导数压轴-利用函数单调性证明数列型不等式
利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
导数的应用不等式的证明

导数与不等式1.利用导数证明不等式利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的. 1.1 利用单调性证明不等式构造函数,利用函数的单调性证明不等式例1. ()(1)ln(1)f x x a x x =-++。
(Ⅰ)求()f x 的极值点;(Ⅱ)当1a =时,若方程()f x t =在1[,1]2-上有两个实数解,求实数t 的取值范围;(Ⅲ)证明:当0m n >>时,(1)(1)n m m n +<+。
例2、已知函数)()(R x xe x f x∈=-。
(1)求函数()f x 的单调区间和极值;(2)已知函数()y g x =的图象与函数()y f x =的图象关于直线1x =对称,证明当1x >时,()()f x g x >;(3)如果12x x ≠,且12()()f x f x =,证明122x x +>。
1.2通过求函数的最值证明不等式在对不等式的证明过程中,可以依此不等式的特点构造函数,进而求函数的最值,当该函数的最大值或最小值对不等式成立时,则不等式是永远是成立的,从而可将不等式的证明转化到求函数的最值上来 例3.已知2()ln ,() 3.f x x x g x x ax ==-+-(1)求函数()f x 在[,2)(0)t t t +>上的最小值; (2)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求实数a 的取值范围; (3)证明:对一切(0,)x ∈+∞,都有12ln x x e ex->成立.例4、(2009辽宁卷文)设2()(1)xf x e ax x =++,且曲线y =f (x )在x =1处的切线与x 轴平行。
(1)求a 的值,并讨论f (x )的单调性;(2)证明:当[0,]f(cos )f(sin )22πθθθ∈-<时,1.3多元不等式的证明含有多元的不等式,可以通过对不等式的等价变形,通过换元法,转化为一个未知数的不等式,或可选取主元,把其中的一个未知数作为变量,其他未知数作为参数,再证明之. 例5、 已知函数()ln f x x =.若120x x >>,求证:122221212()()2f x f x xx x x x ->-+.例6、 (2013·陕西高考)已知函数f (x )=e x ,x ∈R .(1)求f (x )的反函数的图像上点(1,0)处的切线方程; (2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一的公共点;(3)设a <b ,比较f ⎝⎛⎭⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.1.4.与数列有关的不等式证明例8.已知函数f(x)=ln(x+1)-x2-x.(1)若关于x的方程f(x)=-52x+b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;(2)证明:对任意的正整数n,不等式2+34+49+…+21nn+>ln(n+1)都成立.例9.已知函数f(x)=ln ax-x ax-(a≠0).(1)求函数f(x)的单调区间及最值;(2)求证:对于任意正整数n,均有1+111ln23nen n⋯≥+++!(e为自然对数的底数);(3)当a=1时,是否存在过点(1,-1)的直线与函数y=f(x)的图象相切?若存在,有多少条?若不存在,请说明理由.例10.已知函数f (x )=e x -kx 2,x ∈R.(1)若k =12,求证:当x ∈(0,+∞)时,f (x )>1; (2)若f (x )在区间(0,+∞)上单调递增,试求k 的取值范围; (3)求证:444422221111123n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭<e 4(n ∈N *)..2.利用导数求解与不等式有关的恒成立问题或者有解、无解问题不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x af x a f x a⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解例11.设函数()ln f x a x =,21()2g x x =.(1)记'()g x 为()g x 的导函数,若不等式'()2()(3)()f x g x a x g x +<+-在[1,]x e ∈上有解,求实数a 的取值范围;(2)若1a =,对任意的120x x >>,不等式121122[()()]()()m g x g x x f x x f x ->-恒成立.求m (m Z ∈,1m ≤)的值.例12、 (2013·辽宁高考)(1)证明:当x ∈[0,1]时,22x ≤sin x ≤x ;(2)若不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.3.利用导数解不等式通过构造函数,利用函数的单调性得到不等式的解集.例13.若)(x f 的定义域为R ,2)(>'x f 恒成立,2)1(=-f ,则42)(+>x x f 解集( )A .(1,1)-B .(1)-+∞, C .(,1)-∞- D .(,)-∞+∞ 例14.函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x·f (x )>e x+1的解集为( ).A. {}|0x x >B. {}|0x x <C. {}|1,1x x x <->或D. {}|1,1x x x <-<或0<例15.已知定义在R 上的函数)(x f 满足1)2()4(=-=f f ,)(x f '为)(x f 的导函数,且导函数)(x f y '=的图象如右图所示.则不等式1)(<x f 的解集是( )A .)0,2(- B .)4,2(- C .)4,0( D .),4()2,(+∞--∞ 例16.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()0xf x f x x '-<恒成立,则不等式2()0x f x >的解集是( )A. (-2,0) ∪(2,+∞)B. (-2,0) ∪(0,2)C. (-∞,-2)∪(2,+∞)D. (-∞,-2)∪(0,2)例17.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )<0的解集为________. 例18、设函数()x f y =在其图像上任意一点00(,)x y 处的切线方程为()()0020063x x x x y y --=-,且()30f =,则不等式解集导数与不等式1.利用导数证明不等式在初等数学中,我们学习过好多种证明不等式的方法,比如综合法、分析法、比较法、反证法、数学归纳法等,有些不等式,用初等方法是很难证明的,但是如果用导数却相对容易些,利用导数证明不等式,主要是构造函数,通过研究函数的性质达到证明的目的.1.2 利用单调性证明不等式构造函数,利用函数的单调性证明不等式 例1. ()(1)ln(1)f x x a x x =-++。
导数解答题中数列不等式的证明思路策略

导数解答题中数列不等式的证明思路策略张国飞(安徽省桐城中学ꎬ安徽桐城231400)摘㊀要:导数解答题中最后一问设置数列不等式的证明ꎬ是高考函数与导数知识模块中命题时比较常见的一个压轴题型.文章结合实例ꎬ就导数解答题中数列不等式的几个常见的证明思路策略加以剖析ꎬ阐述基本证明思路与技巧方法ꎬ总结证明归纳与策略ꎬ引领并指导数学教学与复习备考.关键词:导数ꎻ数列ꎻ不等式ꎻ证明ꎻ思路ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)30-0038-03收稿日期:2023-07-25作者简介:张国飞(1980.7-)ꎬ男ꎬ安徽省安庆人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀在函数与导数的综合应用解答题中ꎬ经常会有证明数列不等式ꎬ形如ðni=1ai<g(n)或ðni=1ai<A(A为常数)等形式成立的数列不等式设置.此类数列不等式的证明问题往往前后联系ꎬ与前面小题中的函数与导数的综合应用等着直接或间接的联系ꎬ需要借助函数的单调性㊁导数的基本性质以及不等式的性质等来应用ꎬ综合性强ꎬ时常是压轴题的首选ꎬ倍受各方关注.下面结合实例ꎬ就证明导数解答题中的数列不等式的思路策略加以剖析与应用ꎬ抛砖引玉[1].1抓住常用思路ꎬ进行逐项比较对于数列不等式ðni=1ai<g(n)ꎬ其中不等式的一边是某个数列的前n项和ꎬ而另一边g(n)如果可以看作另一个数列的前n项和ꎬ此时可以采用计算该数列的通项公式bnꎬ借助an<bn的转化ꎬ通过逐项比较ꎬ利用累加法加以分析与证明.例1㊀求证:对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.根据这个不等式证明:ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).解析㊀令函数f(x)=ln(1+x)-x(x>0)ꎬ则fᶄ(x)=11+x-1=-x1+x<0ꎬ则知函数f(x)在(0ꎬ+ɕ)上单调递减ꎬ可得f(x)<f(0)=0ꎬ即ln(1+x)<x成立ꎻ令函数g(x)=x1+x-ln(1+x)(x>0)ꎬ则gᶄ(x)=1(1+x)2-11+x=-x(1+x)2<0ꎬ则知函数g(x)在(0ꎬ+ɕ)上单调递减ꎬ可得g(x)<g(0)=0ꎬ即x1+x<ln(1+x)成立ꎻ综上分析ꎬ可得对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.取x=1nꎬ可得x1+x=1n1+1n=1n+1<ln(1+x)=ln(1+1n)=lnn+1n=ln(n+1)-lnn<x=1nꎬ即831n+1<ln(n+1)-lnn<1nꎬ令n=1ꎬ2ꎬ ꎬ对应不等式累加可得12+13+ +1n+1<ln(n+1)<1+12+ +1nꎬ即ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).点评㊀由函数不等式过渡到数列不等式的处理ꎬ就是合理对变量进行赋值处理ꎬ进而实现逐项比较的目的ꎬ同时在累加处理时ꎬ还要对不等式的形式进行巧妙处理ꎬ这里由12+13+ +1n+1<ln(n+1)可得1+12+13+ +1n<lnnꎬ进而得到1+12+ +1n<lnn+1.注意递推不等式的结构特征与应用.2融合可选思路ꎬ利用数列单调(性)对于数列不等式ðni=1ai<g(n)ꎬ通过恒等变形转化为证明bn=ðni=1ai-g(n)<0ꎬ先验证b1<0ꎬ接下来验证bn+1-bn<0恒成立ꎬ利用数列的单调性(单调递减)实现数列不等式的证明与应用[2].例2㊀设函数f(x)=(x-1)2+blnxꎬ其中b为常数.(1)判断函数f(x)在定义域上的单调性ꎻ(2)求证:132+142+ +1n2<ln(n+1)(nȡ3ꎬnɪN∗).㊀解析㊀由函数f(x)=(x-1)2+blnx(x>0)ꎬ则fᶄ(x)=2(x-1)+bx=2(x-12)2+b-12xꎬ所以当bȡ12时ꎬfᶄ(x)ȡ0ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当b<12时ꎬ令fᶄ(x)=0ꎬ解得x1=12-1-2b2或x2=12+1-2b2ꎬ①当bɤ0时ꎬx1ɤ0舍去ꎬ而x2ȡ1ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:表1㊀函数单调性与导数关系x(0ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)-0+f(x)↘极小值↗x(0ꎬx1)x1(x1ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)+0-0+f(x)↗极大值↘极小值↗㊀㊀②当0<b<12时ꎬ0<x1<x2ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:综上分析ꎬ当bȡ12时ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当0<b<12时ꎬ函数f(x)在(0ꎬ12-1-2b2)ꎬ(12+1-2b2ꎬ+ɕ)上单调递增ꎬ在(12-1-2b2ꎬ12+1-2b2)上单调递减ꎻ当bɤ0时ꎬ函数f(x)在(0ꎬ12+1-2b2)上单调递减ꎬ在(12+1-2b2ꎬ+ɕ)上单调递增.(2)设bn=132+142+ +1n2-ln(n+1)ꎬnȡ3ꎬnɪN∗ꎬ则b3=19-ln4<0显然成立ꎻ当nȡ3ꎬnɪN∗时ꎬbn+1-bn=1(n+1)2-ln(n+2)+ln(n+1)=1(n+1)2-lnn+2n+1ꎬ设x=n+2n+1=1+1n+1ɪ(1ꎬ54]ꎬ那么要证bn+1-bn<0ꎬ只需证(x-1)2-lnx<0ꎬ取b=-1ꎬ由(1)知函数f(x)在(0ꎬ1+32)上单调递减ꎬ而54<1+32ꎬ则知当xɪ(1ꎬ54]时ꎬf(x)=93(x-1)2-lnx<f(1)=0ꎬ从而bn+1-bn<0成立ꎬ即数列{bn}单调递减ꎬ则有bnɤb3<0ꎬ原数列不等式得证.点评㊀这里利用数列的单调性来证明相关的数列不等式成立时ꎬ其证明过程与逐项比较写的过程有点差异ꎬ但本质上两种方法之间有着异曲同工之妙.注意证明数列的单调性时ꎬ往往要回归题目前面部分所涉及的函数不等式问题ꎬ合理应用.3借助性质思路ꎬ合理放缩处理对于数列不等式ðni=1ai<Aꎬ经常可以借助函数的单调性质㊁不等式的基本性质等来加强命题ðni=1ai<g(n)且g(n)<Aꎬ通过合理的放缩与变形处理来巧妙转化与应用.放缩的关键是数列的求和与放缩ꎬ以及不等式性质的应用等[3].例3㊀已知函数f(x)=x-mlnx-1(mɪR)在x=1处取得极值A.(1)求出实数m的值ꎬ并判断A是函数f(x)的最大值还是最小值ꎻ(2)证明:对于任意正整数nꎬ不等式(1+12)(1+122) (1+12n)<e恒成立ꎬ其中e=2.71828 是自然对数的底数.解析㊀(1)由函数f(x)=x-mlnx-1(x>0)ꎬ则fᶄ(x)=1-mxꎬ由于x=1是函数f(x)的极值点ꎬ则有fᶄ(1)=0ꎬ即1-m1=0ꎬ解得m=1ꎬ此时函数f(x)=x-lnx-1ꎬfᶄ(x)=1-1x=x-1xꎬ则知当0<x<1时ꎬfᶄ(x)<0ꎬ函数f(x)单调递减ꎻ当x>1时ꎬfᶄ(x)>0ꎬ函数f(x)单调递增ꎬ所以函数f(x)在x=1处取得极值A=f(1)=0是最小值ꎻ(2)由(1)知ꎬ当x>1时ꎬf(x)>f(1)=0ꎬ即x-1>lnxꎬ不妨令x=1+12nꎬnɪN∗ꎬ则有ln(1+12n)<12nꎬnɪN∗ꎬ所以ln(1+12)+ln(1+122)++ln(1+12n)<12+122+ +12n=12(1-12n)1-12=1-12n<1ꎬ即ln[(1+12)(1+122) (1+12n)]<1=lneꎬ所以不等式(1+12)(1+122) (1+12n)<e恒成立.点评㊀在解决导数解答题中数列不等式的证明问题时ꎬ往往要先从前面小题的过程或结论中选取合适的函数不等式加以应用ꎬ这非常考验考生的观察能力.而在对数列不等式进行累加求和处理后ꎬ合理的放缩是正确证明的关键ꎬ要注意观察所要证明的数列不等式的结构特征加以巧妙放缩处理.在解决导数解答题中数列不等式的证明时ꎬ除了以上三种基本的证明思路策略ꎬ还可以借助推理与证明思维进一步加以综合与应用ꎬ利用可行的思路方法与技巧策略来剖析ꎬ有时在证明数列不等式时还可以多种证明思路策略联合应用ꎬ实现问题的综合应用与巧妙解决[4].参考文献:[1]韩文美.突出四个 基本点 ꎬ强化导数及应用[J].中学生数理化(高二数学)ꎬ2023ꎬ974(06):22-24ꎬ26.[2]白亚军.求解数列不等式的常见放缩技巧[J].高中数学教与学ꎬ2023(09):21-22ꎬ20.[3]蔡雯.例析高考中函数与数列不等式证明问题的突破[J].高中数理化ꎬ2023(07):26-27.[4]刘海涛.由一道高考题引发的对证明数列不等式的思考[J].中学数学月刊ꎬ2021(04):63-64.[责任编辑:李㊀璟]04。
导数证明不等式的方法介绍

导数证明不等式的方法介绍导数证明不等式的方法介绍利用导数是可以证明很多定律的,比如不等式之类的。
下面就是店铺给大家整理的利用导数证明不等式内容,希望大家喜欢。
利用导数证明不等式方法11.当x>1时,证明不等式x>ln(x+1)设函数f(x)=x-ln(x+1)求导,f(x)'=1-1/(1+x)=x/(x+1)>0所以f(x)在(1,+无穷大)上为增函数f(x)>f(1)=1-ln2>o所以x>ln(x+12..证明:a-a^2>0 其中0F(a)=a-a^2F'(a)=1-2a当00;当1/2因此,F(a)min=F(1/2)=1/4>0即有当003.x>0,证明:不等式x-x^3/6先证明sinx因为当x=0时,sinx-x=0如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0,求导数有sinx-x的导数是cosx-1因为cosx-1≤0所以sinx-x是减函数,它在0点有最大值0,知sinx再证x-x³/6对于函数x-x³/6-sinx当x=0时,它的值为0对它求导数得1-x²/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。
利用导数证明不等式方法2要证x²/2+cosx-1>0 x>0再次用到函数关系,令x=0时,x²/2+cosx-1值为0再次对它求导数得x-sinx根据刚才证明的当x>0 sinxx²/2-cosx-1是减函数,在0点有最大值0x²/2-cosx-1<0 x>0所以x-x³/6-sinx是减函数,在0点有最大值0得x-x³/6利用函数导数单调性证明不等式X-X²>0,X∈(0,1)成立令f(x)=x-x² x∈[0,1]则f'(x)=1-2x当x∈[0,1/2]时,f'(x)>0,f(x)单调递增当x∈[1/2,1]时,f'(x)<0,f(x)单调递减故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得f(0)=0,f(1)=0故f(x)的最小值为零故当x∈(0,1)f(x)=x-x²>0。
数学--利用导数证明不等式

n
m
mn
nm m
【二、累加相消--函数模型】
12 分
2. (I)求证:不等式 ln x ≤ k x 1 对 k ≥1恒成立.
(II)设数列 an 的通项公式为 an
2 2n
1
,前
n
项和为
Sn
,求证:
Sn
≥
ln(2n
1)
.
证明:(Ⅰ) f x 1 k 2 x 1 kx
x 2 x 1 2x x 1
1
22 22
2
2
1
33 32
3
3
1
n2 n2
n
n
1<e
.
【分析】解:(1)先确定定义域,再用导数法求单调区间;要注意 a 的讨论, (2)当 a=1 时,f(x)=ln(x+1)﹣x,由(1)可知 f(x)在(﹣1,0)上单调递增,在(0,+∞)
上单调递减,从而求得其最大值.
(
3
)
当 x>1 时, h(x) 1 1 0 ,h(x)是增函数, h(x) h(1) 0 , x
所以
g(x)
x 1 ln (x 1)2
x
0 ,故
g(x)在 (1, ) 上为增函数;
5分
当 0<x<1 时, h(x) 1 1 0 ,h(x)是减函数, h(x) h(1) 0 , x
所以
g(x)
分)
∴ ln 1
1 k2 k
<
k
2
1
k
1
k k 1
1 k
1 k 1
∴
ln
12 1 12 1
1
ln
导数与数列不等式结合解题技巧

导数与数列不等式结合是数学中一个重要的解题技巧,它涉及到函数的单调性、极值、最值等概念,以及数列的单调性、不等式性质等知识。
下面是一些导数与数列不等式结合解题的技巧:
1. 构造函数:根据题目条件,通过构造适当的函数,将问题转化为求函数的极值或最值问题。
2. 求导数:对构造的函数求导数,利用导数的性质判断函数的单调性。
3. 利用单调性:根据函数的单调性,结合数列不等式的性质,推导出不等式的结论。
4. 寻找临界点:在求解过程中,寻找函数的临界点,这些点可能是极值点或拐点,对于解决问题至关重要。
5. 转化问题:在解决问题时,有时需要将问题转化为其他形式,例如将不等式问题转化为函数问题,以便更好地利用已知条件和解题技巧。
6. 综合分析:在解题过程中,需要综合运用数学知识,如函数、导数、数列、不等式等,进行全面的分析和推理。
7. 检验结论:在得出结论后,需要进行检验,以确保结论的正确性和合理性。
总之,导数与数列不等式结合解题需要灵活运用各种数学知识和技巧,通过构造函数、求导数、利用单调性等方法,逐步推导出问题的结论。
同时需要注意检验结论的正确性和合理性。
利用导数证明不等式的几种方法

不等式的证明方法多种多样。
在初等数学里介绍过比较法、放缩法、反证法、归纳法等方法,在学习了导数的应用以后,用导数来证明不等式,往往能起到很好的效果。
一、利用函数的单调性证明不等式在学习了导数之后,可以利用导数来判定函数的单调性。
定理1设函数在区间[a,b]上可导,如果对任意的x∈(a,b),恒有f′(x)>0(或f′(x)<0),则f(x)在[a,b]内单调增加(或单调减少).例1证明不等式x-x22<ln(x+1)<x,其中x>0.证明:(i)设f(x)=x-x22-ln(1+x).当x>0时,f′(x)=1-x-11+x=-x21+x<0.则f(x)在(0,+∞)单调减少.又f(0)=0,∴f(x)<f(0),即x-x22<ln(1+x).(ii)设g(x)=ln(1+x)-x,当x>0时,g′(x)=11+x-1=-x1+x<0,则g(x)在(0,+∞)单调递减,则g(x)<g(0),即lnx(1+x)-x<0,故x>0时,x-x22<ln(1+x)<x.例2证明:当x≥0时,有sinx≥x-x3 3!.证明:设f(x)=sinx-x+x33!,则f′(x)=cosx-1+x22,此时无法判断f′(x)符号.又f″(x)=x-sinx,而x≥0时,sinx≤x,则f″(x)≥0只当x=0时等号成立,所以f′(x)在(0,+∞)单调增加,则f′(x)>f(0)=0,所以f(x)在(0,+∞)单调增加,则x>0时,f(x)>f(0)=0,又x=0时,f(x)=f(0)=0,故当x≥0时,有sinx≥x-x33!.利用函数单调性证明不等式,不等式两边的函数必须可导。
所构造的辅助函数f(x)应在某闭区间上连续,开区间内可导,且在闭区间的某端点处f(x)的值为0,然后通过在开区间内f′(x)的符号来判断f(x)在闭区间上的单调性。
二、利用微分中值定理证明不等式定理2若函数f(x)满足如下条件:(1)在闭区间[a,b]上连续,(2)在开区间(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f′(ξ)=f(b)-f(a)b-a这里没有给出ξ的确切位置,而对于不等式而言,也不必精确。
利用函数证明数列不等式

利用函数证明数列不等式要证明数列不等式,我们可以利用函数进行证明。
下面我们将对两种不同类型的数列不等式进行探讨。
第一种类型的数列是递增数列。
递增数列是一种严格单调递增的数列。
为了证明递增数列的不等式,我们可以使用函数的性质。
假设我们有一个递增数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递增的,所以我们可以得出 f(x) < f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an < an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) > 0 ,那么说明函数是递增的。
这也意味着数列{an} 中的元素也是递增的。
通过证明函数的导数大于零,我们可以得出数列 {an} 中的元素是递增的,从而证明数列的不等式。
第二种类型的数列是递减数列。
递减数列是一种严格单调递减的数列。
为了证明递减数列的不等式,我们同样可以使用函数的性质。
假设我们有一个递减数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递减的,所以我们可以得出 f(x) > f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an > an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) < 0 ,那么说明函数是递减的。
这也意味着数列{an} 中的元素也是递减的。
通过证明函数的导数小于零,我们可以得出数列 {an} 中的元素是递减的,从而证明数列的不等式。
在使用函数证明数列不等式时,我们需要注意以下几点:1.函数的定义域和应用范围必须与数列的范围一致。
利用导数证明不等式的四种常用方法

利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
利用导数证明不等式的几种策略

利用导数证明不等式的几种策略导数在数学中起着至关重要的作用,不仅可以用来求函数的极值点和拐点,还可以用来证明不等式。
在证明不等式时,我们可以利用导数的性质来进行推导。
下面将介绍几种利用导数证明不等式的策略。
1.利用单调性证明不等式对于一个给定的函数,在其定义域内,如果函数在一段区间上是单调递增或者单调递减的,则可以利用该函数的导数证明一些不等式。
例如,我们要证明对于任意正实数x,有ln(x+1) < x。
我们可以设函数f(x) = x - ln(x+1),然后计算导数f'(x) = 1 - 1/(x+1)。
观察导数的符号可以发现,当x > 0时,导数f'(x) < 0,即函数f(x)在x > 0上是单调递减的。
因此,我们可以得出结论:ln(x+1) < x 对于任意正实数x成立。
2.利用极值点证明不等式对于一个给定的函数,如果该函数在一些点处取得极大值或者极小值,我们可以通过证明该极值点处的函数值与其他点处的函数值之间的关系,来证明不等式。
例如,我们要证明对于任意非负实数x,有x^3-3x^2+1>=0。
我们可以设函数f(x)=x^3-3x^2+1,然后计算导数f'(x)=3x^2-6x。
观察导数的零点可以发现,f'(x)=0时,x=0或者x=2,即函数f(x)在x=0和x=2处取得极小值或者极大值。
进一步计算f(0)=1和f(2)=-1可以发现,f(0)是函数f(x)在其定义域内的最小值。
因此,我们可以得出结论:x^3-3x^2+1>=0对于任意非负实数x成立。
3.利用泰勒展开证明不等式对于一个给定的函数,在一些点的邻域内,我们可以使用该函数的泰勒展开式来近似表示该函数。
通过比较泰勒展开式的高阶项可以得出一些不等式。
例如,我们要证明对于任意正实数x,有e^x>x^2、我们可以使用泰勒展开式来近似表示函数e^x和函数x^2,在x=0处进行展开。
关于用导数处理的数列型不等式集锦

易得 c1 c2 , c2 c3 c4 ...
猜想 n≥2 时,cn 是递减数列.
1
令
f x
ln x ,则f x
x ln x x
1 ln x
x
x2
x2
∵当 x 3时,ln x 1,则1 ln x 0,即f x 0.
∴在 3, 内 f x 为单调递减函数.
1 3n
1
1 2
n
1
1
1 3n
1
n
1
2
1 3n
1 3n
1
n
1
1
1 2
(3n
4n 2 1)(n 1)
4n 2 3n(n 2)
(n
4n 2 1)(3n 1)
所以有
1 2
ln
2
,
1 3
ln
3
ln
2
,…,
1 n
ln
n
ln( n
1)
,
1 n 1
ln(n
1)
ln
n
,相加后可以得到:
1 1 1 ln(n 1)
23
n 1
另一方面 S ABDE
n1 ni x
,从而有 1
ni
i
n1 ni x
ln x |nni
(Ⅰ)解:由已知:对于 n N * ,总有 2Sn an an2 ①成立
利用导数证明不等式的技巧策略

ʏ浙江省杭州育新高级中学 周小锋证明不等式在高考数学试卷中是一个永恒的难题,充分体现了数学基础知识的交汇性与综合性,数学思想方法的创新灵活多样性,经常出现在高考试卷的压轴题的位置㊂而导数作为一种数学工具,对于证明不等式问题更是一种具有创新性的应用㊂本文结合实例,就利用导数证明不等式的几种常见方式,合理总结证明技巧方法与规律㊂一㊁构建函数利用待证不等式的结构特征来构建相应的函数,利用导数法及其函数的单调性来化归与转化,是证明一些涉及函数的不等式问题中最常用的技巧方法,而其他方法技巧中往往也离不开构建函数这一关键步骤㊂例1 已知函数f (x )=1-l n xx,g (x )=a e e x +1x -b x ,若曲线y =f (x )与曲线y =g (x )在公共点A (1,1)处的切线相互垂直㊂(1)求实数a ,b 的值;(2)证明:当x ȡ1时,f (x )+g (x )ȡ2x ㊂解析:(1)对f (x )求导得f '(x )=l n x -1x2,则f '(1)=-1㊂对g (x )求导得g'(x )=-a e e x-1x2-b ,则g '(1)=-a -1-b ㊂联立方程组f '(1)g'(1)=-1,g (1)=1,即a +1+b =-1,a +1-b =1,解得a =b =-1㊂(2)由(1)可得g (x )=-e ex +1x +x ㊂令函数h (x )=f (x )+g (x )-2x(x ȡ1),则h (x )=1-l n x x -e e x -1x +x ,求导得h '(x )=-1-l n x x 2+e e x +1x2+1=l n x x 2+eex +1㊂因为x ȡ1,所以h '(x )>0,所以h (x )在[1,+ɕ)上单调递增,所以h (x )ȡh (1)=0,即1-l n x x -e ex -1x +x ȡ0㊂所以当x ȡ1时,f (x )+g (x )ȡ2x㊂点评:当证明含参不等式问题时,经常通过合理构建一边含参,一边为常数(往往是0或1等),对应构建形如 左减右 型(或 复杂减简单 型,以及除式等特殊形式)的函数,进而利用新函数的构建与求导,结合函数的单调性㊁极值与最值等知识来合理分析与转化,得以合理巧妙证明相应的不等式㊂二㊁放缩法放缩法证明不等式是在综合导数及其应用,以及函数的单调性等的基础上,进一步利用不等式的性质㊁重要不等式的结论(l n x ɤx -1,e xȡx +1,当且仅当x =1时取等号),借助导数法的应用来综合分析,实现不等式的证明㊂例2 已知函数f (x )=2l n x +2ex㊂(1)试确定f (x )的单调区间;(2)证明:当x >0时,都有f '(x )l n (x +1)<2e x +2ex +2㊂解析:(1)对f (x )求导得f '(x )=2(1-x -x l n x )x e x(x >0)㊂令函数g (x )=1-x -x l n x ,则g (1)=0㊂当0<x <1时,1-x >0,-x l n x >0,所以g (x )>0,f '(x )>0;当x >1时,1-x <0,-x l n x <0,所以g (x )<0,f'(x )<0㊂所以函数f (x )在(0,1)上单调递增,在(1,+ɕ)上单调递减㊂(2)要证明f '(x )l n (x +1)<2e x +2ex +2,即证(1-x -x l n x )l n (x +1)<1+1e2x ㊂12解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.令函数g (x )=1-x -x l n x ,求导得g'(x )=-1-(l n x +1)=-2-l n x ㊂当0<x <1e 2时,g '(x )>0;当x >1e2时,g'(x )<0㊂所以函数g (x )在0,1e2上单调递增,在1e2,+ɕ 上单调递减,所以g (x )ɤg 1e 2=1-1e 2+2e 2=1+1e2,所以1-x -x l n x ɤ1+1e2㊂要证明(1-x -x l n x )l n (x +1)<1+1e2x ,只需证明l n (x +1)<x 即可㊂结合重要不等式,可知l n x ɤx -1,当且仅当x =1时取等号(直接利用重要不等式的结论,证明略),所以0<l n (x +1)<x ㊂综上所述,当x >0时,都有f '(x )㊃l n (x +1)<2e x +2ex +2㊂点评:在证明一些含有l n x 与e x型的超越函数所对应的复杂不等式问题时,经常利用相应的重要不等式结论l n x ɤx -1㊁e xȡx +1等进行合理放缩处理,巧妙转化,进而得以证明相应的不等式㊂三㊁切线法切线法证明不等式问题,往往是数形结合的 产物 ,也是问题前后联系的进一步应用,利用前面问题所探求的切线方程,巧妙利用导数㊁函数的单调性及图像特征来分析与转化㊂例3 已知函数f (x )=e x-x2㊂(1)求函数f (x )的图像在x =1处的切线方程;(2)求证:当x >0时,e x+(2-e )x -1xȡl n x +1㊂解析:(1)对f (x )求导得f '(x )=e x-2x ,所以f '(1)=e -2,f (1)=e -1,所以函数f (x )的图像在x =1处的切线方程为y =(e -2)(x -1)+e -1,即y =(e -2)x +1㊂(2)令函数g (x )=f '(x )(x >0),求导得g '(x )=e x-2㊂当x <l n 2时,g'(x )<0;当x >l n 2时,g'(x )>0㊂所以函数g (x )=f'(x )在(0,l n 2)上单调递减,在(l n 2,+ɕ)上单调递增,则g (x )m i n =g (l n 2)=f '(l n 2)=2-2l n 2>0,所以函数f (x )=e x -x 2在(0,+ɕ)上单调递增㊂由函数f (x )的图像在x =1处的切线方程为y =(e -2)x +1,f (1)=e -1,可猜测:当x >0时,f (x )ȡ(e -2)x +1㊂证明如下:设函数h (x )=f (x )-(e -2)x -1(x >0),求导得h '(x )=e x-2x -e +2㊂令函数m (x )=h '(x ),求导得m '(x )=e x-2㊂当x <l n 2时,m '(x )<0;当x >l n 2时,m '(x )>0㊂所以h '(x )在(0,l n 2)上单调递减,在(l n 2,+ɕ)上单调递增,则h '(1)=0,0<l n 2<1,所以h '(l n 2)<0㊂又h '(0)=3-e >0,所以存在x 0ɪ(0,l n 2),使得h '(x 0)=0㊂故当x ɪ(0,x 0)ɣ(1,+ɕ)时,h '(x )>0;当x ɪ(x 0,1)时,h '(x )<0㊂所以h (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+ɕ)上单调递增㊂因为h (0)=h (1)=0,所以h (x )ȡ0,即f (x )ȡ(e -2)x +1,当且仅当x =1时取等号,所以当x >0时,e x -x 2ȡ(e -2)x +1,变形可得e x+(2-e )x -1xȡx ㊂又x ȡl n x +1,当且仅当x =1时取等号(直接利用重要不等式的结论,证明略),所以e x+(2-e )x -1x ȡl n x +1,当且仅当x =1时取等号㊂点评:该题的第(1)问是求曲线的切线方程,要注意其切线方程是后续切线法证明不等式的 台阶 ,可运用切线放缩法进行放缩解决问题㊂此类综合应用问题往往呈现特殊的规律性:多步设问,层层递进,上问结果,用于下问㊂巧妙利用切线法来转化,合理有效证明相应的不等式㊂四㊁极值点偏移法证明一些含有函数的极值点或零点等的特殊不等式时,往往利用极值点偏移法,巧妙22 解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.通过消参或消元等方式,合理构建函数,结合导数的运算与应用,以及函数的单调性㊁极值㊁最值等来综合应用,进而证明对应的不等式成立㊂例4 已知f (x )=x l n x -12m x 2-x ,m ɪR ㊂若函数f (x )的两个极值点x 1,x 2满足x 1<x 2,求证:x 1x 2>e 2㊂证明:欲证x 1x 2>e 2,需证l n x 1+l n x 2>2㊂由函数f (x )有两个极值点x 1,x 2,可得f'(x )有两个零点,又f '(x )=l n x -m x ,所以x 1,x 2是方程f '(x )=0的两个不同实根㊂证法一:于是有l n x 1-m x 1=0,l n x 2-m x 2=0㊂①②由①+②可得l n x 1+l n x 2=m (x 1+x 2),即m =l n x 1+l n x 2x 1+x 2;由②-①可得l n x 2-l n x 1=m (x 2-x 1),即m =l n x 2-l n x 1x 2-x 1㊂所以l n x 2-l n x 1x 2-x 1=l n x 1+l n x 2x 1+x 2,则l n x 1+l n x 2=(l n x 2-l n x 1)(x 2+x 1)x 2-x 1=1+x 2x 1l n x 2x 1x 2x 1-1㊂又0<x 1<x 2,设t =x 2x 1,则t >1,因此l n x 1+l n x 2=(1+t )l n tt -1,t >1㊂要证l n x 1+l n x 2>2,即证(t +1)l n tt -1>2(t >1),即证当t >1时,有l n t >2(t -1)t +1㊂令函数g (t )=l n t -2(t -1)t +1(t >1),求导得g '(t )=1t-2(t +1)-2(t -1)(t +1)2=(t -1)2t (t +1)2>0,所以函数g (t )在(1,+ɕ)上单调递增,因此g (t )>l n 1-2ˑ(1-1)1+1=0㊂于是当t >1时,有l n t >2(t -1)t +1,所以有l n x 1+l n x 2>2成立,即x 1x 2>e 2㊂证法二:由于f '(x 1)=f '(x 2)=0,令f'(x )=0,则l n xx=m ㊂令函数h (x )=l n xx,则h (x 1)=h (x 2)=m ,h '(x )=1-l n xx2㊂由h '(x )>0,得0<x <e ;由h '(x )<0,得x >e ,所以函数h (x )在(0,e)上单调递增,在(e ,+ɕ)上单调递减,故0<x 1<e<x 2㊂令函数H (x )=h (x )-h e2x(0<x <e ),求导得H '(x )=h '(x )+e 2x 2h 'e2x=1-l n x x 2+e 2x 2㊃1-l n e2x e4x2=1-l n x x 2+l n x -1e 2=(1-l n x )1x 2-1e2=(1-l n x )e 2-x2e 2x2㊂因为0<x <e,所以1-l n x >0,e 2-x 2>0,所以H '(x )>0,所以H (x )在(0,e )上单调递增,易得H (x )<0,所以当x ɪ(0,e )时,h (x )<he2x㊂因为h (x 1)=h (x 2),所以h (x 2)<he2x 1㊂因为x 2ɪ(e ,+ɕ),e 2x 1ɪ(e ,+ɕ),h (x )在(e,+ɕ)上单调递减,所以x 2>e2x 1,即x 1x 2>e 2㊂点评:利用导数证明不等式问题时,关键就是合理消参,或合理消 变 ,或减少参数个数,或减少变量个数,合理借助新函数的构建与导数的运算,利用函数的单调性㊁极值与最值等来转化与应用㊂利用导数证明不等式问题时,其实质就是借助导数的应用,结合导数的运算,以及函数的单调性㊁极值或最值等相关知识,从而达到 数 与 形 的联系,合理依托端点效应,巧妙缩小变量的取值范围,借助直观分析,合理寻找临界,进而巧妙实现对应的不等式证明问题,全面提升函数与导数的综合应用与巧妙转化,提高数学能力,培养数学核心素养㊂(责任编辑 王福华)32解题篇 创新题追根溯源 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.。
利用导数证明不等式的常用方法

利用导数证明不等式的常用方法导数是微积分中的重要理论工具,其应用十分广泛,其中一项应用就是证明不等式。
下面将介绍一些利用导数证明不等式的常用方法。
首先,我们需要明确一些基本概念和定理。
设函数f(x)在区间[a,b]上连续,(a,b)上可导,那么:1.如果f'(x)>0,那么f(x)在[a,b]上单调递增;如果f'(x)<0,那么f(x)在[a,b]上单调递减。
2.如果在(a,b)上f'(x)>g'(x),则f(x)>g(x)。
3.如果在(a,b)上f'(x)≥g'(x),则f(x)≥g(x)。
基于以上定理,我们将介绍三种常用的利用导数证明不等式的方法。
方法一:使用函数性质和导数的单调性这种方法适用于证明比较简单的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造一个连续函数f(x)。
2.然后,求出f'(x),根据导数的正负确定f(x)的单调性。
3.最后,根据f(x)的单调性和不等式的要求,得出不等式的成立。
例如,我们来证明当x>0时,有e^x>1+x:1.构造函数f(x)=e^x-1-x。
2.求导得到f'(x)=e^x-1,由于e^x>0,所以f'(x)>0。
3.根据f(x)的单调性,得出e^x-1-x在x>0时为递增函数。
4.由于f(0)=e^0-1-0=0,所以当x>0时,有f(x)>0,即e^x>1+x成立。
方法二:使用导数的比较性质这种方法适用于需要比较多个函数的不等式,主要步骤如下:1.首先,根据题目中给出的不等式,构造多个连续函数。
2.然后,求出这些函数的导数。
3.利用导数的比较性质,确定函数之间的大小关系。
4.最后,根据函数之间的大小关系和不等式的要求,得出不等式的成立。
例如,我们来证明当0 < x < 1时,有x < ln(1 + x):1.构造函数f(x) = ln(1 + x) - x。
导数压轴7-利用函数单调性证明数列型不等式教师

1 第七课:利用函数单调性证明数列型不等式利用导数来证明不等式,通常应从需要证明的结论入手。
一.如果所需证明不等式其中一边是数列求和的形式,但不能直接求和,那么证明大概分为以下几步:1. 将不等号两侧都化为求和形式,如果是乘积的并且出现e 的指数次幂的考虑取对数2. 将左右两侧的求和形式化为∑ a n< ∑b n的形式,找到a n 和b n 的通项公式3. 将n 换成 x 〔或其它 x 的表达式〕,利用导数证明a n < b n 例1. 函数 f (x ) = 1ax 2- ln x (x > 0) ,证明: 1 + .... + 1 >n -12对话与解答:ln 2 ln n n +111 首先不等式左边已经是求和的形式 + .... +一共n -1项,右边的 n -1 可变为ln 2 ln n n +11 + 1 + ... + 1 ,这样我们刚好把左右两边变为相同项数(n -1项) 的两个不同的数 n + 1 n + 1 n +1 n -1个1 1列,接下来写出通项公式,其中a k = ln k ,b k = n +1.下一步应该比拟两边通项大小,要证明原不等式,即证 > 1 (k ≤ n ) ,且k ∈ N *, n ∈ N *,而 11 1,可通过证明ln k n +1 ln k ln n ln n> 1 n +1 1 来得到结果,要证 ln n > 1n +1,即证n +1- ln n > 0 ,设 f (x ) = x +1- ln x ,其中x > 0 ,通过求导找 f (x ) 最小值:f '(x ) = 1- 1,当1 > x > 0 时,f '(x ) < 0 , f (x ) 单调递减,x当 x > 1 时, f '(x ) > 0 , f (x ) 单调递增。
∴ f (x ) ≥ f (1) > 0 在 x > 0 恒成立, ∴n +1- ln n > 0∴ 1 ln n > 1 n +1∴ 1 + .... + 1 n -1 n -1 > > ,证毕 ln 2 ln n ln n n +1例2. 设m 为整数,且对于任意正整数n ,(1+ 1)(1+ 1 ) (1)1) < m ,求m 的最小值。
利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。
这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。
可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。
常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。
恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。
常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。
高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。
在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。
对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。
在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。
放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。
数列不等式也可考虑利用数学归纳法进行证明。
经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。
1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。
导数压轴题导数与数列不等式的证明

导数与数列不等式的证明例1。
已知函数()()ln 3f x a x ax a R =--∈(1)讨论函数)(x f 的单调性;(2)证明:*1111ln(1)()23n n N n ++++>+∈(3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345nn n N n n ⋅⋅⋅<≥∈(4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452nn n n n N n n +⎛⎫⋅⋅⋅<⋅≥∈ ⎪⎝⎭(5)证明:()444442*44444ln 2ln 3ln 4ln 5ln (1)2,23454n n n n N n n +⋅⋅⋅<≥∈(6)求证:()()()()222222121ln 2ln 3ln ...2,2321n n n n n N n n *-++++<≥∈+(7)求证:()22221111111...12482n e n N *⎛⎫⎛⎫⎛⎫⎛⎫++++<∈ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭例2。
已知函数()ln 1f x x x =-+。(1)求()f x 的最大值;(2)证明不等式:()*121n n nn en N n n n e ⎛⎫⎛⎫⎛⎫+++<∈ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭例3.已知函数()()2ln 1f x x x =-+(1)当0x >时,求证:()3;f x x <(2)当n N *∈时,求证:()33311111511...23421nk f k n n n =⎛⎫<++++≤- ⎪+⎝⎭∑例4.设函数()2()ln(1)0f x x m x m =++≠(1)若12m =-,求)(x f 的单调区间;(2)如果函数)(x f 在定义域内既有极大值又有极小值,求实数m 的取值范围;(3)求证:对任意的*N n ∈,不等式311ln n n n n ->+恒成立。例5.已知函数()ln(1)(1)1()f x x k x k =---+∈R ,(1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:ln 2ln 3ln (1)3414n n n n -+++<+(),1n N n ∈>.例6.已知函数)0()(>++=a c xb ax x f 的图像在点))1(,1(f 处的切线方程为1-=x y 。 (1)用a 表示出c b ,;(2)若x x f ln )(≥在),1[+∞上恒成立,求a 的取值范围;(3)证明:)1()1(2)1ln(131211≥+++>++++n n n n n 。
专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。
2023届高考数学二轮复习导数经典技巧与方法:导数与数列不等式

第25讲 导数与数列不等式知识与方法函数、数列、不等式的综合题,是高考压轴题的热点题型之一.一方面,以函数为载体让学生探究函数的性质;另一方面,数列是特殊的函数,在研究数列问题时,我们经常用函数的性质去探究数列的变化规律以及取值范围等.本节,我们介绍几类常见的导数与数列不等式结合的考题及其解决方法.1.基本类型(1)数列求和(或积)中的不等问题; (2)通项公式中的不等问题.对于数列求和的不等问题,通常要将通项公式放缩为可以求和的数列: (1)放缩为等差数列:通项公式:n b pn q =+;(2)放缩为等比数列:通项公式:11n n b b q -=;【点睛】特别地,当10,(0,1)b q >∈时,数列{}n b 为无穷递缩等比数列,其前n 项和()11111nn b q b T qq-=<--.这个不等式经常用到,它的结构为: ?×Ïî 1 ?«±È n T <-,常常要从第二项或第三项开始放缩.(3)裂项相消求和:通项公式特点:1n n n a b b +=-;(4)倒序相加求和:通项公式特点:1k n k b b -++=常数.【点睛1】数列求和不等式,要点睛意从通项公式入手,放缩成可求和的数列.【点睛2】在放缩时要点睛意前几问的铺垫与提示作用,特别是由恒成立与最值问题所得到的不等式,往往提供了放缩的方向.【点睛3】常用的放缩不等式:ln 1,e1,sin (0)xx x x x x x -+<>典型例题()()1158nni i i i a f n a f n ==<>∑∑类型或【例1】数列{}n a 满足1111,22n na a a +==-. (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,证明2ln 2n n S n +⎛⎫<-⎪⎝⎭.【解析】(1)由112n n a a +=-得,1111122n n n n a a a a +--=-=--,所以12111n n n a a a +-=--,即111111111n n n n a a a a ++-==----,所以111111n n a a +-=---,且1121a =--,数列11n a ⎧⎫⎨⎬-⎩⎭是首项为2-,公差为1-的等差数列,所要证以111n n a =---,故1n n a n =+. (2)要证2ln 2n n S n +⎛⎫<-⎪⎝⎭,即证1112111ln 2312n n n +⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,即证1112ln 2312n n n n +⎛⎫⎛⎫-+++<-⎪ ⎪+⎝⎭⎝⎭, 即证1112ln 2312n n +⎛⎫+++> ⎪+⎝⎭, 解法1:利用数列的单调性设()2111ln 2231n f n n +⎛⎫⎛⎫=-+++⎪ ⎪+⎝⎭⎝⎭, 只需证明()f n 的最大值小于0,考察(){}f n 的单调性, 作差:()()31111lnln 12222n f n f n n n n n +⎛⎫+-=-=+- ⎪++++⎝⎭. 构造函数()()ln 1(0)g x x x x =+->,则()()110,11xg x g x x x=-=-<++'在()0,∞+上单调递减, 所以()()00g x g <=,故()()1f n f n +<,从而()()311ln 022f n f =-<,得证. 解法2:通项比较点睛意到()*式左边是数列11n ⎧⎫⎨⎬+⎩⎭的前n 项和, 于是将右边2ln 2n +⎛⎫⎪⎝⎭看成另一个数列{}n b 的前n 项和的形式, 易得21ln ln 22n n n b ++⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭.记11n a n =+,只需证明n n a b >,即证12ln 11n n n +>++,构造函数()()ln 1(0)h x x x x =+->证明即可,过程与解法1相同. 解法3:积分放缩()2211111111123123112d ln 2ln2ln 2n n n n x n x ++++=⨯+⨯++⨯+++>=+-=⎰ 【点睛1】通项比较法也是证明此类数列求和型不等式的常规思路之一.一般地,对于数列不等式()1ni i a f n =∑<,可设()1ni i b f n =∑=,则()()()12n b f n f n n =--.若n n a b <成立,显然()1ni i a f n =∑<也成立.需要点睛意的是:若()1ni i a f n =∑<成立,不一定有n n a b <.【点睛2】解法3利用定积分的几何意义进行放缩,这种跨越知识点的思路非常具有创造性,技巧性较强.【例2】已知函数()()22ln 21(0)a f x ax x a a x-=-+-+>. (1)若()0f x 在[)1,∞+上恒成立,求实数a 的取值范围; (2)证明:()()*11111ln 21N 3521221nn n n n ++++>++∈-+. 【解析】()()1f x 的定义域为()0,∞+,()()2222122a a x x ax x a a f x x x'-⎛⎫-- ⎪-+-⎝⎭==. (1)当01a <<时,21a a ->,若21a x a -<<,则()()0,f x f x '<在21,a a -⎛⎫⎪⎝⎭上是减函数,所以21,2a x -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x 在[)1,∞+上不恒成立. (2)当1a 时,21aa-,当1x >时,()()0,f x f x '>在[)1,∞+上是增函数,又()10f =,所以()0f x .综上所述,所求a 的取值范围是[)1,∞+.(2)分析:点睛意到待证不等式左边是数列121n ⎧⎫⎨⎬-⎩⎭的前n 项和,于是将右边()1ln 21221nn n +++看成另一个数列{}n b 的前n 项和n S .由公式11,1,,2,n n n S n b S S n -=⎧=⎨-⎩,易得121111ln 22122121n n b n n n +⎛⎫=+- ⎪--+⎝⎭. 记121n a n =-,则只需证明n n a b >. 当1n =时,不等式显然成立;当2n 时,即证()1121111ln 22122122121n n n n n n +⎛⎫>+- ⎪---+⎝⎭,即证1121ln 212121n n n n ++>-+-,即证2121212ln 212121n n n n n n +-+->-+-. 令()21221n x n n +=-,则只需证明12ln (1)x x x x->>. 构造函数()12ln (1)g x x x x x=-->,或者利用第(1)问中的不等式()0f x 不难证明不等式成立,故而得证.将上述思路倒过来,可得下面的证法:证明:由(1)知当1a 时,()0f x 在[)1,∞+上恒成立.取1a =,得12ln 0x x x --,所以12ln x x x-.令*21,N 21n x n n +=∈-,得2121212ln212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭,所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭,上式中1,2,3,,n n =,然后n 个不等式相加,得到:()()*11111ln 213521221nn n n n ++++>++∈-+N . 【点睛】在放缩时要点睛意前几问的铺垫与提示作用!第(1)问中的不等式()0f x 为我们提供了放缩的方向,不必构造新的函数进行证明. 【例3】设函数()()1,ln (0,e 2.718)xg x h x x a ax-==>≈. (1)设()()22r x x h x =-,求()r x 的最小值;(2)设()()()f x g x h x =+,若()f x 在[)1,∞+上为增函数,求实数a 的取值范围; (3)求证:N,2n n ∈≥时,21ni in =∑∑<.【解析】(1)已知函数()ln h x x =,所以()22ln (0)r x x x x =->,所以()241x r x x -=',今()0r x '=,解得12x =,或12x =-(舍),当10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,r x r x '<在10,2⎛⎫ ⎪⎝⎭单调递减, 当1,2x ∞⎛⎫∈+⎪⎝⎭时,()()0,r x r x '>在1,2∞⎛⎫+ ⎪⎝⎭上单调递增; 所以()r x 在12x =处取得最小值,2min 1111()2ln ln22222r x r ⎛⎫⎛⎫==⨯-=+ ⎪ ⎪⎝⎭⎝⎭.(2)因为()()1ln 1xf x x x ax -=+,所以()21x a f x x-='. 因为()f x 在[)1,∞+上为增函数,所以()210x a f x x'-=在[)1,∞+上恒成立, 即1ax在[)1,∞+上恒成立, 因为101x<,所以1a ,所以a 的取值范围是[)1,∞+. (3)分析:要证21ni in =∑∑<,即证1111ln 234n n++++<,将ln n 看成数列 (){}ln ln 1n n --的前n 项和,于是只需证明()1ln ln 1n n n<--, 即证1ln 1n n n <-. 令1n x n =-,则1x n x =-,只需证明1ln x x x->, 构造函数或者利用(2)的结论即可得证. 证明:由(2)可知1a =时,()1ln xf x x x-=+在[)1,∞+上为增函数, 今1n x n =-(其中*N ,2n n ∈),则()()1,11n x f x f f n ⎛⎫>=> ⎪-⎝⎭,即111ln ln 0111nn n n n n n n n --+=-+>---,即()1ln ln 1n n n -->, 所以,以上各式累加得,所以.即:.【点睛】第(3)问的证明用了通项比较法,点睛意到了第问的铺执与提示作用.【例4】已知函数.(1)求函数在上的单调区间;(2)用表示中的最大值,为的导函数,设函数,若在上恒成立,求实数的取值范围;(3)证明:.【解析】(1)因为,,令,得.当时,单调递增;当时,单调递减;所以函数在上的单调递增区间为,单调减区间为.(2)由知,当时,恒成立,故恒成立;当时,,又因为恒成立,所以在上恒成立,所以,即在上恒成立.令,则,由,令得,易得在上单调递增,在上单调递减,所以,所以,即.综上可得.(3)证法1:证明:设,则,所以在上单调递增,所以,即,所以所以.证法2:记,则所以为递增数列,所以,得证.【点睛】第(3)问证法1用了不等式进行放缩;证法2用了数列的单调性. 另外,还可以利用积分放缩,请读者参考例1自行完成,此处略过.【例5】已知函数的最小值为0,其中.(1)求的值;(2)若对任意的,有成立,求实数的最小值;(3)证明:.【解析】(1),得,得所以时,函数取得极小值且为最小值所以,解得.(2)当时,取,有,故不合题意当时,令,即,可得(1)当时在上恒成立,因此在上单调递减,从而对任意的,总有,即对任意的,有成立;(2)当时,,对于,因此在上单调递增,因此取时,,即有不成立;综上知,时对任意的,有成立,的最小值为.(3)证明:当时,不等式左边右边,所以不等式成立;当时,,在中,取,得,所以.所以综上【点睛】第三问中,借助于导数证不等式的方法进行.点睛意到在第问中,取,得,则,于是得到:,然而右侧的式子显然大于2,这说明放缩过头了,于是保留第一项,从第二项开始放缩: “留一手”是放缩中的常用技巧,有时甚至需要“留两手”或“留三手”.【例6】已知函数.(1)求函数的极值;(2)(1)当时,恒成立,求正整数的最大值;(2)证明:.【解析】(1),当时,,函数在上单调递增,没有极值;当时,由得,由得,所以在上单调递减,在上单调递增,此时函数的极小值,没有极大值.(2)(1)当时恒成立,即只要即可,由时在上单调递减,在上单调递增,(1)若时,在上单调递增,满足题意;(2)当时,在上单调递减,在上单调递增,,令,则,所以在上单调递减,且,所以存在使得,则的解集为.综上,的取值范围,其中,所以正整数的最大值3.(2)证明:要证两边取对数,即证也即证由(1)知,令,则所以所以.【点睛】最后一问中,将目标不等式两边取自然对数,便由积式变成和式,这样就化为类型1,利用通项比较法不难获证.【例7】已知函数.(1)函数在定义域内恒成立,求实数的取值范围;(2)求证:当时,.【解析】(1)函数定义域为,当时,,不满足题设;当时,,在上,单调递增,在上,,单调递减,所以,解得.综上:的取值范围是.(2)证明:由(1)得,当时,当且仅当时等号成立.所以,所以所以,所以.【点睛】第(2)问用到了对数放缩不等式:,还用到了裂项放缩.【例8】已知函数(其中是自然对数的底数,.(1)当时,求函数的极值;(2)当时,求证;(3)求证:对任意正整数,都有.【解析】(1)当时,,当时,;当时,;所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,函数无极大值;(2)证明:由,(1)当时,恒成立,满足条件;(2)当时,由,得,则当时,,当时,,所以函数在上单调递减,在上单调递增,所以函数在处取得最小值,因为,所以,所以,所以,综上得,当时,;(3)由(2)知,当时,恒成立,所以恒成立,即,所以,令,得,,所以.【点睛】第(3)问用到了对数放缩不等式:,还用到了等比放缩.【例9】已知函数.(1)求的最大值;(2)若对,总存在,使得成立,求实数的取值范围;(3)证明不等式是自然对数的底数).【解析】(1)由,得,当时,,当时,,所以在上单调递增,在上单调递减,则当时,取得最大值为.(2)对,总存在,使得成立,等价于:存在,使得成立.由(1)知,,问题转化为存在,使得.,当时,,①当时,若单调递减,,不合题意;②当时,,使得,若,若时,,即当,则,使得,符合题意;③当时,若单调递增,,则,使得,符合题意.综上可知,所求实数的范围是;(3)证明:由(2)可知,当时,若,令.有,再由(1)可得,,则,即,也即,所以,.则.【点睛】第(3)问用到了三角放缩不等式:,还用到了等比放缩.递推公式中的不等问题【例10】已知函数.(1)求证:当时,;(2)若数列满足,且,证明:.【解析】(1)略;(2)要证,即证.如果成立,则必会有,从而只需证明即可,这样递推式就得以建立.接下来考虑如何去绝对值:因为,所以,则,所以,则,如此继续下去,得,从而可得,于是.从而要证成立,只需证明,即证,即证,即.只需证明,即,即证明,即证.分析至此,只需构造函数就可以顺利解决:令,则,,因为,所以,所以在上单调递增,所以,所以在上单调递增,所以,即,故原不等式成立.【点睛】本题构造函数方法不唯一,如下面的过程:令,则,所以在上单调递增,所以,即,所以,于是原不等式得证.【例11】函数,曲线在处的切线在轴上的截距为.(1)求;(2)讨论的单调性;(3)设,求证:.【解析】在上单调递增(过程略;(3)证明,亦即证明.如果成立,那么就会有,反过来,如果我们能够证明,也就是证明,就可以原式得以成立.(下面我们就开始面临下一个问题:如何去绝对值?这就势必要比较与的大小,因此分类情况就会面临着三种:.)下面分别进行讨论:(i)时,不等式显然成立;(ii)若,由在单调递减,且可知,从而式即证,即,亦即,即证.而由单调递增,且,从而可知,从而有成立;(iii)若时,类似可证.【例12】函数.(1)判断时,的零点个数,并加以说明;(2)正项数列满足.(1)判断数列的单调性,并加以证明;(2)证明:.【解析】(1)当时,.令,则,所以在单调递增,又,所以,从而的零点个数为0.(2)由,得,所以由(1)知,当时,有,即,所以.所以,故数列单调递减.对于第(3)问,由于所证不等式的左侧可以视为数列的前项的和,所以我们可将视为某一个数列的前项和,即.从而.要证,只需证.如果成立,则有成立,从而要证,只需证成立即可,从而递推关系得以建立.要证,即证,即证,即证,即证,即证,即证.令,从而,由(1)知,从而,从而原不等式得证.强化训练1..已知函数.(1)求函数的单调区间;(2)若不等式恒成立,求实数的取值范围;(3)当时,求证:.【解析】(1)的定义域为,(1)当时,,所以在上递增;(2)当时,令,则,当时,;当时,,所以在区间上递增,在上递减.(2)解法1:构造函数,(1)当时,由在上递增,又,不符合题意;(2)当时,由知在区间上递增,在上递减,所以,解得:.综上:,所以的取值范围为.解法2:分离参数恒成立,等价于设,令,则当时,;当时,,所以在区间上递增,在上递减;所以,所以:.所以的取值范围为.(3)证明:由(2)知,当时,恒成立,即(1)当时,,即,所以,上述不等式相加可得:, 即,即,(2)当时,,即,即,所以,,上述不等式相加可得:,即,即,综上:当时,.2.已知函数.(1)求在点处的切线方程;(2)若不等式恒成立,求实数的取值范围;(3)求证:当时,不等式成立.【解析】(1)切线方程为即.(2)设,当时,单调递增;当时,单调递减;因为不等式恒成立,且,所以,所以即可,从而.(3)由(2)可知:当时,恒成立,当且仅当时等号成立. 令,因为,所以,整理得,变形得,即.当时,有,.将上述式两边同时相加,得.所以当时,不等式成立.3.已知函数.(1)设,求的单调区间;(2)若对,总有成立.求的取值范围;(ii)证明:对于任意的正整数,不等式恒成立. 【解析】(1),定义域为,所以,①当时,令,得;令,得;②当时,令,得或;令,得;③当时,恒成立;④当时,令,得或;令,得;综上:当时,的增区间为的减区间为;当时,的增区间为和的减区间为;当时,的增区间为;当时,的增区间为和的减区间为.(2)(i)由题意,对任意恒成立,即恒成立,只需.由第知:因为,显然当时,,此时对任意不能恒成立;当时,,所以;综上,的取值范围为.(ii)证明:由(1)知:当时,,即,当且仅当时等号成立.当时,可以变换为,在上面的不等式中,令,则有所以不等式恒成立.4.已知函数.(1)若不等式在区间上恒成立,求实数的取值范围;(2)求证:(其中为自然对数的底数).【解析】(1)实数的取值范围为(过程略);(2)取,由(1)有,即.又当时,,所以.于是,将以上不等式累加,得,不等式得证.5.已知函数.(1)若,且对于任意恒成立,试确定实数的取值范围;(2)设函数,求证:【解析】(1)由,可知是偶函数.于是对任意成立等价于对任意成立.由,得.①当时,.此时在上单调递增.故,符合题意.②当时,.当变化时的变化情况如表:单调递减极小值单调递增由此可得,在上,.依题意,,又,所以.综合①,②得,实数的取值范围是.(2)因为,所以,又,所以,,.由此得:故成立.6.已知函数.(1)求证:当时,;(2)数列满足,求证:数列单调递减,且.【解析】第(1)问略.第(2)问,我们先用数学归纳法先证:当时,,从而;假设当时,,下证.由,从而,由于,所以,从而.由数学归纳法原理,知.下证数列单调递减,即证,即证.即证,由(1)知,只需证.而成立,从而数列单调递减.下面证明,只需证,只需证,只需证.构造,所以单调递增,从而,从而对恒成立.从而.原不等式得证.7.已知函数,正实数数列满足,且当时,求证:(1)当时,;(2).【解析】(1)我们证明,当时,.令,即, 则由可知单调递增,从而. 由可知单调递增,于是. 由可知单调递增,因此, 即.因为,所以.(2)我们先对用数学归纳法证明.①当时,,结论成立.②假设当时,有(其中).如果,则.点睛意可知,与归纳假设矛盾.所以,当时结论也成立,即.由①②可知,.于是,当时,有, 令从1到求和,即得.。
利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧
发布时间:2022-05-07T11:31:58.110Z 来源:《中国教师》2022年1月2期作者:丁华娟[导读] 利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
丁华娟
绍兴市柯桥区鉴湖中学高三数学组技巧精髓
1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
一、利用题目所给函数证明
【警示启迪】如果是函数在区间上的最大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证.2、直接作差构造函数证明
【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。
读者也可以设做一做,深刻体会其中的思想方法。
3、换元后作差构造函数证明
也就是说,在可导的前提下,只要证明0即可.
4、从条件特征入手构造函数证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数来证明不等式,通常应从需要证明的结论入手。
一.如果所需证明不等式其中一边是数列求和的形式,但不能直接求和,那么证明大概分为以下几步:1. 将不等号两侧都化为求和形式,如果是乘积的并且出现e 的指数次幂的考虑取对数2. 将左右两侧的求和形式化为nna b<∑∑的形式,找到n a 和n b 的通项公式3. 将n 换成x (或其它x 的表达式),利用导数证明n n a b <例1. 已知函数21()ln (0)2f x ax x x =->,证明:111....ln 2ln 1n n n -++>+ 对话与解答:首先不等式左边已经是求和的形式11....ln 2ln n ++一共1n -项,右边的11n n -+可变为1111...111n n n n -++++++个,这样我们刚好把左右两边变为相同项数(1n -项)的两个不同的数列,接下来写出通项公式,其中1ln k a k=,11k b n =+.下一步应该比较两边通项大小,要证明原不等式,即证1ln k 1()1k n n >≤+,且**,k N n N ∈∈,而11ln ln k n >,可通过证明1ln n11n >+来得到结果,要证1ln n 11n >+,即证1ln 0n n +->,设()1ln f x x x =+-,其中0x >,通过求导找()f x 最小值:1'()1f x x=-,当10x >>时,'()0f x <,()f x 单调递减,当1x >时,'()0f x >,()f x 单调递增。
()(1)0f x f ∴≥>在0x >恒成立,1ln 0n n ∴+-> ∴1ln n 11n >+ ∴1111....ln 2ln ln 1n n n n n --++>>+,证毕例2. 设m 为整数,且对于任意正整数n ,2111(1)...(1)222nm +++<,求m 的最小值。
第七课:利用函数单调性证明数列型不等式对话与解答:首先,本题需要证明的不等式左边是乘积的形式,所以我们考虑将左侧转化为求和的形式,即两边取对数,得到左边不等式通项为1ln(1)2n +,观察该不等式右侧为常数m ,不能简单地比较两边通项,但我们通过左侧通项联想到不等式ln(1)x x +<,从而令12nx =得到11ln(1)22n n+<,再对两边分别求和得到:221111111ln(1ln(1...ln(1 (112222222)n n n ++++++<+++=-<故2111(1)(1)3222ne +++<< 而23111(1)(1)2222+++> m ∴的最小值为3总结与反思:上面几题我们通过直接构造来得到答案,但有时我们不要贸然直接构造函数求解,因为需要证明不等式这一问往往是导数题目的第三问,应该先观察是否能用到前几问的地方,如果能,这一问的解答会方便很多。
很多时候前几问会求在某种条件下参数的取值范围,这时在最后一问证明不等式时可以将前面求出的参数的范围的边界值带入原函数,很有可能可以得到证明不等式的关键结论。
例3. 已知函数()f x kx =,ln ()xg x x= (1)求函数ln ()xg x x=的单调区间。
(2)若不等式()()f x g x ≥在区间(0,)+∞上恒成立,求实数k 的取值范围; (3)求证:444ln 2ln 3ln 1...232n n e+++< 对话与解答:(1)函数ln ()xg x x=的单调增区间为(0,)e ,单调减区间为(,)e +∞. (2)通过构造新函数求导得到:12k e≥,具体过程略。
(3)首先观察可知,不等式左边为数列和式,通项为4ln n na n =,此时我们需要观察前两个问题,看看是否有能用的结论,第一问求出ln ()x g x x =的单调区间,对于处理4ln n na n=来说没有什么作用;第二问求出ln x kx x ≥当12k e≥时,在区间(0,)+∞上恒成立,考虑取12k e =得到:不等式2ln 12x x e ≤在区间(0,)+∞上恒成立,然而4ln n na n =,所以将不等式变形为42ln 112x x e x≤⋅,然后对不等式左右求和: 444222ln 2ln 3ln 1111...(...23223n n e n +++≤+++ 对比需要证明的不等式,即需证明222111...123n +++<,通过简单的放缩即可得到结论:2221111111......11231223(1)n n n n+++<+++=-<⨯⨯-例4. 已知函数()ln f x tx t x =-- (1)若函数()f x 在[1+)∞,上为增函数 ,求实数t 的取值范围;(2)当2n ≥且*n N ∈时,证明:111...ln ln 2ln 3ln n n+++>. 对话与解答:(1)实数t 的取值范围为[1,)+∞.(2)首先,根据第一问的结论,将1t =带入原函数得到:()1ln f x x x =--在[1,)+∞上为增函数,()(1)0f x f ≥=,即1ln x x -≥,当且仅当1x =时取等号。
下面分析原不等式,要证的不等式左边是数列求和的形式,通项为1ln n a n=,而上面的结论有ln 1x x ≤-,变形有:11,(1)ln 1x x x ≥>-,令(2)x n n =≥,则有11ln 1n n ≥-,那么我们可以构造新的数列11n b n =-,以n b 作为连接不等式左右的桥梁来证明不等式。
接下来对不等式右边变形:23ln ln ln ...ln 121n n n =+++-(一个常见的拆分,要记住),只需证明1ln11nn n >-- 在1ln x x -≥中取ln 2na <,已知当1x >时,1ln11nn n >--,即有11ln 1n n ≥-ln 1n n >-,对不等式两端求和即证。
例5.已知函数(1)()ln(1)1x x f x x xλ+=+-+。
(1)若0x ≥时()0f x ≤,求λ的最小值; (2)设数列{}n a 的通项1111...23n a n =++++,证明:21ln 24n n a a n-+>对话与解答:(1)λ最小值为12,过程略。
(2)令1=2λ.由(1)知,当0x >时,()0f x <,即(2)ln(1)22x x x x+>++ 211111=41224n n a a n n n n n -+++⋅⋅⋅+++,观察该式,发现我们并不能直接写出通项的表达式,原因是14n 与12n 中间隔了很多项,此时我们需要想办法补齐14n 与12n中间的项,考虑将前面的项变形:1111112(12212(1)2(2)2(21)n n n n n n ++⋅⋅⋅=++⋅⋅⋅+++-++-,然后我们把每一项按大小顺序排列并两两组合:211111=41224n n a a n n n n n-+++⋅⋅⋅+++11111=2[]22(1)2(2)2(21)4n n n n n+++⋅⋅⋅++++-111111=[][][]22(1)2(1)2(2)2(21)4n n n n n n++++⋅⋅⋅+++++-212341=2(1)2(1)(2)4(21)n n n n n n n n n ++-++⋅⋅⋅++++- 现在可以发现不等式左边通项为212(1)k k k ++,而(2)ln(1)22x x x x +>++,只需令1x k=得到211ln2(1)k k k k k++>+,然后对不等式两边求和(k 从n 到21n -)得到: 21ln 2ln ln 24n n a a n n n-+>-=总结与反思:例5.这一题的难点在于给的不等式的通项不能直接写出,需要通过补项来构造一个新的数列,从而进行比较,通过这一题我们知道,很多看似不能写出通项的数列,可以通过一些简单的变形取构造成一个可以写出通项表达式的数列,这也是解决这类问题的一个着手点。
例6. 数列{}n a 满足11a =,1211(1)(1)2n n n a a n n n +=++≥+. (1) 求证:2(2)na n ≥≥;(2) 求证:2(1)n a e n <≥.对话与解答:(1)略。
(2)首先分析要证的不等式2(1)n a e n <≥,右端是带有e 的,暗示我们需要取对数处理,而我们无法求出n a 的通项公式,只能从递推式出发,由(1)和11a =知1(1)n a n ≥≥,从而有:1221111(1)(1)22n n n n na a a n n n n +=++≤++++, 这里注意,我们使用第一问的结论时一定要看清楚条件2n a ≥是在2n ≥时成立,而递推式1211(1)2n n na a n n +=+++是在1n ≥时成立,所以千万不要在递推式中直接使用2n a ≥去放缩得到 :12211111(1(122n n n n n a a a n n n n +-=++≤++++,这个式子仅在2n ≥时成立,如果后面稍微大意忽略掉这个条件就会出错,并且可能会对我们后面的计算造成一点麻烦。
两边去对数:1211ln ln(1)ln 2n n na a n n +≤++++,观察该式联想到不等式ln(1)x x +≤ 则有1221111111lnln(1)=2212n n n n n a a n n n n n n +≤++≤+-++++ 1212111(1)111111122ln ln(12212231212n n n n n n n a a a a a a a n n n ----⇒=⋅⋅⋅⋅≤-+-+⋅⋅⋅+-+=--<--2n a e ⇒< 总结与反思:当我们不能求出需要证明的不等式通项表达式时,需要我们灵活地利用已知条件进行放缩,转化条件,并注意要根据需要证明的不等式的形式进行变形。
比如例6,我们并不能求练习1:证明:2222222ln 2ln 3ln 21...232(1)n n n n n --+++<+练习2. 已知函数2()ln (1)1f x p x p x =+-+(1)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围。
(2)证明:*111ln(1)1()23n n N n+<+++⋅⋅⋅+∈练习3. 设2()ln(1)f x x x =+- (1)判断()f x 的单调性 (2)证明:444111(1(1)23e n ++⋅⋅⋅+<练习4. 已知函数()ln 1f x x x =-+ (1) 求()f x 的最大值; (2) 求证:(1)ln[(1)(2)21](2,2)2n nn n n n N ->--⋅⋅⋅⨯≥∈练习5. 设函数()ln(1)f x x =+,()'()g x xf x =,0x ≥,其中'()f x 是()f x 的导函数。