一阶电路的全响应定义和作用

合集下载

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法

1 2
高阶动态电路的全响应研究
本文主要研究了一阶动态电路的全响应,未来可 以将研究扩展到高阶动态电路,探讨其全响应的 特点和求解方法。
复杂电路系统的分析方法研究
针对更复杂的电路系统,需要研究更为有效的分 析方法,以提高电路分析的准确性和效率。
3
非线性电路的动态响应研究
在实际应用中,非线性电路的动态响应也是一个 重要的问题,未来可以开展相关的研究工作。
结果讨论与误差分析
结果讨论
根据求解出的全响应表达式,分析电 路在不同时间点的响应情况,讨论电 路的工作特性。
误差来源
分析在求解过程中可能出现的误差来 源,如元件参数的测量误差、计算误 差等。
误差影响
讨论误差对求解结果的影响程度,以 及如何通过改进测量方法、提高计算 精度等方式来减小误差。
实际应用中的考虑
在实际应用中,还需要考虑其他因素 对电路响应的影响,如环境温度、电 磁干扰等。
05 实验验证与仿真模拟
实验方案设计
设计思路
基于一阶动态电路的基本原理,构建实验电路并确定测量参数。
电路搭建
选用合适的电阻、电容、电感等元件,搭建一阶动态电路。
测量方法
采用示波器、电压表、电流表等仪器,测量电路中的电压、电流 等参数。
03 三要素法原理及应用
三要素法基本概念
三要素法定义
一阶动态电路的全响应由初始值、 稳态值和时间常数三个要素决定,
通过求解这三个要素可快速得到 电路的全响应。
适用范围
适用于线性、时不变、一阶动态电 路的全响应分析。
优点
简化了电路分析过程,提高了求解 效率。
初始值、稳态值和时间常数求解方法
01
02

6-4一阶电路的全响应及阶跃响应

6-4一阶电路的全响应及阶跃响应

第6章一阶电路讲授板书1、理解一阶电路的全响应和阶跃响应概念和物理意义。

2、掌握一阶电路的全响和阶跃响应的计算方法一阶电路的全响的计算方法一阶电路的阶跃响的计算方法、求解初始值的方法1. 组织教学 5分钟3. 讲授新课70分钟2. 复习旧课5分钟基尔霍夫定律4.巩固新课5分钟5.布置作业5分钟一、学时:2二、班级:06电气工程(本)/06数控技术(本)三、教学内容:[讲授新课]:§6.4一阶电路的全响应一阶电路的全响应是指换路后电路的初始状态不为零,同时又有外加激励源作用时电路中产生的响应。

1.全响应以图 6.19 所示的 RC 串联电路为例:图 6.19 图 6.20电路微分方程为:方程的解为:u C(t)=u C'+ u C"令微分方程的导数为零得稳态解:u C"=U S暂态解,其中τ= RC因此由初始值定常数A,设电容原本充有电压:u C(0-)= u C(0+)=U0代入上述方程得:u C(0+)= A + U S = U0解得:A = U0 - U S所以电路的全响应为:2. 全响应的两种分解方式(1)上式的第一项是电路的稳态解,第二项是电路的暂态解,因此一阶电路的全响应可以看成是稳态解加暂态解,即:全响应 = 强制分量 ( 稳态解 )+ 自由分量 ( 暂态解 )(2)把上式改写成:显然第一项是电路的零状态解,第二项是电路的零输入解,因此一阶电路的全响应也可以看成是零状态解加零输入解,即:全响应 = 零状态响应 + 零输入响应此种分解方式便于叠加计算,如图 6.21 所示。

图 6.213. 三要素法分析一阶电路一阶电路的数学模型是一阶微分方程:其解答为稳态分量加暂态分量,即解的一般形式为:t= 0+时有:则积分常数:代入方程得:注意直流激励时:以上式子表明分析一阶电路问题可以转为求解电路的初值f(0+),稳态值f (¥)及时间常数τ的三个要素的问题。

求解方法为:f(0+):用t → ¥的稳态电路求解;f(¥):用 0+等效电路求解;时间常数τ:求出等效电阻,则电容电路有τ=RC ,电感电路有:τ= L/R。

(电路分析)一阶电路的全响应

(电路分析)一阶电路的全响应

一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。

时开关闭合,现讨论时电路响应的变化规律。

时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。

图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。

全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。

3、当时,即初始值等于稳态值,则全响应。

电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。

解:欲求电容电流,只要求出电容电压即可。

1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。

由换路定则得初始状态2、确定电容电压的稳态值。

作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。

求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。

一阶动态电路的全响应及三要素法

一阶动态电路的全响应及三要素法
释放出来消耗在电阻中,达到新稳态时,电感电流为 零,即
iL(∞)= 0
(3)求时间常数τ
R 20 (10 10) 10 k 20 10 10
L 10 3 10 7 s
R 10 103
根据三要素法,可写出电感电流的解析式为
iL(t)= 0 +(10×10-3–0)e107=t 10 e mA 107t
i
L
()
US R2
10 20
05A
1
L R2
2 20
0 1s
根据三要素公式得到
iL(t)= 0.5(1 - )e1A0t (0.1s≥t要素法,先求t = 0.1 s时刻的初始值。根 据前一段时间范围内电感电流的表达式可以求出在t = 0.1 s时刻前一瞬间的电感电流
2 10 20
0 0667 s
根据三要素公式得到:
t 01
iL (t) iL (0 1 ) e 2 0 316 e15(t01) A (t≥0.1 s)
电感电流iL(t)的波形曲 线如右图所示。在t=0时, 它从零开始,以时间常数 τ1=0.1 s确定的指数规律增 加到最大值0.316A后,就 以时间常数τ2=0.0667s确 定的指数规律衰减到零。
【例14-3】
下图(a)所示电路原处于稳定状态。t = 0时开关 闭合,求t ≥0的电容电压uC(t)和电流i(t)。
解:(1)计算初始值uC(0+)
开关闭合前,图(a)电路已经稳定,电容相当于 开路,电流源电流全部流入4Ω电阻中,此时电容电 压与电阻电压相同,可求得
uC(0+)= uC(0 -)= 4Ω×2 A = 8V
t ln iL (0 ) iL () 0 005 ln 0 75 1 5 0 002 s

一阶电路的全响应——三要素公式【PPT课件】

一阶电路的全响应——三要素公式【PPT课件】

6A
2
Is
US 3H
(a)
u
大 学 电 路 与 系 统
(2)求解零状态响应iLf(t)和uf(t) 。
零状态响应是初始状态为零,仅由独立源所引起的 R2
响应;故 iLf(0+)=0,电感相当于开路。画出其0+等效 12V
电路,如图 (b)所示,所以
R3 US
iLf(0+) uf(0+) R4
RLiL
L1uS
(a)
(b)
制 作
若用y(t)表示响应,用f (t)表示外加激励,上述方程统一表示为
ddy(tt)1y(t)bf(t)
τ为时常数,对RC电路, τ= RC; 对RL电路, τ= L/R。
第 5-2 页
前一页
下一页 返回本章目录
y(t) = yh(t) + yp(t)
特征根 s = - 1/τ, yh(t) = Ke- t/τ ,
学 电 路 与
1316uL(0)13863
系 统
得uL(0+) = 6V, i(0+) = uL(0+) /6=1A
(a) 3Ω
i(0+) 3A
18V uL(0+)

6A
(b) 0+图

多 媒
(3)画∞等效电路,如图(c)。
i(∞) 3A
体 室
显然有 uL(∞) = 0, i(∞) = 0,
18V uL(∞) iL(∞) 6Ω
路 与
iL(0+) =iL(0-)=12/(2+1)=12/3=4(A)
系 统
uC (0+)= uC(0-)=1×iL(0-)=4(V)

(电路分析)一阶电路的全响应

(电路分析)一阶电路的全响应

一阶电路的全响应一阶电路的全响应一、全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。

时开关闭合,现讨论时电路响应的变化规律。

时,响应的初始值为时,响应的稳态值为用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。

图5.5-1(b)中,零输入响应为图5.5-1(c)中,零状态响应为根据叠加定理,图5.5-1(a)电路的全响应为用表示全响应,表示响应的初始值,表示稳态值。

全响应的变化规律1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。

3、当时,即初始值等于稳态值,则全响应。

电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法全响应的三要素初始值稳态值时间常数例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态, t=0时开关S闭合,求时的电容电流。

解:欲求电容电流,只要求出电容电压即可。

1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。

由换路定则得初始状态2、确定电容电压的稳态值。

作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压则电容电压的稳态值为3、求时间常数τ。

求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ所以,时间常数为4、求全响应。

阶电路的零状态和全响应

阶电路的零状态和全响应

应用场景比较
阶电路的零状态响应
适用于需要快速响应且初始状态能量较 小或可以忽略不计的场景,如某些控制 系统的快速调节。
VS
阶电路的全响应
适用于需要综合考虑初始状态能量和外部 激励的场景,如某些电力系统的暂态分析 。
05
阶电路的零状态和全
响应的实际应用
在电子线路设计中的应用
零状态响应在电子线路设计中用于描述电路在输入信号激励下,仅由动态元件的初始储能所产生的响 应。全响应则描述了电路中所有动态元件的初始储能和输入信号共同作用所产生的响应。
在电子线路设计中,零状态响应和全响应的分析对于理解电路的工作原理、预测性能以及优化设计至 关重要。例如,在设计振荡器、滤波器等电子系统时,需要精确地分析零状态响应和全响应以实现所 需的功能。
在控制系统中的应用
在控制系统中,阶电路的零状态和全 响应用于描述系统对输入信号的动态 响应。零状态响应描述了系统在没有 初始储能的情况下对输入信号的响应, 而全响应则包含了系统所有的动态特 性。
全响应的特点
全响应具有确定性
对于同一阶电路,相同的输入信号必然会得到相同的输出信号。
全响应具有唯一性
对于同一阶电路,不同的输入信号必然会得到不同的输出信号。
全响应具有可逆性
对于同一阶电路,输出信号可以通过反变换得到输入信号。
全响应的求解方法
解析法
通过建立电路的微分方程, 利用数学方法求解全响应。
阶电路的零状态响应是指在电路中不 存在激励信号时,由电路的初值条件 引起的电路响应。
零状态响应仅与电路的初始状态和电 路的动态元件有关,与外部激励无关 。
零状态响应的特点
零状态响应是暂态的,随着时 间的推移,它会逐渐消失或达 到稳态值。

一阶电路的全响应

一阶电路的全响应

一阶电路的全响应一阶电路的全响应一.全响应全响应一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。

图5. 5-1 (a)所示的一阶RC电路,直流电压源Us是外加激励•时开关S处于断开状态.电容的初始电压叫2°时开关闭合.现讨论f上°时电路响应的变化规律。

2 °4时,响应的初始值为叫(―)二%时,响应的稳态值为叫(8)=°$1(8)= 0川亞丿川宦理计算全响应:开关闭合后,电容电压叫⑦的全响应•等于初始状态U0取独作用时产生的零输入响应叫购和电I W ' I'JU'r Hj时产生的零状态响应叫11⑦的代如II,如图5・5・1 (b) . (c)所示。

图5. 5-1 (b)中,零输入响应为= = (ao)图5. 5-1 (c)中.零状态响应为du''(f)dt(CO)1、、厂(°+)1(8)时川初始值大于稳态值.2、屮®J'%00)时川初始值小于稳态值. 则全响应由初始值开始按抬数规律逐渐増加到稳态值,这是电路对动8、当® Jr (8)时.电路换路后无过渡过程,直接进入稳态.动态根据叠加定理•图5. 5-1 (a)电路的全响应为◎(f) = Q(f) + 冬"(f)=弘五4■兀Q 一<码t i=,十(九一匚)「冠=十血Oh) - (C 0皿=1/(0 +y® =-譽尸+牛二=1(8)+哄4)-「(8护用‘①表示全响应,农示响应的初始值,心校示稳态值。

—阶电路全响应非零初始状态的一阶动态电路,包括RC电路和RL电路,在外加激励的作用下,电路中任何一条支路上的全响应为啲=r(0 十)E T+ F(CD)(1 - g『)全响应的变化规律则全响应由初始值开始按抬数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应

三元素法分析一阶电路的全响应电路论文学院:电子信息工程学院班级:电气091502班姓名:***学号:************三元素法分析一阶电路的全响应摘要:本文主要介绍用三元素法分析解决一阶电路问题。

用三元素法求一阶电路问题首先要求出三元素:初始值,稳态值,时间常数,用三元素法可以直接代入公式求解,求解过程简单。

关键词:一阶电路 三元素法一、 全响应定义当一个非零初始状态的一阶电路受到激励时,电路的响应称为一阶电路全响应。

全响应总是由初始值、特解和时间常数三个要素决定的。

二、 三元素法的基本原理一阶电路的数学模型是一阶线性微分方程: 其解答一般形式为:令 t = 0+ 全响应f (t )的三要素求解公式为f (t )=f (∞)+[f (0+)-f (∞)]e -t/τ其中,f (0+)为t=0+时刻的初始值,f (∞)为t →∞时的特解稳态值,τ为t ≥0时的时间常数。

f (0+)、f (∞)和τ称为三要素。

只要知道f (0+)、f (∞)和τ这三个要素,就可以根据上述公式直接写出直流激励下一阶电路的全响应,这种方法称为三要素法。

三、 三元素法的解题步骤⒈ 求初始值 ⑴ 初始值定义t=0+时电路中电压与电流的值称为初始值。

⑵ 初始值的求解① 由换路前电路(稳定状态)求u C (0-)和i L (0-); ② 由换路定律得 u C (0+) 和 i L (0+)。

③ 画0+等效电路。

c bf tfa=+d d τteA t f t f -+'=)()(a.换路后的电路b.电容(电感)用电压源(电流源)替代。

(取0+时刻值,方向与原假定的电容电压、电感电流方向相同)。

④由0+电路求所需各变量的0+值。

⒉求稳态值⑴稳态值的定义t=∞时电路中电压与电流的值称为稳态值。

⑵稳态值的求解稳态时,电容C视为开路,电感L视为短路,稳态值即求直流电阻性电路中的电压和电源。

⒊求时间常数τ⑴时间常数τ的定义当电阻的单位为Ω,电容的单位为F时,乘积RC的单位为s,称为RC电路的时间常数,用τ表示。

5.5 一阶电路的全响应和三要素法

5.5 一阶电路的全响应和三要素法

1)着眼于电路的两种工作状态
全响应 = 强制分量(稳态解)+自由分量(暂态解)
t
t
-
-
uC US Ae US (U0 - US )e t 0
强制分量 (稳态解)
自由分量 (暂态解)
第3 页
2)着眼于因果关系
全响应 = 零状态响应 + 零输入响应
t
t
-
-
uC US(1 - e ) U0e
0
-
- iL e
2
1 - e-5t
A
第 27 页
(3)叠加
iL
1H +
10V –
5
i
uR
S
uC
2 0.25F
uR = uC
i
t
iL
t
uR t
2
iL t uC t
2
2
1 - e-5t
5e-2t
A
第 28 页
例题 已知:电感无初始储能t = 0 时合S1 , t =0.2s时合S2 ,求 两次换路后的电感电流i(t)和电感电压u(t) 。
(t 0)
零状态响应
零输入响应
S(t=0) R
+
US
C

uC (0-)=U0
S(t=0) R
+
US
C
+

uC (0-)= 0
S(t=0) R C
uC (0-)=U0
第4 页
例题 t=0时开关S闭合,求t >0后的iC、uC及电流源两端的电压。 (uC (0- ) 1V,C 1F)
1
1
1
+

一阶电路全响应公式

一阶电路全响应公式

一阶电路全响应公式一阶电路全响应公式,这可是电学里相当重要的一部分知识呢!咱先来说说啥是一阶电路。

想象一下,电路里就那么几个元件,电阻、电容或者电感啥的,而且它们的关系比较简单,这就构成了一阶电路。

比如说,一个电阻和一个电容串联的电路,或者一个电阻和一个电感串联的电路,这都算一阶电路。

那啥又是全响应呢?简单说,就是电路在电源激励和初始储能共同作用下产生的响应。

一阶电路全响应公式,就像是打开这个神秘电学世界的一把钥匙。

比如说,对于一个包含电阻 R 和电容 C 的串联一阶电路,在电源电压U 作用下,电容初始电压为 U0,其全响应公式就是:u(t) = U + (U0 - U) e^(-t/RC) 。

这里的 e 是自然对数的底数,RC 叫做时间常数。

咱来举个例子感受感受。

有一次我在实验室里做实验,就是研究一个一阶 RC 串联电路的全响应。

我小心翼翼地连接好电路,打开电源,然后用示波器观察电压的变化。

一开始,电压的变化特别快,就像个调皮的孩子上蹿下跳。

随着时间推移,它慢慢变得稳定,就像那个调皮孩子终于累了,安静了下来。

这个过程中,全响应公式就像是一个幕后的指挥家,精准地预测着电压的每一步变化。

再来说说这公式的用处。

它能帮我们计算电路中电压或者电流在不同时刻的值,让我们对电路的行为了如指掌。

比如说,在设计电子设备的时候,我们得知道电路的响应速度有多快,能不能满足我们的要求。

这时候,一阶电路全响应公式就能大显身手啦。

还有啊,学习一阶电路全响应公式也不是一帆风顺的。

有时候,那些符号和参数会让人眼花缭乱,脑袋都大了。

但是,只要咱静下心来,多做几道题,多想想其中的道理,慢慢地也就搞明白了。

总的来说,一阶电路全响应公式虽然有点复杂,但只要我们用心去学,去理解,它就能成为我们解决电学问题的有力工具。

就像我们在生活中遇到困难,只要勇敢面对,找到方法,就能迎刃而解。

希望大家都能掌握好这个神奇的公式,在电学的世界里畅游无阻!。

一阶电路的全响应

一阶电路的全响应

t
0)
5 55
55
iL (t )=
6 5
(
6 5
6
)e
t 3
5
6 5
12
e
t 3
(
A)(
t
5
0)
【例2】如图(a)电路,uc(0-)=2V,t=0时K闭合, 试用三要素法求t≧0时uc(t)及i1(t)。
K i1(t) 2
K i1(0+) 26Biblioteka -+6
-
+
+
+
Us 12V
2i1 1F +
uc(t) -
令t=0+,则:
-0
y(0+ )=Ae y() A y(0+ )-y()
故:
-t
y(t)=y() [ y(0 ) y()]e
-t
y(t)=y() [ y(0 ) y()]e
三要素:
① 初始值y(0+)
② 终值y()
③ 时间常数=RC或
L R
2、三要素法的应用
i(t) 1
1
K
iL(t)
—— 电路的时间常数。
(c) t= 等效图
1
1
(3) 时间常数
L
R
(图d)
0
R0 2
5
R0 =1
(2//1)
3
等效内阻,从动态元件两端看出去
(d) 求时等效图
L = 5 3(s)
R0 5 / 3
-t
(4) 由 y(t)=y() [ y(0 ) y()]e
i(t )=
9
(1
9
)e

电路课件-一阶电路的全响应

电路课件-一阶电路的全响应
開關閉合前,電路已穩定,電容相當於 開路,電流源電流全部流入4電阻中,
uC (0 ) 4 2 8V
由於開關轉換時,電容電流有界,電容
電壓不能躍變,故
uC (0 ) uC (0 ) 8V
畫0+圖如右2A
4
2 i(0+)
+
+
8V 4
-
10V
-
i(0 ) 10 uC (0 ) 10 8 1A
-
iC (t)
US R1
1
e R1C
t
A
0 t R1C
1t
uC (t) US (1 e R1C ) 0 t R1C
uC (R1C ) US (1 e1)
t=R1C 時 , 第 二 次換路, 由換路 定則得:
R2
R1
iC(R1C +)
+ US(1-e-1)
-
uC (R1C ) uC (R1C ) US (1 e1)
2A
4
2 i(t)
+
+
uC 4 10V
-
-
Ro 4 // 4 // 2 1
時間常數為 τ RoC 1 0.1 0.1s
4,將初始值、終值及時間常數代 入三要素公式,得到回應運算式:
uC(t) 7 (8 7)e10t 7 1e10tV (t 0)
i(t) 1.5 (1 1.5)e10t 1.5 0.5e10t A (t 0)
(t 0)
全响应 瞬态响应 稳态响应
上式可改寫為
t
t
uC (t) U0e US (1 e ) (t 0)
全响应=零输入响应+零状态响应
也就是說電路的完全回應等於零輸入 回應與零狀態回應之和。這是線性動 態電路的一個基本性質,是回應可以 疊加的一種體現。

一阶电路的全响应

一阶电路的全响应

一阶电路的全响应
电路是一种用来控制电流和电压的装置。

它们由电子元件如电阻、电容和电感组成,用来制造各种不同的电路。

其中,一阶电路是一种
简单的电路,它只包含一个电阻、电容或电感元件。

一阶电路的全响
应指电路在输入信号变化的过程中,电路中的电压和电流如何随着时
间变化。

在一阶电路中,电压和电流是随时间而变化的,称为变量。

在电
路稳定后,变量不再发生变化,称为恒定值。

一阶电路的全响应有三
个部分:零状态响应、强制响应和完全响应。

首先,零状态响应是指电路中元件上原有的电荷和电流在没有外
部输入信号时的响应。

在没有输入信号时,电路中的电荷和电流会随
时间变化,直到它们达到恒定值。

这个响应通常是指电路的初始状态,也称为初始响应。

其次,强制响应是指电路在输入信号发生变化时,由于外部输入
信号的作用,电路中的电荷和电流发生了变化。

这个响应是由于外部
输入信号强制电路中的元件发生变化而引起的。

最后,完全响应是指在零状态响应和强制响应的基础上,电路中
的电荷和电流发生的全部变化。

它是由零状态响应和强制响应的叠加
而得到的。

它包含了所有的电路响应,因此也被称为总响应。

一阶电路的全响应对于理解电路的行为和性能非常重要。

它可以帮助我们判断电路的稳定性和可靠性,也可以提供对电路故障的判断依据。

因此,在电路设计和维修中,深入理解一阶电路的全响应是非常有必要的。

一阶电路的零输入响应零状态响应全响应

一阶电路的零输入响应零状态响应全响应

e
5
e
6
0.368U 0.135U 0.050U 0.018U 0.007U 0.002U
当 t =5 时,过渡过程基本结束,uC达到稳态值。
第四章 动态电路的时域分析
二、一阶RL电路的零输入响应
电感电流根据三要素公式:
iL (0 ) I 0
iL (0 ) iL (0 ) I 0
s
i R C + _ uC
+
t 0
s
i R C + _ uc
U _
uC (0 -) = U0
零输入响应
uC (0 -) = 0
uC U 0
零状态响应
t e RC
U
t ( 1 e RC
) (t 0
uC
U
Ue

t RC
第四章 动态电路的时域分析
3.3.3 一阶电路的全响应:
回顾
若零输入响应用yx(t)表示之,其初始值为yx(0+),那么
y x (t ) y x (0 )e

t

t 0
t
若零状态响应用yf(t)表示之,其初始值为yf(0+)=0,那么
y f (t ) y f ()(1 e ) t 0

第四章 动态电路的时域分析
+ U _
t 0
U (1 e
1 t RC

)V
t 0
第四章 动态电路的时域分析
uC的变化规律
稳态分量
+U
uC
U
Ue

t RC
uC
uC
t 暂态分量
电路达到 稳定状态 时的电压

一阶电路的全响应

一阶电路的全响应
使用稳定的电源电压,避免电压波动对实验 结果的影响。
注意安全事项
在实验过程中,要注意安全事项,如避免触 电、短路等危险情况。
仿真模拟软件应用举例
Multisim软件
Multisim是一款常用的电路仿真软件,可以用于模拟一阶电路的全响 应过程,通过虚拟实验来验证理论分析结果。
PSpice软件
PSpice是另一款专业的电路仿真软件,具有强大的电路分析和模拟功 能,可以用于一阶电路的暂态响应和稳态响应分析。
电感L的影响
在RL电路中,电感L的大小直接影响时间常数τ。电感L越大,时间常数τ越大,电路变化越慢; 反之,电感L越小,时间常数τ越小,电路变化越快。同时,电阻R的大小也会影响时间常数τ 的大小。
05 全响应过程分析与描述
零输入响应、零状态响应概念区分
零输入响应
指电路在没有外部激励的情况下,仅 由初始储能(如电容电压、电感电流 )引起的响应。
一阶电路简介
一阶电路定义
仅含有一个动态元件(电容或电感)的线性电路。
一阶电路特点
电路结构简单,动态过程易于分析。
常见的一阶电路
RC电路、RL电路等。
全响应概念及重要性
全响应定义
一阶电路在激励和初始状态共同作用 下的响应。
全响应的组成
全响应的重要性
全响应反映了电路在实际工作条件下的动态 特性,是电路分析和设计的重要依据。同时 ,全响应也是理解更复杂电路响应的基础。
时间常数是描述一阶电路暂态过程变化 快慢的重要参数,用希腊字母τ(tau) 表示。它反映了电路从一种稳定状态过 渡到另一种稳定状态所需的时间。
计算公式
对于一阶RC电路,时间常数τ等于电 阻R与电容C的乘积,即τ=RC;对于 一阶RL电路,时间常数τ等于电感L与 电阻R的比值,即τ=L/R。

一阶电路的全响应

一阶电路的全响应
分析(1) iL (t) (I0 IS )e L IS
全响应 = 瞬态响应 + 稳态响应 自由分量 + 强制分量 以外加信号的形式
画出波形 设 I0>IS
I0
iL (t)
IS
I0 -IS
0
t
Rt
iL (t) (I0 IS )e L IS
电感电流由初始值I0慢慢放电,最后稳定在IS
t
全响应是外加电源与储能元件上初 始储能共同产生的电路响应。
看一个电路为例如下图
Is
t=0 iR
iL
换路前电路稳定,L 相 当于短路线,在两个电
R
R
L 源的共同作用下:
+Us
iL (0 ) IS
US R
I0
iL (0 ) iL (0 ) I0
t>0+时,此时电压源已不起作用,电流源作用于电
﹌﹌﹌﹌⑴ ﹌﹌﹌﹌﹌
﹌﹌﹌﹌ ⑵﹌﹌﹌﹌﹌
Rt
uL (t) R(I0 IS )e L
t 0分析(2)Fra bibliotektRt
iL (t) I0 e L IS (1 e L )
全响应 =零输入响应 + 零状态响应 (这个表达式体现叠加性)
全响应是储能元件上初始储能与 外加电源共同产生的电路响应
Rt
路,电感元件的初始储能同时作用于电路。
t=∞时,电路又稳定下来,L相当于短路线,在电
流源的作用下
iL () IS
Is
t=0 iR
iL
R
R
L
+Us
列出方程:
diL dt
R L
iL
R L
I
iL (0 ) I0
解方程可得到解答,归纳为两种不同表 达式,表现出不同的意义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
否则,在仅知道全响应的表达式时,无法 将零输入响应(分量)和零状态响应(分量)
分开。非要知道电路,画出零输入的 0 图或零状态的 0 图,求出零输入响应或零
状态响应来才行。
例16 电路原处于稳定状态。求 t 0 的
uC(t)和i(t),并画波形图。
t=0
2 i
2A +
+
4
0.1F
uC
-
4
10V
2
2,计算稳态值uC()、i()
换路后,经一 2A 段时间,重新 达到稳定,电 4 容开路,终值
+
uC
() -
2 i()
+
4 10V
-
图如右,运用
叠u C 加( 定) 理(4 得/4 //2 /) 22 4/4/4 /4 / 1 0 2 5 7V
i( )1 0u C ( )1 0 71.5A
别计算出这三个要素,就能够确定全响 应,而不必建立和求解微分方程。这种 方法称为三要素法。
三要素法求直流激励下响应的步骤:
1.初始值r(0+)的计算(换路前电路已稳 定)(1) 画t=0-图,求初始状态:电容 电压uC(0-)或电感电流iL(0-)。
(2)由换路定则,确定电容电压或电感电 流初始值,即uC(0+)=uC(0-)和 iL(0+)=iL(0-)。
(t0)
其解为
t
uC(t)uC(h t)uC(p t)A eRC U S
代入初始条件uC(0+)=uC(0-)=U0,可

uC(0)U0AUS
求得
AU0US
则:
uC(t)
uCh(t)
uCp(t)
(U0
US)e
t RC
US
t
uC(t) (U0 US)e US
(t 0)
全响应固有响应 强制响应
全响应瞬态响应 稳态响应
t
可见,直流激励下一阶电路中任一响应
总是从初始值 r(0+) 开始,按照指数规
律增长或衰减到稳态值r(),响应的快
慢取决于的时间常数 。
注意:(1) 直流激励; (2)一阶电 路任一支路的电压或电流的(全)响应 ; (3)适合于求零输入响应和零状 态响应。
直流激励下一阶电路的全响应取决于
r(0+),r()和 这三个要素。只要分
上式可改写为
t
t
uC(t)U0e US(1e ) (t 0)
全响应=零输入零 响状 应态 +响应
也就是说电路的完全响应等于零输入 响应与零状态响应之和。这是线性动 态电路的一个基本性质,是响应可以 叠加的一种体现。
U0
uC(t) US <U0
U0
uC(t) US <U0
US
US
uCp(t)
uCzS(t)
一阶电路的全响应 定义和作用
全响应:由储能元件的初始储能和 独立电源共同引起的响应。
下面讨论RC串联电路在直流电压源作 用下的全响应。已知:uC(0-)=U0。 t=0时开关闭合。
R
+
Us -
t=0
i+
C uC(0-)=U0 -
为了求得电容电压的全响应,以uC(t) 为变量,列出电路的微分方程
Rd C d u tCu CU S
U0 -US
uCh(t)
uCzi(t)
t
t
uC(t)=uCh(t)+uCp(t) uC(t)=uCzi(t)+uCzs(t)
5-6 一阶电路的三要素法
R
+
+ RCdudCt(t)uC(t)uS (t 0)
uS -
C uC -
uC(0)U0
iS
G
iL GLdidLt(t)iL(t)iS (t 0)
L iL(0)I0
因而得到 rp(t)r( )rp(0) r(t)r( )[r(0)r( )e ]t,t0
r(0+) ——响应的初始值 三要素:
r() ——响应的终值,
——时间常数=RC, =L/R
r(t) 三要素公式的 r(t)
r()
响应波形曲线
r(0+) r()<r(0+)
r()>r(0+)
r(0+)
r()
t
电流源的电流is。其通解为
r(t)rh(t)rp(t)A et rp(t)
t=0+代入,得: Ar(0)rp(0) 因而得到 r(t)rp (t)[r(0 )rp(0 )e ]t,t0
一阶电路任意激励下uC(t)和iL(t)响
应的公式 推广应用于任意激励下任一响应
在直流输入的情况下,t时, rh(t)0, rp(t)为常数,则有
若 用 r(t) 来 表 示 电 容 电 压 uC(t) 和 电 感 电流iL(t),上述两个电路的微分方程
可表为统一形式
drd(tt)r(t)w(t)
(t0)
r(0)
r(0+)表示电容电压的初始值uC(0+)或电 感电流的初始值iL(0+); =RC 或 =GL=L/R;w(t)表示电压源的电压uS或
(3)画0+图,求其它初始值——用数值 为uC(0+)的电压源替代电容或用iL(0+) 的电流源替代电感,得电阻电路再计算
2,稳态值r()的计算(画终了图) 根据t>0电路达到新的稳态,将电容用 开路或电感用短路代替,得一个直流电 阻电路,再从稳态图求稳态值r()。
3,时间常数 的计算(开关已动作)
先计算与电容或电感连接的电阻单口网
络的输出电阻Ro,然后用公式 =RoC 或 =L/Ro计算出时间常数。
4,将r(0+),r()和 代入三要素公式得
到响应的一般表达式。
注意点:三要素公式可以计算全响应、 零输入响应分量和零状态响应。但千万 不要认为
1t
1t
uC (t) U0e US (1 e )
uC
(0
1
)e
t
uC
()(1
1t
e )
uC
()
[uC
(0
)
uC
1
()]e
t
就推广到一般,得出结论,所有的响应
rzi(t)r(0)e1t rzs(t)r()(1e1t) 应该是:rzi(t)rzi(0)e1t rzs(t)r( ) [rzs(0 )r( )]e 1t
如求全响应iC (t)。
0 图
+ U-S
uCR(0)U+0
iC (t)
C

+ U-S
R
iC (0 )
+
U0

r ( 0 ) iC ( 0 ) iC z i( 0 ) iC z s ( 0 )
内激励引起
外激励引起
从另一个角度说:
只有 电容电压 和 电感电流 ,只要知道全 响应表达式,就可以把它分成零输入响应 (分量)和零状态响应(分量) 。
-
解:1,计算初始值uC(0+)、i(0+)
开关闭合前,电路已稳定,电容相当于 开路,电流源电流全部流入4电阻中,
uC(0)428V
由于开关转换时,电容电流有界,电容
电压不能跃变,故
uC(0)uC(0)8V
画0+图如右2A
4
2 i(0+)
+
+
8V 4
-
10V
-
i(0)1 0uC(0)1 081A
2
相关文档
最新文档