勾股定理1

合集下载

勾股定理的内容

勾股定理的内容

勾股定理的内容勾股定理,又称勾股定理,是古代数学中的一个重要定理。

在直角三角形中,直角三角形的两条直角边的平方和等于斜边的平方。

其数学表达形式为:a^2 + b^2 = c^2其中a、b、c分别代表直角三角形的两条直角边和斜边。

起源与发展勾股定理虽然现在被称为勾股定理,但最早是在《周髀算经》中发现的,成为世界上最早的几何著作之一。

据传,勾股定理是周公提出的,故得名“周公定理”。

后来被《算经》作者张丘建列入《增衍之术》中,并首次用文字表达了这一定理。

在中国古代,勾股定理的应用非常广泛,不仅用于地测和农业,还被运用在建筑和军事领域。

随着数学的发展,勾股定理也在世界各地广泛传播,并成为数学中的重要定理之一。

数学证明勾股定理的证明有多种方法,其中最著名的是毕达哥拉斯的证明。

毕达哥拉斯定理利用几何形状和平行移动来证明直角三角形的两个边的平方和等于斜边的平方。

这一证明方法被后人发扬光大,成为数学学科中的一个经典证明。

应用场景勾股定理在现代生活中的应用也非常广泛。

例如,在建筑领域中,利用勾股定理可以计算建筑物的结构稳定性;在工程设计中,可以测量距离和角度;在电子领域中,可以应用于信号传输和数据处理等方面。

总的来说,勾股定理是数学中的一个重要定理,不仅对几何学有重要意义,还在现代科学技术中有着广泛的应用。

结语通过对勾股定理的介绍,我们可以看到它在数学史上的重要地位和广泛应用。

了解勾股定理不仅有助于我们理解数学知识的深层含义,还可以帮助我们应用数学知识解决现实生活中的问题。

在学习数学的过程中,我们应该对勾股定理有更多的了解和探索,进一步探索数学世界的奥秘。

《勾股定理》PPT(第1课时)

《勾股定理》PPT(第1课时)
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
ac
b
课程讲授
1 勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c b a
b-a
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4S三角形+S小正方形,
课程讲授 2 勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及 正多边形、圆都具有相同的结论:两直角边上图 形面积的和等于斜边上图形的面积.本例考查了 勾股定理及半圆面积的求法,解答此类题目的关 键是仔细观察所给图形,面积与边长、直径有平 方关系,就很容易联想到勾股定理.
课程讲授Biblioteka 2 勾股定理与图形面积定有a2+b2=c2.
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
课程讲授
1 勾股定理
几何语言: ∵在Rt△ABC中 ,∠C=90°,
B ac

∴a2+b2=c2(勾股定理).
C
勾股定理揭示了直角三角形三边之间的关系.
bA
课程讲授 1 勾股定理
例 在Rt△ABC中,∠C=90°,AB=10 cm, BC=8 cm,求AC的长.
(1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米; (3)正方形R的面积是 2 平方厘米.
AR P
CQ B
上面三个正方形的面积之间有什么关系? SP+SQ=SR
(图中每一格代表一平方厘米)
课程讲授 1 勾股定理
直角三角形ABC三边长度之间存在什么关系吗? SP=AC2 SQ=BC2 SR=AB2 AC2+BC2=AB2

直角三角形-勾股定理1上海学

直角三角形-勾股定理1上海学

第 讲 勾股定理知识点睛1、勾股定理:如果直角三角形的两直角边上分别为a, b ,斜边长为c ,那么222a b c +=。

即直角三角形两直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形。

3、勾股定理的证明方法:法1(赵爽:内弦图):甲的面积=(大正方形面积)-(4个直角三角形面积).法2(赵爽:外弦图)::四个直角三角形的面积和 +小正方形的面积 =大正方形的面积,222()ab a b c +-=,22222ab a ab b c +-+=,∴222a b c +=法3(美国第20任总统伽菲尔德的证法):2111()()2222a b a b ab c ++=⨯+ 梯形面积=三个直角三角形的面积和22()2a b ab c +=+ 22222a ab b ab c ++=+∴222a b c +=法4(毕达哥拉斯的旋转证法):若设AB=a ,BC=b ,DB=c ,则梯形A′B′BC 面积()()()21122S a b a b a b =++=+梯形ABBC , 又"""2111222BCD A B D DBB S S S S ab c ab ∆∆∆=++=++""梯形A B BC ,所以()2211112222a b ab c ab +=++,则22222a b ab c ab ++=+,即222a b c +=。

甲c ccbababa cb acb acb aab ca bcb-ab-acc cc甲丙乙ab cabc法5(新娘图法):用方格来验证勾股定理法6(欧几里得证法):如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为AB=AE,AC=AG,∠CAE=∠BAG,所以△ACE≌△AGB(SAS).而所以 S AEML=b2,同理可证 S BLMD=a2.相加得S ABDE=S AEML+S BLMD=b2+a2,即 c2=a2+b2.法7:如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等:△AFE≌△EHD≌△BKD≌△ACB.设五边形ACKDE的面积为S,一方面S=S ABDE+2S△ABC,另一方面S=S ACGF+S HGKD+2S△ABC,相加得所以 c2=a2+b2.练习:用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27); (2)项名达图(2-28); (3)杨作枚图(图2-29).CBA3、由勾股定理的基本关系式222a b c +=,还可得到一些变形关系式如:22c a b =+,222()()a c b c b c b =-=+-,22a c b =-,222()()b c a c a c a =-=+-,22b c a =-等。

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

第三讲 勾股定理1

第三讲 勾股定理1

第三讲 勾股定理【基础知识】 知识点1:勾股定理 相关知识链接直角三角形的两锐角互余直角三角形中30°的锐角所对的直角边等于斜边的一半 斜边、直角边对应相等的两个直角三角形全等三角形的面积:2高底⨯正方形的面积:边长的平方梯形的面积:2高下底)(上底⨯+知识点一 勾股定理定义: 注:(1)勾股定理应用的前提是这个三角形必须是直角三角形,解题时,只能是在同一直角三角形中,才能利用它求第三边在式子222c b a =+中,a ,b 代表直角三角形的两条直角边长,c 代表斜边长,它们之间的关系不能弄错勾股定理把“形”与“数”有机地结合起来,即把直角三角形这一“形”与三边关系这一“数”结合起来,是数形结合思想方法的典范例1:在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a,b,c (1)已知a=b=6,求c ; (2)已知c=3,b=2,求a ;(3)已知a :b=2:1,c=5,求b. 知识点2:勾股定理的应用(1)已知直角三角形的任意两边求第三边(2)已知直角三角形的任意一边确定另两边的关系 (3)证明包含有平方(算术平方根)关系的几个问题(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题。

例2:如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm ,在无风的天气里,彩旗自然下垂,如图.求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm )知识点3:利用勾股定理作长为n(n为大于1的整数)的线段例3:作长为2,3,5的线段题型一:利用勾股定理求直角三角形的边长1.若直角三角形的两边长分别为3cm,4cm,则第三边长为题型二:勾股定理在轴对称问题中的应用2.牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家,已知A点到河边C的距离为500米,点B到河边的距离为700米,且CD=500米.(1)请在原图上画出牧童回家的最短路线;(2)求出最短路线的长度.题型三:勾股定理在梯子移动问题中的应用3.一架梯子长为5m,斜靠在一面墙上,梯子底端离墙3m.如果梯子的顶端下滑了1m(如图(2)),那么梯子的底端在水平方向上滑动的距离为()题型四:勾股定理与方程(组)的综合应用4.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.题型五勾股定理在航海问题中的应用如图所示,甲船以16 n mile/h的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知它们离开港口1.5h 后分别到达B,A 两点,且知AB=30n mile ,问乙船每小时航行多少海里?题型六 勾股定理在图形折叠和求图形面积问题1、如图所示,把长方形纸条ABCD 沿EF ,GH 同时折叠,B,C 两点恰好落在AD 边的点P 处,若∠FPH=90°,PF=8,PH=8,则长方形ABCD 的边BC 的长为( ) A 、20 B 、22 C 、24 D 、302、如图所示的阴影部分是两个正方形,图中还有一个正方形和两个直角三角形,求两阴影正方形面积的和。

【数学课件】勾股定理(1)

【数学课件】勾股定理(1)

同学们,再见
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间ห้องสมุดไป่ตู้人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

勾股定理基础知识点

勾股定理基础知识点

知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。

八上-第一章勾股定理

八上-第一章勾股定理

第一章勾股定理第1课时认识勾股定理1 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称弦·直角三角形三边之间的关系称为勾股定理。

2 勾股定理是指直角三角形两直角边的平方和等于边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 。

预学感知在Rt△ABC中,∠B=90°,AC=10,AB=6,则则BC的长为。

知识点一勾股定理的认识【例1】在△ABC中,∠ACB=90°,∠A,∠B,∠C的对边分别为a,b,C.当a=9,c=41时,则b= 。

【名师点拔】由于∠ACB=90°,则有a2=c2,因而只需把已知数据代入相应字母,即可求出第三条线段的长。

知识点二勾股定理的简单运用【例2】如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于点D。

求:(1)AB的长;(2)CD的长。

【名师点拔】由于△.ABC为直角三角形,就可先由匀股定理理求出AB,再根据面积求出CD的长。

1.已知直角三角形中两条边长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论;2.在直角三角形中求斜边上的高,一般是借助面积这个中间量,21ab=21ch 。

1.在Rt △ABC 中,两直角边长分别为10和24,则斜边长等于 ( )A.25B.26C.27D.282.在Rt △ABC 中,斜边长BC =3,则AB 2+AC 2= 。

3. 如图,分别以直角三角形的三边为边向外作正方形,则正方形A 的面积是 ,B 的面积是 。

4. 要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为 。

5. 如图,有两棵树,一棵高12m ,另一棵高6m ,两树相距8m ,一只鸟从一棵树的树梢飞到另一棵树梢,则小鸟至少飞行 m 。

6. 某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙同时以20海里/时的速度离开港口向东航行,则它们离开港口2h 后相距 海里。

勾股定理

勾股定理

4. 三角形的三边长为 则这个三角形是( 则这个三角形是( ) A. 等边三角形 B. 钝角三角形 D. 锐角三角形 C. 直角三角形 5.已知一个直角三角形的两边长分别为3和4,则 第三边长是( ) A.5 B.25 C. 7 D.5或 7 =90° =14cm, 6.已知Rt△ABC中,∠C=90°,若a+b=14cm, 已知Rt△ Rt 中 c=10cm,则Rt△ABC的面积是( =10cm, Rt△ 的面积是( ) B. 36cm2 C. 48cm2 D. 60cm2 A. 24cm2 7.直角三角形中一直角边的长为 ,另两边为连续 .直角三角形中一直角边的长为9, 自然数,则直角三角形的周长为( 自然数,则直角三角形的周长为( ) A.121 B.120 C.90 D.不能确 定
A
毕达哥拉斯证法: 毕达哥拉斯证法:
a a c b
1 S大正方形=4× ab+a2+b2 × 2
=2ab+a2+b2
1 S大正方形=4× ab+c2 × 2
b
=2ab+c2 ∵S大正方形=S大正方形 S ∴2ab+a2+b2=2ab+c2 ∴a2+b2=c2
一、相信你一定能选对!(每小题4分,共32分) 相信你一定能选对!(每小题 分 !(每小题 分 1. 三角形的三边长分别为6,8,10,它的最短边上的高 为( ) A. 6 B. 4.5 C. 2.4 D. 8 2 2 2 2 2. 下面几组数:①7,8,9;②12,9,15;③ m + n , m − n , 2 a , a 2 +1 , a 2 + 2 . 2mn(m,n均为正整数,m>n)④ 其中能组成直角三角形的三边长的是( ) A. ①② B. ②③ C. ①③ D. ③④ 三角形的三边为a、 、 , 3. 三角形的三边为 、b、c,由下列条件不能判断 它是直角三角形的是( 它是直角三角形的是( ) A.a:b:c=8∶16∶17 B. a2-b2=c2 . : : ∶ ∶ . C.a2=(b+c)(b-c) D. a:b:c . . : : =13∶5∶12 ∶ ∶

课件八年级数学人教版下册勾股定理1勾股定理课件1

课件八年级数学人教版下册勾股定理1勾股定理课件1

会运用勾股定理求线段长及解决简单的实际问题。
6cm
A 10cm
B3
B1 B
解:由题意知有三种展开 方法,如图.由勾股定理得 AB12 =102 +(6+8)2 =296, AB22= 82 +(10+6)2 =320,
AB32= 62 +(10+8)2 =360, B2 ∴AB1<AB2<AB3.
勾股定理 解决“HL”判定方法
的应用
证全等的正确性问题
用勾股定理解决点的 距离及路径最短问题
检测目标
1.若等腰三角形中相等的两边长为 10cm,第三边长为16 cm,那么第三边上的
目标导学一:勾股定理的简单实际应用
问题 观看下面同一根长竹竿以三种不同的方式进门
这AB一2=过的B程C2中+情飞A机C2飞况过的,距离并是多少结千米合? 曾小贤和胡一菲的做法,对于长竹竿
用勾股定理解决实际问题
进门之类的问题你有什么启发? =62+82=100
因为AC大于木板的宽2. 152+ x2 =172而x2=172-152=289–225=64
蚁找到完成任务的最短路程么? 如图,一根旗杆在离地面9米处折裂,旗杆顶部落在离旗杆底部12米处.
解:台阶的展开图如图:连结AB
这一过程中飞机飞过的距离是多少千米?
1.若等腰三角形中相等的两边长为10cm,第三边长为16 cm,那么第三边上的高为 ( )
根据勾股定理得
B 问题 观看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启
1
AB AC2 BC2 5.
-4 -3 -2 -1-1 O 1 2 3 x

勾股定理知识点总结

勾股定理知识点总结

第18章 勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2。

勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =- ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题5、利用勾股定理作长为的线段作长为、、的线段。

人教版勾股定理第一课时

人教版勾股定理第一课时
12
பைடு நூலகம்
拼图证明
1、拿出准备好的四个全等的直角三角形 (设直角三角形的两条直角边分别为a,b, 斜边c);
2、你能用这四个直角三角形拼成一个正方

吗?拼一拼试试看
3、你拼的正方形中是否含有以斜边c为边长的正 方形?
4、你能否就你拼出的图说明a2+b2=c2?
c a
b
13
拼图证明
如何利用下图证明a2+b2=c2?
赵爽弦图
图1-1
图1-2
古往今来,下至平民百姓,上至帝王总统都愿意探讨、
研究它的证明,新证法不断出现。目前世界上共有500
多种证明“勾股定理”的方法。其中包括大画家达·芬奇
18
和美国总统加菲尔德的证法。
勾股定理运用1
已知S1=1,S2=3,S3=2,S4=4,求S5、S6、S7的值
S2 S1 S5
青 出
青 入
朱朱
朱 出出 方
朱朱入入 青入
以刘徽的“青朱 出入图”为代表, 证明不需用任何 数学符号和文字, 更不需进行运算, 隐含在图中的勾 股定理便清晰地 呈现,整个证明 单靠移动几块图 形而得出,被称 为“无字证明”.
青出
29
证法欣赏3


b
c

a
①②
以刘徽的“青朱 出入图”为代表, 证明不需用任何 数学符号和文字, 更不需进行运算, 隐含在图中的勾 股定理便清晰地 呈现,整个证明 单靠移动几块图 形而得出,被称 为“无字证明”.
长分别为a、b,斜边长为c,那么 a2 + b2 = c2
数学方法:1.观察—探索—猜想—验证—归纳—应用
2.“割补、拼接”法

勾股定理公式表计算大全

勾股定理公式表计算大全

勾股定理公式表计算大全勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

下面总结了勾股定理的公式,供大家参考。

1勾股定理公式1.基本公式在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么勾股定理的公式为a+b=c。

2.完全公式a=m,b=(m/k-k)/2,c=(m/k+k)/2其中m≥3(1)当m确定为任意一个≥3的奇数时,k={1,m的所有小于m的因子}(2)当m确定为任意一个≥4的偶数时,k={m/2的所有小于m的偶数因子}3.常用公式(1)(3,4,5),(6,8,10)……3n,4n,5n(n是正整数)。

(2) (5,12,13),(7,24,25),(9,40,41)……2n+1,2n+2n,2n+2n+1(n是正整数)。

(3)(8,15,17),(12,35,37)……2*(n+1),[2(n+1)]-1,[2(n+1)]+1(n是正整数)。

(4)m-n,2mn,m+n(m、n均是正整数,m>n)。

2勾股数组勾股数组是满足勾股定理a2+b2=c2的正整数组 (a,b,c),其中的a,b,c称为勾股数。

例如 (3,4,5)就是一组勾股数组。

任意一组勾股数 (a,b,c)可以表示为如下形式:a=k (m+n),b=2kmn,c=k(m+n),其中k,m,n均为正整数,且m>n。

3勾股定理的定理用途已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。

利用勾股定理求线段长度这是勾股定理的最基本运用。

勾股定理必背10个公式

勾股定理必背10个公式

勾股定理必背10个公式勾股定理是数学中非常重要的定理,它描述了直角三角形中两条边的关系。

在学习勾股定理时,掌握一些相关的公式可以方便我们求解各种三角形的边长和角度。

以下是十个与勾股定理相关的公式。

1.勾股定理(直角三角形的边长关系):如果一个三角形的两条边的长度分别为a和b,斜边的长度为c,且满足a²+b²=c²,则称这个三角形为直角三角形。

2.边长比例公式:在一个直角三角形中,如果两边的长度分别为a和b,而斜边的长度为c,则有以下比例关系(其中m和n为正整数):a:b=m:na:c=n:mb:c=n:m3.余弦定理:在一个三角形中,如果三边的长度分别为a、b和c,而夹角A对应边a,夹角B对应边b,夹角C对应边c,则有以下关系:a² = b² + c² - 2bc cos Ab² = a² + c² - 2ac cos Bc² = a² + b² - 2ab cos C4.正弦定理:在一个三角形中,如果三边的长度分别为a、b和c,而夹角A对应边a,夹角B对应边b,夹角C对应边c,则有以下关系:sin A/a = sin B/b = sin C/c5.余切定理:在一个三角形中,如果三边的长度分别为a、b和c,而夹角A对应边a,夹角B对应边b,夹角C对应边c,则有以下关系:cot A = (b² + c² - a²)/(4Δ), 其中Δ为三角形的面积6.加法定理:sin(A ± B) = sin A cos B ± cos A sin Bcos(A ± B) = cos A cos B - sin A sin B7.二倍角公式:sin2A = 2sinAcosAcos2A = cos²A - sin²Atan2A = 2tanA/(1-tan²A)8.三倍角公式:sin3A = 3sinA - 4sin³Acos3A = 4cos³A - 3cosAtan3A = (3tanA - tan³A)/(1 - 3tan²A)9.半角公式:sin(A/2) = ±√[(1 - cosA)/2]cos(A/2) = ±√[(1 + cosA)/2]tan(A/2) = sinA/(1 + cosA)10.平滑公式:sin(A + B)sin(A - B) = sin²A - sin²Bcos(A + B)cos(A - B) = cos²A - sin²Btan(A + B)tan(A - B) = (tanA + tanB)/(1 - tanA tanB)这些公式对于求解各种与勾股定理相关的三角形问题非常有用。

勾股定理 1

勾股定理 1

a b c
2 2
2
赵爽弦图证明勾股定理.gsp
总统巧证勾股定理
学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广 泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽 菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是 否定的.事情的经过是这样的: 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步, 欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突 然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争 论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个 小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形 .于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生, 如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到 :“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形 的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平 方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一 时语塞,无法解释了,心理很不是滋味. 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过 反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.
百牛定理
毕达哥拉斯(Pythagoras,前572~前497),西 方理性数学创始人,古希腊数学家,他是公元前五世 纪的人,比商高晚出生五百多年.
“勾股定理”在国外,尤其在西方被称为“毕达哥拉斯定理”或“百牛定理”. 毕达哥拉斯有一次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺 着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言 .毕达哥拉斯却凝视脚下这些排列规则、美丽的方形磁砖,这位善于观察和理解的数 学家不只是欣赏磁砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在 地板上,选了一块磁砖以它的对角线为边画一个正方形,他发现这个正方形面积恰好 等于两块磁砖的面积和.他很好奇,于是再以两块磁砖拼成的矩形之对角线作另一个 正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形 面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等 于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面,就 这样毕达哥拉斯也发现了勾股定理.

三角形 勾股定理

三角形 勾股定理

勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

具体来说,如果直角三角形的两条直角边长度分别为a和b,斜边长度为c,则勾股定理可以表示为:a² + b² = c²。

在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。

而在西方,最早提出并证明此定理的是公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一,也是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

此外,勾股定理在数学、工程和物理等领域有着广泛的应用,例如用于测量、计算和解决与直角三角形有关的各种问题。

以上信息仅供参考,如需了解更多信息,建议查阅相关书籍或咨询数学专业人士。

勾股定理(1)教学课件

勾股定理(1)教学课件
即直角三角形两直角边的平方和等于斜边的平方.

a
弦c
股b
弦图
• 赵爽
• 东汉末至三国时代吴 国人
• 为《周髀算经》作注, 并著有《勾股圆方图 说》。
伽菲尔德证法:
a
bc
c a
b
s梯形=
1 (a+b)(a+b)=
2
1 (a2+2ab+b2)
2
= 1 a2+ab+ 1 b2
2
2
s梯形=2×
1 ab+ 1 c2=ab+ 1 c2
连结AC,在Rt△ABC中,根据勾股定理,
AC 2 AB2 BC2 12 22 5 D C
5 因此,AC=
≈2.236
2m
因为AC_大__于___木板的宽,
AB
所以木板_能___ 从门框内通过.
学以致用
例1 飞机在空中水平飞行,某一时刻刚好飞
到一个男孩头顶上方4000米处,过了20秒,飞
5 .在直角△ ABC中,a=5,c=13,则△ ABC的面积 S=_____________.
6. 在直角△ ABC中, ∠C=90°,c=20,b=15,则 a=__________.
小 结:
1.这节课你学到了什么知识?
勾股定理:如果直角三角形两直角边分别为a, b,斜边为c,那么 a2 + b2 = c2 即直角三角形 两直角边的平方和等于斜边的平方。
2
2
2
∵s梯形=s梯形 ∴ 1 a2+ab+ 1 b2=ab+ 1 c2
2
2
2
∴a2+b2=c2
学以致用 1、已知:a=3,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理-初中数学组卷1一.选择题(共30小题)1.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A、1种B、2种C、3种D、4种2.(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A .4dm B.2dm C.2dm D.4dm3.(2014•龙东地区)一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)()A .10πcm B.10cm C.5πcm D.5cm4.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A、8米B、10米C、12米D、14米5.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A、6 B、8 C、10 D、126.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A .12m B.13m C.16m D.17m7.(2011•金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A .600m B.500m C.400m D.300m8.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A .100 B.180 C.220 D.2609.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A .B.5cm C.D.7cm10.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A .3m B.5m C.7m D.9m11.(2010•达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了()A .7米B.6米C.5米D.4米12.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A .米B.米C.(+1)米D.3米13.(2010•锦州)如图,△ABC为的边长6cm的等边三角形,BC为圆锥的底面直径,P为AC上一点,AP=4cm,一只蚂蚁沿圆锥侧面从点B爬到点P,它需要爬行的最短路程是()A10cm B2cm C2cm D4cm....14.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A .5 B . 25 C .10+5 D. 35 15.(2009•乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()A .B.2C.3D.316.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤1317.(2007•资阳)如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A .6 B.7 C.8 D.918.(2006•湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答()A .一定不会B.可能会C.一定会D.以上答案都不对19.(2006•荆门)园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A、24米2 B、36米2 C、48米2 D、72米220.(2006•内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A .cm B.cm C.cm D.cm21.(2006•南充)如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A .2πB.C.D.522.(2006•孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A .B.C.D.23.(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A .6cm B.12cm C.13cm D.16cm24.(2005•山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A .40cm B.20cm C.20cm D.10cm25.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A .(3+2)cmB.cm C.cm D.cm26.(2004•梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A .a B.(1+)a C.3a D.a27.(2004•济宁)如图,正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从M点沿正方体的表面爬到D1点,蚂蚁爬行的最短距离是()A、B、3 C、5 D、28.(2003•贵阳)如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离为()A .B .C .D .29.(2002•湛江)如图,小红从A 地向北偏东30°,方向走100米到B 地,再从B 地向西走200米到C 地,这时小红距A 地( )A . 150米B . 100米C . 100米D .50米30.(2002•滨州)如图,沿AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=210m ,∠D=30°,要正好能使A 、C 、E 成一直线,那么E 、D 两点的距离等于( )A . 105mB . 210mC . 70mD .105m一.选择题(共30小题)1.(2014•钦州)如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B 点只能沿图中的线段走,那么从A 点到B 点的最短距离的走法共有( )A . 1种B . 2种C . 3种D .4种2.(2014•荆州)如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A . 4dmB . 2dmC . 2dmD .4dm3.(2014•龙东地区)一圆锥体形状的水晶饰品,母线长是10cm ,底面圆的直径是5cm ,点A 为圆锥底面圆周上一点,从A 点开始绕圆锥侧面缠一圈彩带回到A 点,则彩带最少用多少厘米(接口处重合部分忽略不计)( ) A . 10πcm B . 10cm C . 5πcm D .5cm4.(2013•安顺)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A . 8米B . 10米C . 12米D .14米5.(2013•鄂州)如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A . 6B . 8C . 10D .126.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,发现此时绳子末端距离地面2m ,则旗杆的高度为(滑轮上方的部分忽略不计)为( )A . 12mB . 13mC . 16mD .17m7.(2011•金华)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600m B.500m C.400m D.300m8.(2011•台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A、100.B、180.C、220.D、260.9.(2011•广安)如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点,且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A .B.5cm C.D.7cm10.(2010•新疆)如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A .3m B.5m C.7m D.9m11.(2010•达州)如图所示,在一块形状为直角梯形的草坪中,修建了一条由A→M→N→C的小路(M、N分别是AB、CD中点).极少数同学为了走“捷径”,沿线段AC行走,破坏了草坪,实际上他们仅少走了()A . 7米B . 6米C . 5米D .4米12.(2010•铁岭)如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为( )A . 米B . 米C . (+1)米D .3米 13.(2010•锦州)如图,△ABC 为的边长6cm 的等边三角形,BC 为圆锥的底面直径,P 为AC 上一点,AP=4cm ,一只蚂蚁沿圆锥侧面从点B 爬到点P ,它需要爬行的最短路程是( )A . 10cmB . 2cmC . 2cmD .4cm 14.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A . 5B . 25C . 10+5D . 35 15.(2009•乐山)如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为( ) A B 2 C 3 D 316.(2007•茂名)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤1317.(2007•资阳)如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()A .6 B.7 C.8 D.918.(2006•湘西州)在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答()A .一定不会B.可能会C.一定会D.以上答案都不对19.(2006•荆门)园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A .24米2B.36米2C.48米2D.72米220.(2006•内江)有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A .cm B.cm C.cm D.cm21.(2006•南充)如图,底面半径为1,母线长为4的圆锥,一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A .2πB.C.D.522.(2006•孝感)已知如图,圆锥的底面圆的半径为r(r>0),母线长OA为3r,C为母线OB的中点在圆锥的侧面上,一只蚂蚁从点A爬行到点C的最短线路长为()A .B.C.D.23.(2005•贵阳)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A .6cm B.12cm C.13cm D.16cm24.(2005•山西)如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心.一只蚂蚁在盒子表面由A处向B处爬行,所走的最短路程是()A .40cm B.20cm C.20cm D.10cm25.(2004•淄博)如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A .(3+2)cmB.cm C.cm D.cm26.(2004•梅州)如图,一只蚂蚁沿边长为a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为()A .a B.(1+)a C.3a D.a27.(2004•济宁)如图,正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从M 点沿正方体的表面爬到D 1点,蚂蚁爬行的最短距离是( )A. B . 3 C . 5 D .28.(2003•贵阳)如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为( )A .B .C .D .29.(2002•湛江)如图,小红从A 地向北偏东30°,方向走100米到B 地,再从B 地向西走200米到C 地,这时小红距A 地( )A . 150米B . 100米C . 100米D . 50米30.(2002•滨州)如图,沿AC 方向开山修路,为加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=120°,BD=210m ,∠D=30°,要正好能使A 、C 、E 成一直线,那么E 、D 两点的距离等于( )A . 105mB . 210mC . 70mD .105m勾股定理-初中数学组卷1参考答案与试题解析1、C .2、A .3、B4、B5、B6、D7、B8、C9、B 10、A11、B 12、C 13、B 14、B 15、C 16、A 17、D 18、A 19、B 20、C21、B 22、B 23、B 24、C 25、C 26、D 27、A 28、A 29、B 30、A。

相关文档
最新文档