的取值范围是( )C
A.(-∞,1]
B.[4,+∞)
C.(-∞,2]∪[4,+∞)
D.(-∞,1]∪[2,+∞)
解析:函数y=-2x2-4ax+3的图象的对称轴为x=-a,
由题意可得-a≤-4或-a≥-2,解得a≤2或a≥4,故选C.
4.(2017年北京)已知x≥0,y≥0,且x+y=1,则x2+y2的 取值范围是_____12_,__1___.
考点 1 二次函数的图象及应用
例 1:(1)(2018 年安徽淮南模拟)二次函数 y=ax2+bx 及指
第8讲 一次函数、反比例函数及二次函数

决战2020年高考数学(理)函数与导数专题: 二次函数及应用(解析版)

决战2020年高考数学(理)函数与导数专题: 二次函数及应用(解析版)

函数与导数函数 二次函数及应用一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间.从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 二、知识概述:1.与二次函数有关的绝对值问题:解决这类问题主要考虑二次函数的有关性质、绝对值不等式及式子变形的技巧,还要注意用某几个特定的函数值表示二次函数的系数. 2.二次函数与二次方程及二次不等式:解决这类问题应注意二次函数、二次方程及二次不等式之间的关系及相互转化. 3.二次函数求最值问题,一般先用配方法化为()k h x a y +-=2的形式,得顶点()k h ,和对称轴方程h x =,结合二次函数的图象求解,常见有三种类型:(1)顶点固定,区间也固定;(2)顶点含参数(即顶点为动点),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外; (3)顶点固定,区间变动,这时要讨论区间中的参数.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.4.二次方程根的分布问题,通常转化为相应二次函数与x 轴交点的个数问题,结合二次函数的图象通过对称轴,判别式Δ,相应区间端点函数值来考虑. 【优秀题型展示】1.已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .(1) 如果4221<<<x x ,设函数的对称轴为0x x =,求证:10->x ; (2) 如果21<x ,212=-x x ,求b 的取值范围.【考点讲解】【解析】(1)设2()()(1)1g x f x x ax b x =-=+-+,0a >Q ,∴由条件4221<<<x x ,得(2)0,(4)0.g g <>即4210,3142.1643042a b a b a a b +-<⎧⇒-<<-⎨+->⎩显然由314242a a -<-得1.8a >即有3121824b a a a->->-, 故01111 1.12448b x a a =->->-=-⨯(2)由2()(1)10g x ax b x =+-+=,知1210x x a=>,故1x 与2x 同号. ①若102,x <<则212x x -=(负根舍去),212 2.x x ∴=+>(2)0g ∴<,即4210.(*)a b +-<22212(1)4()4b x x a a-∴-=-=,221(1)1a b ∴+=-+ (0,a >负根舍去), 代入(*)式,得22(1)132b b ∴-+<-,解出1.4b <②若120x -<<,则2122x x =-+<-(正根舍去),(2)0g ∴-<,即4230(**).a b -+<将221(1)1a b +=-+代入(**)式得22(1)121b b -+<-, 解得7.4b >综上,b 的取值范围为14b <或7.4b > 2.已知二次函数.)(2c bx ax x f ++=(1)对于R x x ∈21,,且)()(,2121x f x f x x ≠<,求证:方程)]()([21)(21x f x f x f +=有不等的两实根, 且必有一个实根属于),(21x x ; (2)若方程)]()([21)(21x f x f x f +=在),(21x x 内的根为m ,且21,21,x m x -成等差数列,设0x x =是)(x f 的对称轴方程,求证:.20m x <证明:(1)由)]()([21)(21x f x f x f +=得: 222121222()()0.ax bx a x x b x x +-+-+=222121222120,(2)42[()()]2(2)2(2)0.a b a a x x b x x ax b ax b ≠∴∆=-⋅⋅-+-+=+++≥Q又1212,22.0.x x ax b ax b <∴+≠+∴∆>∴方程)]()([21)(21x f x f x f +=有不等的两实根.令121()()[()()]2g x f x f x f x =-+,则()g x 是二次函数. 由12121212()()()()()()[()][()]22++⋅=--f x f x f x f x g x g x f x f x212121[()()]0,()()4=--≤≠f x f x f x f x得12()()0,()0g x g x g x ⋅<∴=的根必有一个属于12(,).x x 综上,方程)]()([21)(21x f x f x f +=有不等的两实根,且必有一个实根属于),(21x x . (2)由题设得122()()()f m f x f x =+,即有2221212(2)(2)0.a m x x b m x x --+--=121,,2x m x -Q 成等差数列,122 1.m x x ∴--=22212(2).b a m x x ∴=--- 故222120,22x x b x m a +=-=-22212120,0..x x x x x m <∴+>∴<Q1.【2017北京,文11】已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是__________. 【解析】本题考点是二次函数的值域问题,但需要将二元转化为一元.()[]1,0,122122222∈+-=-+=+x x x x x y x ,对称轴为直线21=x ,所以函数在10或=x 【模拟考场】时,取得最大值1,当21=x 时,取得最小值是21.所以22y x +的取值范围是1,12⎡⎤⎢⎥⎣⎦.【答案】1,12⎡⎤⎢⎥⎣⎦2.【2018年天津卷文】已知R a ∈,函数()⎩⎨⎧>-+-≤-++=0,220,2222x a x x x a x x x f ,若对任意[)+∞-∈,3x ,()x x f ≤恒成立,则a 的取值范围是__________.【解析】本题考点二次函数的性质及不等式恒成立的具体应用. 分类讨论:①当0>x时,()x x f ≤也就是x a x x ≤-+-222,整理可得:x x a 21212+-≥,由恒成立的条件可知:max 22121⎪⎭⎫⎝⎛+-≥x x a ()0>x ,结合二次函数的性质可知:当21=x 时,8141812121max 2=+-=⎪⎭⎫⎝⎛+-≥x x a ,则81≥a ; ②当03≤≤-x 时,()x x f ≤也就是x a x x -≤-++222,整理可得:232+-≤x x a ,由恒成立的条件可知:()min 223+-≤x x a()03≤≤-x ,结合二次函数的性质可知:当03=-=x x 或时,()223min 2=+-x x ,则2≤a ;综合①②可得a 的取值范围是⎥⎦⎤⎢⎣⎡281,. 【答案】⎥⎦⎤⎢⎣⎡281, 3.【2019优选题】已知函数f (x )=x 2-2x +4m (m >0)在区间[m ,2m ]上的最大值为4,则m 的值为________. 【解析】函数f (x )=x 2-2x +4m (m >0)的对称轴为直线x =1,图像开口向上,所以自变量离对称轴越远,函数值越大.当|2m -1|≥|m -1|,即m ≥23时,函数f (x )在[m ,2m ]上的最大值为f (2m )=4m 2-4m +4m =4,解得m =1;当|2m -1|<|m -1|,即0<m <23时,函数f (x )在[m ,2m ]上的最大值为f (m )=m 2-2m +4m =m 2+2m =4,解得m =-1±5,不满足条件.综上,m 的值为1. 【答案】14.a 为实数,函数f (x )=|x 2-ax |在区间[0,1]上的最大值记为g (a ).当a =________时,g (a )的值最小. 【解析】当a =0时, f (x )=x 2,则g (a )=f (1)=1;当a <0时, f (x )=⎩⎪⎨⎪⎧x 2-ax (x ≤a 或x ≥0),-x 2+ax (a <x <0),则g (a )=f (1)=1-a ;当a >0时, f (x )=⎩⎪⎨⎪⎧x 2-ax (x <0或x >a ),-x 2+ax (0≤x ≤a ),此时f2⎛⎫ ⎪⎝⎭a =-a ⎛⎫ ⎪⎝⎭22+a 22=a 24, 由x 2-ax =a 24(x >0)得x =2+12a .当2+12a ≤1,即0<a ≤2(2-1)时,g (a )=f (1)=1-a ; 当a 2<1<2+12a ,即2(2-1)<a <2时,g (a )=f ⎝⎛⎭⎫a 2=a 24;当a 2≥1,即a ≥2时,g (a )=f (1)=-1+a .综上所述,g (a )=⎩⎪⎨⎪⎧1-a ,a ≤2(2-1),a24,2(2-1)<a <2a -1,a ≥2,,易得当a =2(2-1)时,g (a )取最小值.故答案为22-2.【答案】22-25.【2016年山东】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,, 其中0m >,存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是_________.【解析】本题考点二次函数的图象与性质、函数与方程、分段函数的概念.由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【答案】(3,)+∞ 6.【2017优选题】已知()()4222+-+=x a x x f ,如果对错误!未找到引用源。

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。

高考数学知识点之二次函数

高考数学知识点之二次函数

高考数学知识点之二次函数一、二次函数的定义二次函数是指具有形如y=ax2+bx+c的函数,其中a、b、c是实数且a e0。

在二次函数中,x是自变量,y是因变量。

二、二次函数的图象二次函数的图象是抛物线,其开口的方向由a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

三、二次函数的性质1. 零点二次函数的零点是使得函数值等于零的x值。

要求二次函数的零点,可以使用因式分解法、配方法或求根公式等方法。

- 因式分解法将二次函数表示为(x−x1)(x−x2)=0的形式,其中x1和x2是两个零点。

- 配方法对于一般形式的二次函数,可以使用配方法将其化简为(x−p)2+q=0的形式,其中p和q可以通过配方法的步骤求得。

- 求根公式对于一般形式的二次函数ax2+bx+c=0,可以使用求根公式 $x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$ 求得零点。

2. 判别式对于一般形式的二次函数ax2+bx+c=0,判别式D=b2−4ac可以用来判断函数的零点情况。

•当D>0时,二次函数有两个不相等的实根;•当D=0时,二次函数有两个相等的实根;•当D<0时,二次函数无实根。

3. 顶点二次函数的顶点是抛物线的最高点或最低点,记作(ℎ,k)。

对于一般形式的二次函数y=ax2+bx+c,其中a>0,顶点的横坐标可以通过公式 $h=-\\frac{b}{2a}$ 求得。

将横坐标代入函数,即可求得顶点的纵坐标。

4. 对称轴二次函数的对称轴是抛物线的对称轴,可以通过顶点来确定。

对于一般形式的二次函数y=ax2+bx+c,其中a>0,对称轴的方程为x=ℎ,其中 $h=-\\frac{b}{2a}$ 为顶点的横坐标。

5. 单调性二次函数的单调性表示函数在某个区间内的增减情况。

对于开口向上的二次函数y=ax2+bx+c,当a>0时,在对称轴两侧,抛物线是开口向上的,函数是单调递增的。

SX2020A108高考数学必修_二次函数的最值问题解析

SX2020A108高考数学必修_二次函数的最值问题解析

二次函数的最值问题解析一、求二次函数在给定区间上的最值:解此类问题的基本思路为先判断抛物线的开口方向及对称轴与区间的位置关系,再借助二次函数在对称轴两侧的单调性来确定最值.例1.求函数()f x =2x +(2-6a )x +32a 在[0,1]上的最小值.分析: 求二次函数在给定区间上的最值时,需先判断抛物线的开口方向及对称轴与区间的位置关系. 解: 二次函数()f x =2x +(2-6a )x +32a 开口向上,其对称轴为直线31x a =-,与区间[0,1]的位置关系不确定,需讨论. (1)当3a -1<0,即13a <时,()f x 在[0,1]上是增函数,其最小值为f(0)=32a ; (2)当0≤3a -1≤1,即1233a ≤≤时,()f x 的最小值为f(3a -1)=-62a +6a -1; (3)当3a -1>1,即23a >时,()f x 在[0,1]上是减函数,其最小值为f(1)=32a -6a +3.综上所述, 函数()f x 的最小值可表示为a 的分段函数22213()312()661()332363()3a a g a a a a a a a ⎧<⎪⎪⎪=-+-≤≤⎨⎪⎪-+>⎪⎩.评注: 当抛物线的对称轴与区间的位置关系不确定时,常通过讨论对称轴与区间的位置关系来确定最值.二、已知二次函数的最值求参数解此类问题的基本思路为: 求出二次函数的最值,令所求得的最值与条件里给定的最值对应相等,即可建立关于参数的等量关系,从而求出参数.()[]22.4211,37,.mx x m =-+-例若二次函数f x 在上的最小值为-求分析: 二次函数()2421f x mx x =-+的开口方向及对称轴与区间的位置关系均不确定,需讨论.解: ()2421f x mx x =-+的对称轴为直线14x m=,开口方向由m 的符号决定. 当m>0时,抛物线()2421f x mx x =-+开口向上,且10,4x m=>即对称轴在原点的右侧.(1)当1103,,412m m <≤≥即时()[]14111,31,444m f x f m m m -⎛⎫-==- ⎪⎝⎭在上的最小值为 令11117,,,;43212m m m -=-=≥解得与矛盾故此种情况不存在 (2)当113,,412m m ><即0<时()[]()1,33365,f x f m -=-在上是减函数,其最小值为令36m-5=-7,得1,18m =-与112m <0<矛盾,故此种情况不存在.当m<0时, 抛物线()2421f x mx x =-+开口向下,且10,4x m=<即对称轴在原点的左侧. (3)当11,0,4m m <-<1即-<时4()[]()1,33365,f x f m -=-在上是减函数,其最小值为 令36m-5=-7,得11,0184m ⎛⎫=-∈- ⎪⎝⎭,故118m =-; (4)当1110,,44m m -≤<≤-即时()[]()1,33365,f x f m -=-在上的最小值为 令36m-5=-7,得118m =-与14m ≤-矛盾,故此种情况不存在.综上所述,当118m =-时,二次函数()[]24211,37.mx x =-+-f x 在上的最小值为-评注: 1.当抛物线的开口方向及对称轴与区间的位置关系均不确定时,可选择开口方向作为讨论二次函数最值的突破口;2.二次函数()()02≠++==a c bx ax x f y 在闭区间[]n m ,上的最值为()()b f 2a f m f n ⎛⎫- ⎪⎝⎭或或.故本题也可以通过验证的方法来求m.解答如下:()()()()[]()()211,17,,1021,11,3,395,;10x f f x x x x f x f =--=-=--+=-∈-=-5若f x 在处取得最小值即则m=-此时其开口向下,2对称轴为直线故的最小值应为与题设矛盾()()()()[]()[]()2223,37,,21,99,1,3,37,.2x f f x x x x f x f ==-=--+=--=-1若f x 在处取得最小值即则m=-此时其开口向下,对称轴为18直线位于的左侧故在-1,3上为减函数,故其最小值应为符合题意()()()[]()[]()21113,7,,21,448318,1,3,3,8x f f x x x m m x f x f ⎛⎫==-=-+ ⎪⎝⎭=-=-1若f x 在处取得最小值即则m=此时其开口向上,32对称轴为直线位于的右侧故在-1,3上是减函数,故其最小值应为与题设矛盾.综上, 118m =-.三、和二次函数最值有关的恒成立问题解此类问题的关键是将恒成立问题转化为二次函数的最值问题.例3.设f(x)=x 2+ax+3-a,若f(x)在[-2,2]上恒为非负数,求实数a 的范围. 分析: f(x)在[-2,2]上恒为非负数,等价于f(x)在[-2,2]上的最小值非负,则问题转化为“保证f(x)在[-2,2]上的最小值非负,求a 的范围”.可先求f(x)在[-2,2]上的最小值,再令其大于等于零.解: 二次函数f(x)=x 2+ax+3-a 的对称轴为直线2a x =-,与区间[-2,2]的位置关系不确定,需讨论.(1) 当()[]()2,4,,273,2aa f x f a -<->-=-即时在-2,2上是增函数其最小值为7730,,4,.3a a a a -≥≤>令得与矛盾故此时不存在(2) 当()[]222,4,3,224aa a a f x fa ⎛⎫-≤-≤≤≤-=-- ⎪⎝⎭即-4时在-2,2上的最小值为令2230,4120,62,4a a a a a --≥+-≤-≤≤即解得又44,4 2.a a -≤≤-≤≤故(3) 当()[]()2,4,,27,2aa f x f a -><-=+即时在-2,2上是减函数其最小值为70,7,a a +≥≥-令得4,4a a <-≤<-又故此时-7.对(1),(2),(3)所求得的a 的范围取并集, 得7 2.a -≤≤ 故所求实数a 的取值范围是[-7,2].评注: 1.本题也可以理解为“x 的二次不等式x 2+ax+3-a 0≥在[-1,3]上恒成立,求参数a ”,反之亦可,即二 次不等式的恒成立问题均可以转化为二次函数的最值问题;2.若将条件“恒为非负数”改为“恒为非正数”,则除以上常规方法可行外,还可以根据二次函数的图象性质来求a 的范围:()[]()(),2,222,f x M f f -=-抛物线开口向上故在上的最大值为或()()200,,20f M f ⎧-≤⎪≤⎨≤⎪⎩由得解之即可得a 的范围.。

2023年新高考数学大一轮复习专题08 幂函数与二次函数(解析版)

2023年新高考数学大一轮复习专题08 幂函数与二次函数(解析版)

专题08 幂函数与二次函数【考点预测】 1.幂函数的定义一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.2.幂函数的特征:同时满足一下三个条件才是幂函数 ①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质 3.常见的幂函数图像及性质:R RR {|0}x x ≥ (1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 5.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1)单调性与最值①当0a >时,如图所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;②当0a <时,如图所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,;2max 4()4ac b f x a -=.(2)与x 轴相交的弦长当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 6.二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,令02p qx +=: (1)若2bp a-≤,则(),()m f p M f q ==; (2)若02b p x a <-<,则(),()2bm f M f q a =-=; (3)若02b x q a ≤-<,则(),()2bm f M f p a=-=; (4)若2bq a-≥,则(),()m f q M f p ==. 【方法技巧与总结】1.幂函数()a y x a R =∈在第一象限内图象的画法如下: ①当0a <时,其图象可类似1y x -=画出; ②当01a <<时,其图象可类似12y x =画出; ③当1a >时,其图象可类似2y x =画出.2.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 3.一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.n (1)要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2)对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.【题型归纳目录】题型一:幂函数的定义及其图像 题型二:幂函数性质的综合应用题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件 题型四:二次函数“动轴定区间”、“定轴动区间”问题【典例例题】题型一:幂函数的定义及其图像例1.(2022·全国·高三专题练习)幂函数()()22121m f x m m x -=-+在()0,∞+上为增函数,则实数m 的值为( ) A .2- B .0或2 C .0 D .2【答案】D 【解析】 【分析】根据函数为幂函数求出m ,再验证单调性可得. 【详解】因为()f x 是幂函数,所以2211m m -+=,解得0m =或2m =,当0m =时,()1f x x -=在()0,∞+上为减函数,不符合题意, 当2m =时,()3f x x =在()0,∞+上为增函数,符合题意,所以2m =. 故选:D.例2.(2022·全国·高三专题练习)已知幂函数pqy x =(p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( )A .p ,q 均为奇数,且0p q> B .q 为偶数,p 为奇数,且0p q < C .q 为奇数,p 为偶数,且0p q > D .q 为奇数,p 为偶数,且0p q< 【答案】D 【解析】 【分析】根据给定函数的图象分析函数的性质,即可得出p 、q 的取值情况. 【详解】因函数p q y x =的图象关于y 轴对称,于是得函数pq y x =为偶函数,即p 为偶数, 又函数p qy x =的定义域为(,0)(0,)-∞+∞,且在(0,)+∞上单调递减,则有pq<0, 又因p 、q 互质,则q 为奇数,所以只有选项D 正确. 故选:D例3.(2022·海南·文昌中学高三阶段练习)已知幂函数()()a f x x a R =∈过点A (4,2),则f (14)=___________. 【答案】12##0.5 【解析】 【分析】点A 坐标代入幂函数解析式,求得a ,然后计算函数值. 【详解】点A (4,2)代入幂函数()af x x =解得12a =,()12f x x =,1142f ⎛⎫= ⎪⎝⎭ 故答案为:12.例4.(2022·黑龙江·哈九中高三开学考试(文))已知幂函数()f x 的图象过点()8,2--,且()()13f a f a +≤--,则a 的取值范围是______. 【答案】(],1-∞ 【解析】 【分析】先求得幂函数()f x 的解析式,根据函数()f x 的奇偶性、单调性来求得a 的取值范围. 【详解】设()f x x α=,则()1823αα-=-⇒=,所以()13f x x =,()f x 在R 上递增,且为奇函数,所以()()()311313f a f a a a f a a =-+≤--+-⇒≤⇒≤. 故答案为:(],1-∞例5.(2022·全国·高三专题练习)如图是幂函数i y x α=(αi >0,i =1,2,3,4,5)在第一象限内的图象,其中α1=3,α2=2,α3=1,412α=,513α=,已知它们具有性质: ①都经过点(0,0)和(1,1); ②在第一象限都是增函数.请你根据图象写出它们在(1,+∞)上的另外一个共同性质:___________.【答案】α越大函数增长越快 【解析】 【分析】根据幂函数的图象与性质确定结论. 【详解】解:从幂函数的图象与性质可知:①α越大函数增长越快;②图象从下往上α越来越大;③函数值都大于1;④α越大越远离x 轴;⑤α>1,图象下凸;⑥图象无上界;⑦当指数互为倒数时,图象关于直线y =x 对称;⑧当α>1时,图象在直线y =x 的上方;当0<α<1时,图象在直线y =x 的下方. 从上面任取一个即可得出答案. 故答案为:α越大函数增长越快.例6.(2022·全国·高三专题练习)已知幂函数223()m m y f x x --==(m ∈Z )在(0,)+∞是严格减函数,且为偶函数.(1)求()y f x =的解析式;(2)讨论函数5()(2)()y af x a x f x =+-⋅的奇偶性,并说明理由.【答案】(1)4()y f x x -==;(2)当2a =时,为偶函数;当0a =时,为奇函数;当2a ≠且0a ≠时,为非奇非偶函数.理由见解析. 【解析】(1)由题意可得:2230m m --<,解不等式结合m ∈Z 即可求解;(2)由(1)可得4(2)y ax a x -=+-,分别讨论0a =、2a =、0a ≠且2a ≠时奇偶性即可求解. 【详解】(1)因为幂函数223()mm y f x x --==(m Z ∈)在(0,)+∞是严格减函数,所以2230m m --<,即()()310m m -+< ,解得:13x , 因为m Z ∈,所以0,1,2m =,当0m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意;当1m =时,4()y f x x -==,此时()y f x =为偶函数,符合题意; 当2m =时,3()y f x x -==,此时()y f x =为奇函数,不符合题意; 所以4()y f x x -==,(2)4544(2)(2)y ax a x x ax a x ---=+-⋅=+-,令()4(2)F x ax a x -=+-当0a =时,()2F x x =-,()()()22F x x x F x -=-⨯-==-,此时是奇函数, 当2a =时()4422F x x x -==,()()()444222F x x x x --=-==-,此时是偶函数, 当0a ≠且2a ≠时,()1(2)22F a a a =+-=-,()1(2)2F a a -=--=,()()11F F ≠-,()()11F F -≠-,此时是非奇非偶函数函数.【方法技巧与总结】确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.题型二:幂函数性质的综合应用例7.(2022·河北石家庄·高三期末)已知实数a ,b 满足3e e 1a a a -+=+,3e e 1b b b -+=-,则a b +=( ) A .-2 B .0 C .1 D .2【答案】B 【解析】 【分析】由已知构造函数()3e e x xf x x -=+-,利用()1f a =,()1f b =-,及函数的单调性、奇偶性即可得出结果.【详解】构建函数()3e e x xf x x -=+-,则()f x 为奇函数,且在R 上单调递增.由3e e 1a a a -+=+,3e e 1b b b -+=-,得()1f a =,()()()()1f b f a f b f b a b =-⇒=-=-⇒=-,所以0a b +=. 故选:B.例8.(2022·四川眉山·三模(文))下列结论正确的是( )A .2<B .2<C .2log <D .2<【答案】A 【解析】 【分析】对于A 、B :作出2x y =和2yx 在第一象限的图像判断出:在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.即可判断A 、B ;对于C:判断出2>, log 1,即可判断;对于D:判断出2>,2=,即可判断.【详解】 对于A 、B : 作出2x y =和2yx 在第一象限的图像如图所示:其中2x y =的图像用虚线表示,2yx 的图像用虚线表示.可得,在()0,2上,有22x x >,在()2,4上,有22x x <,在()4,+∞上,有22x x >.因为24<,所以2<,故A 正确;4,所以2>,故B 错误;对于C:2>,而22log log 21<=,所以log >故C 错误;对于D:2>,而2=,所以>.故D 错误.故选:A例9.(2022·广西·高三阶段练习(理))已知函数32,2()(1),2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根, 则实数k 的取值范围为( ) A .()0,1B .(),1-∞C .(]0,1D .()0,∞+ 【答案】A 【解析】 【分析】分析函数()f x 的性质,作出图象,数形结合即可求解作答. 【详解】当2x <时,函数3()(1)f x x =-是增函数,函数值集合是(,1)-∞,当2x ≥时,2()f x x=是减函数,函数值集合是(]0,1,关于x 的方程()f x k =有两个不同的实根,即函数()y f x =的图象与直线y k =有两个交点, 在坐标系内作出直线y k =和函数()y f x =的图象,如图,观察图象知,当01k <<时,直线y k =和函数()y f x =的图象有两个交点,即方程()f x k =有两个不同的实根,所以实数k 的取值范围为(0,1). 故选:A例10.(2022·浙江·模拟预测)已知0a >,函数()(0)xa f x x a x =->的图象不可能是( )A .B .C .D .【答案】C 【解析】 【分析】分类讨论1a =,01a <<与1a >三种情况下函数的单调性情况,从而判断. 【详解】当1a =时,()1(0)=-=>-a xx f x x x a ,此时函数()f x 为一条射线,且函数()1f x x =-在()0,∞+上为增函数,B 选项符合;当01a <<时,函数a y x =在()0,∞+上为增函数,x y a =在()0,∞+上为减函数,所以函数()=-a x f x x a 在()0,∞+上为增函数,此时函数在()0,∞+上只有一个零点,A 选项符合;当1a >时,x →+∞时,函数a y x =的增长速度远小于函数x y a =的增长速度,所以x →+∞时,函数()=-a xf x x a 一定为减函数,选项D 符合,C 不符合. 故选:C例11.(2022·全国·高三专题练习)不等式()10112200221210x x x -++-≤的解集为:_________.【答案】⎡⎢⎣⎦ 【解析】 【分析】 将不等式化为()()10111011222211x x x x +≤-+-,构造()1011f x x x =+根据其单调性可得221x x ≤-,求解即可.【详解】不等式变形为()()101110112222110x x x x -+-++≤,所以()()10111011222211x x x x +≤-+-,令()1011f x x x =+,则有()()221f x f x ≤-,显然()f x 在R 上单调递增,则221x x ≤-,可得212x ≤,解得x ≤≤故不等式的解集为⎡⎢⎣⎦.故答案为:⎡⎢⎣⎦例12.(2022·上海市实验学校高三阶段练习)若函数()()()3,af x m x m a =+∈R 是幂函数,且其图象过点(,则函数()()2log 3ag x xmx =+-的单调递增区间为___________.【答案】(),1-∞- 【解析】 【分析】根据幂函数的定义及所过的点求出,a m ,再根据对数型复合函数的单调性即可得出答案. 【详解】解:因为函数()()()3,af x m x m a =+∈R 是幂函数,所以31m +=,解得2m =-,又其图象过点(,所以2a 12a =, 则()()212log 23g x x x =--, 则2230x x -->,解得3x >或1x <-, 令223x x μ=--,则函数223x x μ=--在()3,+∞上递增,在(),1-∞-上递减, 又因函数12log y μ=为减函数,所以函数()g x 的单调递增区间为(),1-∞-. 故答案为:(),1-∞-.例13.(2020·四川·泸州老窖天府中学高二期中(理))已知函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩,若方程2()()20f x bf x ++=有8个相异的实数根,则实数b 的取值范围是_________________________ .【答案】(3,-- 【解析】 【分析】根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,进而数形结合,将问题转化为方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,再结合二次函数零点分布求解即可. 【详解】解:根据题意,作出函数()12e ,021,0x x f x x x x -⎧>⎪=⎨--+≤⎪⎩的图像,如图:令()t f x =,因为方程2()()20f x bf x ++=有8个相异的实数根, 所以方程220t bt ++=在区间()1,2上有两个不相等的实数根12,t t ,故令()22g t t bt =++,则函数()22g t t bt =++在区间()1,2上有两个不相等的零点.所以()()100220g b g g ⎧>⎪⎪⎛⎫-<⎨ ⎪⎝⎭⎪⎪>⎩,即230204620b b b +>⎧⎪⎪-<⎨⎪+>⎪⎩,解得3b -<<-所以实数b的取值范围是(3,--.故答案为:(3,--例14.(2022·全国·高三专题练习)已知幂函数()()224222mm f x m m x-+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【解析】 【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可. 【详解】(1)(1)因为幂函数()2242()22mm f x m m x-+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意; ②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.【方法技巧与总结】紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.题型三:二次方程20(0)ax bx c a ++=≠的实根分布及条件例15.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<; 由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >, 因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A例16.(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C 【解析】 【分析】根据二次函数的对称轴与单调区间,结合已知可得到关于a 的不等式,进而求解. 【详解】二次函数24y x x a =-+,对称轴为2x =,开口向上, 在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a << 故实数a 的取值范围是()3,4 故选:C例17.(2022·江西省丰城中学高一开学考试)函数()3x f x =且()218f a +=,函数()34ax xg x =-.(1)求()g x 的解析式;(2)若关于x 的方程()80xg x m -⋅=在区间[]22-,上有实数根,求实数m 的取值范围. 【答案】(1)()24x xg x =-;(2)1,124⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)根据()218f a +=求出a 即可;(2)方程()80xg x m -⋅=参变分离得222x x m --=-,换元法求值域即可.(1)由()218f a +=,可得:2318a +=,解得:32a =,∴()24x xg x =-;(2)由()80xg x m -⋅=,可得222x x m --=-,令12,44xt -⎡⎤=∈⎢⎥⎣⎦,则221124m t t t ⎛⎫=-=-- ⎪⎝⎭, 则原问题等价于y =m 与y =h (t )=2t t -在1,44t ⎡⎤∈⎢⎥⎣⎦上有交点,数形结合可知m ∈[h (12),h (4)]=1,124⎡⎤-⎢⎥⎣⎦.故实数m 的取值范围为:1,124⎡⎤-⎢⎥⎣⎦.例18.(2022·湖北·高一期末)已知函数()2sin 1f x x =-,[0,]x π∈. (1)求()f x 的最大值及()f x 取最大值时x 的值;(2)设实数a R ∈,求方程23[()]2()10f x af x -+=存在8个不等的实数根时a 的取值范围. 【答案】(1)当0x =,π2,π时, max ()1f x =(2))2a ∈【解析】 【分析】(1)去掉绝对值,化为分段函数,求出每一段上的最大值;(2)令()t f x =,问题转化为23210t at -+=在(0,1)t ∈上存在两个相异的实根,进而列出不等式组,求出a 的取值范围.(1)∵()521,66512,066sinx x f x sinx x x πππππ⎧-≤≤⎪⎪=⎨⎪-≤<<≤⎪⎩或,∴当5[,]66x ππ∈时, ()max 12f x f π⎛⎫== ⎪⎝⎭;∴当5[0,)(,]66x πππ∈时, max ()(0)(π)1f x f f ===.故当02x ππ=,,时, max ()1f x =. (2)令()t f x =,则[0,1]t ∈,使方程23[()]2()10f x af x -+=存在8个不等的实数根,则方程23210t at -+=在(0,1)t ∈上存在两个相异的实根,令2()321g t t at =-+,则()()()201013210Δ24310012g g a a a ⎧=>⎪=-+>⎪⎪⎨=--⨯⨯>⎪⎪<<⎪⎩2a <<.故所求的a的取值范围是)2.【方法技巧与总结】结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.题型四:二次函数“动轴定区间”、“定轴动区间”问题例19.(2022·全国·高三专题练习)已知2()(0)f x ax bx c a =++>,()(())g x f f x =,若()g x 的值域为[2,)+∞,()f x 的值域为[k ,)+∞,则实数k 的最大值为( )A .0B .1C .2D .4【答案】C 【解析】 【分析】设()t f x =,即有()()g x f t =,t k ,可得函数2y at bt c =++,t k 的图象为()y f x =的图象的部分,即有()g x 的值域为()f x 的值域的子集,即有k 的范围,可得最大值为2. 【详解】解:设()t f x =,由题意可得2()()g x f t at bt c ==++,t k , 函数2y at bt c =++,t k 的图象为()y f x =的图象的部分, 即有()g x 的值域为()f x 的值域的子集, 即[2,)[k +∞⊆,)+∞, 可得2k ,即有k 的最大值为2. 故选:C .例20.(2022·全国·高三专题练习)已知值域为[1,)-+∞的二次函数()f x 满足(1)(1)f x f x -+=--,且方程()0f x =的两个实根12,x x 满足122x x -=.(1)求()f x 的表达式;(2)函数()()g x f x kx =-在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -,求实数k 的取值范围.【答案】(1)()22f x x x =+;(2)(],2-∞-. 【解析】 【分析】(1)根据(1)(1)f x f x -+=--可以判断函数的对称轴,再根据函数的值域可以确定二次函数的顶点坐标,则可设22()(1)121f x a x ax ax a =+-=++-,根据一元二次方程根与系数的关系,结合已知122x x -=进行求解,求出a 的值,即可得出()f x 的表达式;(2)根据题意,可以判断出函数()g x 在区间[2,2]-上的单调性,由()()g x f x kx =-,求得()2(2)g x x k x =+-,进而可知()g x 的对称轴方程为22k x -=,结合二次函数的图象与性质以及单调性,得出222k -≤-,即可求出k 的取值范围. (1)解:由(1)(1)f x f x -+=--,可得()f x 的图象关于直线1x =-对称, 函数()f x 的值域为[1,)-+∞,所以二次函数的顶点坐标为(1,1)--, 所以设22()(1)121f x a x ax ax a =+-=++-, 根据根与系数的关系,可得122x x +=-,121a x x a-=, 因为方程()0f x =的两个实根12,x x 满足122x x -=则122x x -===, 解得:1a =,所以()22f x x x =+.(2)解:由于函数()g x 在区间[2,2]-上的最大值为(2)f ,最小值为(2)f -, 则函数()g x 在区间[2,2]-上单调递增,又2())2(g x f x kx x x kx =-=+-,即()2(2)g x x k x =+-,所以()g x 的对称轴方程为22k x -=,则222k -≤-,即2k ≤-, 故k 的取值范围为(],2-∞-.例21.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【答案】(1)(1,1)(5,7)-⋃ (2)0,2t a ==或2,2t a ==【解析】 【分析】(1)代入3a =解不等式组226756⎧-<⎪⎨-<-⎪⎩x x x x 可得答案; (2)由题意(0)(2)0f f a ==,结合最大值为0最小值是4-分0=t 、22t a +=数形结合可得答案. (1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x ,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例22.(2022·全国·高三专题练习)问题:是否存在二次函数2()(0,,)f x ax bx c a b c R =++≠∈同时满足下列条件:(0)3f =,()f x 的最大值为4,____?若存在,求出()f x 的解析式;若不存在,请说明理由.在①(1)(1)f x f x +=-对任意x ∈R 都成立,② 函数(2)y f x =+的图像关于y 轴对称,③ 函数()f x 的单调递减区间是1,2⎡⎫+∞⎪⎢⎣⎭这三个条件中任选一个,补充在上面问题中作答.【答案】答案见解析 【解析】 【分析】由(0)3f =,可求得3c =,由条件可得函数的对称轴,又()f x 的最大值为4,可得关于,a b 的方程组,求解即可. 【详解】解:由(0)3f =,可求得3c =,则2()3f x ax bx =++ 若选择① (1)(1)f x f x +=-对任意x ∈R 都成立 可得()f x 的对称轴为1x =,所以2ba-=1,又()f x 的最大值为4,可得0a <且(1)4f =,即34a b ++=,解得1,2a b =-=,此时2()23f x x x =-++; 若选择函数(2)y f x =+的图像关于y 轴对称 可得()f x 的对称轴为2x =,则2ba-=2, 又f (x )的最大值为4,可得0a <且(2)4f =,即4234a b ++=,解得a 14=-,1b =,此时21()34f x x x =-++若选择③ 函数f (x )的单调递减区间是1[2+∞,), 可得f (x )关于x 12=对称,则122b a -=,又()f x 的最大值为4,可得0a <且142f ⎛⎫= ⎪⎝⎭,即113442a b ++=解得4a b ==-,此时2()434f x x x -=-+例23.(2022·全国·高三专题练习)已知二次函数()f x 满足(1)(3)3,(1)1f f f -===-. (1)求()f x 的解析式;(2)若()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,求a 的取值范围. 【答案】(1)2()2f x x x =-;(2)[1,2]. 【解析】 【分析】(1)利用待定系数法求函数的解析式,设2()f x ax bx c =++(0)a ≠,根据已知条件建立方程组,从而可求出解析式;(2)根据()f x 在[1,1]a a -+上有最小值1-,最大值(1)f a +,(1)1f =-,从而函数()f x 的对称轴在区间[1,1]a a -+上,1a +离对称轴远,建立关系式,从而求出a 的范围【详解】(1)设2()f x ax bx c =++(0)a ≠,则 (1)3(3)933(1)1f a b c f a b c f a b c -=-+=⎧⎪=++=⎨⎪=++=-⎩解之得:1,2,0a b c ==-=2()2f x x x ∴=- (2)根据题意:111(1)11(1)a a a a -≤≤+⎧⎨+-≥--⎩解之得:12a ≤≤a ∴的取值范围为[]1,2例24.(2022·全国·高三专题练习)设函数2()1f x ax bx =++(,a b ∈R ),满足(1)0f -=,且对任意实数x 均有()0f x ≥.(1)求()f x 的解析式;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,若()()g x f x kx =-是单调函数,求实数k 的取值范围.【答案】(1)2(1)2f x x x =++ (2)913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦【解析】【分析】(1)根据0∆≤,结合(1)0f -=可解;(2)结合图形,对对称轴和端点函数值进行分类讨论可得. (1)∵(1)0f -=,∴1b a =+.即2()(1)1f x ax a x =+++, 因为任意实数x ,()0f x ≥恒成立,则0a >且2224(1)4(1)0b a a a a ∆=-=+-=-≤,∴1a =,2b =,所以2(1)2f x x x =++. (2)因为2()()(2)1g x f x kx x k x =-=+-+,设2()(2)1h x x k x =+-+,要使()g x 在11,22⎡⎤-⎢⎥⎣⎦上单调,只需要21221()02k h -⎧≥⎪⎪⎨⎪≥⎪⎩或21221()02k h -⎧≥⎪⎪⎨⎪-≤⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪-≥⎪⎩或21221()02k h -⎧≤-⎪⎪⎨⎪≤⎪⎩, 解得932k ≤≤或112k -≤≤,所以实数k 的取值范围913,,122⎡⎤⎡⎤⋃-⎢⎥⎢⎥⎣⎦⎣⎦.【方法技巧与总结】“动轴定区间 ”、“定轴动区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.【过关测试】一、单选题1.(2022·全国·高三阶段练习)已知函数()2f x ax bx c =++,其中0a >,()00f <,0a b c ++=,则( ) A .()0,1x ∀∈,都有()0f x > B .()0,1x ∀∈,都有()0f x < C .()00,1x ∃∈,使得()00f x = D .()00,1x ∃∈,使得()00f x >【答案】B 【解析】 【分析】根据题目条件,画出函数草图,即可判断. 【详解】由0a >,()00f <,0a b c ++=可知0a >,0c <,抛物线开口向上.因为()00f c =<,()10f a b c =++=,即1是方程20ax bx c ++=的一个根,所以()0,1x ∀∈,都有()0f x <,B 正确,A 、C 、D 错误. 故选:B .2.(2022·北京·二模)下列函数中,与函数3y x =的奇偶性相同,且在()0,+∞上有相同单调性的是( )A .12xy ⎛⎫= ⎪⎝⎭B .ln y x =C .sin y x =D .y x x =【答案】D 【解析】 【分析】根据指对函数的性质判断A 、B ,由正弦函数性质判断C ,对于D 有22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,即可判断奇偶性和()0,+∞单调性. 【详解】由3y x =为奇函数且在()0,+∞上递增,A 、B :12xy ⎛⎫= ⎪⎝⎭、ln y x =非奇非偶函数,排除;C :sin y x =为奇函数,但在()0,+∞上不单调,排除;D :22,0(),0x x y f x x x ⎧-≤⎪==⎨>⎪⎩,显然()()f x f x -=-且定义域关于原点对称,在()0,+∞上递增,满足.故选:D3.(2022·全国·高三专题练习)已知幂函数()()()222nf x n n x n Z =+-∈在()0,∞+上是减函数,则n 的值为( ) A .1或3- B .1 C .1- D .3-【答案】D 【解析】 【分析】根据幂函数的定义和单调性求得n 的值. 【详解】依题意()f x 是幂函数,所以22221230n n n n +-=⇒+-=,解得1n =或3n =-. 当1n =时,()f x x =在()0,∞+递增,不符合题意.当3n =-时,()3f x x -=在()0,∞+递减,符合题意.故选:D4.(2022·全国·高三专题练习(理))设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域为R ,且该函数为奇函数的α值为( ) A .1或3 B .1-或1C .1-或3D .1-、1或3【答案】A 【解析】 【分析】由幂函数的相关性质依次验证得解. 【详解】因为定义域为R ,所以0α>,12α≠, 又函数为奇函数,所以2α≠,则满足条件的1α=或3. 故选:A5.(2022·全国·高三专题练习(理))已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( ) A .(),0-∞ B .()(),00,-∞⋃+∞ C .()0,∞+ D .[)0,+∞【答案】D 【解析】先求出幂函数解析式,根据解析式即可求出值域. 【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,23(0)f x x ∴==,∴()f x 的值域是[)0,+∞.故选:D.6.(2022·北京·高三专题练习)设x R ∈,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是A .3B .4C .5D .6【答案】B 【解析】 【详解】因为[]x 表示不超过x 的最大整数.由得,由得, 由得,所以,所以,由得, 所以,由得,与矛盾,故正整数n 的最大值是4.考点:函数的值域,不等式的性质.7.(2022·全国·高三专题练习)若幂函数()mn f x x = (m ,n ∈N *,m ,n 互质)的图像如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1 【答案】C 【解析】 【分析】根据幂函数的图像和性质利用排除法求解 【详解】由图知幂函数f (x )为偶函数,且1mn<,排除B ,D ; 当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ; 故选:C.8.(2022·全国·高三专题练习)已知3,0()3,0x xx f x e x x x ⎧⎪=⎨⎪-<⎩,若关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,则实数k 的取值范围为( ) A .72(,)2e e-- B .72](,2e e--C .72(,)(,)2e e -∞--+∞D .72(,(,2])e e-∞--+∞【答案】A 【解析】 【分析】利用导数研究分段函数()f x 的性质,作出函数图形,数形结合得到124010t t e -<<⎧⎪⎨<<⎪⎩,然后结合一元二次方程根的分布即可求出结果. 【详解】 因为0x ≥时,()xx f x e =,则1()x xf x e-'=,令()0f x '=,则1x =,所以()0,1x ∈时,()0f x '>,则()f x 单调递增;()1,x ∈+∞时,()0f x '<,则()f x 单调递减;且(0)0f =,1(1)f e=,x →+∞时,()0f x →;0x <时,3()3f x x x =-,则2()33f x x =-',令()0f x '=,则1x =-,所以()1,0x ∈-时,()0f x '>,则()f x 单调递增;(),1x ∈-∞-时,()0f x '<,则()f x 单调递减;且(0)0f =,(1)4f -=-,x →-∞时,()f x →+∞; 作出()f x 在R 上的图象,如图:关于x 的方程22()()10f x k f x ⋅--=有5个不同的实根,令()f x t =,则2210t kt --=有两个不同的实根12121,02t t t t =-<,,所以124010t t e-<<⎧⎪⎨<<⎪⎩,令()221g t t kt =--,则()()280400010k g g g e ⎧∆=+>⎪->⎪⎪<⎨⎪⎛⎫⎪> ⎪⎪⎝⎭⎩,解得722k e e -<<-,故选:A. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 二、多选题9.(2022·全国·高三专题练习)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2 B .3C .4D .5【答案】BC 【解析】 【分析】画出函数244y x x =--的图象,结合值域可得实数a 的取值范围,从而可得正确的选项. 【详解】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确. 故选: BC.10.(2022·全国·高三专题练习)已知函数2()3232x x f x =-⋅+,定义域为M ,值域为[1,2],则下列说法中一定正确的是( ) A .[]30,log 2M = B .(]3,log 2M ⊆-∞ C .3log 2M ∈ D .0M ∈【答案】BCD 【解析】 【分析】根据题意,令3x t =,则()222g t t t =-+,结合()g t 的值域为[1,2],求出t 的取值范围,进而区间M 的特征,即可得到正确选项. 【详解】令3x t =(0)t >,则222()323222(1)1()x x f x t t t g t =-⋅+=-+=-+=, 由()1g t =,得1t =,即31x =,得0x =; 由()2g t =,得0=t (舍)或2,即3log 2x =;根据()g t 的图象特征,知0M ∈,3log 2M ∈,(]3log 2M ⊆-∞,. 故选:BCD .11.(2022·广东揭阳·高三期末)已知函数()3f x x x =+,实数,m n 满足不等式()()2320f m n f n -+->,则( ) A .e e m n > B .11n n m m +>+ C .()ln 0m n -> D .20212021m n <【答案】AC 【解析】 【分析】先判断函数()f x 的奇偶性及单调性结合不等式()()2320f m n f n -+->可得,m n 所满足的关系式,再利用指数函数、对数函数和幂函数的单调性以及特殊值法逐项判断. 【详解】因为()()()()()33f x x x x x f x -=-+-=-+=-,所以()f x 为奇函数,因为()2310f x x '=+>,所以()f x R 上单调递增, 由()()2320f m n f n -+->, 得()()()2322f m n f n f n ->--=-, 所以232m n n ->-, 即1m n ->,m n >,因为x y e =在R 上是增函数,所以m n e e >,故A 正确;因为ln y x =在()0,∞+上是增函数,所以ln()0m n ->,故C 正确; 因为2021y x =在R 上是增函数,所以20212021m n >,故D 错误; 令2,0m n ==,可验证B 错误. 故选:AC12.(2022·全国·高三专题练习)设点(),x y 满足()55340x y x x y ++++=.则点(),x y ( ) A .只有有限个 B .有无限多个C .位于同一条直线上D .位于同一条抛物线上【答案】BC 【解析】 【分析】由已知得()()()()5533x y x y x x +++=-+-,根据5y x x =+的单调性有3x y x +=-,即可知(),x y 的性质.【详解】由题意,可得()()()()5533x y x y x x +++=-+-, 又5y x x =+单调递增,得3x y x +=-,则40x y +=, 故满足条件的点(),x y 有无穷多个,且都在直线40x y +=上. 故选:BC 三、填空题13.(2022·内蒙古赤峰·模拟预测(文))写出一个同时具有下列性质①②③的函数()f x =______. ①()()f x f x -=;②当()0,x ∞∈+时,()0f x >; ③()()()1212f x x f x f x =⋅;【答案】2x (答案不唯一); 【解析】 【分析】根据给定函数的性质,结合偶数次幂函数即可写出符合要求的解析式. 【详解】由所给性质:()f x 在(,0),(0,)-∞+∞上恒正的偶函数,且()()()1212f x x f x f x =⋅,结合偶数次幂函数的性质,如:2()f x x =满足条件. 故答案为:2x (答案不唯一)14.(2022·全国·高三专题练习(文))已知α∈112,1,,,1,2,322⎧⎫---⎨⎬⎩⎭.若幂函数f (x )=xα为奇函数,且在(0,+∞)上递减,则α=______. 【答案】-1 【解析】 【分析】根据幂函数()f x x α=,当α为奇数时,函数为奇函数,0α<时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f (x )=xα为奇函数,∴α可取-1,1,3, 又f (x )=xα在(0,+∞)上递减,∴α<0,故α=-1. 故答案为:-1.15.(2022·广东肇庆·模拟预测)已知函数21()2f x x ax =++,()lng x x =-,用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,若()h x 恰有3个零点,则实数a 的取值范围是___________.【答案】3,2⎛- ⎝【解析】 【分析】分析函数21()2f x x ax =++的零点情况,可确定符合题意的情况,从而得到不等式组,解得答案.【详解】函数21()2f x x ax =++恒过点1(0,)2,且其图象开口向上,()ln g x x =-的零点为1,当21()2f x x ax =++的零点至少有一个大于或等于1时,如图示:函数()min{(),()}(0)h x f x g x x =>的零点至多有两个,不符合题意,故要使()h x 恰有3个零点,则函数()f x 在区间(0,1)上存在两个零点,如图示,故20121(1)1021Δ402a f a a ⎧<-<⎪⎪⎪=++>⎨⎪⎪=-⨯>⎪⎩解得32a -<<故答案为:3,2⎛- ⎝16.(2022·全国·高三专题练习)93,42M ⎛⎫⎪⎝⎭是幂函数()a f x x 图象上的点,将()f x 的图象向上平移32个单位长度,得到函数()y g x =的图象,若点(,)n T n m (*n ∈N ,且2n )在()g x 的图象上,则239MT MT MT +++=______. 【答案】30 【解析】 【分析】先求出函数()y g x =的解析式,得到23()2m n -=,从而得到()724n MT n n =-≥,对239MT MT MT +++利用分组求和法求和即可. 【详解】由39()24α=,得12α=,()12f x x =,123()2g x x =+.因为点(,)n m 在函数()g x 上,所以1232m n -=,即23()2m n -=.所以n MT ==7(2)4n n =-≥, 所以239777(2)(3)(9)444MT MT MT +++=-+-+⋯+-7(239)84=+++-⨯811142⨯=- 30=.故答案为:30. 四、解答题17.(2022·全国·高三专题练习)解不等式3381050(1)1x x x x +-->++. 【答案】()()211-∞--,,. 【解析】 【分析】不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,将21x +视为一个整体,方程两边具有相同的结构,于是构造函数()35f x x x =+,然后由函数的单调性解不等式.【详解】令()35f x x x =+,易知()f x 在R 上单调递增.原不等式变形为33225511x x x x ⎛⎫+⋅>+ ⎪++⎝⎭,即()21f f x x ⎛⎫> ⎪+⎝⎭. 由()f x 在R 上单调递增得21x x >+,解得2x <-或11x -<<. 所以原不等式的解集为()()211-∞--,,. 18.(2022·全国·高三专题练习)已知幂函数()()2144m f x m m x+=+-在区间0,上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减. 【答案】(1)()2f x x =;(2)证明见解析.【解析】 【分析】(1)由幂函数的系数为1得2441+-=m m ,再根据函数为0,增函数得1m =;(2)由(1)得()216g x x x=+,再根据函数单调性的定义证明即可. 【详解】(1)解:由题可知:2441+-=m m ,解得1m =或5m =-. 若1m =,则()2f x x =在区间0,上单调递增,符合条件;若5m =-,则()4f x x -=在区间0,上单调递减,不符合条件.故()2f x x =.(2)证明:由(1)可知,()216g x x x=+. 任取1x ,()20,2x ∈,且12x x <,则()()()()22121212121212161616g x g x x x x x x x x x x x ⎡⎤-=+--=-+-⎢⎥⎣⎦. 因为1202x x <<<, 所以120x x -<,124x x +<,12164x x >, 所以()()121212160x x x x x x ⎡⎤-+->⎢⎥⎣⎦, 即()()12gx g x >,故()g x 在区间()0,2上单调递减.【点睛】。

第8讲:二次函数(专题讲座)

第8讲:二次函数(专题讲座)

(聚焦2008)第8讲:二次函数专题讲座(一)二次函数的解析式的三种形式(1)标准式:y=ax 2+bx+c (a ≠0);(2)顶点式:y=a (x+m )2+n (a ≠0);(3)两根式:y=a (x -x 1)(x -x 2)(a ≠0)【例1】已知二次函数y=f (x )同时满足条件:(1)f (1+x )= f (1-x );(2)y=f (x )的最大值是15;(3)f (x )=0的两根立方和等于17。

求y =f (x )的解析式。

(二)二次函数的基本性质(1)二次函数f (x )=a x 2+bx+c (a ≠0)的图像是一条抛物线,对称轴方程为x =-a b 2,顶点坐标是(-a b 2,acb ac 442-)。

当a >0时,抛物线开口向上,函数在(-∞,-a b 2]上递减,在[-ab 2,+∞)上递增。

当a <0时,抛物线开口向下,函数在(-∞,-a b 2]上递增,在[-a b 2,+∞)上递减。

(2)直线与曲线的交点问题:①二次函数f (x )=a x 2+bx+c (a ≠0),当Δ=b 2-4ac >0时,图像与x 轴有两个交点M1(x 1,0)M2(x 2,0),于是|M1M2|=|x 1-x 2|=||a ∆。

②若抛物线y=ax 2+bx+c (a ≠0)与直线y=mx+n ,则其交点由二方程组成的方程组的解来决定,而方程组的解由一元二次方程ax 2+bx+c =mx+n ,即px 2+qx+r=0的解来决定,从而将交点问题归结为判定一元二次方程的判别式Δ的符号决定。

特别地,抛物线与x 轴的交点情况由ax 2+bx+c=0的解的情况决定,于是也归结为判定一元二次方程ax 2+bx+c = 0的判别式Δ的符号问题。

当Δ= b 2-4ac>0时,方程ax 2+bx+c=0有两个不同的实数根,即对应的抛物线与x 轴有两个交点,此时二次函数的图像被x 轴截得的弦长L=|x 2-x 1|=||4)()(21212212a x x x x x x ∆=-+=-。

2020高考数学 第8讲 二次函数

2020高考数学 第8讲  二次函数
2020高考数学
第8讲 二次函数
1.熟练掌握二次函数的定义、图象与性质. 2.会求二次函数在闭区间上的最值.
1.二次函数的三种表达式 (1)一般式:f(x)=______________. (2)顶点式:若二次函数 f(x)的顶点坐标为(k,h),则其解 析式为 f(x)=______________. (3)零点式:若二次函数的图象与 x 轴的交点坐标为(x1,0), (x2,0),则其解析式为 f(x)=______________.
(2)当 x=-2ba∉[m,n]时,最大值和最小值分别在区间的 两个端点处取得.
4.二次函数在某个区间上的最值问题的处理,常常要利 用数形结合的思想和分类讨论的思想方法.当二次函数的表达 式中含有参数或所给区间是变化的,需要考察二次函数的图象 特征(开口方向、对称轴与该区间的位置关系),抓住顶点的横 坐标是否属于该区间,结合函数的单调性进行分类求解和讨 论.
时,恒有 f(x)<0.
3.对二次函数 f(x)=a(x-k)2+h (a>0)在区间[m,n]上 的最值问题,有以下结论:
①若 k∈[m,n],则 ymin=f(k)=h,ymax=max{f(m),f(n)}. ②若 k∉ [m,n], 当 k<m 时,y=f(x)在[m,n]上单调递增,ymin=f(m),ymax =f(n); 当 k>n 时,y=f(x)在[m,n]上单调递减,ymin=f(n),ymax =f(m).
二次函数的图象与性质 轴定区间定的二次函数的最值 轴动或区间动的二次函数的最值
考点一·二次函数的图象与性质
【例 1】若函数 f(x)=2x2+mx-1 在区间[-1,+∞)上递 增,则 f(-1)的取值范围为____________.

高考数学一轮复习第8讲 函数与方程

高考数学一轮复习第8讲 函数与方程

第8讲函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与02x轴有交点⇔函数y=f(x)有03零点.(3)函数零点的判定(零点存在定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有04 f(a)·f(b)<0,那么,函数y=f(x)在区间05(a,b)内有零点,即存在c∈(a,b),使得06f(c)=0,这个07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点08(x0),(x2,0)09(x1,0)无交点1,零点个数102111120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B.2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个答案 B解析∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]上至少有3个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .4.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上单调递增,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.5.(2020·河南信阳调研)若函数f (x )=3mx -4在[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.答案 ⎝⎛⎦⎥⎥⎤-∞,-23解析 由已知得f (-2)·f (0)=(-6m -4)·(-4)≤0,解得m ≤-23,故实数m 的取值范围为⎝⎛⎦⎥⎥⎤-∞,-23.6.若函数f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,则函数y =f (x )-1的零点是________.答案 0或2解析 要求函数y =f (x )-1的零点,则令y =f (x )-1=0,即f (x )=1,又因为f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,①当x ≤0时,f (x )=e x ,由e x =1,解得x =0.②当x >0时,f (x )=x 2-1,由x 2-1=1,解得x =2(负值舍去).综上可知,函数y =f (x )-1的零点是0或2.考向一 函数零点所在区间的判断例1 (1)(2020·济南模拟)已知f (x )=x 3+x -4,则函数f (x )的零点所在区间是( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 由函数f (x )=x 3+x -4在定义域上单调递增,且f (1)=1+1-4=-2<0,f (2)=8+2-4=6>0,再根据函数零点存在定理可得零点所在区间是(1,2),故选C .(2)(2020·长春模拟)设函数f (x )=log 4x -⎝ ⎛⎭⎪⎪⎫14x ,g (x )=log x -⎝ ⎛⎭⎪⎪⎫14x 的零点分别是x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2>2 答案 B解析 由题意可得x 1是函数y =log 4x 的图象和y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,x 2是y =log x 的图象和函数y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,且x 1,x 2都是正实数,如图所示:故有log x 2>log 4x 1,故log 4x 1-log x 2<0,∴log 4x 1+log 4x 2<0,∴log 4(x 1x 2)<0,∴0<x 1x 2<1,故选B .判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )上必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.1.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上单调递增,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.考向二 函数零点个数的讨论例2 (1)(2020·青岛模拟)已知图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,则f (x )在区间[0,2020]上的零点个数为( )A .5050B .4041C .4040D .2020答案 B解析 因为图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,所以f (0)=0,f (1)=0,x ∈(0,1)时,函数有1个零点,所以x ∈(0,1]时,函数有2个零点,所以x ∈(0,2020]时,函数有4040个零点,则f (x )在区间[0,2020]上的零点个数为4041.故选B .(2)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x2+12x ,x≥0,则函数y =f (f (x ))-1的零点个数为( )A .2B .3C .4D .5答案 B解析 由题意,令f (f (x ))-1=0,得f (f (x ))=1,令f (x )=t ,由f (t )=1,得t =-1或t =-1+174,作出函数f (x )的图象,如图所示,结合函数f (x )的图象可知,f (x )=-1有1个解,f (x )=-1+174有2个解,故y =f (f (x ))-1的零点个数为3,故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)函数零点存在定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3.函数f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.多角度探究突破考向三 函数零点的应用 角度1 利用零点比较大小例3 (1)已知a 是函数f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( ) A .f (x 0)=0 B .f (x 0)>0 C .f (x 0)<0D .f (x 0)与0的大小关系不确定 答案 C解析 在同一平面直角坐标系中作出函数y =2x ,y =log x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log x 0,即f (x 0)<0.(2)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 B解析 令y 1=2x ,y 2=ln x ,y 3=-x -1,因为函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则y 1=2x ,y 2=ln x ,y 3=-x -1与y =-x 的图象的交点的横坐标分别为x 1,x 2,x 3,在同一平面直角坐标系内分别作出函数y 1=2x ,y 2=ln x ,y 3=-x -1及y =-x 的图象如图,结合图象可得x 1<x 2<x 3,故选B .在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.5.已知函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x和函数y =1x -1的图象,如图所示.由图象可知函数y =2x和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0.角度2 由函数零点存在情况或个数求参数范围 例4 (1)(2020·海南省新高考诊断性测试)已知函数 f (x )=⎩⎪⎨⎪⎧-x2-4x +1,x≤0,2-2-x ,x>0,若关于x 的方程[f (x )-1]·[f (x )-m ]=0恰有5个不同的实根,则m 的取值范围为( )A .(1,2)B .(1,5)C .(2,3)D .(2,5)答案 A解析 由[f (x )-1][f (x )-m ]=0,得f (x )=1或f (x )=m ,作出y =f (x )的图象,如图所示.由图可知,方程f (x )=1有2个实根,故方程f (x )=m 有3个实根,故m 的取值范围为(1,2).(2)(2020·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x3,x≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(22,+∞)B .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(0,22)C .(-∞,0)∪(0,22)D .(-∞,0)∪(22,+∞)答案 D解析 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=错误!恰有3个实根即可,令h (x )=错误!,即y =|kx -2|与h (x )=错误!的图象有3个不同交点.因为h (x )=错误!=错误!当k =0时,y =2,如图1,y =2与h (x )=错误!的图象有1个交点,不满足题意;当k <0时,如图2,y =|kx -2|与h (x )=错误!的图象恒有3个不同交点,满足题意;当k >0时,如图3,当y =kx -2与y =x 2的图象相切时,联立方程得x 2-kx +2=0,令Δ=0得k 2-8=0,解得k =22(负值舍去),所以k >22.综上,k的取值范围为(-∞,0)∪(22,+∞).故选D .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.7.当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12×12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2. 8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 -14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎪⎫2x -122-14,因为x ∈[-1,1],所以2x∈12,2,所以⎝ ⎛⎭⎪⎪⎫2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.一、单项选择题1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)答案 C解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).故选C .2.(2021·长郡中学高三月考)设函数f (x )=x +log 2x -m ,则“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 函数f (x )=x +log 2x -m 在区间(0,+∞)上单调递增,由函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点,得f ⎝ ⎛⎭⎪⎪⎫12=-12-m <0,f (4)=6-m >0,解得-12<m <6,故“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的必要不充分条件.故选B . 3.(2020·北京市大兴区一模)下列函数中,在区间(0,+∞)上单调递增且存在零点的是( )A .y =e xB .y =x +1C .y =-log xD .y =(x -1)2答案 C解析 函数y =e x >0恒成立,不存在零点,即A 不符合题意;函数y =x +1>0恒成立,不存在零点,即B 不符合题意;函数y =-log x =log 2x 在(0,+∞)上单调递增,且当x =1时,y =0,所以函数的零点为x =1,即C 正确;函数y =(x -1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D 不符合题意.故选C .4.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点答案 B解析 当x ∈(0,1]时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故f (x )有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎪⎫12x =x 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎪⎫23,1B .⎝ ⎛⎭⎪⎪⎫12,23C .⎝ ⎛⎭⎪⎪⎫13,12D .⎝⎛⎭⎪⎪⎫0,13答案 C解析令g (x )=⎝ ⎛⎭⎪⎪⎫12x ,f (x )=x ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12,g ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫12>f ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫13,所以由图象关系可得13<x 0<12.7.f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .二、多项选择题9.(2020·山东德州高三模拟)已知函数f (x )=e |x |+|x |.则关于x 的方程f (x )=k 的根的情况,下列结论正确的是( )A .当k =1时,方程有一个实根B .当k >1时,方程有两个实根C .当k =0时,方程有一个实根D.当k≥1时,方程有实根答案ABD解析方程f(x)=k化为e|x|=k-|x|,设y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系,折线与曲线y1=e|x|恰好有一个公共点时,k=1.如图,若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是(1,+∞).故选ABD.10.(2021·湖南郴州高三质检)已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2 B.x1+x2<1C.x1+x2<2 D.x1<1答案AC解析函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|的图象与直线y=-b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一平面直角坐标系中画出y=|2x-2|与y =-b的图象如图所示,可知1<x1<2,2x1-2+2x2-2=0,即4=2x1+2x2>22x1×2x2=22x1+x2,所以2x1+x2<4,所以x1+x2<2.11.(2020·海南中学高三月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎪⎨⎪⎧2x2-1,x≤1,|2-x|,x >1D .f (x )=1x-x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD .12.(2020·山东临沂高三模拟)定义域和值域均为[-a ,a ]的函数y =f (x )和y =g (x )的图象如图所示,其中a >c >b >0,给出下列四个结论,其中正确的是( )A .方程f (g (x ))=0有且仅有三个解B .方程g (f (x ))=0有且仅有四个解C .方程f (f (x ))=0有且仅有八个解D .方程g (g (x ))=0有且仅有一个解 答案 AD解析 由图象可知对于函数y =f (x ),当-a ≤y <-c 时,方程有一解,当y =-c 时,方程有两解,当-c <y <c 时方程有三解,当y =c 时,方程有两解,当c <y ≤a时,方程有一解,对于函数y =g (x ),由图象可知,函数g (x )为单调递减函数,当-a ≤y ≤a 时,方程有唯一解.对于A ,设t =g (x ),则由f (g (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,即t =g (x )有三个不同的值,又由函数g (x )为单调递减函数且a >c >b >0,所以方程f (g (x ))=0有三个不同的解,所以是正确的;对于B ,设t =f (x ),则由g (f (x ))=0,即g (t )=0,此时只有唯一的解t =b ,即方程b =f (x ),此时有三解,所以不正确;对于C ,设t =f (x ),则由f (f (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,当t =-b,0或b 时,方程t =f (x )均有三个不同的解,则f (f (x ))=0有九个解,所以不正确;对于D ,设t =g (x ),则由g (g (x ))=0,即g (t )=0,此时t =b ,对于方程b =g (x ),只有唯一的解,所以是正确的.故选AD .三、填空题13.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫13,1.14.已知f (x )=⎩⎪⎨⎪⎧xln x ,x>0,x2-x -2,x≤0,则其零点为________.答案 -1,1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为-1,1.15.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.16.(2020·聊城二模)已知f (x )=⎩⎪⎨⎪⎧1-ln x ,0<x≤1,-1+ln x ,x>1,若f (a )=f (b ),则1a +1b的最小值为________.答案 1+1e2解析 已知分段函数f (x )在两段区间内都是单调函数,若f (a )=f (b ),则必然分属两段内,不妨设0<a ≤1,b >1,则f (a )=1-ln a ,f (b )=-1+ln b ,即1-ln a =-1+ln b ⇒ln a +ln b =ln (ab )=2⇒ab =e 2.当1a +1b =be2+1b =1e2⎝ ⎛⎭⎪⎪⎫b +e2b 时,令g (b )=1e2⎝ ⎛⎭⎪⎪⎫b +e2b ,b ∈(1,+∞),由双勾函数性质可知g (b )在区间(1,e)上单调递减,在区间(e ,+∞)上单调递增,所以g (b )min =g (e)=2e ,此时a =e(不符合题意),当1a +1b =1a +ae2=1e2⎝ ⎛⎭⎪⎪⎫a +e2a 时,令h (a )=1e2⎝ ⎛⎭⎪⎪⎫a +e2a ,a ∈(0,1],由双勾函数性质可知h (a )在区间(0,1]上单调递减,所以h (a )min =h (1)=1+1e2,此时a =1,b =e 2.故1a +1b的最小值为1+1e2.四、解答题17.函数f(x)的定义域为实数集R,且f(x)=错误!对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,求实数m的取值范围.解因为对任意的x∈R都有f(x+2)=f(x-2),所以函数f(x)的周期为4.由在区间[-5,3]上函数g(x)=f(x)-mx+m有三个不同的零点,知函数f(x)与函数h(x)=mx-m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f(x)与h(x)在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m<1-0-5-1,即-12≤m<-16.21 / 21。

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数

高考数学中的重难点——二次函数知识梳理: 1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。

(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。

(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。

2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴a b x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(a b --∞上单调递减,在),2[+∞-ab上单调递增,a b x 2-=时,ab ac x f 44)(2min-=;(2)a<0时,抛物线开口向下,函数在]2,(a b --∞上单调递增,在),2[+∞-ab上单调递减,a b x 2-=时,ab ac x f 44)(2max-=。

3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。

4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ; (2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞疑点一:求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。

高考数学中的二次函数及其应用

高考数学中的二次函数及其应用

高考数学中的二次函数及其应用二次函数是高中数学中的重要内容,也是高考必考的内容。

在高考中,有不少数学难题涉及到了二次函数的应用。

关于二次函数,其实它是一种形如$f(x)=ax^2+bx+c$的函数,其中$a,b,c$均为实数且$a\neq0$。

本文主要介绍二次函数的基本定义及其应用,帮助读者了解和掌握二次函数。

一、二次函数的基本定义二次函数的基本形式就是$f(x)=ax^2+bx+c$。

需要注意的是,$a,b,c$是实数,而 $a\neq 0$。

如果 $a=0$,那么这个函数就是线性函数,不再是二次函数了。

对于二次函数,其特点是图像呈现为一条平滑的曲线(即抛物线)。

抛物线的开口方向与 $a$ 的正负值有关。

- 当 $a>0$ 时,抛物线开口向上;- 当 $a<0$ 时,抛物线开口向下。

二次函数最基本的应用是求图像的开口方向及顶点坐标。

一般情况下,二次函数的顶点就是其图像的最高点或最低点。

求最高点或最低点的坐标直接使用公式即可。

假设二次函数表达式为$f(x)=ax^2+bx+c$,那么其最高点或最低点的坐标分别为:$$\begin{cases}x=-\frac{b}{2a} \\y=f(-\frac{b}{2a})=-\frac{\Delta}{4a}+c\end{cases}$$其中,$\Delta=b^2-4ac$ 称为二次函数的判别式。

如果$\Delta>0$,则二次函数对于 $x$ 有两个不同的解;如果$\Delta=0$,则二次函数对于 $x$ 有且仅有一个解;如果 $\Delta <0$,则二次函数对于 $x$ 没有实数解。

二、二次函数在物理问题中的应用二次函数在物理问题中也有广泛的应用。

下面,我们就以抛物线运动为例,深入地剖析一下二次函数在物理问题中的应用。

假设某物体从某个高度自由落下,则它的下落轨迹为一条抛物线(忽略空气阻力)。

接着,我们假设这个物体从高度 $H$ 自由落下,并落到地面上,我们就可以用二次函数来表示这个物体在下落过程中与时间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 x∈ (-∞,-2ba] 上单调递增
奇偶性Βιβλιοθήκη b=0 时为 偶函数 ,b≠0 时为非奇非偶函数
对称性
图象关于直线 x= -2ba 成轴对称图形
a 决定图象的 开口方向 ,a 与 b 决定对称轴的位置,c 决定图象与 y 轴交点的位 a,b,c 的作用
置,a,b,c 决定图象的顶点
3.二次函数在闭区间的最值 可利用二次函数的图象,结合二次函数在所给区间上 的___单__调__性___进行分析求解.
2.二次函数的图象和性质
解析式
f(x)=ax2+bx+c (a>0)
f(x)=ax2+bx+c (a<0)
图象
定义域 值域
R
[4ac4-a b2,+∞)
R (-∞,4ac4-a b2]
增减性
在 x∈ (-∞,-2ba] 上单调递减;
在 x∈ [-2ba,+∞)上单调递增
在 x∈ [-2ba,+∞) 上单调递减;
1.若二次函数的图象的顶点为 (2,-1),且过点(3,1),
则此函数的解析式为(
)
A.y=2(x+2)2-1
B.y=2(x-2)2-1
C.y=-2(x+2)2-1 D.y=-2(x-2)2-1
解:设所求函数的解析式为 y=a(x-2)2-1, 把点(3,1)代入得 a=2. 故所求函数的解析式为 y=2(x-2)2-1.
答案: A
5.函数 f(x)=-2x2-x+1,x∈[-3,1]. (1)f(x)的单调递增区间为 ________ ,单调递减区间为 ________; (2)f(x)的最大值为________,最小值为_______.
解:因为 f(x)=-2x2-x+1=-2(x+14)2+98, 1
(1)当 x∈[ -3,1]时,函数 f(x)在[ -3,-4]上为增函数, 在[ -14,1]上为减函数.
??Δ<0
3.对二次函数 f(x)=a(x-k)2+h (a>0)在区间[m,n]上 的最值问题,有以下结论:
①若 k∈[m,n],则 ymin=f(k)=h,ymax=max{f(m),f(n)}. ②若 k? [m,n], 当 k<m 时,y=f(x)在[m,n]上单调递增,ymin=f(m),ymax =f(n); 当 k>n 时,y=f(x)在[m,n]上单调递减,ymin=f(n),ymax =f(m).
点评: 二次函数的单调性是以对称轴为分界线的,因 此,讨论二次函数的单调性时,要抓住对称轴与所给定义 域的关系.
【变式探究】
1.已知函数 f(x)=x2+2ax+2,x∈[-5,5]. (1)若 f(x)在[-5,5]上单调递增,则 a 的取值范围为______; (2)若 f(x)在[-5,5]上单调递减,则 a 的取值范围为______; (3)若 f(x)在[-5,5]上单调,则 a 的取值范围为_________; (4)若 f(x)在[-5,5]上不单调,则 a 的取值范围为_______.
(2)当 x=-14时,y 取得最大值 f(-14)=98; 又因为 x=-3 与对称轴 x=-14的距离大于 x=1 与对称 轴的距离,所以 x=-3 时取得最小值,且最小值为 f(-3)= -14.
二次函数的图象与性质 轴定区间定的二次函数的最值 轴动或区间动的二次函数的最值
考点一 ·二次函数的图象与性质
答案: A
4.若 f(x)=(m-1)x2+2mx+3 为偶函数,则 f(x)在区间
(-5,-2)上是(
)
A. 增函数
B. 减函数
C. 部分为增函数,部分为减函数
D. 无法确定增减性
解:由 f(x)=f(-x),可得 m=0,所以 f(x)=-x2+3,由 此知 f(x)在(-5,-2)上是增函数.
【例 1】若函数 f(x)=2x2+mx-1 在区间[-1,+∞)上递
增,则 f(-1)的取值范围为____________.
解:作出 f(x)的图象,
根据图象可知,其对 称轴 x=-m4 处在区间[-1,+∞)的左边(包括端点)时,f(x) 在[-1,+∞)上递增, 所以-m4 ≤-1,解得 m≥4. 所以 f(-1)=-m+1≤-3. 即 f(-1)的取值范围为 (-∞,-3]. 答案:(-∞,-3]
第8讲 二次函数
1.熟练掌握二次函数的定义、图象与性质. 2.会求二次函数在闭区间上的最值.
1.二次函数的三种表达式 (1)一般式:f(x)=______________. (2)顶点式:若二次函数 f(x)的顶点坐标为(k,h),则其解 析式为 f(x)=______________. (3)零点式:若二次函数的图象与 x 轴的交点坐标为(x1,0), (x2,0),则其解析式为 f(x)=______________.
1.若函数 f(x)满足 f(x)=f(2a-x),则 f(x)的图象关于 x =a 对称;
若 f(x)满足 f(a+x)=f(a-x),则 f(x)的图象关于 x=a 对 称.
2.若 f(x)=ax2+bx+c(a≠0),则 当???a>0, 时,恒有 f(x)>0;
??Δ<0 当???a<0, 时,恒有 f(x)<0.
f(2-t),那么( )
A. f(2)<f(1)<f(4)
B. f(1)<f(2)<f(4)
C. f(2)<f(4)<f(1)
D. f(4)<f(2)<f(1)
解:因为 f(x)=x2+bx+c,所以 a=1,抛物线的图象开 口向上,
又 f(2+t)=f(2-t),x=2 是其对称轴, 即当 x=2 时,f(x)取得最小值. 而当 x≥2 时,f(x)是增函数,有 f(2)<f(3)<f(4), 又 f(2-1)=f(2+1),即 f(1)=f(3), 所以 f(2)<f(1)<f(4).
答案: B
2.已知函数 f(x)=ax2+bx+c,如果 a>b>c 且 a+b+c
=0,则它的图象可能是 (
)
解:因为 a>b>c 且 a+b+c=0,所以 a>0,c<0, 则抛物线 y=ax2+bx+c 的图象开口向上,与 y 轴交于 负半轴,由此可知选 D.
答案: D
3.如果函数 f(x)=x2+bx+c 对任意实数 t 都有 f(2+t)=
相关文档
最新文档