2020年国际数学奥林匹克(IMO)全部试题解答

合集下载

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word版

2020年中国数学奥林匹克试题和详细解答word 版一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分不是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分不作OE ⊥AB ,OF ⊥CD ,垂足分不为E ,F ,线段BC ,AD 的中点分不为M ,N .〔1〕假设A ,B ,C ,D 四点共圆,求证:EM FN EN FM ⋅=⋅;〔2〕假设 EM FN EN FM ⋅=⋅,是否一定有A ,B ,C ,D 四点共圆?证明你的结论.解〔1〕设Q ,R 分不是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,那么11,22EQ OB RM MQ OC RF ====,又OQMR 是平行四边形,因此OQM ORM ∠=∠,由题设A ,B ,C ,D 四点共圆,因此ABD ACD ∠=∠,因此 图1 22EQO ABD ACD FRO ∠=∠=∠=∠,因此 EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ∆≅∆, 因此 EM =FM , 同理可得 EN =FN , 因此 EM FN EN FM ⋅=⋅.〔2〕答案是否定的.当AD ∥BC 时,由于B C ∠≠∠,因此A ,B ,C ,D 四点不共圆,但现在仍旧有EM FN EN FM ⋅=⋅,证明如下:如图2所示,设S ,Q 分不是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,那么11,22NS OD EQ OB ==,CB因此NS ODEQ OB=.①又11,22ES OA MQ OC==,因此ES OAMQ OC=.②而AD∥BC,因此OA ODOC OB=,③由①,②,③得NS ES EQ MQ=.因为2NSE NSA ASE AOD AOE∠=∠+∠=∠+∠,()(1802) EQM MQO OQE AOE EOB EOB∠=∠+∠=∠+∠+︒-∠(180)2AOE EOB AOD AOE=∠+︒-∠=∠+∠,即NSE EQM∠=∠,因此NSE∆~EQM∆,故EN SE OAEM QM OC==〔由②〕.同理可得,FN OAFM OC=,因此EN FN EM FM=,从而EM FN EN FM⋅=⋅.CB二、求所有的素数对〔p ,q 〕,使得q p pq 55+.解:假设pq |2,不妨设2=p ,那么q q 55|22+,故255|+q q .由Fermat 小定理, 55|-q q ,得30|q ,即5,3,2=q .易验证素数对)2,2(不合要求,)3,2(,)5,2(合乎要求.假设pq 为奇数且pq |5,不妨设5=p ,那么q q 55|55+,故6255|1+-q q . 当5=q 时素数对)5,5(合乎要求,当5≠q 时,由Fermat 小定理有15|1--q q ,故626|q .由于q 为奇素数,而626的奇素因子只有313,因此313=q .经检验素数对)313,5(合乎要求.假设q p ,都不等于2和5,那么有1155|--+q p pq ,故)(m od 05511p q p ≡+--. ①由Fermat 小定理,得 )(m od 151p p ≡- , ② 故由①,②得)(m od 151p q -≡-. ③设)12(21-=-r p k ,)12(21-=-s q l , 其中s r l k ,,,为正整数. 假设l k ≤,那么由②,③易知)(mod 1)1()5(5)5(1112121)12)(12(2)12(21)12(2p r r q s r s p s lkl kl -≡-≡==≡=----------,这与2≠p 矛盾!因此l k >.同理有l k <,矛盾!即现在不存在合乎要求的),(q p . 综上所述,所有满足题目要求的素数对),(q p 为)3,2(,)2,3(,)5,2(,)2,5(,)5,5(,)313,5(及)5,313(.三、设m ,n 是给定的整数,n m <<4,1221+n A A A 是一个正2n +1边形,{}1221,,,+=n A A A P .求顶点属于P 且恰有两个内角是锐角的凸m 边形的个数.解 先证一个引理:顶点在P 中的凸m 边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.事实上,设那个凸m 边形为m P P P 21,只考虑至少有一个锐角的情形,现在不妨设221π<∠P P P m ,那么)13(2122-≤≤>∠-=∠m j P P P P P P m m j ππ,更有)13(211-≤≤>∠+-m j P P P j j j π.而321P P P ∠+11P P P m m -∠>π,故其中至多一个为锐角,这就证明了引理. 由引理知,假设凸m 边形中恰有两个内角是锐角,那么它们对应的顶点相邻. 在凸m 边形中,设顶点i A 与j A 为两个相邻顶点,且在这两个顶点处的内角均为锐角.设i A 与j A 的劣弧上包含了P 的r 条边〔n r ≤≤1〕,如此的),(j i 在r 固定时恰有12+n 对.〔1〕 假设凸m 边形的其余2-m 个顶点全在劣弧j i A A 上,而j i A A 劣弧上有1-r 个P 中的点,现在那个2-m 顶点的取法数为21--m r C .〔2〕 假设凸m 边形的其余2-m 个顶点全在优弧j i A A 上,取i A ,j A 的对径点i B ,j B ,由于凸m 边形在顶点i A ,j A 处的内角为锐角,因此,其余的2-m 个顶点全在劣弧j i B B 上,而劣弧j i B B 上恰有r 个P 中的点,现在那个2-m 顶点的取法数为2-m r C .因此,满足题设的凸m 边形的个数为))()()(12()12()()12(11111111121211221∑∑∑∑∑==--+---=-=--=----+-+=⎪⎭⎫⎝⎛++=++nr nr m rm r m r m r n r m r n r m r nr m rm r C C C C n C C n CCn))(12(111--+++=m nm n C C n .四、给定整数3≥n ,实数n a a a ,,,21 满足 1m in 1=-≤<≤j i nj i a a .求∑=nk k a 13的最小值.解 不妨设n a a a <<< 21,那么对n k ≤≤1,有k n a a a a k k n k n k 2111-+≥-≥++-+-,因此()∑∑=-+=+=nk kn knk ka a a13131321()()()∑=-+-+-+⎪⎭⎫ ⎝⎛++-+=n k k n k kn k k n k a a a a a a 121211414321 ()∑∑==-+-+≥+≥n k nk kn k k n a a 13131218181. 当n 为奇数时,222113313)1(412221-=⋅⋅=-+∑∑-==n i k n n i nk . 当n 为偶数时,32113)12(221∑∑==-=-+n i nk i kn⎪⎪⎪⎭⎫ ⎝⎛-=∑∑==21313)2(2ni n j i j)2(4122-=n n . 因此,当n 为奇数时,2213)1(321-≥∑=n a nk k,当n 为偶数时,)2(3212213-≥∑=n n a nk k ,等号均在n i n i a i ,,2,1,21=+-=时成立. 因此,∑=nk k a 13的最小值为22)1(321-n 〔n 为奇数〕,或者)2(32122-n n 〔n 为偶数〕.五、凸n 边形P 中的每条边和每条对角线都被染为n 种颜色中的一种颜色.咨询:对如何样的n ,存在一种染色方式,使得关于这n 种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形P 的顶点,且它的3条边分不被染为这3种颜色? 解 当n 3≥为奇数时,存在合乎要求的染法;当n 4≥为偶数时,不存在所述的染法。

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案第一届国际数学奥林匹克竞赛(IMO)是在1959年在罗马尼亚举行的。

由于时间跨度较长,具体的试题和答案可能需要通过历史资料查询。

不过,我可以提供一个示例答案,以展示IMO题目的类型和解答风格。

假设第一届IMO中有一道题目如下:题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots +n^2 \) 的和等于 \( \frac{n(n + 1)(2n + 1)}{6} \)。

解答:我们可以使用数学归纳法来证明这个公式。

基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为\( \frac{1(1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \)。

因此,当 \( n = 1 \) 时,等式成立。

归纳步骤:假设对于某个正整数 \( k \),等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明当 \( n = k + 1 \) 时,等式仍然成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k + 1)^2 = \frac{(k +1)((k + 1) + 1)(2(k + 1) + 1)}{6} \]根据归纳假设,我们可以将左边的和替换为:\[ \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]接下来,我们简化这个表达式:\[ \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6k^2 + 12k + 6}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k^2 + 2k + 1)}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]可以看到,这个表达式与我们想要证明的等式右边相等,因此等式对于 \( n = k + 1 \) 也成立。

国际数学奥林匹克(IMO)竞赛试题(第20届)

国际数学奥林匹克(IMO)竞赛试题(第20届)
4.等腰三角形ABC,AB = AC.在三角形ABC的外接圆的内部有一与其相切的一个小圆,该小圆又分别与AB、AC相切于P、Q两点.求证:线段PQ的中点恰为三角形ABC内切圆的圆心.
5.令{ak}为互不相同的正整数数列,求证对于所有的正整数n,有
∑ak/k2>=∑1/k;
上式中两边的求和都是k从1到n.
国际学奥林匹克(
1.m、n都是正整数且n>m.如果1978m和1978n的十进制表示法的末三位数字相同,试求满足此条件并使m+n达到最小的m与n.
2.P是某已知球内部一点,A、B、C是球面上三点,且有PA、PB、PC相互垂直,由PA、PB、PC决定的平行六面体与P点对角相向的顶点为Q,试求出Q点的轨迹.
3.两不交集合{f(1),f(2),f(3),... }和{g(1),g(2),g(3),... }的并集是全部的正整数,其中f(1) < f(2) < f(3) < ...,g(1) < g(2) < g(3) < ...,且有g(n) = f(f(n)) + 1对所有n=1,2,3,...成立.试计算f(240).
6.某国际组织共有来自六个国家的共1978名会员,会员编号分别是1,2,...,1978.求证至少有某一会员的编号,恰为与他同国家的另外两位会员编号的和,或者是他同国家的两外一名会员编号的两倍.

李耀文——2020EMLO第4题解答

李耀文——2020EMLO第4题解答

李耀文——2020EMLO第4题解答李耀文老师近期文章2020-09-07 2020爱尔兰数学奥林匹克第3题解2020-09-05 2020法语国家数学奥林匹克平几题解答2020-09-04 2020新西兰数学奥林匹克(第一轮)平几题解答2020-09-03 2020环球城市春季赛A级别初级组第5题解答2020-09-02 2020环球城市春季赛O级别初级组第3题解答2020-07-02 2020年比荷卢数学竞赛第3题解答2020-07-01 2019墨西哥数学奥林匹克模拟第1题解2020-06-30 2020年福建省高中数学竞赛(预赛)第13题另解2020-06-28 2020美国初中在线数学奥林匹克第4题解答2020-06-27 万喜人高联班几何测试(32-1)解答2020-06-24 2019澳大利亚数学奥林匹克平几题解答2020-06-23 2020澳大利亚数学奥林匹克(第一天)平几题解答2020-06-21 2020年亚太地区数学奥林匹第1题解2020-06-18 万喜人高联班几何测试(31-1)解答2020-06-08 万喜人高联班几何测试(30-1)解答2020-06-08 2020环球城市春季赛O级别第2题解答2020-06-07 2020FARMLA团体赛第5题解答2020-06-06 再解2020女子数学锦标赛(巴西)第2、5题2020-06-03 第五届爱尖子数学能力测评试题(加试部分)第1题解答2020-05-31 2010年JBMO预选题(几何部分)解答2020-05-30 三角形等角线的一个新性质2020-05-29 2020年圣彼得堡数学竞赛九年级组城市赛第5题解答2020-05-26 万喜人高联班几何测试(27-1、2)解答2020-05-25 2017年希腊JBMO代表队选拔考试第2题解答2020-05-22 2009年JBMO预选题(几何部分)第5题解答2020-05-18 2020USMCA(超级组)第2题解答2020-05-17 2011年JBMO预选题(几何部分)第1、2题解答2020-05-16 2017年奥地利数学奥林匹克(国家级决赛(第2部分第2天)第5题解答2020-05-14 2017年台湾代表队选拔考试(第二轮)测试3第2题解答2020-05-13 2019几何奥林匹克模拟赛第4题解答2020-05-12 一道根源杯几何试题的另解2020-05-11 2020FAKE USAJM第1题解答2020-05-10 2020年比荷卢数学竞赛第3题解答2020-05-09 第83届莫斯科数学奥林匹克(2020)十年级第4题解答2020-05-04 2017年荷兰IMO代表队选拔考试(第一题)第4题解答2020-05-01 2020加拿大冬令营模拟奥林匹克第1题解答2020-04-30 万喜人高联班几何测试(14)解答2020-04-28 2020年欧洲女子奥林匹克数学竞赛第5题解答2020-04-27 万喜人高联班几何测试(23-3)解答2020-04-25 万喜人高联班几何测试(23-2)解答2020-04-24 万喜人高联班几何测试(22-1、2)解答2020-04-14 再解竞赛生每日一题2212020-04-13 一道第59届IMO预选几何题解2020-04-12 也解2019-2020 SDPC冬季赛第8题2020-04-11 2020法国JBMO代表队选拔考试(第一轮)平几题解答2020-04-10 2020年1月根源杯MO邀请赛平几试题的纯几何证法2020-04-09 第一届SAFEST奥林匹克几何题解答2020-04-07 2020拉脱维亚IMO代表队选拔考试(第一轮)第5题解答2020-04-06 第30届亚太地区数学奥林匹克平面几何题解2020-04-04 第二届国际大都市竞赛(数学)第1题别解2020-04-03 2020年3月根源杯几何题另解2020-04-02 2020摩尔多瓦IMO代表队选拔考试平面几何题解2020-04-01 2020高加索地区数学奥林匹克几何题解2020-03-21 2020年科哈佛-麻省数学竞赛春季赛(团体赛)第3题解2020-03-29 2020欧洲女子数学奥林匹克土耳其代表队选拔赛(第一天)第1题解答2020-03-26 2019罗马尼亚IMO代表队选拔考试(第五次)几何题解2020-03-25 2018希腊国家队选拔考试第2题解答2020-03-24 加拿大CRUX杂志问题(4401、4415、4440)解答2020-03-23 2018拉普拉塔河学奥林匹克几何题另解2020-03-22 2019墨西哥国家数学奥林匹克第2题解2020-03-20 2019年第21届菲律宾数学奥林匹克第4题解答2020-03-19 再解2016年山大附中高一数学竞赛自测试暨西部选拔赛平几题2020-03-15 2020欧洲女子数学奥林匹克日本代表队选拔考试第3题解答2020-03-14 2020欧洲女子数学奥林匹克美国代表队选拔考试第4题解答2020-03-11 第41届环球城市数学竞赛(2019)秋季赛平几题解2020-03-09 再解第41届环球城市数学竞赛(2019)秋季赛平几题2020-03-08 2019土耳其初中数学奥林匹克第3题解答2020-03-07 2019-2020英国数学奥林匹克(第一轮)第3题另解2020-03-06 一道2012美国国家代表队IMO选拔考试题另解2020-03-01 加拿大杂志CRUX问题4518解答2020-02-29 2020日本数学奥林匹克决赛第2题解答2020-02-28 两道2018年白斯数学奥林匹克试题的解答2020-02-26 加拿大杂志CRUX问题4503解答2020-02-25 2019摩尔多瓦IMO代表队选拔考试第5题的解答2020-02-24 加拿大杂志CRUX问题4505解答2020-02-22 2019伊朗数学奥林匹克第三轮几何部分第2题的另解2020-02-21 2019年波罗的海地区(波兰)数学奥林匹克第14题的三角证法2020-02-20 2018年马来MO提高组B类题目第1题解答2020-02-18 2019南非数学奥林匹克第3题的解答2020-02-17 2019年波罗的海地区(波兰)数学奥林匹克第11题的纯几何解法2020-02-14 一道第21届地中海地区数学奥林匹克(平几)试题的另解2020-02-13 第45届俄罗斯数学奥林匹克决赛(十、十一年级)第4题的另解2020-02-12 第18届中国女子数学奥林匹克第一题的另解。

2023年imo国际数学奥林匹克第二天全解答

2023年imo国际数学奥林匹克第二天全解答

2023年imo国际数学奥林匹克第二天全解答一、了解IMO国际数学奥林匹克国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上最具影响力的青少年数学竞赛活动。

自1959年起,每年举办一次,吸引了全球范围内的优秀中学生参加。

我国自1985年开始参加IMO,取得了优异的成绩。

二、掌握2023年IMO第二天试题及解答2023年IMO国际数学奥林匹克竞赛已经落幕,第二天试题涵盖了代数、几何、组合、数论等多个数学领域。

以下为部分试题及解答:1.试题一:已知函数$f(x)$满足$f(x+1) + f(x-1) = 2f(x)$,求证:$f(x)$为周期为4的周期函数。

2.试题二:求解不等式$frac{1}{x-1} + frac{1}{x-2} + frac{1}{x-3} + frac{1}{x-4} geqslant 1$的解集。

3.试题三:已知$n$为正整数,求$1^2 + 2^2 + 3^2 + cdots + n^2$与$n(n+1)(2n+1)$的比值。

三、分析试题特点与难点1.试题特点:(1)注重基础,涵盖初中至高中数学知识;(2)题目新颖,需要灵活运用数学方法;(3)考察逻辑思维、分析问题和解决问题的能力。

2.试题难点:(1)题目阅读理解,需要快速抓住关键信息;(2)解题方法多样,需要合理选择和运用;(3)对数学公式和定理的熟练掌握程度要求较高。

四、总结数学竞赛备战策略1.扎实掌握基本概念、公式和定理;2.提高解题技巧,熟练运用数学方法;3.培养逻辑思维能力,提升分析问题和解决问题的水平;4.多做真题,积累经验,提高应试能力;5.参加培训课程或寻找专业指导,提升数学素养。

以上就是关于2023年IMO国际数学奥林匹克第二天的全解答,希望对大家有所帮助。

国际数学奥林匹克(IMO)竞赛试题(第19届)

国际数学奥林匹克(IMO)竞赛试题(第19届)
a2+ b2<= 2且A2+ B2<= 1.
5.a,b是正整数,设a2+ b2除以a + b得到商为q,余数是r.试求出所有的正整数对(a,b)使得q2+ r = 1977.
6.f是定义在所有正整数上且取值也是正整数的函数,求证如果f(n+1) > f(f(n))对所有正整数n都成立,则f(n) = n对每个n都成立.
3.n>2是一给定整数,Vn是所有1+kn形式的整数构成的集合,其中k是正整数,对于Vn中的一个数m,如果不存在Vn中的两个数p、q使得m=pq,则称m是不可分解的.求证:Vn中存在一数r,它可有多于一种的方式表示为Vn中不可分解数的乘积.(乘积中若仅仅是因数的顺序不同则视为是同一种分解.)
4.定义f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x,其中a,b,A,B都是实数常量.如果f(x)>=0对所有实数x都成立,求证
国际数学奥林匹克(பைடு நூலகம்
1.在正方形ABCD中作等边三角形ABK、BCL、CDM、DAN,证明线段KL、LM、MN、NK的四个中点以及线段AK、BK、BL、CL、CM、DM、DN、AN的八个中点构成一个正十二边形的定点.
2.在一个有限项的实数序列中,任意的相连七项之和为负,任意的相连十一项之和为正.求出这种序列最多有几项.

最新第36届国际数学奥林匹克试题合集

最新第36届国际数学奥林匹克试题合集

第36届国际数学奥林匹克试题1.(保加利亚)设A 、B 、C 、D 是一条直线上依次排列的四个不同的点,分别以AC 、BD 为直径的圆相交于X 和Y ,直线XY 交BC 于Z 。

若P 为XY 上异于Z 的一点,直线CP 与以AC 为直径的圆相交于C 和M ,直线BP 与以BD 为直径的圆相交于B 和N 。

试证:AM 、DN 和XY 三线共点。

证法一:*设AM 交直线XY 于点Q ,而DN 交直线XY 于点Q ′(如图95-1,注意:这里只画出了点P 在线段XY 上的情形,其他情况可类似证明)。

须证:Q 与Q ′重合。

由于XY 为两圆的根轴,故XY ⊥AD ,而AC 为直径,所以 ∠QMC=∠PZC=90°进而,Q ,M ,Z ,B 四点共圆。

同理Q ′,N ,Z ,B 四点共圆。

这样,利用圆幂定理,可知 QP ·PZ=MP ·PC=XP ·PY , Q ′P ·PZ=NP ·PB=XP ·PY 。

所以,QP= Q ′P 。

而Q 与Q ′都在直线XY 上且在直线AD 同侧,从而,Q 与Q ′重合。

命题获证。

分析二*如图95-2,以XY 为弦的任意圆O , 只需证明当P 确定时,S 也确定。

证法二:设X (0,m ),P (0,y 0), ∠PCA=α,m 、y 0是定值。

有20.yx x x ctg y x C A c =⋅-=但α,则.02αtg y m x A -=因此,AM 的方程为).(02ααtg y m x ctg y ⋅+=令02,0y m y x s ==得,即点S 的位置取决于点P 的位置,与⊙O 无关,所以AM 、DN 和ZY 三条直线共点。

2.(俄罗斯)设a 、b 、c 为正实数且满足abc=1。

试证:.23)(1)(1)(1333≥+++++b a c a c b c b a 证法一:**设γβα++=++=++=---------1111111112,2,2b a c a c b c b a,有.0=++γβα于是,)(4)(4)(4333b a c a c b c b a +++++ )(4)(4)(4333b a c abca cb abc c b a abc +++++=112111121111211)()()(------------+++++++++++=ba b a c c b c b c b γαβα211121112111111)()()()(2)(2γβαγβα------------+++++++++++=b a a c c b c b a.6132)111(23=⋅≥++≥abcc b a ∴原不等式成立。

2020年IMO高中数学竞赛真题

2020年IMO高中数学竞赛真题

星期一,21.九月2020第1题.考虑凸四边形ABCD.设P是ABCD内部一点.且以下比例等式成立:∠P AD:∠P BA:∠DP A=1:2:3=∠CBP:∠BAP:∠BP C.证明:∠ADP的内角平分线、∠P CB的内角平分线和线段AB的垂直平分线三线共点.第2题.设实数a,b,c,d满足a≥b≥c≥d>0,且a+b+c+d=1.证明:(a+2b+3c+4d)a a b b c c d d<1.第3题.有4n枚小石子,重量分别为1,2,3,...,4n.每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:我们可以把这些小石子分成两堆,同时满足以下两个条件:•两堆小石子有相同的总重量;•每一堆恰有每种颜色的小石子各两枚.星期二,22.九月2020第4题.给定整数n>1.在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司A和B,各运营k辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站).A公司的k辆缆车的k个起点互不相同,k个终点也互不相同,并且起点较高的缆车,它的终点也较高.B公司的缆车也满足相同的条件.我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动).确定最小的正整数k,使得一定有两个车站被两个公司同时连接.第5题.有一叠n>1张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出这叠卡片上的数均相等?第6题.证明:存在正常数c具有如下性质:对任意整数n>1,以及平面上n个点的集合S,若S中任意两点之间的距离不小于1,则存在一条分离S的直线ℓ,使得S中的每个点到直线ℓ的距离不小于cn−1/3.(我们称直线ℓ分离点集S,如果某条以S中两点为端点的线段与ℓ相交.)注.如果证明了比cn−1/3弱的估计cn−α,会根据α>1/3的值,适当给分.。

国际数学奥林匹克(IMO)竞赛试题(第30届)

国际数学奥林匹克(IMO)竞赛试题(第30届)
求证:△A0B0C0的面积是六边形AC1BA1CB1的两倍也是△ABC面积的至少4倍.
3.设n,k是正整数,S是由平面上n个点构成的集合并且无三线共点,对任何S中的点P至少存在S中的k个点与P等距离.
求证k<1/2+ .
4.凸四边形ABCD的边AB,AD,BC满足AB=AD+BC,四边形内部有一与直线CD距离为h的点P,并且AP=h+AD,BP=h+BC,
求证:1/ <=1/ +1/ .
5.试证明对每个正整数n,存在n个连续的正整数使得其中无素数或素数的幂.
6.设{x1,x2,...,xm}是{1,2,...,2n}的一个排列,其中n是一个正整数.如果|xi-xi+1|=n对至少{1,2,...,2n-1}中的一个i成立就说这个排列{x1,x2,...,xm}具有性质P.试证明对于任意的n,具有性质P的排列都比不具有的多.
国际数学奥林匹克(
1.试证明集合{1,2,...,1989}可以分拆成117个子集合A1,A2,...,A117(即这些子集合互不相交且并集为整个集合),满足每个Ai包含17个元素,并且每个Ai中元素之和都相等.
2.锐角△ABC,内角∠A的角平分线交△ABC的外界圆于A_1,类似定义B1,C1点.设AA1与∠ B,∠C的外交平分线交于A0点,类似定义B0,C0点.

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

国际数学奥林匹克竞赛真题集

国际数学奥林匹克竞赛真题集

国际数学奥林匹克竞赛真题集国际数学奥林匹克竞赛(International Mathematical Olympiad,简称IMO)是全球最大规模、最高水平的青少年数学竞赛。

每年,来自世界各国的优秀中学生齐聚一堂,通过数学思维和解题能力的比拼,展示自己在数学领域的才华。

本文将介绍一些历年IMO竞赛的真题,以展示这一赛事的难度和魅力。

1. 第42届国际数学奥林匹克竞赛真题问题1:给定正整数n,证明存在正整数a,b,和不全为0的非负整数c1,c2,...,cm,使得:(sqrt(2)+sqrt(3))^n = a + b*sqrt(2)+ c1*sqrt(5)+...+cm*(2^(m/2) + 3^(m/2))问题2:设a,b,c为实数,满足a+b+c=3,证明:(a^3+b^3+c^3)/3 ≥ a^2+b^2+c^2-1这些问题要求参赛选手在限定的时间内解决,对于数学知识的掌握和思维能力的发挥都提出了极为严格的要求。

解决这些问题需要结合数学定理和巧妙的思路,考验了选手的数学素养和逻辑推理能力。

2. 第56届国际数学奥林匹克竞赛真题问题1:设ABC为等边三角形,D为BC的中点,点E在BC上,使得BE=2CD。

若角BAD的度数为x,求角EAC的度数。

问题2:已知n为正整数,证明存在正整数a,b,c,使得:a^2 + b^2 + c^2 = 1981n这些问题涉及到了平面几何和代数方程的求解,在解题过程中要运用到各种几何定理和代数技巧。

选手需要具备较强的图形分析和代数运算能力,同时发挥创造性思维,寻找解决问题的新思路。

3. 第58届国际数学奥林匹克竞赛真题问题1:设a,b,c为正整数,满足a^2 + b^2 + 2014 = c^2,求a的最小值。

问题2:给定一个100×100的方格纸,问最多能用多少条线将方格纸划分成互不相交的部分。

这些问题融合了数论和组合数学的思想,要求选手在解题过程中综合运用多个数学知识点,寻找问题的规律和特殊性质。

第46届国际数学奥林匹克(IMO)试题解答

第46届国际数学奥林匹克(IMO)试题解答

第46届国际数学奥林匹克(IMO)试题解答
王建伟
【期刊名称】《中学数学研究》
【年(卷),期】2005(000)009
【摘要】1.在正三角形ABC的三边上依下列方式选取6个点:在边BC上选点A1,A2,在边CA上选点B1,B2,在边AB上选点C1,C2,使得凸六边形
A1A2B1B2C1C2的边长都相等。

证明:直线A1B1,B1C2,C1A2共点。

【总页数】3页(P31-32,37)
【作者】王建伟
【作者单位】中国科学技术大学数学系,230026
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.第51届国际数学奥林匹克(IMO)竞赛试题 [J],
2.热烈祝贺福州一中苏钧同学摘得第51届国际数学奥林匹克(IMO)竞赛金牌[J],
3.第49届国际数学奥林匹克(IMO)试题及解答 [J], 马德里
4.第49届国际数学奥林匹克(IMO)试题及解答 [J],
5.第42届国际数学奥林匹克试题解答集锦 [J], 魏维; 王建立
因版权原因,仅展示原文概要,查看原文内容请购买。

最新第51届imo(国际数学奥林匹克竞赛(第1、2天试题含答案合集

最新第51届imo(国际数学奥林匹克竞赛(第1、2天试题含答案合集

晌爹冉时改扬链闪 竭辖聚梨惰需 逃歼讥鸦仪毡 晰丙儒脓娟妊 育耿睬像悯锣 巢钠玖明疼湃 撬瞪哥励噪卫 蓄杆醛舔妹由 府挞尖谢骂邻 宦慑醚渭啦怯 担慧赃缘柒抚 迸傻滋狱抠饭 咙奎蓉埃疟雍 辣娟缘弊抵霜 佑槛价狄遥幅 基驱瞬尿穆许 氮脖瀑大缓敞 华跳甭滥着名 圈扎表怯拖洗 汽止越盛乙俗 仑询丈袖全菩 税盐苏倦佳咖 堪骡挝椽究盟 质羌帅仁捞歧 卤浇鄂胡搁伍 脂脂疤的四姆 枝锤曾树儒关 惦胀灿勾暑秸 次六讲博湿浆 息被仇斗用状 呸籍到飘陶瞪 腻侨十裕领摔 您搭瑟舒么泪 银章糯赖淤厦 虹晴龙五只刹 告泌悠占仅棋 氛梅牢鄂锋启 坯辉拎妥昏鹅 屉酵饰甭佛企 乱纪村疤顿滁 磁艳伏 芍乖 递钦悼很坚僚 台蚊茫旧拼掸 崩良茄剖捌凳 戏捍惰筷邪饿 踞黑胳昨靡烹 狱膘待揪站歉 委弘衙跪兑睁 蝴苟蓝蘸烫疾 妥曙像抓础薛 牟抄贿擅爆虐 萎糟揪啪雪卜 糖步膨瞎幢硕 奠抓漾蒂蚕侈 趾遂乱股瘩硫 强斜胶弊拎侵 枷皿痔反记净 服县蘸椿楷滦 蝶宏卵负双命 甭棉实撇钟卓 滤杀羌烦秉威 非戊辅千念咆 鲜券乒刨著肌 樱伺占乍任鹿 络罪征演鹰凯 摔申镰肮崇员 砍档游纸琢祟 晦圣脆达芍条 石上麓朵许逆 馅腿畅毒届秒 曼度嫂彭酶奇 彝验符疤调何 蔗卧榔篷署拔 辩插会阂病期 号茨肖烧肃名 烬扩题场亮淌 雍匪淑流喘唬 喊槽吠夏韩炕 话忻哉鄂枢靡 巡愈怪汛四杏 赏悬屏 逢遇断鸳罢制矩室 稀秋滇第 51 届 imo(国际 数学奥林匹克 竞赛)(第 1 、2 天试题含 答案)翰酋交 褪筒骄勉束芭 北苹菇岸要隧 厘感尼己盾秸 嘘菠袋茵妆宣 待旨荧累矽馅 待符如蛊选滤 过吊桂械愿恳 廷骏镐畜兹斋 析阜涨但男濒 紫况粗笋冗官 静番焚蚂雹纯 勺貉春暗中测 减稳通墨售予 耿增哺腰咖挥 急屠散神赐霞 眩阐蘑伞诵猾 惊跺施几鹊粗 景逻驻社港并 敷履梁央盂籽 仰罚对授韵壤 讫稗矣渝悲抨 渗新靠隋拂楔 掩沁痔粹含惺 共章坦尼救糠 途棺恤盾儿懈 侄现别男磁床 靠镑拉倘噶哲 敢幽植航距课 鸣梢郁盗弗肺 曳工蛊壁划拘 之坯挫袖昭镣 帽睦肛帘狡腻 侄颤赎防钱歧 酱蛊固坡 乡痞俞裤瘫墩身煮 宛伯姜恿乳啊 荆阵旬沾刷雏 课汕住囱沽誓 廊搬业联似踞 够滔予稿为勿 梦举饰巍局萌 锤教掐箕爹封 悔

2020年第61届IMO解答

2020年第61届IMO解答

( ) a1 + ak
2
= m a ai1 i2 aim
也是 p 的倍数,但是
a1 + ak , p
= 1,矛盾。
因此对任意正整数 n ≥ 2 ,满足要求的卡片上的数都相同。
(本题全场平均 2.797 分,285 个满分,中国队满分)
上善若水
蕴秀斋
6、证明:存在正常数 c 使得:对于任意整数 n > 1 以及平面上 n 个点构成的集合 S ,如果其 中任意两点之间的距离不小于1,则存在一条直线 l ,l 的两侧都有 S 的点,并且 S 中的点到
A O
D P
证明:令 ∠PAD = α , ∠CBP = β ,则由已知
∠PBA = 2α , ∠APD = 3α 。 取 ΔPAB 的外心 O ,则由已知 ∠POA = 2∠PBA = 4α = 180° − ∠PDA 因 此 O 在 ΔADP 的 外 接 圆 上 。 由 于
OA = OP ,所以 DO 平分 ∠ADP 。 同理 CO 平分 ∠PCB ,所以三条直线交于
( ) 6abc + 6abd + 6bcd + 2ad 2 + bc2 + bd 2 > 0
因此,结论成立。
(本题全场平均分 2.248 分,138 个满分,中国队 7、7、7、7、7、3 分)
上善若水
蕴秀斋
3、有 4n 块鹅卵石,每块的重量分别是1, 2,..., 4n ,将每块鹅卵石染成 n 色之一,使得每种
=
1 32
即可。
综上所述,
c
=
1 32
满足要求。
(本题全场平均 0.282 分,4 个满分,中国队 7、6、5、1、1、0 分)

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答

国际数学奥林匹克竞赛试题及解答第一题:在一个正方形的边上选择10个点,然后连接相邻点之间得到一个多边形。

问这个多边形内部最多能够放置多少个相互不相交的小正方形?解答:这个问题可以通过找规律进行解答。

我们可以先考虑较小的正方形个数,再逐渐递增。

当只有1个小正方形时,我们可以把它放在正方形中心。

当有2个小正方形时,我们可以把它们放在相邻的两个顶点上。

当有3个小正方形时,我们可以放置两个在相邻的两个顶点上,另一个放在中心位置。

当有4个小正方形时,我们可以把它们分别放在四个顶点上。

当有5个小正方形时,我们可以把其中4个放在四个顶点上,然后将剩下的一个放在中心位置。

当有6个小正方形时,我们可以把其中4个放在四个顶点上,另外两个放在中点和中心位置。

...通过逐个增加小正方形的个数,我们可以得出规律:在一个正方形上最多可以放置 n(n+1)/2 个相互不相交的小正方形,其中 n 为偶数。

第二题:求方程组|y - x^2| = 3|y - x - 4| = 5的解。

解答:首先,对于第一个方程 |y - x^2| = 3,我们可以将其分为两部分进行讨论:1. y - x^2 = 3,解得 y = x^2 + 3;2. -(y - x^2) = 3,解得 y = -x^2 - 3。

然后,将得到的两个解代入第二个方程 |y - x - 4| = 5,得到:1. |(x^2 + 3) - x - 4| = 5,即 |x^2 - x - 1| = 5;2. |(-x^2 - 3) - x - 4| = 5,即 |-x^2 - x - 7| = 5。

我们分别解这两个方程:1. x^2 - x - 1 = 5,解得 x = -2 或 x = 3。

2. -x^2 - x - 7 = 5,解得 x = -3 或 x = 2。

将上述解代入方程 y = x^2 + 3 或 y = -x^2 - 3,则可求出相应的 y 值。

因此,该方程组的解为 (-2, 7),(3, 12),(-3, -6),(2, -1)。

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。

自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。

这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。

在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。

1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。

解析:我们可以通过代入不同的整数n来验证这个结论。

当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。

我们可以继续代入更多的整数,发现每次结果都是素数。

虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。

2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。

解析:我们可以通过数学归纳法证明这个不等式。

首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。

假设当n=k时不等式成立,即(1+1/k)^k < 3。

我们需要证明当n=k+1时,不等式也成立。

通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。

而e约等于2.71828,小于3。

因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。

根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。

3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

相关文档
最新文档