的步进电机的基础知识

合集下载

步进电机基础知识——来自百度百科

步进电机基础知识——来自百度百科

步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而到达准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而到达调速的目的。

步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。

虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及电脑等许多专业知识。

步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。

随着微电子和电脑技术的发展,步进电机的需求量与日俱增,在各个国民经济领域都有应用。

步进电机概述步进电机又称为脉冲电机,基于最基本的电磁铁原理,它是一种可以自由回转的电磁铁,其动作原理是依靠气隙磁导的变化来产生电磁转矩。

年前后开始以控制为目的的尝试,应用于氢弧灯的电极输送机构中。

这被认为是最初的步进电机。

二十世纪初,在自动交换机中广泛使用了步进电机。

由于西方资本主义列强争夺殖民地,步进电机在缺乏交流电源的船舶和飞机等独立系统中得到了广泛的使用。

二十世纪五十年代后期晶体管的发明也逐渐应用在步进电机上,对于数字化的控制变得更为容易。

到了八十年代后,由于廉价的微型电脑以多功能的姿态出现,步进电机的控制方式更加灵活多样。

步进电机相对于其它控制用途电机的最大区别是,它接收数字控制信号电脉冲信号并转化成与之相对应的角位移或直线位移,它本身就是一个完成数字模式转化的执行元件。

步进电机驱动丝杆转动的原理

步进电机驱动丝杆转动的原理

步进电机驱动丝杆转动的原理1. 基本概念介绍1.1 步进电机的基础嘿,大家好!今天咱们要聊聊一种非常酷的东西,叫做步进电机。

你可以把它想象成一种超级勤奋的小电动马达。

这个小家伙的特别之处在于它能够一步一步地前进,不像普通的电机那样一转就完事儿。

它的每一步都是精确控制的,所以在各种高精度要求的设备中都能看到它的身影,比如打印机、电脑硬盘,甚至是那些复杂的工业机械。

1.2 丝杆的作用接下来,咱们来说说丝杆。

丝杆,听起来是不是有点像古代的兵器?实际上,它的工作原理要简单得多。

想象一下你有一个非常长的螺丝,用力旋转它就能把东西拧进或拧出来。

丝杆的工作原理就是这个样子。

它通过旋转将旋转的动作转换成直线的移动,类似于你用手把螺丝旋进木头里。

2. 步进电机与丝杆的联动2.1 步进电机如何驱动丝杆好啦,现在我们要讲的是如何把这两个小伙伴——步进电机和丝杆——结合起来,让它们配合得天衣无缝。

首先,步进电机和丝杆之间有一个叫做“联轴器”的小配件,它的作用就是将步进电机的旋转运动传递给丝杆。

联轴器就像是步进电机和丝杆之间的小桥梁,确保运动能顺畅地从电机传递到丝杆上。

2.2 精确控制的魔力步进电机之所以神奇,是因为它能将电流的不同组合转换成不同的旋转角度。

每当电机转动一个小角度,丝杆也会跟着转动一点点。

这样一步一步的转动就能让丝杆移动得非常精确。

说白了,步进电机就像是个细心的工匠,它一边转一边细细地计算,确保丝杆的每一步都是准确无误的。

比如你在调节一个机械臂的位置,步进电机能确保它的每个动作都是精准到位的,绝不会出现东拉西扯的情况。

3. 实际应用场景3.1 工业中的应用咱们再看看这些神奇的设备在实际生活中的应用。

比如在工业制造中,步进电机驱动丝杆是常见的组合。

你可以在那些需要高精度位置控制的机器上看到它们,比如数控机床、自动化装配线等。

它们的精确控制就像是给机器装上了一双“慧眼”,能够准确地完成各种复杂的任务。

试想一下,如果没有这种精确的控制,那些高精度的零件肯定就会变成四不像了。

步进电机基础入门

步进电机基础入门

步进电机基础入门东方马达中国总公司朱华摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

关键词:脉冲控制永磁励磁一、步进电机的构造(以5相步进为例)步进电机的构造主要采用图示的方式进行讲解:步进电动机构造上大致分为定子与转子两部分。

转子由转子1、转子2、永久磁钢等3 部分构成。

而且转子朝轴方向已经磁化,转子1 为N 极时,转子2 则为S 极。

定子拥有小齿状的磁极,共有10个,皆绕有线圈。

其线圈的对角位置的磁极相互连接着,电流流通后,线圈即会被磁化成同一极性。

(例如某一线圈经由电流的流通后,对角线的磁极将同化成S 极或N 极。

)对角线的2个磁极形成1个相,而由于有A相至E 相等5个相位,因此称为5 相步进电动机。

系统构成图示转子的外圈由50个小齿构成,转子1 和转子2 的小齿于构造上互相错开1/2 螺距。

由此转子形成了100个小齿。

目前已经有转子单个加工至100齿的高分辨率型,那么高分辨率型的转子就有200个小齿。

因此其机械上就可以实现普通步进电机半步(普通步进电机半步需要电气细分达到)的分辨率。

电动机构造图2∶与转轴成垂直方向的断面图二、步进电机的运转原理。

实际上经过磁化后的转子及定子的小齿的位置关系,在此说明如下。

首先解释励磁,励磁就是指电动机线圈通电时的状态。

●A相励磁将 A 相励磁,会使得磁极磁化成S 极,而其将与带有N极磁性的转子 1 的小齿互相吸引,并与带有S极磁性的转子2 的小齿相斥,于平衡后停止。

此时,没有励磁的B 相磁极的小齿和带有S极磁性的转子 2 的小齿互相偏离0.72°。

以上是A 相励磁时的定子和转子小齿的位置关系。

步进电机基本工作原理

步进电机基本工作原理

步进电机基本工作原理电机将电能转换成机械能,步进电机将电脉冲转换成特定的旋转运动。

每个脉冲所产生的运动是精确的,并可重复,这确实是步进电机什么缘故在定位应用中如此有效的缘故。

永磁步进电机包括一个永磁转子、线圈绕组和导磁定子。

鼓舞一个线圈绕组将产生一个电磁场,分为北极和南极,见图1所示。

定子产生的磁场使转子转动到与定子磁场对直。

通过改变定子线圈的通电顺序可使电机转子产生连续的旋转运动。

图2显示了一个两相电机的典型的步进顺序。

在第1步中,两相定子的A相通电,因异性相吸,其磁场将转子固定在图示位置。

当A相关闭、B相通电时,转子顺时针旋转90°。

在第3步中,B相关闭、A相通电,但极性与第1步相反,这促使转子再次旋转90°。

在第4步中,A相关闭、B相通电,极性与第2步相反。

重复该顺序促使转子按90°的步距角顺时针旋转。

图2中显示的步进顺序称为〝单相鼓舞〞步进。

更常用的步进方法是〝双相鼓舞〞,其中电机的两相一直通电。

然而,一次只能转换一相的极性,见图3所示。

两相步进时,转子与定子两相之间的轴线处对直。

由于两相一直通电,本方法比〝单相通电〞步进多提供了41.1%的力矩,但输入功率却为2倍。

半步步进电机也可在转换相位之间插入一个关闭状态而走〝半步〞。

这将步进电机的整个步距角一分为二。

例如,一个90°的步进电机将每半步移动45°,见图4。

然而,与〝两相通电〞相比,半步进通常导致15%~30%的力矩缺失〔取决于步进速率〕。

在每交换半步的过程中,由于其中一个绕组没有通电,因此作用在转子上的电磁力要小,造成了力矩的净缺失。

双极性绕组双相鼓舞介绍了利用一种〝双极性线圈绕组〞的方法。

每相用一个绕组,通过将绕组中电流反向,电磁极性被反向。

典型的两相双极驱动的输出步骤在电气原理图和图5中的步进顺序中进一步阐述。

按图所示,转换只利用绕组简单地改变电流的方向,就能改变该组的极性。

单极性绕组另一常用绕组是单极性绕组。

步进电机基础知识培训作业和答案

步进电机基础知识培训作业和答案

2.为什么我们看到的两相混合式步进电机的转子是分两段的(见附件图1)?(这个题可能其实有点儿难度)
3.定子上每个电极上相邻小齿间的角度是多少度(图2中可以看到定子上的小齿)?(如果第2题想错了的话,这个题也可能就错了,如果这个题想错了,第1题可能也就错了)
4.公司目前用的驱动器M839输入脉冲高电平为5V(额定脉冲输入电压)时,输入电流大约为13mA,已知M839内部已经在光耦的输入端串连了270欧姆的电阻。问:如果要用高电平12V的电路给M839发送脉冲,在M839外部串连多大的电阻比较好?
第5题: 从图3中可以看出,单极式的步进电机每相的绕组相当于两个线圈串连而成的。从图3右边的端口电压顺序图(不知道这么叫对不对)可以看出,单极式的每相两个线圈不会同时流过电流,进一步分析可以看出来每相的两个线圈是串连的,即这两个线圈的缠绕方向是一致的(我是这么认为的,也不知道对不对)。所以把这个单极式的步进电机当作双极式来用的时候就有很多种接法。我认为可以不用1,6号端口,即把两个线圈当成1个线圈来用;也可以只用每相的一个线圈,即使用1,6号端口,并用每相的另外任何一个端口。要注意的是这两种接线方法的绕组电感和电阻是不一样的,所以在峰值电流一定的情况下,这两种接线方法下步进电机的保持转矩是不一样的。当通以额定电流时,第2种接线方法下的保持转矩是单极式电机的额定保持转矩。(以上是我的理解,不知道对不对,欢迎大家拍砖)
第4题第1问: 只需要计算在电流不变的情况下,串多大的电阻可以分出去7V的电压,所以结果是7 / 0.013 = 538.5欧姆。
第4题第2问: 结果大约11.4mA。计算方法,先计算5V时光耦中的发光二极管的管压降,5 - 270 × 0.013 = 1.49V。近似计算时认为电流变化时光耦中的发光二极管的管压降不变(实际情况是管压降变化很小),所以12V时也按照1.49V的管压降来计算。计算方法是: (12 - 1.49) / (270 + 650) ~= 11.4mA。

电气基础知识

电气基础知识

电气基础知识1.电工基础知识:1.1 电压:电压也叫电位差,是指电流从高电位处向低电位处,两个电位之差。

通常也叫电压。

用字母U表示,单位是伏特,用字母V表示。

其中:1V=1000mV=1000,000μV 1mV=1000μV电压还分交流和直流,分别用AC V和DC V 表示。

直流电压在测量时要注意有+,-之分。

1.2 电阻:电流在物体内流动所遇到得阻力叫电阻,用R表示,单位:欧姆用字母Ω表示。

其中,1MΩ=1000KΩ=1000,000Ω1KΩ=1000Ω电阻的种类很多,有碳质电阻,碳膜电阻,绕线电阻等。

形式上有固定电阻,可变电阻和电位器等。

电阻温度系数:电流流过电阻时,温度升高,其阻值发生变化,阻值变化值与原有阻值之比叫电阻的温度系数。

对于金属材料的电阻,电阻随温度的升高而增大,是正温度系数;对石磨和碳来讲,电阻随温度的升高而减少,是负温度系数。

温度系数越小,说明电阻越稳定。

空调器的温度传感器也是一种电阻,叫热敏电阻,其阻值是随着温度的升高而减少。

额定功率分1/8、1/4、1/2、1、2、3、5、10、20W等规格。

用指针式万用表测量电阻时要注意选择合适的档位,而且换档一定要调零。

1.3 电容器:凡被绝缘物分开的两个导体的组合都叫电容。

用字母C表示,单位是法拉,用F表示。

其中,1F=1000000μF=106μF=1012μF主要指标有电容量和耐压,如2.5μF/450V。

种类有云母电容、陶瓷电容、电解电容和纸质电容等。

一般,陶瓷电容用在高频电路上,电机的启动电容主要用电解电容。

测量电容时,把万用表表笔探头直接放在电容器两个端子上,数字表可以直接读出电容的容量。

用指针表测量时,要用万用表的电阻档,并且将电阻档设置为最大量程,若指针偏转角度大,然后再逐渐回到最初位置(∞位置),说明电容器是好的。

如果回不到∞位置,则表头指的电阻就是漏电电阻,一般电容器的漏电电阻是很大的,通常有几十到几百兆欧。

测量0.01μ以上的大电容,用万用表RX10K档,只要表头指针摆动小或基本不跳动,可以判断电容器已开路。

步进电机pwm控制的基本原理

步进电机pwm控制的基本原理

步进电机pwm控制的基本原理引言:步进电机是现今广泛应用于电子领域的电动机之一,这种电机以具有精确定位和高精度的控制特点而受到广泛的关注。

其中,其的驱动方式采用PWM技术来控制电机的磁场产生,从而实现电机的旋转。

那么,本篇文章将要讲述步进电机控制的基本原理,希望对广大读者有所帮助。

一、步进电机的分类1.1、断续运转步进电机断续运转步进电机顾名思义,是指在控制过程中通过施加交流驱动所产生的多相电流来使电机进行断续运转,从而实现电机的旋转运动。

它是通过调整DC-AC逆变器的输出进而调整PWM波形的周期和占空比,从而控制电机的转动角度。

这种步进电机的特点是运动速度低,但是定位精度高且驱动控制简单。

1.2、连续运转步进电机与断续运转步进电机不同的是,连续运转步进电机是在直流电源的持续作用下,以斩波器技术产生的单一脉冲驱动信号来实现步进电机的旋转。

它是通过调节斩波器输出的短脉冲宽度和高电平的时间来实现电机的转角控制。

而此种步进电机,其特点为可以实现高速运动,但定位精度有一定的影响。

二、步进电机PWM控制的原理PWM技术是指通过产生一定周期和占空比的矩形脉冲信号驱动电机运转。

一般而言,PWM控制信号器是由一个微控制器或者FPGA所实现,同时在控制过程中,通过计算器或定时器来产生对应的PWM信号。

而在步进电机的PWM控制中,不仅要产生PWM信号,同时还需要确定步进电机所需要的逆变器输出频率以及信号的占空比。

在PWM技术控制中,占空比是通过改变PWM信号的高电平和低电平时间比例来实现的。

此时所产生的信号是具有脉冲宽度和周期相等的矩形脉冲信号。

在步进电机PWM控制中,其占空比的变化范围一般在0%至100%之间,且周期一般要设置相对较短的时间间隔,这样可以有效的减少瞬间震荡。

三、步进电机PWM控制的实现在实现步进电机PWM控制时,我们需要考虑多个的因素。

由于步进电机的PWM控制过程涉及到多个器件之间的配合工作,因此其实现过程略显复杂。

步进电机二相八拍的励磁状态转换表

步进电机二相八拍的励磁状态转换表

步进电机二相八拍的励磁状态转换表
摘要:
1.步进电机的基础概念
2.步进电机的相数和拍数
3.步进电机的励磁方式
4.步进电机的编码方式
5.步进电机二相八拍的励磁状态转换表
正文:
步进电机是一种电动机,其工作原理是通过脉冲电流来驱动转子旋转。

在步进电机中,有几个重要的概念需要了解,包括相数、拍数、励磁方式和编码方式。

相数是指电机内部的线圈组数。

例如,一个4 相的步进电机有abcd 四组线圈。

拍数是指完成一个循环的通电次数。

例如,按照abcd 顺序完成一个循环,就称为单4 拍。

相邻的两个线圈也可以同时通电,例如可以按照ab-bc-cd-da 方式通电,这种就称为双4 拍。

对同一个电机来说,单四拍与双四拍每拍转动的角度是相同的。

步进电机的励磁方式有直流励磁和交流励磁两种。

直流励磁方式下,电机的磁场恒定,因此电机的转矩也恒定。

交流励磁方式下,电机的磁场随着电流的变化而变化,因此电机的转矩也会随着电流的变化而变化。

步进电机的编码方式有光电编码和霍尔编码两种。

光电编码是通过光电传感器来检测转子的位置,从而确定电机的转角。

霍尔编码是通过霍尔传感器来
检测转子的位置,从而确定电机的转角。

最后,我们来看一下步进电机二相八拍的励磁状态转换表。

在这个表中,我们可以看到在二相八拍的情况下,电机的励磁状态是如何转换的。

通过这个表,我们可以了解电机在每个拍数下的励磁状态,从而更好地控制电机的转矩和转速。

总结起来,步进电机是一种重要的电动机,其工作原理和控制方式都需要我们深入了解。

步进电机基础知识培训

步进电机基础知识培训

四、步进电机的应用:
20BYJ /24BYJ:空调、监控设备、舞台灯光、医疗设备 35BYJ:电子锁、智能马桶、阀门、家用电器 15BY:电脑光驱、POS机 20BY/25BY:打印机、复印机、扫描仪、电子锁 35BY/42BY:电子锁、智能马桶、阀门、家用电器 15BY:电脑光驱、P主要性能参数:
1、安装尺寸:指电机外型尺寸及对安装有影响的一些尺寸。
05
2、绝缘电阻:电机绕组与外壳之间的绝缘电阻(不得小于 10MΩ)。 3、绝缘介电强度:电机绕组与外壳之间所能承受的电压(应能承受 50Hz、500V历时1秒无击穿或飞弧,且漏电流不应大于1mA)。 4、电阻:某一组线圈的电阻值,(允许偏差±7%,各极相差±4%)。 5、旋转方向:电机按规定的供电顺序运行时,输出轴的旋转方向 (顺时针:CW;逆时针:CCW),改变旋转方向只需改变通电顺序,即 连接线排序就可以了。
五、步进电机的命名与释义
例::
24 BYJ 48 - A
派生代号 性能参数代号 产品名称代号 机座号
1、机座号: 电机外径的毫米数以阿拉伯数字表示; 2、产品名称代号: 用大写汉语拼音字母BYJ表示(BY---永磁步进电动机, J---减速); 3、性能参数代号: 由两位阿拉伯数字组成,第一位数字表示相数,第二位数字表示 极对数; 4、派生代号:包括性能参数派生和结构派生,性能参数派生和结构派生用大写英文 字母A、B、 C......表示,但不能使用 I、O字母,若字母不够使用可字母后面加阿拉伯数字1、 2、3......表示.
内部培训资料之 --步进马达基础知识
2010.5.17
一、什么是步进电机?
步进电机是一种将电脉冲转化为角位移或线 位移开环控制元件。通俗一点讲:当步进驱动器 接收到一个脉冲信号,它就驱动步进电机按设定 的方向转动一个固定的角度及(步进角)。

步进电机基础知识

步进电机基础知识

广州办事处
Au tonic s 5相 Hybrid type Stepping Motor的结构 相 的结构
定子STATOR部分 部分 定子
广州办事处
Au tonic s
什么是保持转矩(HOLDING TORQUE)?
保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转 子的力矩。 它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。 由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而 变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。 比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N. m的步进电机。
广州办事处
Au tonic s
D r i v e r 的 性 能 范 围 最大应答(驱动 频率(Maximum slewing Frequency) 最大应答 驱动) 频率 驱动 - Stepping Motor能接受的最大频率 能接受的最大频率 Pull-Out Torque(最大输出 Torque) 最大输出 - Stepping Motor正常启动时 正常启动时Torque的范围内,最大输出 Torque 的范围内, 正常启动时 的范围内 Pull-In Torque(输入 Torque) 输入 - Stepping Motor正常启动时的最大 正常启动时的最大Torque 正常启动时的最大 最大启动频率 (Maximum starting Frequency) - Stepping Motor能启动 停止 正⋅反旋转的最大频率 能启动, 能启动 停止, Pull-In Range(Pull-In 领域 : 最大启动领域 最大启动领域) - Stepping Motor正常启动时的最大 正常启动时的最大Torque的范围 正常启动时的最大 的范围

电机及电力拖动基础

电机及电力拖动基础

电机及电力拖动基础介绍如下:
电机是将电能转换为机械能的一种设备。

常见的电机包括直流电机、交流电机和步进电机等。

电力拖动则是利用电机驱动各种机械设备,如电梯、电动汽车、风力发电机等。

在电机方面,需要了解电机的原理、结构、分类、性能参数等方面的知识。

例如,了解电机的工作原理可以帮助理解电机的转速、电流、功率等性能参数的计算方法;了解电机的结构可以帮助理解电机的故障原因和维修方法等。

在电力拖动方面,需要了解电机的选型、驱动控制、传动装置等方面的知识。

例如,了解电机的选型可以帮助选择合适的电机驱动设备,了解电机的驱动控制可以帮助实现电机的启停、调速等功能,了解传动装置可以帮助实现电机与被驱动设备之间的传动。

总之,电机及电力拖动基础知识包括电机原理、结构、分类、性能参数、选型、驱动控制、传动装置等方面的知识。

电工基础知识大全

电工基础知识大全

电工基础知识大全电工基础知识大全(上)一、电压、电流和电阻1. 电压:指推动电荷流动的能力,通常用伏特(V)表示,符号为U。

电路中的电压源是指提供电路电压的设备。

2. 电流:指电荷在导体内流动的量,通常用安培(A)表示,符号为I。

电流的方向为正电荷的流动方向。

3. 电阻:指导体对电流流动的阻力,通常用欧姆(Ω)表示,符号为R。

电阻越大,流过该导体的电流越小。

4. 欧姆定律:指在一定电压下,电流等于电压除以电阻,即I=U/R。

这个公式可以用来计算电路中的电流或电阻。

二、电路元件1. 电源:提供电路所需电能的设备,例如干电池、电池组、电源适配器等。

2. 开关:控制电路通断的设备,例如手动开关、自动开关、继电器等。

3. 电线:将电路中的电能传输到电路元件中的导体。

4. 电阻器:用来改变电路中的电阻,例如调光器、电位器等。

5. 电容器:用来储存电荷的设备,可以使电路具有储存电能的功能。

6. 集成电路:将多个电子元器件集成在一起,形成一个电路,可以实现复杂的计算和逻辑操作。

7. 半导体器件:指基于半导体材料来制造的电子元器件,例如二极管、晶体管、场效应管、变压器等。

8. 传感器:将物理量转换成电信号的设备,例如光电传感器、温度传感器、压力传感器等。

三、电路及其分类1. 串联电路:指电路中的电阻和电源连接成一条线路,电流从电源依次通过每个电阻。

2. 并联电路:指电路中的电阻和电源形成多条线路,电流从电源分流通过每个电阻。

3. 混联电路:指电路中既有串联电路又有并联电路的组合。

4. 直流电路:指电流方向不变的电路,例如用于供电配电的直流电源。

5. 交流电路:指电流方向不断变化的电路,例如用于家庭及工业设备中的交流电路。

四、电力及其计算1. 电功率:指电能转化为其他形式能量的速率,通常用瓦特(W)表示,符号为P。

电功率等于电压乘以电流,即P=UI。

2. 电能:指电流在电路中流动所产生的能量,通常用千瓦时(kWh)表示。

电机基础知识培训(主讲第四项电机选型)

电机基础知识培训(主讲第四项电机选型)

提高运行效率
选用合适的电机可以降低能耗,提高 设备运行效率。
电机选型的基本原则
适应性原则
电机应适应生产机械负载的需要 ,包括工作性质、转速波动范围
、频繁启动等。
经济性原则
在满足生产需求的前提下,尽量选 择价格合理、维护方便、运行费用 低的电机。
可靠性原则
选择经过国家质量认证、具有良好 信誉和售后服务保障的电机制造商 。
电机基础知识培训(主讲 第四项电机选型)
汇报人:XX
• 电机概述 • 电机基础知识 • 电机选型原则与方法 • 电机选型实践案例 • 电机维护与保养 • 电机发展趋势与展望
01
电机概述
电机的定义与分类
电机定义
电机是一种将电能转换为机械能 的装置,广泛应用于各种机械设 备中。
电机分类
根据工作原理和结构特点,电机 可分为直流电机、交流电机、步 进电机、伺服电机等。
绝缘性能检查
检查电机的绝缘性能,测量绝缘电阻,确保电机安全可靠运行。
电机调试与校准
定期对电机进行调试和校准,确保电机的运行精度和稳定性。
电机故障的诊断与处理
01
故障现象分析
根据电机出现的故障现象,如异常声音、过热、振动等,进行初步分析
,确定故障类型。
02
故障原因排查
通过检查电机的电源、负载、控制系统等方面,逐步排查故障原因,找
智能化电机控制技术
结合人工智能、大数据等先进技术,实现电机控 制的智能化、自适应化,提高系统性能。
3
绿色环保电机技术
环保意识的提高推动电机技术向绿色、低碳方向 发展,如无刷直流电机、超声波电机等。
新型电机的研发与应用前景
超导电机
利用超导材料的特殊性质,研发出高性能、高效率的超导电机,应 用于高端装备制造等领域。

步进电机基础知识——来自百度百科

步进电机基础知识——来自百度百科

步进电机基础知识——来自百度百科步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常工作,驱动器就是为步进电机分时供电的,多相时序控制器。

虽然步进电机已被广泛地应用,但步进电机并不能像普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许个完成数字模式转化的执行元件。

而且它可开环位置控制,输入一个脉冲信号就得到一个规定的位置增量,这样的所谓增量位置控制系统与传统的直流控制系统相比,其成本明显减低,几乎不必进行系统调整。

步进电机的角位移量与输入的脉冲个数严格成正比,而且在时间上与脉冲同步。

因而只要控制脉冲的数量、频率和电机绕组的相序,即可获得所需的转角、速度和方向。

我国的步进电机在二十世纪七十年代初开始起步,七十年代中期至八十年代中期为成品发展阶段,新品种和高性能电机不断开发,目前,随着科学技术的发展,特别是永磁材料、半导体技术、计算机技术的发展,使步进电机在众多领域得到了广泛应用。

步进电机控制技术及发展概况作为一种控制用的特种电机,步进电机无法直接接到直流或交流电源上工作,必须使用专用的驱动电源步进电机驱动器。

在微电子技术,特别计算机技术发展以前,控制器脉冲信号发生器完全由硬件实现,控制系统采用单独的元件或者集成电路组成控制回路,不仅调试安装复杂,要消耗大量元器件,而且一旦定型之后,要改变控制方案就一定要重新设计电路。

步进电机基础知识

步进电机基础知识

1类01步进电机 步进电动机分反应式(磁阻式)、永磁式和混合式三大类。

反应式步进电动机(VR) 三相反应式步进电动机结构示意图如图1所示。

图1:三相反应式步进电动机结构示意图 定子六个磁极上绕有三相星形绕组,转子外圆周和磁极极靴上开有等齿距的小齿。

转子齿数为20 个,每个磁极上有 3 个小齿,小齿相邻两相的两个磁极错开1 /3齿距(一般错开1 /m,m为相数)。

由于是绕组轮流通电,所以当 A 相通电时,定转子之间的磁通以磁 阻最小取向,使转子齿(位置随机)与A相磁极小齿对齐。

此时,B相磁极上小齿沿ABC方向超前转子齿错开1 /3齿距。

A相断电、B相通电时,转子则沿ABC转过1 /3齿距。

此时, C 相磁极上小齿又超前转子齿错开1 /3齿距。

B相断电、C相通电时,转子则沿ABC方向又转过 1 /3 齿距。

如此便随脉冲的A→B→C分配方式02032要技术参数步进运动下去。

脉冲通电有多种分配方式,步距角的大小可随脉冲分配方式不同而变化。

实现这种分配的是一种环形脉冲分配器,绕组通断则由功率开关管实施。

以上是三相反应式步进电动机的工作原理,多相反应式步进电动机的工作原理与三相反应式步进电动机基本一样。

反应式步进电动机的优点是步距角小、步距精度高、起动频率高、负载能力强,可实现电气细分; 缺点是易振荡(需要加装阻尼器进行抑制)、驱动功率大、效率低。

永磁式步进电动机(PM) 两相永磁式步进电动机结构示意图如图2所示。

图2:两相永磁式步进电动机结构示意图 转子为两对极的“+”字形磁体(也可以为多对极的星形磁体),定子则相应为两相绕组 (也可为多相绕组)。

当定子A相或B相单独通电时,转子转向A相或B相磁场轴线;当 A、B相同时通电时, 转子转向A、B 相磁场合成轴线。

当绕组按单四拍方式 A→B→(-A)→(-B)和双四拍方式 A、B →(B、-A)→(-A、-B )→(-B、A)通电时,步距角为45°;当绕组按八拍方式 A→A、B→B→(B、-A)→(-A)→(-A、-B)→(-B)→(-B、A)通电时,步距角为 22.5°。

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、 用途和工作原理

步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。

1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。

其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。

这种特性使它适用于多种应用。

2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。

定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。

稍后我们将更深入地介绍不同的转子结构。

图1显示的电机截面图,其转子为可变磁阻铁芯。

图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。

图2显示了其工作原理。

首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。

下图中定子小齿的颜色指示出定子绕组产生的磁场方向。

图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。

实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。

3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。

这种转子可以保证良好的扭矩,并具有制动扭矩。

这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。

但与其他转子类型相比,其缺点是速度和分辨率都较低。

图3显示了永磁步进电机的截面图。

图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。

这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。

步进电机的基础知识

步进电机的基础知识

步进电机原理(一)步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。

它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。

因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。

目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。

仅仅处于一种盲目的仿制阶段。

这就给户在产品选型、使用中造成许多麻烦。

签于上述情况,我们决定以广泛的感应子式步进电机为例。

叙述其基本工作原理。

望能对广大用户在选型、使用、及整机改进时有所帮助。

感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。

下面先叙述三相反应式步进电机原理。

1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。

0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。

如B相通电,A,C 相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。

如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。

步进电机基础

步进电机基础

步进电机基础步进电机的简单定义:步进电机是一种将电脉冲转化为不连续的机械运动的机电装置。

当施加适当的电脉冲指令时,电机转子的出轴或外转子将会以不连续的步进增量旋转。

电机的旋转与施加的脉冲之间有几个方面的直接关系:首先所加脉冲的顺序直接决定着电机转轴旋转的方向。

其次电机转轴旋转的速度取决于所加脉冲的频率,而旋转的角度或者圈数和所加的脉冲数成正比。

步进电机的优缺点:优点:1.电机旋转的角度正比于脉冲数;2.电机停转的时候具有最大的转矩(当绕组激磁时);3.由于每步的精度在3%-5%,而且不会将一步的误差积累到下一步因而有较好的位置精度和运动的重复性;4.优秀的起停和反转响应;5.由于没有电刷,可靠性较高,因此电机的寿命仅仅取决于轴承的寿命;6.电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控制成本较低;7.仅仅将负载直接连接到电机的转轴上也可以极低速的同步旋转。

8.由于速度正比于脉冲频率,因而有比较宽的转速范围。

缺点:1.如果控制不当容易产生共振;2.难以运转到较高的转速。

开环控制:步进电机最有意义的一个优点就是在开环系统里可以实现精确的控制。

开环控制意味着不需要关于(转子)位置方面的反馈信息。

这种控制避免了使用昂贵的传感器以及象光学编码器这样的反馈设备,因为只需要跟踪输入的步进脉冲就可以知道你(转子)的位置。

步进电机的种类步进电机有三个基本类型,他们分别是:磁阻变化式/反应式/感应式永磁式混合式/永磁感应子式1.反应式这种类型的步进电机出现的时间较早,从结构方面讲,这也许是最容易理解的电机。

如图1。

这种电机由带齿的软磁铁芯转子和带绕组的定子组成。

当定子绕组直流电激磁时,相应的极就被磁化。

当转子的齿被吸向激磁的定子极时,就产生了旋转。

2.永磁式永磁式步进电机是一种低成本、低分辨率形式的步进电机。

该电机典型的步距角是从7.5度到15度(48-20步/转)。

顾名思义,永磁式样是在转子结构中增加了永磁体,和反应式相比其转子上不再有齿条,替代的是采用N极和S极(沿轴向)交替平行放置充磁磁条的转子结构形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一步:步进电机的保持转矩,相当于传统电机所说的“功率”。

当然,他们有着本质的区别。

步进电机的物理结构,完全不同于普通的交、直流电机,它的输出功率是可变的。

通常根据需要的转矩大小,来选择哪种型号的步进电机。

大致来说,扭力在以下的,一般选择28、35、39、42;扭力在左右的,选择57电机较为合适。

扭力在几或更大的情况下,就应当选择转矩更大的75、85、86、90、110、130等规格的步进电机。

同时,我们还应考虑电机的转速。

因为,电机的输出转矩,与转速成反比关系。

就是说,步进电机在低速(每分钟几百转或更低转速,其输出转矩较大),在高速旋转状态的转矩就很小了。

当然,有些工作环境需要高速电机,就要对步进电机的线圈电阻、电感等指标进行综合权衡。

选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。

反之,要求低速大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。

第二步:步进电机空载启动频率,一般称为“空起频率”。

这是选购步进电机很重要的一项指标。

如果要求在瞬间频繁启动、停止,并且,转速在1000转/分钟左右或更高。

最好选择反应式或永磁式步进电机,这些电机的“空起频率”都比较高。

第三步:步进电机的相数选择,这项内容,很多客户几乎没有什么重视,大多是随便购买。

其实,不同相数的电机,工作效果是不同的。

相数越多,步距角就能够做的比较小,工作时的振动就相对小一些。

大多数场合,使用两相、三相、五相混合式步进电机的比较多。

在高速大力矩的工作环境,选择三相步进电机是很实用的。

第四步:防水防腐型步进电机能够防水、防油,适用于某些特殊场合。

例如水下机器人,就需要放水电机。

75BYG系列步进电机大多具有防水结构。

对于特种用途的电机,就要针对性选择了。

第五步:特殊规格的步进电机,通常需要和生产厂家沟通,在技术允许的范围内,加工订做。

例如,出轴的直径、长短、伸出方向等。

步进电机的运转难免会有很大的噪音,在工厂这些噪音其实不算什么,工厂里多的是机械,各式各样的,一起运转,那么多的噪音,就好像在开一场演唱会,只是是我们听不懂的,很刺耳的。

噪音大听不到不要紧,但是在工厂里面的操作工难免就要遭罪了,操作工之间讲话都是问题,不用吼得是听不到了,久而久之,他们的听觉也会有一点受到影响。

那该如何减少这些机器的噪声呢?
第一,可以通过改变减速比等机械传动避开共振区;
第二,可以采用带有细分功能的驱动器;
第三,可以换成步距角更小的步进电机;
第四,可以换成交流伺服电机,几乎可以完全克服震动和噪声;
第五,可以在电机轴上加磁性阻尼器。

No3.步进电机调速注意特点
步进电机高速不能直接使用普通的交直流电源,需要专用的伺服控制器,应注意以下特点:
1、可以用数字信号直接进行开环控制,整个系统简单廉价,位移与输入脉冲信号数相对应,步距误差不长期积累,开环控制系统既简单又具有一定的精度;在要求更高精度时,也可以采用闭环控制系统。

2、由于步进电机无刷,因此本体部件少,可靠性高。

3、易于起动,停止,正反转,速度响应性好;停止时一般有自锁能力。

4、步距角可在大范围内选择,在小步距情况下,能够在超低转速下高转距稳定运行,可以不经减速器直接驱动负载。

5、速度可在相当宽范围内平滑调节,可以用一台控制器同时控制几台步进电机完全同步运行。

6、步进电机带惯性负载能力较差,由于存在失步和共振问题,步进电机的加减速方法在不同的应用状态下,情况较为复杂。

步进电机在数字化的制造时代发挥了重要的用途,但是步进电机也并非没有缺点,步进电机容易遭受到电流电压的影响,对接收机系统造成干扰,使其不能够正常的工作。

那么对于这个问题该如何解决呢,专家建议可以加装电源滤波器,从而减少对交流电源的污染;也可以将电源滤波器的地、驱动器、控制脉冲和方向脉冲短接后的引出线、电机接地线、驱动器与电机之间电缆防护套、驱动器屏蔽线均接到机箱壁上的接地柱上,并要求接触良好;其次也可以使用屏蔽线减轻外界对自己的干扰,或电源线对外界的干扰。

减少了对步进电机的干扰,使其能够正常的工作。

步进电机启动运行时失控与失步一般要考虑以下方面作检查:
1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100% 的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。

2)上位控制器来的输入走步脉冲的电流是否够大(一般要>10mA ),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS 输入型的步进驱动器。

3)启动频率是否太高,在启动程序上是否设置了加速过程,最好从电机规定的启动频率内开始加速到设定频率,哪怕加速时间很短,否则可能就不稳定,甚至处于惰态。

4)电机未固定好时,有时会出现此状况,则属于正常。

因为,实际上此时造成了电机的强烈共振而导致进入失步状态。

电机必须固定好。

5)对于 5 相电机来说,相位接错,电机也不能工作。

两相步进电机在定子上只有2个绕组,4根引出线,一般整步步距角为度,半步步距角为度,驱动器只须通过对两相绕组电流通断进行控制就可以了;而4相步进电机在定子上有四个绕组,8根引出线,整步为度,半步为度,驱动器需要对4个绕组进行控制,电路的复杂性和成本都会增加。

因此,一般两相步进电机配两相驱动器,需要更小的步距角时,可以采用细分驱动器。

有些公司将两相4线和四相8线的步进电机通称为两相步进电机,驱动器也似乎只有两相的。

这是因为,四相绕组两两并联或串联后就成为两相绕
组,四相电机就变成两相电机了,但串联或并联会使电机绕组电阻和电感成
倍变化,电机运行性能也会有明显变化。

一般来说,四相并联成两相使用时,电机有较好的加速性能,高速力矩保持得好,但是电机电流会是四相时的2倍,发热较大,对驱动器输出能力的要求相应提高;而四相串联成两相使用时,电机有较好的低速稳定性,噪声和发热较小,对驱动器要求不高但是高速力矩损失较大。

有些公司的驱动器全部安两相设计,四相步进电机必须改接成
两相才能使用。

所以这些公司往往要问客户,希望电机接成串联的还是并联的。

以往,当8线步进电机严格标成四相时,客户自然会认为四相电机和两
相驱动器不匹配,因此很多公司干脆将四相步进电机和两相步进电机均标成
两相。

“两相步进电机和四相步进电机实质上是一回事”的真正道理就在于此。

步进电机是一种性能良好的数字化执行元件,在数控系统的点位控制中,可利用步进电机作为驱动电机。

在开环控制中,步进电机由一定频率的脉冲
控制。

由PLC直接产生脉冲来控制步进电机可以有效地简化系统的硬件电路,进一步提高可靠性。

由于PLC是以循环扫描方式工作,其扫描周期一般在几毫秒至几十毫秒之间,因此受到PLC工作方式的限制以及扫描周期的影响,步进电机不能在高频下工作。

例如,若控制步进电机的脉冲频率为4000HZ,则脉冲周期为毫秒,这样脉冲周期的数量级就比扫描周期小很多,如采用此
频率来控制步进电机。

则PLC在还未完成输出刷新任务时就已经发出许多个控制脉冲,但步进电机仍一动不动,出现了严重的失步现象。

若控制步进电
机的脉冲频率为100HZ,则脉冲周期为10毫秒,与PLC的扫描周期约处于同一数量级,步进电机运行时亦可能会产生较大的误差。

因此用PLC驱动步
进电机时,为防止步进电机运行时出现失步与误差,步进电机应在低频下运行,脉冲信号频率选为十至几十赫兹左右,这可以利用程序设计加以实现。

保证定位精度与提高定位速度之间的矛盾。

步进电机的转速与其控制脉冲的频率成正比,当步进电机在极低频下运行时,其转速必然很低。

而为了保证系统的定位精度,脉冲当量即步进电机转一个步距角时刀具或工作台移动的距离又不能太大,这两个因素合在一起带来了一个突出问题:定位时间太长。

例如若步进电机的工作频率为20HZ,即50ms走一步,取脉冲当量为δ=步,则1秒钟刀具或工作台移动的距离为=,1分钟移动的距离为=12mm,如果定位距离为120mm,则定位时间需要10分钟,如此慢的定位速度在实际运行中是难以忍受的。

为了保证定位精度,脉冲当量不能太大,但却影响了定位速度。

因此如何既能提高定位速度,同时又能保证定位精度是一项需要认真考虑并切实加以解决的问题。

步进电机的起动频率不能过高,这是因为步进电机刚起动时转速为零,在起动过程中,电磁转矩除了克服负载阻转矩外,还在克服转动部分的惯性掩蔽,所以起动时电机的负担比连续运转为重。

如果起动时脉冲频率过高,则转子的速度就跟不上定子磁场旋转的速度,以致第一步完了的位置落后于平衡位置较远,以后各步中转子速度增加不多,而定子磁场仍然以正比于脉冲频率的速度向前转动,因此转子与平衡位置之间的距离越来越大,最后因转子位置落到动稳定区以外而出现失步或是振荡现象,因而使电机不能起动。

为了能正常起动,起动频率不能过高,当电机起动后再逐步升高频率。

相关文档
最新文档