人教版-数学-七年级上册-《绝对值》典型例题
人教版七年级上册数学绝对值专题
![人教版七年级上册数学绝对值专题](https://img.taocdn.com/s3/m/68e5cf86cf2f0066f5335a8102d276a201296014.png)
人教版七年级上册数学绝对值专题题目 1:已知x = 5,求x的值。
解析:因为x = 5,所以x = 5或x = -5。
题目 2:若a - 2 = 0,则a = _ ?解析:因为a - 2 = 0,所以a - 2 = 0,a = 2。
题目 3:计算- 3 = _ ?解析:- 3 = 3题目 4:如果m = 4,n = 6,且m < n,求m + n的值。
解析:因为m = 4,所以m = ±4;因为n = 6,所以n = ±6。
又因为m < n,所以当m = 4时,n = 6,m + n = 10;当m = - 4时,n = 6,m + n = 2。
题目 5:化简- ( - 5 ) = _ ?解析:- ( - 5 ) = 5 = 5题目 6:已知x - 1 + y + 2 = 0,求x,y的值。
解析:因为x - 1 ≥ 0,y + 2 ≥ 0,且x - 1 + y + 2 = 0,所以x - 1 = 0,y + 2 = 0,即x = 1,y = - 2。
题目 7:比较- 2 和- ( - 2 )的大小。
解析:- 2 = 2,- ( - 2 ) = 2,所以- 2 = - ( - 2 )题目 8:若x + 3 = 5,则x = _ ?解析:因为x + 3 = 5,所以x + 3 = 5或x + 3 = - 5,解得x = 2或x = - 8题目 9:绝对值小于4的整数有_ ? 个。
解析:绝对值小于4的整数有- 3,- 2,- 1,0,1,2,3,共7个。
题目 10:计算- 7 - - 4 = _ ?解析:- 7 - - 4 = 7 - 4 = 3题目 11:若a = 3,b = 2,且a > b,求a - b的值。
解析:因为a = 3,所以a = ±3;因为b = 2,所以b = ±2。
又因为a > b,所以当a = 3时,b = 2或b = - 2,a - b = 1或5;当a = - 3时,不符合a > b。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习6(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习6(人教版,含解析)](https://img.taocdn.com/s3/m/8c17dba2ad02de80d5d8404a.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.把下列各数填在相应的表示集合的大括号里:1223,,,2.8,3,38,,101.1, 2.5,0,1,(96)43π------+--(1)正数集合{}... (2)整数集合{}... (3)正分数集合{}... (4)负分数集合{}...2.有理数a 、b 在数轴上的位置如图所示,求化简a b a b +--的结果.3.已知有理数 a ,b 互为相反数,x =2,求 a ﹣x+b+(﹣2)的值.4.按要求解答下列问题已知有理数−3、212、+(−1)、|−3|、0、−(−23)、−1.5 (1)请将上面所有负有理数填在横线上___. (2)画出数轴,并把上面各数表示在数轴上; (3)用“<”把以上各数连接起来.5.写出下列各数的绝对值:(1)+813;(2)-7.2;(3)0; (4)-813.6.(1)比较大小;①|﹣2|+|3| |﹣2+3|;②|4|+|3||4+3|;③|﹣12|+|﹣13| |﹣12+(﹣13)|;④|﹣5|+|0| |﹣5+0|.(2)通过(1)中的大小比较,猜想并归纳出|a|+|b|与|a+b|的大小关系,并说明a,b满足什么关系时,|a|+|b|=|a+b|成立?7.如果|a|=3,|b|=4,且a>b,求a,b的值.8.化简下列各数:(1)-[-(-2)];(2)-[+(-3)]}.(3)-[+(-1)];(4)+[-(+7)];(5)--[-(-│-3│)}(6)-+[-(+3)]}9.将下列各数化简后在数轴上表示出来:︱-1︱、︱0︱、-(-2)、绝对值是2的负数、-︱-3︱,并按从小到大的顺序将原数用不等号连接起来.10.在数轴上表示下列各数,并把下列各数用“>”号连接起来12-, -2, 12, 5--,-(-5)11.将下列各数在数轴上表示出来,并把这些数用“<”连接起来. -5,0,2,-2.5,-(-12),-|-1|.12.探究归纳(1)填空|-2018|= ;|0| = ; 2||5+= (2)由(1)得任何一个有理数的绝对值都是_________ (3)解决问题,已知3a -+2b +=0,求b 2-ab 的值.13.将下列各数在数轴上表示出来,并用“<”把这些数的连接起来. -112,0,2,-|-3|,-(-3.5)14.把下列各数填入相应的括号内: 2.5,-10%,22,0,-|-207|,-20,+9.78,-0.45,-(-47) 整数:{ ……} 负分数:{ ……} 非正数:{ ……} 非负整数:{ ……}15.在数轴上表示有理数:1.5,﹣|﹣2|,0,﹣(﹣1),﹣23,并用“>”号将它们连接起来.参考答案1.(1)14,2.8,38,π, 2.5-,+1,-(-96);(2)-23,3--,38,0,+1,-(-96);(3)14,2.8, 2.5-;(4)23-,-101.1解析:把各数的绝对值和括号去掉后,再根据各类数的特点进行归类. 详解:解:(1)正数集合{14,2.8,38,π, 2.5-,+1,-(-96 } (2)整数集合{-23,3--,38,0,+1,-(-96)} (3)正分数集合{14,2.8, 2.5-} (4)负分数集合{23-,-101.1} 点睛:本题考查有理数的分类,正确对各数进行去括号、去绝对值等操作是解题关键. 2.-2a解析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果. 详解:根据数轴上点的位置得:0b a <<,而且b a >, ∴b 0a ->,0a b +<, ∴a b a b +--=)()a b a b -+--( a b a b =---+=-2a . 故答案为-2a . 点睛:本题考查数轴上点的特点、绝对值的化简.解决本题的关键是根据数轴上点的位置,判断a-b 与a+b 的正负.3.-4或0.解析:利用绝对值的意义和相反数的定义得到a+b=0,x=2或-2,则原式=-x-2,然后把x 的分别代入计算即可. 详解:解:因为a 、b 互为相反数, 所以a+b=0.又因为|x|=2,所以x=2或-2,当x=2时,a-x+b+(-2)=(a+b )-x-2=0-2-2=-4; 当x=-2时,a-x+b+(-2)=(a+b )-x-2=0-(-2)-2=0. ∴a﹣x+b+(﹣2)的值为-4或0. 点睛:本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.互为相反数的两个数绝对值相等.也考查了相反数.4.(1)−3、+(−1)、−1.5;(2)详见解析;(3)−3<−1.5<+(−1)<0<−(−23)<212<|−3|. 解析:(1)根据小于零的数是负数,可得负数集合;(2)根据数轴是用直线上的点表示数的一条直线,可把数在数轴上表示出来; (3)根据数轴上的点表示的数右边的总比左边的大,可得答案. 详解:(1)负有理数为−3、+(−1)、−1.5. (2)如图所示:(3)用“<”把以上各数连接起来为:−3<−1.5<+(−1)<0<−(−23)<212<|−3|. 点睛:此题考查数轴,绝对值,有理数大小比较,解题关键在于画出数轴.5.(1)813;(2)7.2;(3)0;(4)813解析:根据绝对值的性质分别计算即可得解. 详解:(1)+813的绝对值是813; (2)-7.2的绝对值是7.2; (3)0的绝对值是0;(4)-813的绝对值是813.点睛:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.(1)>;=;=;=.(2)成立解析:(1)①根据绝对值的意义得到|-2|+|3|=2+3=5,|-2+3|=1,比较大小即可求解;②根据绝对值的意义得到|4|+|3|=4+3=7,|4+3|=7,比较大小即可求解;③根据绝对值的意义得到|-12|+|-13|=12+13=56,|-12+(-13)|=56,比较大小即可求解;④根据绝对值的意义得到|-5|+|0|=5+0=5,|-5+0|=5,比较大小即可求解;(2)根据前面的结论可得到,当a、b同号时,|a+b|=|a|+|b|.详解:解:(1)①|﹣2|+|3|>|﹣2+3|;②|4|+|3|=|4+3|;③|﹣12|+|﹣13|=|﹣12+(﹣13)|;④|﹣5|+|0|=|﹣5+0|.(2)|a|+|b|与|a+b|的大小关系:|a+b|≤|a|+|b|,a,b满足同号时,|a+b|=|a|+|b|.点睛:本题考查了有理数的加法和绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.7.a=±3,b=-4.解析:分析:根据绝对值的性质求出a、b的值,然后确定出a、b的对应情况.详解:∵|a|=3,∴a=±3.∵|b|=4,∴b=±4.∵a>b,∴a=±3,b=-4.点睛:本题考查了绝对值的性质,难点在于确定出a、b的对应情况.8.(1)-2(2)3(3)1(4)-7(5)3(6)3解析:试题分析:根据相反数的定义化简即可.试题解析:解:(1)-[-(-2)]=-2;(2)-[+(-3)]}=3;(3)-[+(-1)]=1; (4)+[-(+7)]=-7; (5)--[-(-│-3│)}=3 (6)-+[-(+3)]}=3 9.﹣3<﹣2<2解析:试题分析:根据绝对值的意义、相反数的意义,可化简数,根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案 试题解析:化简,得|﹣1|=1,|0|=0,﹣(﹣2)=2,绝对值是2的负数是﹣2,﹣|﹣3|=﹣3, 把数在数轴上表示出来,如图:,由数轴上的点表示的数右边的总比左边的大,得﹣3<﹣2<2考点:1.有理数大小比较;2.数轴. 10.;()1152522-->>->->-- 解析:对各数进行化简后在数轴上表示出来,然后根据数轴右边的数大于数轴左边的数可把各数用“>”号连接起来. 详解:解:∵-|-5|=-5,-(-5)=5, ∴在数轴表示各数如下:∴由各数在数轴上的排列可得:1152522-->>->->--(). 点睛:本题考查数的大小比较与数在数轴上的表示的综合运用,熟练掌握利用数轴比较数的大小的方法是解题关键.11.数轴见详解,15 2.51022⎛⎫-<-<--<<--< ⎪⎝⎭解析:先把绝对值和相反数进行化简,然后在数轴上表示出来,最后用“<”连接起来即可. 详解:解:∵1111,22⎛⎫--=---= ⎪⎝⎭,∴这组有理数在数轴上的表示如图所示:把这些数用“<”连接起来为15 2.51022⎛⎫-<-<--<<--< ⎪⎝⎭. 点睛:本题主要考查数轴上有理数的表示及有理数的大小比较,熟练掌握数轴上有理数的表示及有理数的大小比较是解题的关键.12.(1)2018,0,25;(2)非负数;(3)10 解析:(1)由绝对值的意义,即可求出答案; (2)由绝对值的意义,即可得到答案;(3)由绝对值的非负性进行计算,求出a 、b 的值,再求出答案即可. 详解:解:(1)|2018|2018-=;|0|0=;22||55+=; 故答案为:2018,0,25;(2)由(1)可知,任何一个有理数的绝对值都是非负数; 故答案为:非负数; (3)∵320a b -++=, ∴30a -=,20b +=, ∴3a =,2b =-,∴22(2)3(2)4610b ab -=--⨯-=+=. 点睛:本题考查了绝对值非负数的性质,绝对值的意义,解题的关键是掌握绝对值的意义进行解题.13.见解析.解析:先求出-|-3|和-(-3.5)的值,然后在数轴上表示出各数,根据在数轴上表示的数,从左到右依次增大,据此解答即可.详解:解:-|-3|=-3;-(-3.5)=3.5用数轴表示为:∴-|-3|<-112<0<2<-(-3.5).点睛:此题主要考查有理数在数轴上的表示、有理数的大小比较,解题的关键是正确找出有理数在数轴上对应的点.14.答案见解析解析:根据有理数的分类分别进行解答.详解:整数:{22,0,-20 ……}负分数:{-10%,-|-207|,-0.45……}非正数:{0,-10%,-|-207|,-0.45,-20 ……}非负整数:{22,0 ……}点睛:本题考查了有理数的分类.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.15.在数轴上表示有理数见解析;21.5(1)023>-->>->--.解析:先在数轴上表示各个数,再比较即可.详解:22--=-,()11--=,2 3 -在数轴上表示有理数如下:2>-->>->--.1.5(1)023点睛:本题考查了绝对值、相反数和有理数的大小比较,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习1(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习1(人教版,含解析)](https://img.taocdn.com/s3/m/6cd8902249649b6649d7474a.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.化简(1)-(+2)= (2)|-2.85| = (3)+|-12| = (4)132⎛⎫-- ⎪⎝⎭ =2.求下列各数的绝对值 -1.6 , 850, -10, +103.先比较下列各式的大小,再回答问题, (1)|-3|+|5| _______ |-3+5|; (2)|-2|+|-1.3|________ |(-2)+(-1.3)| (3)|-7|+|0| _______ |-7+0|通过上述比较,请你归纳出当,a b 为有理数时,||||a b +与||a b +的大小关系4.把下列各数分别填入相应的集合里.()()2203,,0,, 2.14,5, 4.2,379π------+ (1)正数集合 …}; (2)负数集合 …}; (3)非负整数集合 …}; (4)分数集合 …}5.在数轴上表示下列各数,并把他们用“>”连接起来. 3.5a=,b为3.5的相反数,12c=-,d的绝对值等于36.若有理数a、b、c满足:(a-1)2+│b+1│=0,│c-2│=1.求(c-a)2-b的值.7.已知数3.3 ,-2 ,0 ,18,-3.5 ;(1) 比较这些数的绝对值的大小,并将这些数的绝对值用“>”号连接起来;(2) 比较这些数的相反数的大小,并将这些数的相反数用“<”号连接起来.8.化简(1)﹣|﹣9| (2)﹣(﹣5)(3) +︱-10︱9.如果 x 是-4 的相反数,y 是-13的倒数的绝对值,求 y-x 的值.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示-3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|;(2) 如果|x—1|=3,那么根据⑴的结论得x=;(3)若数轴上表示数a的点位于2与8之间,则|a-8|+|a-2|= .11.计算:201|2|( 3.14)2π-⎛⎫-+--- ⎪⎝⎭.12.若3a =,b 是最大的负整数,c =(5)2--,求a b c +-13.在数轴上表示下列各数及它们的相反数,并用“<”把这些数连接起来.-(+2),0,-|-1.2|,+13-.14.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是__________.(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为_________.(3)在数轴上表示下列各数,并用“<”把这些数按从小到大的顺序连接起来.2112.5,2,5,2, 1.5,( 1.6)22----+15.在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来.11-,0-2.5-|-2|122,,,参考答案1.-2;2.85;12;1 3 2解析:根据相反数和绝对值的定义解答即可.详解:解:(1)-(+2)=-2;(2)|-2.85| =2.85;(3)+|-12| =12;(4)132⎛⎫--⎪⎝⎭=132,故答案为:-2;2.85;12;132.点睛:本题考查了相反数和绝对值,掌握各自的定义是解题的关键.2.1.6,85,0,10,10解析:根据绝对值的意义解答即可.详解:解:881.6 1.6,,00,1010,101055-===-==.点睛:本题考查了有理数的绝对值,属于基础题型,熟练掌握绝对值的意义是关键.3.>;=;=;|a|+|b|≥|a+b|.解析:(1)根据绝对值的意义得到|−3|+|+5|=8,|−3+5|=2;(2)根据绝对值的意义得到|−2|+|-1.3|=3.3,|(-2)+(-1.3)| =3.3;(3)根据绝对值的意义得到|-7|+|0|=7, |-7+0|=7根据前面的结论可得到|a|+|b|≥|a+b|.详解:解:(1)∵|−3|+|5|=8,|−3+5|=2∴|−3|+|5|>|−3+5|;(2)∵|−2|+|-1.3|=3.3,|(-2)+(-1.3)|= |-3.3|=3.3;∴|-2|+|-1.3|=|(-2)+(-1.3)| (3)∵|-7|+|0|=7, |-7+0|=7; ∴|-7|+|0| = |-7+0|根据前面的结论可得到|:|a|+|b|≥|a+b|. 故答案为:>;=;=;|a|+|b|≥|a+b|. 点睛:本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .4.(1)()203,,5,79π--;(2)()2, 2.14, 4.23----+;(3)()3,0,5--;(4)()220,, 2.14, 4.237----+. 解析:先化简绝对值、去括号,再根据正数、负数、非负整数、分数的定义即可得. 详解:()()22,55, 4.2 4.233--=---=-+=- (1)正数集合()203,,5,79π⎧⎫--⎨⎬⎩⎭;(2)负数集合()2, 2.14, 4.23⎧⎫----+⎨⎬⎩⎭; (3)非负整数集合(){}3,0,5--; (4)分数集合()220,, 2.14, 4.237⎧⎫----+⎨⎬⎩⎭. 点睛:本题考查了正数、负数、非负整数、分数的定义,熟记相关概念是解题关键.5.数轴表示见解析,当3d =时,a d c b >>>;当3d =-时,a c d b >>>.解析:首先根据题意,分别得出13.5, 3.5,,32a b c d ==-=-=±,然后分情况在数轴上表示即可比较大小. 详解: 由题意,得13.5, 3.5,,32a b c d ==-=-=±当3d =时,a d c b>>>;当3d=-时,a c d b>>>.点睛:此题主要考查数轴的性质以及相反数、绝对值的性质,熟练掌握,即可解题.6.5或1.解析:根据非负数的性质以及绝对值的定义求出a,b,c的值,然后代入代数式求值即可.详解:解:(a-1)2+│b+1│=0,│c-2│=1∴a-1=0,b+1=0,c-2=±1∴a=1,b=-1,c=3或1∴当c=3时,(c-a)2-b=5当c=1时,(c-a)2-b=1故答案为5或1.点睛:本题考查了代数式求值,绝对值的定义以及非负数的性质,熟练掌握运算法则是解本题的关键.7.(1)3.5>3.3>2>18>0; (2)-3.3<18-<0<2<3.5解析:(1) 先求得每个数的绝对值,再根据有理数大小比较法则进行比较大小;(2)先求得每个数的相反数,再根据有理数大小比较法则进行比较大小;详解:(1)∵|-3.5|=3.5,|-2|=2,|0|=0,|18|=18,∴3.5>3.3>2>18>0.(2)因为3.3的相反数是-3.3,-2的相反数是2,0的相反数是0,18和相反数是18,-3.5的相反数是3.5,所以-3.3<-18<0<2<3.5.点睛:考查考查绝对值、有理数大小的比较,解题的关键是掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.8.(1)-9;(2)5;(3)10.解析:(1)根据绝对值的意义进行化简即可;(2)根据相反数的意义进行化简即可得答案.(3)根据绝对值的意义进行化简即可.详解:(1)﹣|﹣9|=-[-(-9)]=-9;(2)﹣(﹣5)=5;(3)+︱-10︱=+[-(-10)]=+10=10.点睛:本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.同时还考查了绝对值的意义.9.-1解析:根据有理数相关定义求出字母的值,再代入求值.详解:解:∵ x 是-4 的相反数,y 是 13的倒数的绝对值∴x=4,y=3∴y-x=3-4=-1∴y-x 的值为:-1点睛:本题考查了有理数的倒数、绝对值、相反数等概念,正确找出x,y的值是解题关键.10.(1)3,5;(2)4或-2;(3)6.解析:(1)根据题意可以求得数轴上表示4 和1的两点之间的距离和表示-3和2两点之间的距离;(2)根据|x-1|=3,可以求得x 的值,本题得以解决;(3)根据数轴上表示数a 的点位于2 与8之间,可以求得|a-8|+|a-2|的值. 详解:(1)数轴上表示4和1的两点之间的距离是4−1=3,表示−3和2两点之间的距离是2−(−3)=5, 故答案为3,5; (2)∵|x -1|=3 ∴x -1=±3, 解得,x=4或x=−2, 故答案为4或-2;(3) ∵数轴上表示数a 的点位于2与8之间, ∴2<a<8,∴|a -8|+|a-2|=8-a+a-2 =6, 故答案为6. 点睛:此题考查数轴,绝对值,解题关键在于掌握运算法则利用绝对值的性质进行解答. 11.-1解析:根据负整数指数幂和零指数幂的意义,绝对值的非负性,进行计算 详解:解:()212 3.1421-4-12π-⎛⎫-+---=+= ⎪⎝⎭点睛:此题考查负整数指数幂和零指数幂的意义,绝对值的非负性,掌握运算法则是解题关键12.9或3解析:试题分析:利用绝对值的代数意义求出a 的值,根据最大的负整数为-1确定出b ,利用减法法则求出c 的值,代入原式计算即可得到结果. 试题解析:解::∵|a|=3,b 是最大的负整数,c=(-5)-2, ∴a=3或-3,b=-1,c=-7, 当a=3时,a+b-c=3-1+7=9; 当a=-3时,a+b-c=-3-1+7=3.13.画数轴见解析;-(+2)<-|-1.2|<13-<0<1+3-<1.2<2.解析:首先根据相反数的求法,分别求出以上数的相反数各是多少,然后把所给的各数及它们的相反数在数轴上表示出来,最后根据数轴的特征:当数轴方向朝右时,右边的数总比左边的数大,把所给的各数按从小到大的顺序排列起来即可. 详解:解:-(+2)的相反数是2;0的相反数是0; -|-1.2|的相反数是1.2;+13-的相反数是13-, 画数轴如下图:则-(+2)<-|-1.2|<13-<0<1+3-<1.2<2. 点睛:本题主要考查数轴的表示以及有理数的大小比较,还涉及相反数和绝对值的求解,属于基础题,熟练掌握数轴的画法,通过数轴判断有理数的大小是解题的关键.14.(1)4;原点见详解;(2)2或6;(3)数轴见详解,−22<122-<−(+1.6)<|−1.5|<2.5<152解析:(1)根据点A 表示−3即可得原点位置,进一步得到点B 所表示的数; (2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可. 详解:解:(1)如图,O 为原点,点B 所表示的数是4, 故答案为:4;(2)点C 表示的数为4−2=2或4+2=6. 故答案为:2或6;(3)把下列各数在数轴上表示,如图所示:由数轴可知:−22<122-<−(+1.6)<|−1.5|<2.5<152. 点睛:此题主要考查了有理数的比较大小,关键是正确在数轴上确定表示各数的点的位置.15.数轴见解析,11 2.5-|-2|01.22 -<<-<<解析:把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.详解:解:-|-2|=-2将各数用点在数轴上表示如下:其大小关系为:11 2.5-|-2|01.22 -<<-<<点睛:此题主要考查了有理数的比较大小,以及数轴,关键是掌握当数轴方向向右时,右边的数总比左边的数大.。
人教版七年级数学上册绝对值测试题
![人教版七年级数学上册绝对值测试题](https://img.taocdn.com/s3/m/eceb102749649b6649d74760.png)
人教版7年级数学考试题测试题人教版初中数学1.2.4 绝对值5分钟训练(预习类训练,可用于课前)1.判断题:(1)数a的绝对值就是数轴上表示数a的点与原点的距离; ()(2)负数没有绝对值; ()(3)绝对值最小的数是0; ()(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ()(5)如果数a的绝对值等于a,那么a一定是正数. ()思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或2附赠材料:以学生为第一要务目标我们教育工作的最终目标只有一个:学生。
七年级数学绝对值典型例题
![七年级数学绝对值典型例题](https://img.taocdn.com/s3/m/47b27279a4e9856a561252d380eb6294dd8822ba.png)
七年级数学绝对值典型例题
一、绝对值的基本概念例题
1. 例1:求下列数的绝对值: -5,0,3
解析:
根据绝对值的定义,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
对于公式,因为公式是负数,所以公式。
对于公式,根据定义公式。
对于公式,因为3是正数,所以公式。
2. 例2:已知公式,求公式的值。
解析:
因为公式,根据绝对值的定义,公式可能是公式或者公式,即公式或公式。
二、绝对值在数轴上的应用例题
1. 例3:在数轴上表示数公式的点到原点的距离是3,求公式的值。
解析:
由于数公式的点到原点的距离是3,根据绝对值的几何意义(数轴上表示数公式的点与原点的距离叫做数公式的绝对值),可知公式。
所以公式或公式。
2. 例4:数轴上公式点表示的数为公式,公式点表示的数为公式,求公式、公式两点间的距离。
解析:
根据数轴上两点间的距离公式公式(设两点表示的数分别为公式,公式)。
这里公式,公式,则公式、公式两点间的距离公式。
三、绝对值的性质应用例题
1. 例5:若公式,则公式与公式有什么关系?
解析:
由公式,根据绝对值的性质,公式或公式。
例如公式,这里公式。
2. 例6:已知公式,求公式、公式的值。
解析:
因为绝对值是非负数,即公式,公式。
要使公式成立,则公式且公式。
当公式时,公式,解得公式;当公式时,公式,解得公式。
人教版2024-2025学年七年级数学上册专题1 绝对值的应用(习题课件)
![人教版2024-2025学年七年级数学上册专题1 绝对值的应用(习题课件)](https://img.taocdn.com/s3/m/b68868ff0129bd64783e0912a216147917117ee6.png)
第一章 有理数 专题1 绝对值的应用
应用1 利用绝对值比较大小 1. [母题 教材P16练习T1] 比较下列各组数的大小: (1)-3.5与-4.2;
【解】|-3.5|=3.5,|-4.2|=4.2. 因为3.5<4.2,所以-3.5>-4.2.
123456
123456
应用2 利用绝对值的性质求值
123456
3. 已知| a |=2,| b |=3,且在数轴上 a 在 b 的右边, 求 a , b 的值. 【解】因为| a |=2,| b |=3, 所以 a =±2, b =±3. 因为在数轴上 a 在 b 的右边, 所以 b < a . 所以 a =2, b =-3或 a =-2, b =-3, 即 a =±2, b =-3.
(1)当 x 取何值时,| x -2 025|有最小值?这个最小值是 多少? 【解】当 x =2 025时,| x -2 025|有最小值,这个 最小值是0.
123456
(2)当 x 取何值时,2 025-| x -1|有最大值?这个最大 值是多少? 【解】当 x =1时,2 025-| x -1|有最大值,这个最 大值是2 025.
2. [2024·武汉外国语学校期中]已知| a |=5,| b |=3,
且 ab <0,则 a - b. 1或-8
C. ±2
D. ±8
123456
【点拨】 因为| a |=5,| b |=3,所以 a =±5, b =±3.
因为 ab <0,所以 a =5, b =-3或 a =-5, b =3.当 a =5, b =-3时, a - b =5-(-3)=8;当 a =-5, b = 3时, a - b =-5-3=-8.综上, a - b 的值是8或-8. 【答案】D
人教版七年级数学上册《a除以a的绝对值》专题训练-附带答案
![人教版七年级数学上册《a除以a的绝对值》专题训练-附带答案](https://img.taocdn.com/s3/m/cf9dc0e2f424ccbff121dd36a32d7375a417c69b.png)
人教版七年级数学上册《a 除以a 的绝对值》专题训练-附带答案类型一 分类讨论两个字母的取值范围1.若0||||aba b += 则||ab ab -=___【答案】1【解析】【分析】 由题意知aba b =- 可知a b ,互为相反数 去绝对值后计算求解即可.【详解】解:∵0aba b += ∵aba b =-∵a b ,互为相反数∵0ab < ∵1ababab ab -==--.故答案为:1【点睛】本题考查了相反数的应用 绝对值的性质 解题的关键熟练掌握绝对值的性质.2.若有理数a b 满足ab >0 则||||||a b aba b ab ++=___.【答案】−1或3【解析】【分析】根据已知得出a 、b 同号 分为两种情况:①当a >0 b >0时 ②当a <0 b <0时去掉绝对值符号求出即可.【详解】解:∵ab >0∵a 、b 同号 ①当a >0 b >0时 则||||||a bab a b ab ++=1+1+1=3;②当a <0 b <0时 则||||||a b ab a b ab ++=−1+(−1)+1=−1;故答案为:−1或3.【点睛】本题考查了绝对值的应用 运用分类讨论 注意:当a ≥0时 |a |=a 当a ≤0时 |a |=−a 是解答此题的关键.3.如果0y x << 则化简x xyx xy +=________ .【答案】0【解析】【分析】根据绝对值的意义及有理数乘除法运算法则进行分析化简.【详解】解:∵0x > ∵1xx =∵0,0x y >< ∵1xyxy =- ∵xxyx xy +=1-1=0故答案为:0.【点睛】本题考查绝对值的化简 有理数的乘除法运算 理解绝对值的意义掌握有理数乘除法运算法则是解题关键.4.已知ab >0 则||||aba b +=___.【答案】2或-2【解析】【分析】根据ab >0 可知a 、b 同号 再分类讨论求解即可.【详解】解:∵ab >0∵a 、b 同号当a 、b 都是正数时 112||||aba b +=+=;当a 、b 都是负数时112||||a b a b +=--=-; 故答案为:2或-2.【点睛】 本题考查了有理数的乘除法法则和绝对值化简 解题关键是明确a 、b 同号 并能够分类讨论求出代数式的值.5.若0mn > 则nmnmm n mn ++=__________.【答案】1-或3##3或-1【解析】【分析】根据依题意分类讨论 分0,0m n <<和0,0m n >>两种情况 进而根据绝对值的意义化简即可. 【详解】0mn >∴0,0m n <<或0,0m n >>当0,0m n <<时 ,m m n n =-=- mn mn = ∴nmnmm n mn ++=111--+1=-当0,0m n >>时 ,m m n n == mn mn = ∴nmnm m n mn ++=111++3=故答案为:1-或3.【点睛】本题考查了有理数的乘法法则 同号得证 绝对值的意义 分类讨论是解题的关键.6.已知a 、b 为有理数 且0ab ≠ 则||||a ba b +=________.【答案】2±或0【解析】【分析】分0a >、0b > 0a >、0b < 0a <、0b > 0a <、0b <四种情况分别求解可得.【详解】解:当0a >、0b >时 原式112=+=;当0a >、0b <时 原式110=-=;当0a <、0b >时 原式110=-+=;当0a <、0b <时 原式112=--=-;故答案为:2±或0.【点睛】本题主要考查绝对值 解题的关键是熟练掌握绝对值的性质及分类讨论思想的运用.7.若0ab < 则||||||a b ab a b ab ++=_______. 【答案】1-【解析】【分析】讨论a 和b 的符号 逐一求解即可.【详解】解:∵0ab <∵0a < 0b >或0a > 0b <若0a > 0b < 则1111a b ab a b ab ++=--=-; 若0a < 0b > 则1111a b ab a b ab ++=-+-=-; 综上所述 a b ab a b ab++的值为1- 故答案为:1-.【点睛】本题考查绝对值的性质 分情况讨论是解题的关键.类型二 分类讨论三个字母的取值范围8.a b c a b c++的值是______. 【答案】±1或3±##3±或 1±【解析】【分析】分别讨论a b c ,,的取值 然后去掉绝对值符号即可求值.【详解】①当0a > 0b > 0c >时 原式1113=++=;②当0a < 0b > 0c >时 原式1111=-++=;③当0a > 0b < 0c >时 原式1111=-+=;④当0a > 0b > 0c <时 原式1111=+-=;⑤当0a < 0b < 0c >时 原式1111=--+=-;⑥当0a > 0b < 0c <时 原式1111=--=-;⑦当0a < 0b > 0c <时 原式1111=-+-=-;⑧当0a < 0b < 0c <时 原式1113=---=-;综上所述 abca b c ++的值是±1或3±.故答案为:±1或3±【点睛】本题考查了绝对值 关键掌握分类讨论的思想解题.9.已知1a b ca b c ++=- 则abcabc 的值为______.【答案】1【解析】【分析】 由1abca b c ++=-可得a 、b 、c 中 只能有两个负数 一个正数 即abc >0然后代入求解即可. 【详解】解:∵1abca b c ++=-∵在a 、b 、c 中 只能有两个负数 一个正数∵abc >0 ∵abc abcabc abc ==1.故答案为1.【点睛】本题主要考查了有理数除法 灵活运用有理数的特点成为解答本题的关键.10.若n =||||||a b c a b c ++ abc <0 则n 的值为 _____.【答案】1或﹣3##-3或1【解析】【分析】由题意可知 a b c 三个数都为负数或是其中一个为负数、另两个为正数 再结合绝对值的性质即可得解.【详解】解:因为:abc <0所以a b c 三个有理数都为负数或其中一个为负数①当a b c 都是负数 则||||||a b c a b c++=---a b c a b c =-1-1-1=-3; ②当a b c 中有一个为负数 可假设a <0 b >0 c >0 则||||||a b c a b c++=-++a b c a b c =-1+1+1=1 故答案为:1或﹣3.【点睛】本题考查绝对值的性质 有理数的乘法法则 以及有理数的加减运算 熟练掌握绝对值的性质是解题关键.11.三个有理a 、b 、c 满足abc <0 (a +b )(b +c )(a +c )=0 则代数式||||||333a b c a b c++的值为_____. 【答案】13 【解析】【分析】根据已知条件可得a 、b 、c 这三个数其中一个为负数 其余两个为正数数 分为三种情况:①当0a <时 a 与b 异号 a 与c 异号 0b > 0c > ②当0b <时 a 与b 异号 b 与c 异号 0a > 0c > ③当0c <时 b 与c 异号 a 与c 异号 0a > 0b > 由此即可求出答案.【详解】解:∵(a +b )(b +c )(a +c )=0∵a +b =0或b +c =0或a +c =0∵a 与b 异号 或b 与c 异号 或a 与c 异号∵abc <0∴符合条件的只有一种情况: a 、b 、c 这三个数其中一个为负数 其余两个为正数分为以下三种情况:①当0a <时 a 与b 异号 a 与c 异号 0b > 0c >||||||11113333333333a b c a b c a b c a b c -++=++=-++=; ②当0b <时 a 与b 异号 b 与c 异号 0a > 0c >||||||11113333333333a b c a b c a b c a b c --++=++=++=; ③当0c <时 b 与c 异号 a 与c 异号 0a > 0b >||||||-11-113333333333a b c a b c a b c a b c ++=++=++= 综上所述 ||||||a b c a b c++的值为13. 故答案为13. 【点睛】本题考查了有理数的乘法 加法 绝对值的意义 解此题的关键是熟练掌握绝对值的代数意义 当a >0 |a |=a ;当a =0 |a |=0;当a <0 |a |=﹣a .12.若abc ≠0 则:a b b c c a a b b c c a ++=___.【答案】3或-1【解析】【分析】分四种情况进行讨论:①a 、b 、c 均为正数 ②a 、b 、c 均为负数 ③a 、b 、c 两正一负 ④a 、b 、c 两负一正 分别求值即可.【详解】解:当a 、b 、c 均为正数时 a b b c c a a b b c c a++=1+1+1=3; 当a 、b 、c 均为负数时a b b c c a a b b c c a++=1+1+1=3; 当a 、b 、c 两正一负时a b b c c a a b b c c a++=1-1-1=-1; 当a 、b 、c 两负一正时a b b c c a a b b c c a++=1-1-1=-1; 综上所述:a b b c c a a b b c c a++的值为3或-1 故答案为3或-1.【点睛】本题考查绝对值的性质 熟练掌握绝对值的性质 分类讨论是解题的关键.13.若三个非零有理数a b c 满足1a b c a b c ++= 则abc abc =_______. 【答案】﹣1【解析】【分析】根据绝对值的性质对a 、b 、c 的正负讨论化简绝对值 进而求解即可.【详解】解:当a 、b 、c 同正数时 则11131a b c a b c ++=++=≠ 不符合题意 故舍去 当a 、b 、c 同负数时 则11131a b c a b c++=---=-≠ 不符合题意 故舍去 当a 、b 、c 两正数、一负数时 则1+111a b c a b c++=-= 符合题意 ∵abc <0 ∵1abc abc abc abc -==- 当a 、b 、c 两负数、一正数时 则11111a b c a b c++=--=-≠ 故舍去 综上 abcabc =﹣1 故答案为:﹣1.【点睛】本题考查绝对值、有理数的加减混合运算 熟练掌握绝对值的性质 利用分类讨论解决问题是解答的关键.14.已知0abc ≠ 0a b c ++= 则a b c a b c ++的值等于_________.【答案】±1【解析】【分析】根据多个数相乘的计算法则以及多个数相加的计算法则分析判断出a 、b 、c 有两正一负或一正两负 然后分情况讨论求解.【详解】解:∵abc ≠0 且a +b +c =0则a 、b 、c 有两正一负或一正两负当一正两负时 不妨设a >0 b <0 c <0原式=1+(-1)+(-1)=-1;当两正一负时 不妨设a >0 b >0 c <0原式=1+1+(-1)=1综上所述 原式的值为1±.故答案为:1±.【点睛】本题考查了绝对值的化简 掌握多个数相乘或相加时符号的确定方法 理解绝对值的意义 利用分类讨论思想解题是关键.15.已知a b c 为三个不等于0的数 且满足abc >0 a +b +c <0 则||||||a b c a b c++的值为_________________.【答案】1-【解析】【分析】根据abc >0 a +b +c <0 可以确定,,a b c 中有2个负数进而根据绝对值的意义求解即可.【详解】abc >0 a +b +c <0 则,,a b c 中有2个负数设0,0,0a b c <<> 则||||||a b c a b c ++1111=--+=- 故答案为:1-【点睛】本题考查了有理数的乘法及除法运算 有理数的加法运算 化简绝对值 根据题意分析得出,,a b c 中有2个负数是解题的关键.16.已知a b c 都是有理数 且满足1a b c a b c ++= 那么6abc abc -=_______. 【答案】7【解析】【分析】 根据||||||1a b c a b c ++=可以看出 a b c 中必有两正一负 从而确定a bc <0 进而可出求6||abc abc -的值. 【详解】解:根据绝对值的意义:一个非零数的绝对值除以这个数 等于1或-1.1a a =或-1 又1a b c a b c++= 则其中必有两个1和一个-1 即a b c 中两正一负. ∵a bc <0 则1abc abc=- 则()6617abc abc -=--=. 故答案为:7.【点睛】此题考查有理数加减法 绝对值 整式的除法 解题关键在于得出a b c 中必有两正一负. 17.已知1abc abc =- 则a b c a b c++的值是_____ 【答案】1或-3【解析】【分析】 由1abc abc=- 可知a 、b 、c 的符号有两种可能的情况:①a 、b 、c 全是负数;②a 、b 、c 两正一负.由此分类探讨求得答案即可.【详解】 解:1abc abc =-①a 、b 、c 全是负数 则abca b c ++=-1-1-1=-3;②a 、b 、c 两正一负a b c abc++一定两个1与一个-1的和计算结果是1+1-1=1. 故答案为:1或-3. 【点睛】本题考查了绝对值的意义和化简 注意分类探讨得出答案. 18.已知,,a b c 都个等于零 且||||||||a b c abc a b c abc ++-的最大值是m 最小值为n 则mn mn=______. 【答案】-1 【解析】 【分析】由a b c 分别以三正 三负 一正二负 二正一负 分别讨论. 【详解】解:当a b c 三个都大于0 可得2||||||||abcabca b c abc ++-= 当a b c 都小于0 可得2||||||||a b c abc a b c abc ++-=- 当a b c 一正二负 可得2||||||||a b c abc a b c abc ++-=- 当a b c 二正一负 可得2||||||||abcabca b c abc ++-=2m ∴= 2n =-∴原式=-1 故答案为:-1. 【点睛】此题考查有理数的除法 绝对值的意义 以及代数式求值等知识. 19.若0a b c ++=(,,a b c 均不为0) 则||||||a ab abc a ab abc++的值是__________. 【答案】1 -1或-3 【解析】 【分析】根据a +b +c =0以及所求式子 得到a b c 中两正一负或一正两负 利用绝对值的代数意义化简 计算即可得到结果. 【详解】 解:∵a +b +c =0∵a b c 中两正一负或一正两负 假设a >0 b >0 c <0 原式=1+1-1=1 假设a >0 b <0 c >0 原式=1-1-1=-1 假设a <0 b >0 c >0 原式=-1-1-1=-3 假设a <0 b <0 c >0 原式=-1+1+1=1 假设a <0 b >0 c <0 原式=-1-1+1=-1 假设a >0 b <0 c <0 原式=1-1+1=1 故答案为:1 -1或-3. 【点睛】此题考查了有理数的混合运算 以及绝对值的代数意义 熟练掌握运算法则是解本题的关键. 20.设a b c 为不为零的实数 且0abc > 那么||||||a b c x a b c =++ 则x 的值为________. 【答案】3或-1 【解析】 【分析】根据正数的绝对值是正数 负数的绝对值等于他的相反数 可化简掉绝对值的负号 再根据有理数的除法 可得答案. 【详解】 解:∵abc >0∵a >0 b >0 c >0或a 、b 、c 中有两个负数; 当a >0 b >0 c >0时 x =1+1+1=3; 当a 、b 、c 中有两个负数时 x =1-1-1=-1; 故答案为:3或-1. 【点睛】本题考查了实数的除法运算 解题的关键是掌握分类讨论. 21.若abc >0 a +b +c =0 则b c c a a b abc+++++=____.【答案】1-. 【解析】 【分析】根据条件判断a 、b 、c 与0的大小关系 然后根据绝对值的性质即可求出答案.【详解】解:∵abc >0 a +b +c =0∵a 、b 、c 中必有两个是负数 一个是正数 不妨设0a > 0b < 0c < ∵0a b c ++=∵0a b c +=-> 0b c a +=-< 0a c b +=-> ∵b c c a a b abc+++++=a b ca b c---++=a b c ab c--++ =111-- =1-.故答案为:1-. 【点睛】本题考查了绝对值的意义 解题的关键是正确判断a 、b 、c 与0的大小关系 本题属于基础题型.类型三 综合解答22.在解决数学问题的过程中 我们常用到“分类讨论”的数学思想 下面是运用分类讨论的数学思想解决问题的过程 请仔细阅读 并解答题目后提出的“探究”. 【提出问题】三个有理数a 、b 、c 满足abc >0 求++a b c a b c的值.【解决问题】由题意得:a b c 三个有理数都为正数或其中一个为正数 另两个为负数. ①当a b c 都是正数 即a >0 b>0 c>0时 则:++a b c a b c=ab c a b c++=1+1+1=3;②当a b c 有一个为正数 另两个为负数时 设a >0 b<0 c<0 即:++a b c a b c=a b ca b c --++=1+(−1)+(−1)=−1 所以++a b c a b c的值为3或−1. 【探究】请根据上面的解题思路解答下面的问题: (1)已知a <0 b>0 c>0 则a a=b b=c c= ;(2)三个有理数a b c 满足abc <0 求++a b c ab c的值;(3)已知|a |=3 |b|=1 且a<b 求a +b 的值.【答案】(1)-1;1;1;(2)1或-3(3)−2或−4. 【解析】 【分析】(1)根据绝对值的性质即可求解;(2)分2种情况讨论:①当a b c 都是负数 即a <0 b <0 c <0时;②a b c 有一个为负数 另两个为正数时 设a <0 b >0 c >0 分别求解即可;(3)利用绝对值的代数意义 以及a 小于b 求出a 与b 的值 即可确定出a +b 的值. 【详解】(1)∵a <0 b>0 c>0 ∵a a =- b b = c c = 则a a=-1b b=1c c=1;故填:-1;1;1; (2)∵abc <0∵a b c 都是负数或其中一个为负数 另两个为正数 ∵①当a b c 都是负数 即a <0 b <0 c <0时 则a b c a b c++=---ab c a b c=-1-1-1=-3;②a b c 有一个为负数 另两个为正数时 设a <0 b >0 c >0 则a b c a b c++=-++a b c a b c=−1+1+1=1.(3)∵|a|=3 |b|=1 且a <b ∵a =−3 b =1或−1 则a +b =−2或−4. 【点睛】本题主要考查了有理数的混合运算 绝对值 有理数的除法 解题的关键是讨论a 与ab 的取值情况.23.在解决数学问题的过程中 我们常用到"分类讨论"的数学思想 下面是运用"分类讨论"的数学思想解决问题的过程 请仔细阅读 并解答问题. 【提出问题】已知有理数a b c 满足abc >0 求||||||a b c a b c++的值. 【解决问题】解∵由题意 得 a b c 三个有理数都为正数或其中一个为正数 另两个为负数.①当a b c 都为正数 即a >0 b >0 c >0时||||||a b c a b c++=a b ca b c ++=1+1+1=3②当a b c 中有一个为正数 另两个为负数时 不妨设a >0 b <0 c <0 则||||||a b c a b c++=a b ca b c--++=1+(-1)+(-1)=-1 综上所述||||||a b c a b c++的值为3或-1 【探究拓展】请根据上面的解题思路解答下面的问题;(1)已知a b 是不为0的有理数 当|ab|=-ab 时 ||||a ba b += (2)已知a b c 是有理数 当abc <0时 求||||a b a b ++||c c = (3)已知a b c 是有理数 a +b +c =0 abc <0 求||||||b c c a a ba b c +++++= 【答案】(1)0;(2)3-或1;(3)1-. 【解析】 【分析】(1)分0,0a b ><和0,0a b <>两种情况 先化简绝对值 再计算有理数的除法与加减法即可得; (2)分,,a b c 都是负数和,,a b c 中一个为负数 另两个为正数两种情况 先化简绝对值 再计算有理数的除法与加减法即可得;(3)先化简已知等式可得a b c +=- c a b +=- b c a +=- 再根据0abc <得出,,a b c 中只有一个为负数 另两个为正数 然后化简绝对值 计算有理数的除法与加减法即可得. 【详解】解:(1)由题意 分以下两种情况: ①当0,0a b ><时 1(1)0a b a b a b a b+=+=+-=- ②当0,0a b <>时 110a b a b a b a b+=+=-+=- 综上0a ba b+= 故答案为:0;(2)由题意得:,,a b c 都是负数或其中一个为负数 另两个为正数 ①当,,a b c 都是负数 即0,0,0a b c <<<时 则1(1)(1)3a a a b c a b c b b c c---++=++=-+-+-=-;②当,,a b c 中有一个为负数 另两个为正数时 不妨设a 0,b 0,c 0<>> 则1111a b c a b c a b c a b c++=++=-++=-; 综上a b ca b c++的值为3-或1 故答案为:3-或1;(3)因为0a b c ++= 0abc < 所以,,a b c 均不为0所以a b c +=- c a b +=- b c a +=- 所以,,a b c 中只有一个负数 另两个为正数 不妨设0a < 0b > 0c >所以1(1)(1)1b c c a a b a b ca b c a b c+++---++=++=+-+-=-- 故答案为:1-. 【点睛】本题考查了化简绝对值、有理数的加减法与除法 读懂题意 掌握分类讨论思想和有理数的运算法则是解题关键.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值 选择题专项练习七(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值 选择题专项练习七(人教版,含解析)](https://img.taocdn.com/s3/m/f25d01a63c1ec5da51e27042.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.下列比较大小正确的是( ) A .()()2121--<+- B .227733⎛⎫--=-- ⎪⎝⎭C .5667->-D .1210823--> 2.下列各数中,绝对值为43的数是( ) A .34B .34-C .114-D .113-3.—2的绝对值是( ) A .2B .—2C .12D .无法确定4.绝对值小于4.1的整数有几( )个 A .4B .5C .6D .95.下列各式中,不成立的是( ) A .|3| =3B .|-3| =3C .-|-3| =-3D .-|-3| =36.下列有理数绝对值最小的是( ) A .-1B .0C .1D .0.57.|﹣π|的相反数是( ) A .﹣πB .πC .﹣1πD .1π8.计算:15-=( ) A .15-B .-5C .5D .159.6-的相反数是( ) A .6B .-6C .16D .16-10.下列说法正确的个数是()①0是绝对值最小的有理数②相反数小于本身的数是正数③数轴上原点两侧的数互为相反数④两个负数比较,绝对值大的反而小A.1 B.2 C.3 D.4 11.的绝对值是()A.B.﹣C.2014 D.-201412.数1,0,﹣23,﹣2中,绝对值最小的是()A.1 B.0 C.﹣23D.﹣213.8--=()A.8 B.-8 C.18-D.1814.﹣2019的绝对值是()A.2019 B.﹣2019 C.0 D.1 15.的绝对值是()A.B.C.D.16.-5的绝对值的倒数是()A.5 B.-5 C.-15D.1517.下列比较大小正确的是()A.|-2|>|-3|B.-|-3|>-|-2|C.-|-3|>|-2|D.|-3|>|-2|18.绝对值为5的有理数是( )A.±5B.10 C.-5 D.519.32-的绝对值的相反数是()A.23-B.32C.32-D.2320.3.14-π的计算结果是( ) A .0 B .3.14-πC .-3.14πD .-3.14-π21.12019-的绝对值是( ) A .2019- B .12019-C .2019D .1201922.-2020的绝对值是( )A .12020B .2020C .12020-D 23.计算13- 的结果是( ) A .-3B .13C .13-D .324.下列等式中,正确的是( ) A .|3|3-=-B .|5||5|--=-C .1|2|2-=D .11||22--=-25.有理数0,-1,-2,3中,绝对值最小的数是( ) A .0 B .-1C .-2D .3参考答案一、选择题 1.C解析:直接根据有理数的大小比较进行排除选项即可. 详解:A 、∵()()2121,2121--=+-=-,∴()()2121-->+-,故错误;B 、∵222277,773333⎛⎫--=---= ⎪⎝⎭,∴227733⎛⎫--<-- ⎪⎝⎭,故错误; C 、∵5566,6677-=-=,∴5667->-,故正确;D 、∵11101022--=-,∴1210823<--,故错误; 故选C . 点睛:本题主要考查有理数的大小比较,熟练掌握有理数的大小比较是解题的关键. 2.D解析:根据绝对值的定义判断即可. 详解:解:A 、34的绝对值是34,故A 不符合题意;B 、34-的绝对值是34,故B 不符合题意; C 、因为15144-=-,所以 54-的绝对值是54,故C 不符合题意;D 、因为14133-=-,所以 43-的绝对值是43,故D 符合题意.故选:D . 点睛:本题考查了绝对值的定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.正确理解绝对值的定义是解题的关键.3.A解析:根据绝对值的定义,即可完成解答.详解:解:—2的绝对值是2.点睛:本题考查了绝对值的定义,灵活运用绝对值的定义是解答本题的关键.4.D解析:根据绝对值的定义写出符合条件的整数,然后选择答案即可.详解:解:绝对值小于4.1的整数有:0,±1,±2,±3,±4共9个.故选D.点睛:本题考查了绝对值,熟记概念并写出所有的数是解题的关键.5.D解析:根据绝对值的定义求解即可.详解:解:A. |3| =3,故正确;B. |-3| =3,故正确;C. -|-3| =-3,故正确;D. -|-3| =-3,故错误.故选D.点睛:本题主要考查了求一个数的绝对值,熟练掌握绝对值的概念是解题的关键.6.B解析:根据绝对值定义,0是绝对值最小的数即可判断.详解:解:∵正数绝对值得本身,负数绝对值得相反数,0的绝对值是0,∴0是绝对值最小的数,故选:B点睛:本题考查绝对值的定义,对定义的理解是解答此题的关键.7.A解析:先去绝对值,再运用相反数的定义解答即可.详解:解:∵|﹣π|=π∴-|﹣π|=-π.故选A.点睛:本题主要考查了绝对值和相反数的定义,掌握并灵活运用相关知识成为解答本题的关键.8.D解析:利用负数的绝对值是它的相反数,直接根据绝对值的性质求解即可详解:解:11 55-=,故选:D.点睛:本题考查了绝对值的定义和性质,考查了学生对基础知识的理解与掌握,解题的关键是牢记定义和性质即可.9.B解析:先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:试题分析:由0的绝对值是本身,负数的绝对值是其相反数,正数的绝对值是本身,可知①正确;相反数小于本身的数是正数,故②正确;相反数是只有符号不同的两数,因此③错误;两负数相比较,绝对值大的反而小是正确的,故④正确.故选C考点:相反数,绝对值,数的大小比较11.A解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.的绝对值是故选A.考点: 绝对值.12.B解析:首先求出每个数的绝对值;然后根据有理数大小比较的方法,判断出绝对值最小的数即可.详解:解:|1|=1,|0|=0,|23-|=23,|﹣2|=2,∵20123<<<,∴绝对值最小的是0.故选:B.点睛:本题考查求一个数的绝对值,比较绝对值的大小,掌握求一个数的绝对值,比较绝对值的大小的方法是解题关键.13.B解析:根据绝对值的性质进行判断即可 详解: 解:∵ 8-=8, ∴8--=﹣8, 故选:B . 点睛:本题考查绝对值的性质,理解掌握绝对值的性质是解题的关键. 14.A解析:直接利用绝对值的性质得出答案. 详解:﹣2019的绝对值是:|-2019|=2019. 故选A . 点睛:查了绝对值,正确把握绝对值的定义是解题关键. 15.A解析:试题分析:因为负数的绝对值等于它的相反数,所以的绝对值是3,故选A .考点:绝对值 16.D解析:由绝对值和倒数的定义知:-5的绝对值的倒数是15, 故选D 17.D解析:因为22-=,33-=,所以 A.2>3,错误;B.-3>-2,错误;C.-3>2,错误;D.3>2,正确.故选D.18.A解析:分析:数轴上一个数所对应的点与原点的距离叫做该数绝对值,而在数轴上是有两个方向的,所以绝对值等于5的有理数是有2个,为±5.详解:根据绝对值的定义,得:绝对值等于5的有理数是±5.故选A.点睛:本题主要考查绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;绝对值都为非负数.19.C解析:首先根据绝对值的性质得出32-的绝对值为32,然后再利用相反数的性质进一步得出答案即可. 详解:∵3322-=,而32的相反数为32-,∴32-的绝对值的相反数是32-,故选:C.点睛:本题主要考查了绝对值及相反数的性质,熟练掌握相关概念是解题关键.20.C解析:任何有理数的绝对值都是大于或等于0的数.正数绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.详解:因为3.14π0-<所以3.14ππ 3.14-=-答案选C.点睛:本题主要考查绝对值性质,熟悉掌握是关键. 21.D解析:根据绝对值的定义可直接得出.详解:解:12019-的绝对值是12019,故选D.点睛:本题考查绝对值,熟练掌握绝对值的定义是解题关键.22.B解析:依据绝对值的定义,数2020-的绝对值是2020-与原点的距离,从而可得答案.详解:解:-2020的绝对值是2020.故选B.点睛:本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.23.B解析:根据绝对值的性质解答即可.详解:解:13-=13,故选B.点睛:本题考查了绝对值的性质,解题的关键是掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.D解析:根据绝对值定义求解.详解:A. |3|3-=B. |5|5--=-C. |2|2-=D. 11||22--=-故选D点睛:此题主要考查了绝对值,关键是掌握互为相反数的两个数绝对值相等.25.A解析:先求出各数的绝对值,再分别比较.详解:解:四个数的绝对值分别是0,1,2,3,∴四个有理数0,-1,-2,3中,绝对值最小的数是0.故选:A .点睛:此题主要考查了有理数大小比较的方法以及绝对值的意义,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-5专项练习(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-5专项练习(人教版,含解析)](https://img.taocdn.com/s3/m/aef1e31e4afe04a1b171deaa.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.的相反数是()A.B.C.D.2.如图,若数轴上A、B两点所对应的有理数分别为a、b,则a、b两数的绝对值大小关系为()A.︱a︱大B.︱b︱大C.︱a︱=︱b︱D.无法确定3.3-的绝对值是()A.3B.3-C.33D.33-4.绝对值为5的有理数是()A.2.5 B.±5C.5 D.-5 5.2019-的绝对值是()A.12019B.12019C.2019D.20196.-4的绝对值是()A.4 B.-4 C.0 D.-0.25 7.-2的绝对值是().A.12-B.12C.2 D.2±8.|﹣4|的相反数是()A.4 B.﹣4 C.14D.4﹣149.如图,数轴上点M所表示的数的绝对值是().A.3 B.3-C.±3D.1 3 -10.﹣5的绝对值等于()A .﹣5B .C .5D .11.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .+4B .+3C .﹣2D .﹣112.﹣2016的绝对值是( )A .2016B .﹣2016C .D .﹣13.2的相反数和绝对值分别是( )A .2,2B .-2,2C .-2,-2D .2,-214.绝对值不大于 3 的所有整数的个数是( )A .3B .4C .6D .7 15.32-的相反数是( ) A .32 B .32- C .23- D .23 二、填空题1.13的绝对值是 ______ ,—2的相反数是 ________2.有理数a 是绝对值最小的数,有理数b 是相反数等于自身的数,则a+b=_____________.3.已知a 、b 互为倒数,x 、y 互为相反数,m 是方程﹣3(y+1)=9的解的绝对值.则233ab x y m ++-=____. 4.若1x -=,则x=_______.5.若||8a =,5b =,且0a b +<,那么-a b =_____________6.若2x ≤,且x 为整数,那么x 为_______.7.绝对值小于π的所有负整数的和__________.8.若5a -=,则a =______________.9.如图,点A 所表示的数的绝对值是_____.10.若2m ,则m =________.11.数轴上点 A 表示的数为 3,距离 A 有 5 个单位的点 B 对应的数为_____.12.绝对值是15的数是______.13.简化符号:1(71)2--=________,8--=_________;14.绝对值等于5的数有_______个分别是____________.15.2021-=_____.三、解答题1.求下列各数的绝对值:11,0.5,0,423--.2.某同学学习编程后,编了一个关于绝对值的程序,当输入一个数值后,屏幕输出的结果总比该数的绝对值小1.某同学输入-7后,把输出的结果再次输入,则最后屏幕输出的结果是多少?3.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.-312,2.5,-(-1),-|-4|.4.比较下列个数的大小(直接用“<”、“=”、或“>”连接,不写过程).(1)-(-1) -(+2);(2) -821-37;(3)-(-0.3)2 |-13 |;(4) (-1)2 24;(5) (0)3-1%;(6) 2273.14.5.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣2.5|,112,0,﹣(﹣212),﹣4,﹣5.参考答案一、选择题1.C详解:试题分析:∵|﹣2|=2,2的相反数是﹣2,∴|﹣2|的相反数是﹣2.故选C.考点:1.绝对值2.相反数.2.A解析:根据图形可得点A到原点的距离>点B到原点的距离,即可判断a、b两数的绝对值大小关系.详解:由图形可得:点A到原点的距离>点B到原点的距离∴|a|>|b|故选A.点睛:此题考查绝对值、数轴,解题关键在于利用绝对值与数轴的结合运用判断即可.3.A解析:根据绝对值实数轴上的点到原点的距离,可得答案.详解:3 的绝对值是数轴上的这个点到原点的距离,即为|-3|=3.故选A.点睛:考查了绝对值,正数的绝对值是它本身,负数的绝对值等于它的相反数,0的绝对值是0.4.B解析:数轴上一个数所对应的点与原点的距离叫做该数绝对值,而在数轴上是有两个方向的,所以绝对值等于5的有理数是有2个,为±5.解:根据绝对值的定义,得:绝对值等于5的有理数是±5.故选B.点睛:本题主要考查绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;绝对值都为非负数.5.C解析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.详解:|-2019|=2019.故选:C.点睛:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.A解析:根据绝对值的性质一个负数的绝对值等于这个数的相反数,直接就得出答案.详解:解:|-4|=4.故选:A.点睛:此题主要考查了绝对值的性质,熟练应用绝对值的性质是解决问题的关键.7.C解析:根据约绝对值的概念进行求解.详解:因为-2的绝对值表示数轴上-2所表示的点到原点的距离,所以-2的绝对值为2.故选:C.考查了绝对值的含义,解题关键是熟记并理解绝对值的概念.8.B解析:根据负数的绝对值等于它的相反数,可得负数的绝对值,根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:解:|﹣4|=4,4的相反数是﹣4,故选:B.点睛:本题考查了绝对值和相反数的性质,熟练掌握相关的性质是解题的关键9.A解析:分析:首先从数轴上正确看出点M所对应的数,再求它的绝对值即可.详解:结合数轴,得到点M所对应的数是-3.再根据绝对值的定义,得-3的绝对值是3.故选A.点睛:能够正确根据数轴得到点所对应的实数,掌握求一个数的绝对值的方法.10.C解析:试题分析:根据负数的绝对值等于它的相反数解答.解:﹣5的绝对值|﹣5|=5.故选C.考点:绝对值.11.D解析:实际克数最接近标准克数的是绝对值最小的那个数.详解:解:A、+4的绝对值是4;B、+3的绝对值是3;C、-2的绝对值是2;D、-1的绝对值是1.D选项的绝对值最小.故选:D.本题主要考查正负数的绝对值的大小比较.12.A解析:试题分析:根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.∵﹣2016的绝对值等于其相反数,∴﹣2016的绝对值是2016.故选A .考点:绝对值.13.B解析:根据相反数和绝对值和意义求解.详解:解:由相反数和绝对值的意义可以得到:2的相反数是-2,2 的绝对值是|2|=2,故选B .点睛:本题考查相反数和绝对值的计算,熟练掌握相反数和绝对值的意义是解题关键 .14.D解析:根据绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离,即可求出答案.详解:解:绝对值不大于 3 的所有整数有:-3,-2,-1,0,1,2,3,共有7个故选D点睛:此题考查绝对值、整数的概念,解题关键在于掌握其概念及性质.15.B解析:先化简绝对值,再根据相反数的定义求解即可.详解:3322-=,32的相反数为32-. 故选B .点睛:本题考查了绝对值和相反数的定义,熟练掌握定义是解答本题的关键.二、填空题1.132解析:试题解析:13的绝对值是13.2的相反数是2.故答案为13,2.点睛:只有符号不同的两个数互为相反数.2.0解析:先根据有理数a是绝对值最小的数,有理数b是相反数等于自身的数求出a和b的值,然后代入a+b计算即可.详解:∵有理数a是绝对值最小的数,有理数b是相反数等于自身的数,∴a=0,b=0,∴a+b=0+0=0.故答案为0.点睛:本题考查了绝对值和相反数的定义,根据定义求出a和b的值是解答本题的关键.3.-2解析:a、b互为倒数,则ab=1,x、y互为相反数,则x+y=0,m是方程﹣3(y+1)=9的解的绝对值,从中可解得m,直接代入求解.详解:解:已知a、b互为倒数,x、y互为相反数,所以ab=1,x+y=0,因为,﹣3(y+1)=9可解得y=-4,m是方程﹣3(y+1)=9的解的绝对值,则m=4.当ab=1,x+y=0,m=4时,2ab+3x+3y-m=2ab+3(x+y)-m=2+0-4=-2,故答案为-2.点睛:此题考查的知识点是代数式求值,关键是运用相反数、互为倒数、绝对值的知识求解.4.±1解析:试题分析:根据绝对值的性质可得:-x=±1,则x=±1.考点:绝对值5.-13解析:先根据绝对值的性质求得a=±8,然后根据b=5,a+b<0,确定出a=-8,最后利用减法法则计算即可详解:解:∵|a|=8,∴a=±8.∵b=5,且a+b<0,∴a=-8.∴a-b=-8-5=-13.故答案为-13.点睛:本题主要考查的是有理数的加减、绝对值的性质,根据题意求得a=-8是解题的关键.6.0,1,2,-1,-2解析:根据绝对值的性质求出x的取值范围,然后写出范围内的整数即可.详解:∵|x|≤2,∴﹣2≤x≤2.∵x为整数,∴x为0,1,2,-1,-2.故答案为0,1,2,-1,-2.点睛:本题考查了绝对值的性质,是基础题,熟记性质并求出x的取值范围是解题的关键.7.-6解析:先根据绝对值的性质求出所有所有符合条件的整数,再求出符合条件的负整数,求出其和即可.详解:∵绝对值小于π的所有整数是-3,-2,-1,0,1,2,3,∴符合条件的负整数是-3,-2,-1,∴其和为:-3-2-1=-6.故答案为:-6.点睛:此题考查绝对值的性质,解题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.8.5±解析:根据绝对值的意义直接得出结果即可.详解: 解:∵55-=,即:5a∴5a =±故答案为:5±.点睛:本题考查的是绝对值的意义,熟悉绝对值的意义是解题的关键.9.3解析:根据数轴上某个数的点与原点的距离叫做这个数的绝对值,负数的绝对值是它的相反数.详解:解:由数轴可知,﹣3与原点的距离为3,∴-3的绝对值是3.故答案为:3点睛:本题考查了数轴及绝对值的定义,准确识图并熟练掌握绝对值的定义是解题的关键.10.2±解析:根据题意可知m 是正数或者负数,分m 是正数和负数进行讨论,即可得到答案. 详解:因为题目中没有告诉m 是正数还是负数,所以分m 是正数和负数进行讨论计算;当m 是正数时,2m,则m =2;当m 是负数时,2m ,则m =-2.故答案为2±. 点睛:本题考查绝对值,解题的关键是掌握求绝对值和分情况讨论.11.-2或8解析:设点B 对应的数为x ,由AB=5可得出关于x 的含绝对值符号的一元一次方程,解之即可得出结论.详解:设点B 对应的数为x ,根据题意得:|x −3|=5,解得:x 1=−2,x 2=8.故答案为−2或8.点睛:本题考查数轴上两点间的距离和绝对值,解题的关键是数轴上两点间的距离求法和求绝对值.12.15±解析:根据绝对值的性质计算,即可得到答案.详解:15±的绝对值是15故答案为:15±.点睛:本题考查了绝对值的知识:数轴上某个数与原点的距离叫做这个数的绝对值,绝对值等于一个正数的数有两个,且互为相反数.13.17128-解析:根据相反数、绝对值的性质计算,即可得到答案.详解:11(71)7122--=; 88--=-; 故答案为:1712,8-.点睛:本题考查了相反数、绝对值的知识;解题的关键是熟练掌握相反数、绝对值的性质,从而完成求解.14.两 5±解析:根据绝对值的性质进行求解.详解:解:∵一个数绝对值等于5,可设这个数为a ,则|a|=5,∴a=±5,∴绝对值等于5的数有两个.故答案为:两;5±.点睛:此题主要考查绝对值的性质,是一道基础题,比较简单.15.2021解析:根据绝对值的性质即可求解.详解:20212021-=.故答案为:2021.点睛:本题主要考查了绝对值,熟知绝对值的含义及绝对值的性质是解题的关键.三、解答题1.12;0.5;0;143.解析:根据绝对值的性质求解即可.详解:解:1122-=,|0.5|0.5=,|0|0=,114433-=.点睛:本题主要考查绝对值,掌握绝对值的意义和性质是解题的关键.2.5.解析:根据绝对值的代数意义和已知条件进行分析解答即可.详解:∵|-7|-1=6,|6|-1=5,∴最后屏幕输出的结果为5.点睛:熟知“绝对值的代数意义:一个正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数”是解答本题的关键.3.作图见解析,-|-4|<-312<-(-1)<2.5解析:根据相反数、绝对值的性质计算,并在数轴上表示出各个数,再比较大小即可得到答案.详解:()11--=,44--=-数轴表示如下:,∴-|-4|<-312<-(-1)<2.5.点睛:本题考查了有理数的知识;解题的关键是熟练掌握数轴、相反数、绝对值、有理数大小比较的性质,从而完成求解.4.(1)>;(2)>;(3)<;(4)<;(5)>;(6)>解析:根据有理数比较的法则即可得出答案.详解:解:(1)()()1=12=2,12,---+->-,()()12∴-->-+; (2)3998=,7212121>, 78213->-; (3)()2110.30.0933--=--=,, ()210.33∴--<-; (4)()2411216-==,()2412∴-<; (5)()301%>-; (6)22 3.1437≈ 22 3.147∴>; 故答案为:(1)>;(2)>;(3)<;(4)<;(5)>;(6)>.点睛:本题考查了有理数大小比较法则:正数大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.5.在数轴上把下列各数表示见解析;﹣5<﹣4<﹣|﹣2.5|<0<112<﹣(﹣212).解析:首先根据在数轴上表示数的方法,把所给的各数在数轴上表示出来;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,把所给的各数按从小到大的顺序用“<”连接起来即可.详解:解:﹣|﹣2.5|=﹣2.5,﹣(﹣212)=212.画数轴如图:∴﹣5<﹣4<﹣|﹣2.5|<0<112<﹣(﹣212)点睛:此题考查了利用数轴比较有理数大小的方法,解答关键是正确的在数轴上表示各点.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习2(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习2(人教版,含解析)](https://img.taocdn.com/s3/m/f1fcb19b25c52cc58ad6be76.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.已知:2,1a b ==,求:a b +.2.将 1.5-,(2)--,0,13,1--,( 2.5)+-在数轴上表示出来,并用“<”把它们连接起来.3.一辆出租车从A 站出发,先向东行驶12 km ,接着向西行驶8 km ,然后又向东行驶4 km.(1) 画一条数轴,以A 站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B ;(2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km 耗油0.05升,出租车由起点A 到终点B 共耗油多少升?4.在数轴上表示出下列各数,并用“<”连接比较各数的大小.-(+4),+(-1),|-3.5|,0,-2.55.已知|a|=7,|b|=3,且a >b ,求a+b 的值.6.若|m |=6,|n |=7,则m+n 的值多少?7.画一条数轴,并在数轴上表示:3.5和它的相反数,绝对值等于3的数,最大的负整数和最小的正整数,并把这些数由小到大用“<”号连接起来.8.将 1.5--,0,-2,1,32⎛⎫-- ⎪⎝⎭在数轴上表示出来,并用“<”把它们连接起来.9.已知下列各有理数:1-- , 112, 0 , - (- 3.5),-3.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”把这些数连接起来.10.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:3,()1--,﹣3.5,0,2--11.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.10,3,,|4|2---12.把下列各数在数轴上表示出来,并用“<”连接0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭.13.把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,9--,()3.15--.(1)整数集合 …};(2)分数集合 …};(3)非负数集合 …};(4)正数集合 …}.14.把下列各数填在相应的表示集合的括号内.1-,13-,3--,0,227,0.3-,1.7,()2-- 整数:( ……)非负整数:( ……)正数:( ……)有理数:( ……)15.已知a ,b ,c ,d ,m ,它们之间有如下关系:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为5,则(a +b +cd)m -cd 的值是多少?参考答案1.1或3解析:根据绝对值的定义得到a 和b 的值,代入计算即可.详解: 解:∵2,1a b ==, ∴a=±2,b=±1,∴a+b=-3,或a+b=-1,或a+b=1,或a+b=3,∴a b +=1或3.点睛:本题考查了绝对值的意义,解题的关键是根据绝对值的性质得到a 和b 的值.2.作图见解析;()1( 2.5) 1.51023+-<-<--<<<--解析:根据绝对值、相反数、数轴的性质,在数轴上把各个数表示出来,即可得到答案. 详解:(2)2--= 11--=-,( 2.5) 2.5+-=-数轴表示如下:结合数轴,用“<”把它们连接起来如下:()1( 2.5) 1.51023+-<-<--<<<--. 点睛:本题考查了绝对值、相反数、数轴的知识;解题的关键是熟练掌握绝对值、相反数、数轴的的性质,从而完成求解.3.(1)详见解析;(2) 24km ,它的实际意义是出租车行驶的总路程是24 km ;(3)1.2升 解析:(1)根据题意画出数轴解答即可;(2)根据绝对值的意义和有理数的加法法则即可求出各次路程的绝对值的和,实际意义是出租车行驶的总路程,据此即可解答;(3)用出租车行驶的总路程×0.05即可求出结果.详解:解:(1)终点B的位置如图所示.(2)|12|+|-8|+|4|=24(km);它的实际意义是出租车行驶的总路程是24 km;(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.点睛:本题考查了数轴、有理数的绝对值和有理数的加法运算,属于基本题型,熟练掌握基本知识是解题的关键.4.−(+4)<−2.5<+(−1)<0<|−3.5|;数轴见解析.解析:先把数轴补充完整,再在数轴上表示出各数,从左到右用“<”连接起来即可详解:解:如图所示−(+4)<−2.5<+(−1)<0<|−3.5|.点睛:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键5.4或10解析:利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.详解:∵|a|=7,|b|=3,∴a=±7,b=±3,又∵a>b,∴a=7,b=3或-3,则a+b=4或10.点睛:考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.6.m+n 的值为±1或±13.解析:根据绝对值的性质可以求出m =±6,n=±3,后计算m+n 的值即可求解.详解:∵|m|=6,|n|=7,∴m=±6,n=±7,当m=6,n=7时,m+n=6+7=13;当m=6,n=-7时,m+n=6-7=-1;当m=-6,n=7时,m+n=-6+7=1;当m=-6,n=-7时,m+n=-6-7=-13, 综合上述,m+n 的值为±1或±13.点睛:此题考查绝对值的性质,解题关键在于分情况讨论.7.数轴见解析, 3.53113 3.5-<-<-<<<解析:先按要求求出各数,再在数轴上表示出来,在根据数轴即可判定各数的大小. 详解:3.5的相反数为-3.5,绝对值等于3的数有-3、3,最大的负整数是-1,最小的正整数为1. 数轴为:﹣3.5<﹣3<﹣1<1<3<3.5.点睛:本题考查数轴及有理数的大小的比较.正确求出各有理数是解题的关键.8.在数轴上表示见解析;32 1.5012⎛⎫-<--<<<-- ⎪⎝⎭ 解析:先化简 1.5--与32⎛⎫-- ⎪⎝⎭,然后即可将各数在数轴上进行表示,再根据数轴上比较大小的方法即可用“<”把它们连接起来.详解: 解: 1.5 1.5--=-,3322⎛⎫--= ⎪⎝⎭, 有理数 1.5--,0,-2,1,32⎛⎫-- ⎪⎝⎭在数轴上表示如下:用“<”把它们连接起来是32 1.5012⎛⎫-<--<<<-- ⎪⎝⎭. 点睛:本题考查了有理数的相反数、绝对值、有理数在数轴上的表示以及比较有理数的大小等知识,属于基础题型,熟练掌握有理数的基本知识是解题的关键.9.图见解析,310-<--<<11( 3.5)2<--解析:(1)根据题意及绝对值的意义,相反数的意义进行化简,然后画出数轴,(2)由(1)中的数轴可直接进行解答.详解:解:(1)由()1=1, 3.5 3.5-----=,则把这些数在数轴上表示如图所示:(2)由(1)可得:用“<”把这些数连接起来为:310-<--<<11( 3.5)2<--.点睛:本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.10.数轴见解析,﹣3.5<2--<0<()1--<3解析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上原点的右边表示正数,原点的左边表示负数,从而可得答案.详解:解:由()11,22,--=--=-把3,()1--,﹣3.5,0,2--在数轴上表示如图:由数轴上的点表示的数是右边的数总比左边的数大,得:﹣3.5<2--<0<()1--<3.点睛:本题考查的是利用数轴上的点表示有理数,相反数的含义,求一个数的绝对值,有理数的大小比较,掌握以上的知识是解题的关键.11.在数轴上表示见解析,14302--<-<< 解析:先化简|4|--,再根据有理数在数轴上的表示方法即可将已知的各数在数轴上进行表示,然后根据数轴上右边的数总比左边的数大即可将已知的有理数进行比较.详解: 解:|4|--=﹣4,则有理数10,3,,|4|2---在数轴上表示如图:按从小到大的顺序连接如下:14302--<-<<.点睛:本题考查了数轴和有理数的大小比较,属于基础题目,熟练掌握基本知识是解题的关键.12.在数轴上表示见解析,()331300.51442--<-<--<<--< 解析:先化简,再把各个数表示在数轴上,然后用“<”连接各数.详解:()0.50.5--=,3344--=-,114433⎛⎫+-=- ⎪⎝⎭, 所以0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭ 在数轴上表示如下:所以()331300.51442--<-<--<<--<. 点睛:本题考查了绝对值的化简、相反数的意义、数轴及有理数的大小比较,根据在数轴上表示的数,右边的总大于左边的,用“<”号从左往右依次把各数连接起来.13.(1)6,﹣3,0,﹣1,9--;(2)2.5,()3.15--;(3)6,2.5,0,()3.15--;(4)6,2.5,()3.15--.解析:根据整数、分数、非负数、正有理数以及负数的定义进行判断即可.详解:99--=-,()3.15 3.15--=,由题可得:(1)整数集合 6,﹣3,0,﹣1,9--,…};(2)分数集合 2.5,()3.15--,…};(3)非负数集合 6,2.5,0,()3.15--,…};(4)正数集合 6,2.5,()3.15--,…}.点睛:本题主要考查了有理数的分类,绝对值以及相反数的定义,解题时注意:整数和分数统称为有理数;整数包括正整数、0、负整数;分数包括正分数、负分数.14.1-,3--,0,()2--;0,()2--;227,1.7,()2--;1-,13-,3--,0,227,0.3-,1.7,()2--解析:先把给出的数化简后,利用数集的分类标准赛选即可.详解: 整数:(){}1,3,0,2-----,;非负整数:(){}0,2--,; 正数:()22,1.7,27⎧⎫--⎨⎬⎩⎭, 有理数:()1221,,3,0,,0.3,1.7,237⎧⎫-------⎨⎬⎩⎭,. 点睛:本题考查数集问题,掌握数集的概念,会用数集选数、判断和区分,掌握数集的分类标准,清楚数集的表示.15.4或-6解析:只有符号不同的两个数是互为相反数;两个数互为相反数,两个数的和为0;两个数乘积为1,则两个数互为倒数;数轴上表示一个数的点到原点的距离是这个数的绝对值;根据相反数,倒数,绝对值的定义求解.详解:解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵m的绝对值为5,∴m=5或m=-5.∴当m=5时,原式=(0+1)×5-1=4;当m=-5时,原式=(0+1)×(-5)-1=-6.∴原式的值是4或-6.点睛:本题主要考查相反数,倒数,绝对值的定义和性质,解决本题的关键是要熟练掌握相反数,倒数,绝对值的定义和性质.。
七年级数学上册1.2.4 绝对值-绝对值的意义 选择题专项练习三(人教版,含解析)
![七年级数学上册1.2.4 绝对值-绝对值的意义 选择题专项练习三(人教版,含解析)](https://img.taocdn.com/s3/m/663bca94783e0912a3162a07.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-绝对值的意义一、选择题1.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定 2.16-的绝对值为( )A .6B .6-C .16 D .16- 3.有理数a ,b 在数轴上的对应点的位置如下图所示,则下列结论正确的是( )A .b a <-B .0ab >C .a b >D .02b a-< 4.2021-的绝对值是( )A .12021B .12021-C .2021-D .20215.|a|=-a ,则a 一定是( )A .负数B .正数C .零或负数D .非负数6.2-=( )A .0B .﹣2C .+2D .1 7.2019-的绝对值和相反数分别为( ).A .2019,-2019B .-2019,2019C .2019,2019D .-2019,-20198.如图,数轴上有四个点M ,P ,N ,Q ,若点M ,N 表示的数互为相反数,则M ,P ,N ,Q 四个点中表示的数的绝对值最大的是( )A .点MB .点NC .点PD .点Q9.有理数a ,b 在数轴上的位置如图所示,则下列结论中,不正确的是( )A .a+b <0B .a ﹣b <0C .0ab < D .|a|<|b|10.一个数的绝对值是5,则这个数是( )A .±5B .5C .﹣5D .2511.﹣4的绝对值是( )A .4B .14 C .﹣4 D .±412.4的绝对值是( )A .4B .﹣4C .±4D .13.计算|﹣3|的结果是( )A .3B .C .﹣3D .14.下列各组数中,不相等的一组是( )A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7|15.若︱2a ︱=-2a ,则a 一定是( )A .正数B .负数C .正数或零D .负数或零16.下列几种说法中,正确的是:( )A .0是最小的数B .任何有理数的绝对值都是正数C .最大的负有理数是-1D .数轴上距原点3个单位的点表示的数是±317.在-2,π,5-,-(-3),10--中,正数有( )A .2个B .3个C .4个D .5个 18.14-的绝对值等于( )A .14 B .4 C .14- D .4-19.一5的绝对值是( )A .5B .15 C .15- D .-520.下列各数中,绝对值最大的数是( )A .-3B .-2C .0D .1参考答案一、选择题1.C解析:由题意直接根据根据绝对值的性质,即可求出这个数.详解:解:如果一个有理数的绝对值是6,那么这个数一定是6-或6.故选:C.点睛:本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.C解析:求出16-的值是16,即可选择.详解:1166-=.故选:C.点睛:本题考查求绝对值.求一个数的绝对值,若这个数小于0,那它的绝对值为它的相反数;若这个数等于0,那它的绝对值为0;若这个数大于0,那它的绝对值为它本身.3.C解析:根据数轴上点对应数的符号、有理数乘法的符号法则及绝对值的意义求解.详解:解:由图可知:a>2,所以-a<-2,而b>-2,所以b>-a,A错误;由图可知,a>0,b<0,所以ab<0,-b>0,2a>0,02b a->,所以B 、D 错误; 由图可知,|a|>2,|b|<2,所以|a|>|b|,C 正确;故选C .点睛:本题考查数轴的应用,熟练掌握有理数乘法的符号法则及绝对值的意义是解题关键.4.D解析:根据绝对值的意义进行计算,再进行判断即可详解:解:2021-的绝对值是2021;故选:D点睛:本题考查了绝对值的意义,熟练掌握绝对值的性质是解题的关键5.C解析:根据绝对值的定义,绝对值等于它的相反数的数是负数或零.详解:解:∵a 的相反数是-a ,且|a|=-a ,∴a 一定是负数或零.故选C .点睛:本题主要考查了绝对值的定义,属于基础题型.注意不要忽略零.6.C解析:根据负数的绝对值是它的相反数解答.详解:解:∵负数的绝对值是它的相反数, ∴2-等于+2.故选C .点睛:本题考查实数的性质,主要利用了绝对值的性质和相反数的定义.7.C解析:根据绝对值意义和相反数的定义,即可得到答案.详解: 解:∵20192019-=,(2019)2019--=,∴2019-的绝对值和相反数分别为:2019,2019;故选:C.点睛:本题考查了绝对值的意义和相反数的定义,解题的关键是熟记定义.8.D解析:先利用相反数的定义确定原点为线段MN 的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q 表示的数的绝对值最大.详解:解:∵点M ,N 表示的数互为相反数,∴原点为线段MN 的中点,∴点Q 到原点的距离最大,∴点Q 表示的数的绝对值最大.故选:D .点睛:本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了相反数.9.D解析:根据数轴反映的基本信息,对两数的和、差、商及绝对值逐一判断.详解:解:观察数轴可知,a <0<b ,|a|>|b|,A 、异号两数相加,取绝对值较大的加数符号,a+b <0,故本选项结论正确;B 、因为a 小b 大,a ﹣b <0,故本选项结论正确;C、因为a、b异号,所以ba<0,故本选项结论正确;D、观察数轴可知|a|>|b|,故本选项结论错误.故选D.点睛:考查了数轴,绝对值.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.A解析:的绝对值都是5,故选A11.A解析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-4到原点的距离是4,所以-4的绝对值是4,故选A.12.A解析:试题分析:利用绝对值的代数意义化简,计算即可得到结果.解:4的绝对值是4.故选A.考点:绝对值.13.A解析:试题分析:根据绝对值的性质进行计算.解:|﹣3|=3.故选A.考点:绝对值.14.D解析:A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.15.D解析:试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.故选D16.D解析:A 、负数小于0;0不是最小的数,错误;B 、0的绝对值是0,错误;C 、没有最大的负有理数,错误;D 、正确.故选D .17.B 解析:试题解析:∵5=5-,-(-3)=3;10=10---.∴在-2,π,5-,-(-3),10--中,正数有π,5-,-(-3),共3个, 故选B .考点:正数和负数.18.A解析:试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点14-到原点的距离是14,所以14-的绝对值是14,故选A .19.A解析:试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣5到原点的距离是5,所以﹣5的绝对值是5,故选A.20.A解析:试题分析:|﹣3|>|﹣2|>>|0|,故选A.考点:1.绝对值;2.有理数大小比较。
七年级上册数学绝对值专项训练
![七年级上册数学绝对值专项训练](https://img.taocdn.com/s3/m/348d799a88eb172ded630b1c59eef8c75ebf9554.png)
人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。
2. 性质:-绝对值具有非负性,即|a|≥0。
-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。
二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。
解:|-5| = 5。
-例2:求|0|的值。
解:|0| = 0。
-例3:求|3.5|的值。
解:|3.5| = 3.5。
2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。
解:因为|a| = 4,所以 a = 4 或 a = -4。
-例5:已知|b| = -2,求b 的值。
解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。
3. 绝对值的化简-例6:化简|2 - 5|。
解:|2 - 5| = |-3| = 3。
-例7:化简|x - 3|(x<3)。
解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。
4. 绝对值的运算-例8:计算|3| + |-2|。
解:|3| + |-2| = 3 + 2 = 5。
-例9:计算|5 - 3| - |2 - 4|。
解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。
三、专项练习1. 填空题- |-8| = ____。
-若|x| = 6,则x = ____。
-绝对值等于3 的数是____。
- |0 - 5| = ____。
2. 选择题-下列说法正确的是()。
A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。
A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。
-化简|x - 1| + |x - 3|(1<x<3)。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-15专项练习(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-15专项练习(人教版,含解析)](https://img.taocdn.com/s3/m/1f43b17fa0116c175e0e488e.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.下列各数中,比1-小的数为()A.0 B.0.5 C.2-D.12.如果|a|=3,|b|=1,且a>b,那么a+b的值是()A.4 B.2 C.﹣4 D.4或23.下列各组数中,互为相反数是( )A.2()3--与2||3-B.2||3-与3||2--C.2||3-与2()3+-D.2||3-与3||2-4.-20的绝对值是()A.20 B.120-C.-20 D.1205.﹣2018的绝对值是()A.﹣2018 B.12018C.12018-D.20186.一个数的绝对值等于5,这个数是().A.5 B.±5C.-5 D.1 57.计算52的结果是()A.3 B.2 C.-3 D.-2 8.有理数4的绝对值为().A.4-B.4C.14D.14-9.–2的绝对值是()A.2 B.–2 C.±2D.10.下列各数|-2|,-(-2),-(+2),-|-2|中,负数的个数有( ) A.1个B.2个C.3个D.4个11.2-等于()A.2 B.-2 C.±2D.1 2±12.﹣5的绝对值是( )A .5B .﹣5C .﹣D . 13.的相反数的绝对值是( )A .−B .2C .−2D . 14.23-的绝对值是( )A .32 B .23 C .1- D .32- 15.下列四个数中,最小的是( )A .﹣(﹣4)B .|﹣1|C .0D .﹣3 二、填空题1.|-0.3|的相反数等于________.2.绝对值不小于3而小于6的所有整数有_____个3.我们知道()52--表示5与-2之间的绝对值,实际上也可以理解为数轴上表示5与-2两数在数轴上所对应的两点之间的距离.(1)表示5与-2的点之间的距离是_____(2)探究:如果|x −2|=5,则x=______.42的相反数是_____,2π的相反数是_____3_____.5.如果a ﹣1与2a+7互为相反数,则|a+2|=_____.6.化简-|-8|=_______ ,-(-5)=_______7.我们知道()52--表示5与-2之间的绝对值,实际上也可以理解为数轴上表示5与-2两数在数轴上所对应的两点之间的距离.(1)表示5与-2的点之间的距离是_____(2)探究:如果|x −2|=5,则x=______.8.x =7,则x=_______.9.a,b 互为相反数,c,d 互为倒数,m 的绝对值等于4,则5a b +-cd+m 的值为_____. 10.______的绝对值是它本身,_______的绝对值是它的相反数.11.若2a =,1b =-,则a b +=________.12.若40p +=,则p = _________ .13.计算:2--=______________.145π的绝对值是_________________.15.计算:3--=______.三、解答题1.计算:(1)|8||4|-+-;(2)1( 3.5)2----; (3)432677-+-.2.把下列各数分别填入相应的集合里.()()2203,,0,, 2.14,5, 4.2,379π------+(1)正数集合 …};(2)负数集合 …};(3)非负整数集合 …};(4)分数集合 …}3.已知a =2,b =2,b >a ,求 a ,b 的值.4.﹣|﹣8|=________.5.将下列有理数在数轴上表示出来,并回答下列问题:﹣3,12,﹣1.5,0,+3,|﹣2|.(1)上面的有理数中,互为相反数的是 .(2)用“<”符号将上面的数连接起来.参考答案一、选择题1.C解析:本题考查有理数比较大小,需要按照“正数大于负数,负数绝对值越大结果越小”原则解答本题.详解:-1是负数,A选项0大于负数;B,D选项均是正数,大于负数;C选项-2的绝对值大于-1绝对值,∴-2<-1故选:C点睛:该题目考查有理数的比较大小,学会判定正负数以及负数之间如何比大小即可.2.D解析:根据绝对值的性质可得a=±3,b=±1,再根据a>b,可得①a=3,b=1②a=3,b=-1,然后计算出a+b即可.详解:∵|a|=3,|b|=1∴a=±3,b=±1∵a>b∴①a=3,b=1,则:a+b=4;②a=3,b=−1,则a+b=2,故选D.点睛:有理数的加法,绝对值,关键是熟练掌握绝对值的性质.3.C解析:根据绝对值与相反数的定义进行解答.详解:解:A、2233⎛⎫--=⎪⎝⎭,2233-=,两数相等,不互为相反数,此选项错误;B、2233-=,3322--=-,两数不互为相反数,此选项错误;C、2233-=,2233⎛⎫+-=-⎪⎝⎭,两数互为相反数,选项正确;D、2233-=,3322-=,两数不互为相反数,此选项错误;故选C.点睛:本题主要考查了绝对值的性质,相反数定义,关键是正确理解绝对值的性质与相反数的定义.4.A解析:根据绝对值的性质解答.详解:-20的绝对值是20,故选:A.点睛:此题考查绝对值的性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数.5.D解析:分析:正数的绝对值等于它本身;负数的绝对值等于它的相反数;零的绝对值为零.根据绝对值的性质得出答案.详解:∵20182018,-=∴本题选D.点睛:本题主要考查的是绝对值的性质,属于基础题型.理解绝对值的性质是解题的关键.6.B解析:分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.解析:分析:先根据有理数的加法运算法则对-5+2进行计算得-3,再求出-3的绝对值即可.详解:|-5+2|=|-(5-2)|=|-3|=3.故选A.点睛:本题主要考查了有理数的加法运算法则以及去绝对值符号,熟记运算法则是解题的关键,符号的处理是容易出错的地方.8.B解析:∵正数的绝对值等于它的本身,,∴|4|4故B正确.9.A解析:∵ 负数的绝对值是它的相反数,∴|-2|=2.故选A.10.B解析:先化简题目中的各个数即可解答本题.详解:解:∵|-2|=2,-(-2)=2,-(+2)=-2,-|-2|=-2,∴在|-2|,-(-2),-(+2),-|-2|中,负数的个数有2个,故选:B.点睛:本题考查正数和负数,绝对值化简,解题的关键是明确正数和负数在题目中实际含义.11.A解析:试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选A.12.A解析:试题分析:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.考点:绝对值.解析:因为的相反数是-,-的绝对值是,所以的相反数的绝对值是故选D14.B解析:正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数,据此即可得答案.详解:∵23-<0,∴23-的绝对值是-(23-)=23,故选:B.点睛:本题考查了绝对值,解决本题的关键是掌握绝对值的定义,需要注意的是负数的绝对值等于其相反数.15.D解析:先根据绝对值、相反数的意义计算出各个选项的结果,然后按照有理数大小比较方法即可确定答案.详解:解:-(-4)=4,|-1|=1,∵-3<0<1<4,∴四个数中最小的数是-3,故选:D.点睛:本题考查了有理数的大小比较,主要是相反数、绝对值等知识点.比较大小规律是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.二、填空题1.-0.3解析:|-0.3|=0.3,所以0.3的相反数是-0.3.2.6解析:试题解析:绝对值不小于3而小于6的整数有±3,±4,±5.共有6个.3.7; 7或−3;解析:(1)根据距离公式即可解答;(2)利用绝对值求解即可;详解:(1)数轴上表示5与−2两点之间的距离是|5−(−2)|=|5+2|=7,故答案为7;(2)∵|x −2|=5,∴x −2=5或x −2=−5,解得:x=7或x=−3,故答案为7或−3;点睛:此题考查绝对值,数轴,解题关键在于掌握数轴的特征.4π2-解析:根据相反数以及绝对值的定义即可解答.详解:2π的相反数是π2-,π2-点睛:考查相反数以及绝对值的定义,掌握相反数以及绝对值的求法是解题的关键.5.0解析:根据相反数的定义即可求出列出方程.详解:由题意可知:a-1+2a+7=0,3a=-6,a=-2,∴原式=|0|=0,故答案为0点睛:本题考查相反数的定义,解题的关键是正确理解相反数的定义,本题属于基础题型.6.-8 5解析:-|-8|=-8,-(-5)=5.7.7; 7或−3;解析:(1)根据距离公式即可解答;(2)利用绝对值求解即可;详解:(1)数轴上表示5与−2两点之间的距离是|5−(−2)|=|5+2|=7,故答案为7;(2)∵|x−2|=5,∴x−2=5或x−2=−5,解得:x=7或x=−3,故答案为7或−3;点睛:此题考查绝对值,数轴,解题关键在于掌握数轴的特征.8.±7.解析:根据绝对值的性质求解即可.详解:∵|±7|=7,∴x=±7.故答案为±7.点睛:非负数的绝对值是它本身,负数的绝对值是它的相反数.9.3或-5解析:根据a,b互为相反数得a+b=0, c,d互为倒数得cd=1,m的绝对值等于4得m=±4,故可进行计算.详解:由题意得a+b=0, cd=1,m=±4∴m=4时,原式=0-1+4=3,m=-4时,原式=0-1-4=-5故答案为3或-5.此题主要考查有理数的性质,解题的关键是熟知相反数、倒数、绝对值的性质.10.正数或零负数或零解析:根据相反数及绝对值的定义求解即可.详解:正数或零的绝对值是它本身,负数或零的绝对值是它的相反数.点睛:本题是对有理数性质的考查,在有理数中,只有正数和0的绝对值是它本身,负数的绝对值是它的相反数.11.1或3解析:根据绝对值的意义,可得a的值,再根据绝对值的意义,分两种情况可得答案.详解:|a|=2,a=2或a=-2,|a+b|=|2-1|=1或|a+b|=|-2-1|=3,故答案为1或3.点睛:本题考查了绝对值,注意绝对值相等的数有两个,以防漏掉.12.-4解析:理解绝对值的意义:一个数的绝对值表示在数轴上表示这个数的点到原点的距离.显然根据绝对值的意义,绝对值等于0的数是0详解:因为0的绝对值是0,所以p+4=0解得:p=﹣4.故答案为﹣4.点睛:本题考查了绝对值的意义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13.-2解析:根据绝对值的定义进行化简即可解答.--=-;解:根据绝对值的定义可得,22故答案为:2-.点睛:本题考查了绝对值的计算,熟练掌握是解题的关键.14.ππ的正负性,然后根据绝对值的意义即可求解详解:∵459<<∴23<ππ<π的绝对值是:π点睛:本题考查了近似数和绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.-3解析:根据绝对值的性质进行计算即可.详解:--=-33故答案为:-3.点睛:本题考查了绝对值的计算问题,掌握绝对值的性质是解题的关键.三、解答题1.(1)12;(2)3;(3)9.解析:( 1 )根据有理数绝对值的化简方法分别化简后,再进行计算即可;( 2 )根据有理数绝对值的化简方法分别化简后,再进行计算即可;( 3 )根据有理数绝对值的化简方法分别化简后,再进行计算即可.详解:-+-=+=.(1)|8||4|8412(2)11( 3.5) 3.5322----=-=. (3)4343262697777-+-=+=.点睛:此题考查了有理数加减法,有理数绝对值的化简,掌握正数的绝对值等于它本身,零的绝对值是零,负数的绝对值等于它的相反数,以及有理数加减法的运算法则是解题的关键.2.(1)()203,,5,79π--;(2)()2, 2.14, 4.23----+;(3)()3,0,5--;(4)()220,, 2.14, 4.237----+. 解析:先化简绝对值、去括号,再根据正数、负数、非负整数、分数的定义即可得. 详解:()()22,55, 4.2 4.233--=---=-+=- (1)正数集合()203,,5,79π⎧⎫--⎨⎬⎩⎭; (2)负数集合()2, 2.14, 4.23⎧⎫----+⎨⎬⎩⎭;(3)非负整数集合(){}3,0,5--;(4)分数集合()220,, 2.14, 4.237⎧⎫----+⎨⎬⎩⎭. 点睛:本题考查了正数、负数、非负整数、分数的定义,熟记相关概念是解题关键.3.a=-2,b=2.解析:根据绝对值的意义以及b >a 可以求得a 、b 的值.详解:解:∵|a|=2,∴a=±2,∵|b|=2,∴b=±2.∵b>a ,∴a=-2,b=2.点睛:本题考查绝对值,以及有理数的大小比较,解题的关键是明确绝对值的意义.4.-8解析:试题分析:根据绝对值的性质可求解.试题解析:﹣|﹣8|=﹣8.5.数轴图见解析;(1)3-和3+;(2)13 1.50232-<-<<<-<+.解析:(1)根据数轴的定义、相反数的定义即可得;(2)根据在数轴上表示的有理数,左边的总小于右边的即可得.详解:22-=,将这些有理数在数轴上表示出来如图所示:(1)相反数:只有符号不同的两个数互为相反数,则上面的有理数中,互为相反数的是3-和3+,故答案为:3-和3+;(2)由数轴上的数,左边的总小于右边的得:13 1.50232-<-<<<-<+.点睛:本题考查了数轴、绝对值、相反数,熟练掌握数轴的相关知识是解题关键.。
人教版初中七年级上册数学《绝对值》练习题
![人教版初中七年级上册数学《绝对值》练习题](https://img.taocdn.com/s3/m/f0a02bce250c844769eae009581b6bd97f19bcb3.png)
第一章 有理数1.2 有理数1.2.4 绝对值第1课时 绝对值1.______7.3=-;______0=;______3.3=--;______75.0=+-. 2.______510=-+-;______36=-÷-;______5.55.6=---.3.绝对值等于4的数是______.4.______5=-;______31.2=-;______=+π.5.7=x ,则______=x ; 7=-x ,则______=x .6.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.7. 若3=x ,则x=___。
8. 化简:=--5 ;=--)5( ;=+-)21( .9. (2009年,广州)绝对值是6的数是 .参考答案1、3.7;0;—3.3;—0.752、15;2;13、±4;4、5;2.31;π;5、±7;±7;6、0;正数;负数7、±38、-5,5,21 (解析:本题考查的是绝对值、相反数的意义.) 9、±6 考查绝对值的意义.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
有的人会有疑问,小学生的学习任务不大为什么还要制定学习计划?下面就让我们一起来看看小学生制定学习计划的好处。
1、学习的目标明确,实现目标也有保证学习计划就是规定在什么时候采取什么方法步骤达到什么学习目标。
短时间内达到一个小目标。
长时间达到一个大目标。
在长短计划指导下,使学习一步步地由小目标走向大目标。
2、恰当安排各项学习任务,使学习有秩序地进行,有了计划可以把自己的学习管理好,到一定时候对照计划检查总结一下自己的学习,看看有什么优点和缺点,优点发扬,缺点克服,使学习不断进步。
3、对培养良好的学习习惯大有帮助。
七年级数学上册1.2.4 绝对值-绝对值的意义 选择题专项练习十(人教版,含解析)
![七年级数学上册1.2.4 绝对值-绝对值的意义 选择题专项练习十(人教版,含解析)](https://img.taocdn.com/s3/m/7afeba8931b765ce040814da.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-绝对值的意义一、选择题1.在数轴上表示a,b 两数的点如图所示,则下列判断正确的是( )A .a -b <0B .a+b<0C .ab>0D .|a|>|b|2.3的绝对值是( )A .-3B .3C .-13D .133.无论x 取何值,下列式子的值一定是正数的是( )A .xB .2xC .1x +D .21x +4.绝对值最小的数是( )A .-100B .-0.001C .0D .0.0015.如图,数轴上的点A 表示的数为有理数a ,下列各数中在0,1之间的是()A .||aB .a -C .||1a -D .1a +6.32-的绝对值等于( )A .23- B .32 C .32- D .237.﹣120的绝对值是( )A .﹣20B .20C .120 D .﹣1208.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D9.12的相反数的绝对值是()A.-12B.2 C.-2 D.1210.-6的绝对值是()A.-6 B.6 C.- 16D.1611.数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A.点A B.点B C.点C D.点D12.如图,数轴的单位长度为1,如果R,T表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的绝对值最大()A.P B.R C.Q D.T13.下列选项中,不能使等式“||a a=”成立的是()A.3a=B.a=C.0a=D.-2a=14.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是()A.-3 B.-1 C.1 D.315.下列说法正确的是()A.有理数分为正数和负数B.有理数的相反数一定比0小C.绝对值相等的两个数不一定相等D.有理数的绝对值一定比0大16.在12,,4,523---,在这四个数中,绝对值最小为()A.4 B.12-C.23-D.-517.如果一个数的绝对值等于它本身,那么这个数是()A.正数B.负数C.非正数D.非负数18.a,b为有理数,下列说法正确的是()A.|a+b|的值一定是正数 B.a2+1的值一定是正数C.当a<b时,a2<b2 D.当a>b时,|a|>|b|19.的绝对值是()A.B.2 C.D.20.若|a|=1,则a等于()A.1 B.﹣1 C.1或﹣1 D.无法确定参考答案一、选择题1.B<,则有a+b<0,即可得到答案.解析:有数轴得到a b详解:<,解:由图可知,a b∴a+b<0,故答案为B.点睛:本题考查数轴和绝对值,解题的关键是读懂数轴,掌握求绝对值.2.B解析:根据题意,利用绝对值的性质即可得出答案.详解:解:3的绝对值是3,故选B.点睛:本题主要考查了绝对值的性质,即一个正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数.3.D解析:根据绝对值的非负性和正数的定义判断即可;详解:当0x=时,x不符合题意,故A错误;当0x=时,2x不符合题意,故B错误;x+不符合题意,故C错误;当1x=-时,1不论x取何值,21x+都是正数,故D正确;故答案选D.点睛:本题主要考查了绝对值非负性的应用和正数的定义,准确分析判断是解题的关键.4.C解析:先分别计算各数的绝对值,比较绝对值的大小即可得到答案.详解:=,00-=,0.0010.001100100-=,0.0010.001=,∵0<0.001<100,∴绝对值最小的数是0,故选:C.点睛:此题考查求一个数的绝对值,有理数的大小比较,正确计算绝对值是解题的关键.5.C解析:由数轴可知21-<<-,再逐个选项分析即可解题.a详解:A. 21a-<<-∴<<a12故A不符合题意;B. 21a-<<-∴>->,21a故B不符合题意;C. 21a-<<-∴<<12a∴<-<a0||11故C符合题意;D. 21a-<<-110a∴-<+<故D不符合题意;故选:C.点睛:本题考查数轴、绝对值、有理数的大小比较等知识,是重要考点,难度较易,掌握相关知识是解题关键.6.B解析:根据绝对值的意义可直接进行求解.详解:解:32-的绝对值等于32;故选B.点睛:本题主要考查绝对值的意义,熟练掌握求一个数的绝对值是解题的关键.7.C解析:直接利用绝对值的意义求解.详解:解:根据题意得,|-120|=120.故选:C.点睛:本题考查了绝对值:当a>0,|a|=a;当a=0,|a|=0;当a<0,|a|=-a.8.A解析:根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.详解:解:∵绝对值等于2的数是﹣2和2,故选A.点睛:此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.9.D解析:先根据相反数的定义得到12的相反数为-12,然后根据绝对值的意义求解.详解:解:12的相反数为-12,-12的绝对值为12.故选:D.点睛:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.也考查了相反数.10.B解析:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.详解:负数的绝对值等于它的相反数,所以-6的绝对值是6故选B点睛:考点:绝对值.11.A解析:根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个即可.详解:∵绝对值等于2的数是﹣2和2,故选A.12.A解析:根据相反数的定义确定出RT的中点为原点,然后根据绝对值的定义解答即可.详解:解:如图,∵R,T表示的数互为相反数,∴线段RT的中点O为原点,∴点P的绝对值最大.故选:A.点睛:本题考查相反数与绝对值,熟练掌握相反数及绝对值的定义是解题关键.13.D解析:直接利用绝对值的定义分析得出答案.详解:∵|a|=a,∴a≥0,四个答案中,只有D中a是负数,不满足条件.故选D.点睛:本题考查了绝对值,正确掌握绝对值的性质是解题的关键.14.B解析:找到AC的中点即为原点,进而看B点在原点的哪边,距离原点几个单位即可.详解:解:设AC的中点为O点,表示的数是0,所以点C表示的数是-3,所以点B表示的数是-1.故选:B点睛:本题考查数轴上点的确定;找到原点的位置是解决本题的关键;用到的知识点为:两个数的绝对值相等,那么这两个数到原点的距离相等.15.C解析:A. 有理数分为正数、零、负数,故A 不符合题意;B. 负数的相反数大于零,故B 不符合题意;C. 互为相反数的绝对值相等,故C 符合题意;D. 绝对值是非负数,故D 不符合题意;故选C.16.B解析:分别计算各数的绝对值,再比较大小即可得答案.详解:1122-=,2233-=,44=,55-=, ∵124523<<<, ∴在这四个数中,绝对值最小为12-,故选:B .点睛:本题考查了有理数的大小比较和绝对值,掌握绝对值的定义是本题的关键.17.D解析:利用绝对值的性质,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0判定即可.详解:解:一个数的绝对值等于它本身,这个数是非负数,故选:D .点睛:本题考查了绝对值的性质,熟记绝对值的性质是解题的关键,要注意0和正数统称为非负数.18.B解析:试题解析:A、当a+b=0时,|a+b|=0,不是正数,故选项错误;B、a2≥0,则a2+1>0,则a2+1一定是正数,选项正确;C、当x=﹣2,b=1时,a<b,而a2>b2,故选项错误;D、当a=1,b=﹣2时,a>b,而|a|<|b|,选项错误.故选B.19.B详解:关于绝对值的基础题.选B20.C解析:根据绝对值的定义可以求得a的值,从而可以解答本题.详解:∵|a|=1,∴a=±1,故选C.点睛:本题考查绝对值,解答本题的关键是明确绝对值的定义,利用绝对值的知识解答.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值 选择题专项练习一(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值 选择题专项练习一(人教版,含解析)](https://img.taocdn.com/s3/m/d8d3c12528ea81c759f57842.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.2019的绝对值是()A.12019B.2019-C.2019 D.2019±2.在有理数-(-2),-2-,-5,0,3,-1.5中负数的个数为()A.1个B.2个C.3个D.4个3.下列各数中,绝对值最大的是()A.-6 B.-3 C.0 D.24.-2的绝对值等于A.2 B.-2 C.D.45.-2的绝对值是()A.2 B.-2 C.D.-6.在﹣112,15,﹣10,0,﹣(﹣5),﹣|+3|,+(﹣5),﹣(+112)中,负数的个数有()A.2个B.3个C.4个D.5 个7.-2的绝对值是()A.-2 B.2 C.D.8.|-2015|等于()A.2015 B.-2015 C.±2015D.9.下列各数中,一定互为相反数的是()A.-(-5)和-|-5| B.|-5|和|+5|C.-(-5)和|-5| D.|a|和|-a|10.一个数的绝对值是5,那么这个数是()A .±5B .5C .-5D .11.﹣1的绝对值是( )A .﹣1B .1C .0D .±112.4x =,则x x +等于( ).A .8B .8或-8C .4或-4D .0或8 132的绝对值是( )A .B C D .14.﹣2 的绝对值是( )A .﹣2B .2C .2±D .-12 15.|3.14-π|的值是 ( )A .0B .3.14-πC .π-3.14D .3.14+π 16.已知x x =-,那么x 一定是() A .大于零 B .小于零C .等于零D .小于或等于零 17.下列各式不成立的是( )A .|﹣2|=2B .|+2|=|﹣2|C .﹣|+2|=±|﹣2|D .﹣|﹣3|=+(﹣3) 18.-3的绝对值是( )A .3B .-3C .13D .919.实数( )A .B .3C D .20.|﹣3|=( )A .13B .﹣13C .3D .﹣3 21.若-|a |=-3.2,则a 是()A .3.2B .-3.2C .±3.2D .0和3.2 22.︱-32︱的值是( )A .-3B .3C .9D .-9 23.下列各式错误的是( )A .-|+2|=-2B .-(+2)=-2C .-(-2)=2D .-|-2|=224.如图,数轴上点A所表示的数的绝对值为()A.3 B.±3C.﹣3 D.以上均不对25.若│x--3│+│y--2│=0,则│x│+│y│的值是()A.5 B.1 C.2 D.0参考答案一、选择题1.C解析:正数的绝对值是它本身,依此即可求解.详解:2019的绝对值等于2019.故选:C.点睛:此题考查了绝对值,解题关键在于掌握如果用字母a表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.C解析:根据负数的定义:负数小于0逐个判断即可.详解:解:在有理数-(-2),-2-,-5,0,3,-1.5中,负数有:-2-,-5,-1.5,共3个.故选:C.点睛:本题考查了负数的概念,属于应知应会题型,掌握负数的定义是关键.3.A解析:分别求出各个数的绝对值再比较大小即可.详解:-,0=0,2=2,6=6-,3=3∴绝对值最大的是6-故选:A.点睛:本题考查了绝对值和有理数的大小比较,熟练掌握绝对值的定义是解题的关键.4.A解析:分析:直接根据绝对值的意义得到答案.解:|-2|=2.故选A.点评:本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.5.A解析:试题分析:因为负数的绝对值等于它的相反数,所以-2的绝对值是2,故选A.考点:绝对值.6.D解析:根据负数的定义,判断下列的数中是负数的数.详解:解:112-、10-、3-+、()5+-、112⎛⎫-+ ⎪⎝⎭是负数,有5个.故选:D.点睛:本题考查负数的定义,需要注意并不是有负号的数就一定是负数,比如题目中的()5--就是正数.7.B解析:试题分析:数轴上表示一个数的点离开原点的距离叫这个数的绝对值.(0){(0),a aaa a≥=-<2 2.∴-=乘积为1的两个数互为倒数;所以2-的倒数等于12-.乘积为1-的两个数互为负倒数.所以2-的负倒数等于12.所以选B.考点: 1绝对值;2倒数;3负倒数.8.A解析:试题分析:负数的绝对值等于它的相反数,|-2015|=2015,故选A考点:绝对值9.A解析:根据相反数和绝对值的定义,分别化简每一对数值,然后做出判断,详解:A .-(-5)=5,-|-5|=-5,5和-5互为相反数,故A 正确;B .|-5|=5,|+5|=5,故B 错误;C .-(-5)=5,|-5|=5,故C 错误;D .|a|=|-a|,故D 错误.故选A考点:相反数;绝对值.10.A解析:试题分析:∵|-5|=5,|5|=5,∴一个数的绝对值是5,那么这个数是±5.故选A . 考点:绝对值.11.B解析:试题分析:根据正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.可得﹣1的绝对值等于其相反数1,故选B .考点:绝对值12.D解析:先根据绝对值的定义求出x 的值,再分别代入计算即可.详解: ∵4x =,∴4x =±,当x=4时,448x x +=+=;当x=-4时,440x x +=-=; ∴x x +等于0或8.故选D.点睛:本题考查绝对值的概念,解题的关键是正确理解绝对值的定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.13.A解析:分析:根据差的绝对值是大数减小数,可得答案.的绝对值是故选A .点睛:本题考查了实数的性质,差的绝对值是大数减小数.14.B解析:根据题意,利用绝对值的性质即可得出答案.详解:解:-2的绝对值是2.故选B.点睛:本题主要考查了绝对值的性质,即一个正数的绝对值是它本身,0的绝对值是0,一个负数的绝对值是它的相反数.15.C解析:根据绝对值的定义判断即可.详解:因为3.14-π <0,所以∣3.14-π∣=-(3.14-π)= 3.14π- ,故选C.点睛:本题考查绝对值的性质,如果a<0,那么∣a∣=-a ,如果a>0,那么∣a∣=a,∣0∣=0,熟练掌握绝对值的性质是解题关键.16.D解析:一个数的绝对值等于它的相反数,则这个数一定小于或等于0.详解:因为|x|=﹣x,所以x一定小于或等于0.故选D.点睛:理解绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.17.C解析:分别根据绝对值的定义求出各选项的值即可.详解:A项,根据负数的绝对值等于它的相反数,所以|﹣2|=2.故A项不符合题意.B项,+2和-2的绝对值相同.故B项不符合题意.是两个数.故C项符合题意.C项,-+2=-2,而-2D项,--3=-3,+-3=-3().故D项不符合题意.故本题正确答案为C.点睛:本题主要考查绝对值的概念,熟悉掌握是关键.18.A解析:根据一个数的绝对值是非负数即可得出详解:-3的绝对值是3故答案为3点睛:本题考查了绝对值,需要注意一个正数和0的绝对值是它本身,一个负数的绝对值是它的相反数19.C解析:直接利用绝对值的性质得出答案.详解:解:实数故选C.点睛:此题主要考查了绝对值,正确把握绝对值的定义是解题关键.20.C解析:根据绝对值的定义解答即可.详解:|-3|=3故选C点睛:本题考查的是绝对值,理解绝对值的定义是关键.21.C解析:首先根据题意可得|a|=3.2,再由绝对值等于一个正数的数有两个可得答案.详解:−|a|=−3.2,|a|=3.2,a=±3.2,故选C.点睛:此题考查绝对值,解题关键在于掌握其性质.22.C解析:首先要计算-32=-9,再根据绝对值的意义即可解决,负数的绝对值是它的相反数.详解:解:︱-32︱=︱-9︱=9,故选:C.点睛:本题考查了平方和绝对值,要注意此题的运算顺序,应先化简平方,再计算绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.23.D解析:根据绝对值以及相反数的意义分别进行判断即可.详解:-+=-,所以A选项的计算正确;A.22-+=-,所以B选项的计算正确;B.()22-+=-,所以C选项的计算正确;C.()22--=-,所以D选项的计算错误.D. 22故选:D.点睛:考查绝对值以及相反数的意义,掌握绝对值以及相反数的定义是解题的关键.24.A解析:根据数轴可以得到点A表示的数,从而可以求出这个数的绝对值,本题得以解决.详解:由数轴可得,点A表示的数是﹣3,∵|﹣3|=3,∴数轴上点A所表示的数的绝对值为3.故选A.点睛:本题考查数轴和绝对值,解答本题的关键是明确数轴的特点,会求一个数的绝对值.25.A解析:试题解析:30,20,x y -≥-≥ 320,x y -+-= 30,20.x y ∴-=-= 3, 2.x y ∴== 5.x y ∴+= 故选A.。
人教版数学七年级上册第1章1.2.4绝对值同步练习(解析版)
![人教版数学七年级上册第1章1.2.4绝对值同步练习(解析版)](https://img.taocdn.com/s3/m/d6629fa8bb4cf7ec4afed0b8.png)
人教版数学七年级上册第1章1.2.4绝对值同步练习一、单选题(共14题;共28分)1、下列有理数的大小比较正确的是()A、B、C、D、2、下列比较大小结果正确的是()A、﹣3<﹣4B、﹣(﹣2)<|﹣2|C、D、3、下列正确的是()A、﹣(﹣21)<+(﹣21)B、C、D、4、在(﹣2)2,(﹣2),+ ,﹣|﹣2|这四个数中,负数的个数是()A、1个B、2个C、3个D、4个5、在|﹣1|,﹣|0|,(﹣2)3,﹣|﹣2|,﹣(﹣2)这5个数中,负数共有()A、2个B、3个C、4个D、5个6、在﹣中,负数有()A、1个B、2个C、3个D、4个7、下列式子中,﹣(﹣3),﹣|﹣3|,3﹣5,﹣1﹣5是负数的有()A、1个B、2个C、3个D、4个8、设a是最小的自然数,b是最小的正整数.c是绝对值最小的数,则a+b+c的值为()A、﹣1B、0C、1D、29、下列各式中,计算正确的是()A、x+y=xyB、a2+a2=a4C、|﹣3|=3D、(﹣1)3=310、下列式子正确的是()A、a﹣2(﹣b+c)=a+2b﹣2cB、|﹣a|=﹣|a|C、a3+a3=2a6D、6x2﹣2x2=411、数m、n在数轴上的位置如图所示,则化简|m+n|﹣m的结果是()A、2m+nB、2mC、mD、n12、有理数a,b在数轴上的位置如图所示,则|a+b|+|a﹣b|化简的结果为()A、﹣2bB、﹣2aC、2bD、013、若a<0,b>0,化简|a|+|2b|﹣|a﹣b|得()A、bB、﹣bC、﹣3bD、2a+b14、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是()A、0B、﹣2C、2aD、2c二、填空题(共7题;共9分)15、计算:3﹣(﹣5)+7=________;计算﹣2﹣|﹣6|的结果是________.16、如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么|a﹣b|﹣|b﹣a|=________.17、若a<0,则2a+5|a|=________.18、用“>”或“<”填空:﹣________﹣﹣|﹣π|________﹣3.14.19、3﹣的绝对值是________.20、计算=________(结果保留根号)21、已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.三、解答题(共4题;共20分)22、画出一条数轴,在数轴上表示数﹣12, 2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.23、已知|a|=2,|b|=4,①若<0,求a﹣b的值;②若|a﹣b|=﹣(a﹣b),求a﹣b的值.24、如果与|y+1|互为相反数,求x﹣y的平方根.25、画出数轴,并在数轴上表示下列各数,再用“<”号把各数连接起来:﹣(+4),+(﹣1),|﹣3.5|,﹣2.5.答案解析部分一、单选题1、【答案】B【考点】有理数大小比较【解析】【解答】解:A、>,故本选项错误; B、|﹣|>|﹣|,故本选项正确;C、﹣<﹣,故本选项错误;D、﹣|﹣|<﹣|+ |,故本选项错误;故选B.【分析】根据实数的大小比较法则比较即可.2、【答案】D【考点】有理数大小比较【解析】【解答】解:化简后再比较大小. A、﹣3>﹣4;B、﹣(﹣2)=2=|﹣2|=2;C、<﹣;D、|﹣|= >﹣.故选D.【分析】这道题首先要化简后才能比较大小.根据有理数大小比较的方法易求解.3、【答案】D【考点】有理数大小比较【解析】【解答】解:A、∵﹣(﹣21)=21,+(﹣21)=﹣21,∴﹣(﹣21)>+(﹣21),故本选项错误;B、∵﹣|﹣10 |=﹣10 ,∴﹣|﹣10 |<8 ,故本选项错误;C、∵﹣|﹣7 |=﹣7 ,﹣(﹣7 )=7 ,∴﹣|﹣7 |<﹣(﹣7 ),故本选项错误;D、∵|﹣|= ,|﹣|= ,∴﹣<﹣,故本选项正确;故选D.【分析】求出每个式子的值,再判断即可,选项D求出绝对值,再比较即可.4、【答案】C【考点】正数和负数,绝对值【解析】【解答】解:(﹣2)2=4,是正数,(﹣2)=﹣2,是负数,+ =﹣,是负数,﹣|﹣2|=﹣2,是负数,综上所述,负数共有3个.故选C.【分析】根据乘方的意义以及绝对值的性质,对各数进行计算即可求解.5、【答案】A【考点】正数和负数,绝对值,有理数的乘方【解析】【解答】解:|﹣1|=2是正数,﹣|0|=0既不是正数也不是负数,(﹣2)3=﹣8是负数,﹣|﹣2|=﹣2是负数,﹣(﹣2)=2是正数,负数共有(﹣2)3,﹣|﹣2|共2个.故选A.【分析】根据绝对值的性质,有理数的乘方,相反数的定义化简,再根据负数的定义作出判断即可得解.6、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.7、【答案】C【考点】正数和负数,绝对值【解析】【解答】解:﹣(﹣3)=3是正数,﹣|﹣3|=﹣3是负数,3﹣5=﹣2是负数,﹣1﹣5=﹣6是负数.负数有三个,故选C.【分析】先化简各数,再根据负数的概念求解.8、【答案】C【考点】绝对值,有理数大小比较,代数式求值【解析】【解答】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的数,所以a=0,b=1,c=0,所以a+b+c=0+1+0=1,故选:C.【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a+b+c的值.9、【答案】C【考点】绝对值,同类项、合并同类项,有理数的乘方【解析】【解答】解:A、原式不能合并,错误; B、原式=2a2,错误;C、原式=3,正确;D、原式=﹣1,错误,故选C【分析】原式各项计算得到结果,即可作出判断.10、【答案】A【考点】绝对值,整式的加减【解析】【解答】解:A、a﹣2(﹣b+c)=a+2b﹣2c,正确,故本选项符合题意; B、|﹣a|=|a|,错误,故本选项不符合题意;C、a3+a3=2a3,错误,故本选项不符合题意;D、6x2﹣2x2=4x2,错误,故本选项不符合题意;故选A.【分析】根据去括号法则判断A;根据绝对值的性质判断B;根据合并同类项的法则判断C与D.11、【答案】D【考点】数轴,绝对值,整式的加减【解析】【解答】解:∵m<0,n>0,且|m|<|n|,∴|m+n|﹣m=m+n﹣m=n.故选:D.【分析】由题意可知,m<0,n>0,且|m|<|n|,由此利用绝对值的意义与整式的加减运算方法化简即可.12、【答案】A【考点】数轴,绝对值,整式的加减【解析】【解答】解:根据数轴上点的位置得:b<0<a,且|a|<|b|,∴a+b<0,a﹣b>0,则原式=﹣a﹣b+a﹣b=﹣2b,故选A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.13、【答案】A【考点】绝对值,整式的加减【解析】【解答】解:∵a<0,b>0,∴a﹣b<0,则原式=﹣a+2b+a﹣b=b,故选A【分析】根据题意判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.14、【答案】B【考点】数轴,绝对值,整式的加减【解析】【解答】解:根据数轴上点的位置得:b<a<0<c<1,∴a+b<0,b﹣1<0,a﹣c<0,1﹣c>0,则原式=﹣a﹣b+b﹣1+a﹣c﹣1+c=﹣2,故选B【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.二、填空题15、【答案】15;﹣8【考点】绝对值,有理数的加减混合运算【解析】【解答】解:3﹣(﹣5)+7 =8+7=15﹣2﹣|﹣6|=﹣2﹣6=﹣8故答案为:15、﹣8.【分析】根据有理数的加减混合运算的运算方法,以及绝对值的含义和求法,求出每个算式的值各是多少即可.16、【答案】0【考点】绝对值,同类项、合并同类项【解析】【解答】解:∵单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,∴a+2=3,b﹣2=a+2,解得:a=1,b=5,故|a﹣b|﹣|b﹣a|=4﹣4=0,故答案为:0.【分析】直接利用合并同类项法则得出a,b的等式,进而得出答案.17、【答案】﹣3a【考点】绝对值,同类项、合并同类项【解析】【解答】解:原式=2a﹣5a=﹣3a,故答案为:﹣3a.【分析】根据绝对值的性质,可化简绝对值,根据整式的加减,可得答案.18、【答案】>;<【考点】有理数大小比较,实数大小比较【解析】【解答】解:﹣=﹣,﹣=﹣,∵,∴﹣>﹣,故答案为:>;﹣|﹣π|=﹣π,∵﹣π<﹣3.14,∴﹣|﹣π|<﹣3.14,故答案为:<.【分析】根据两个负实数相比较,绝对值大的反而小进行比较.19、【答案】﹣3【考点】绝对值【解析】【解答】解:|3﹣|= ﹣3,故答案为:﹣3.【分析】根据绝对值的定义,即可解答.20、【答案】【考点】绝对值【解析】【解答】解:=故答案为。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-7专项练习(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-7专项练习(人教版,含解析)](https://img.taocdn.com/s3/m/87200ec5f111f18582d05a8e.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.如果a 与-1互为相反数,则|a+2|等于( ) A .2B .-2C .3D .-32.的绝对值是 A .B .C .D . 3.﹣3的绝对值是( ) A .﹣3B .3C .﹣3﹣1D .3﹣14.实数﹣2015的绝对值是( ) A .2015B .﹣2015C .±2015D .5.-8的绝对值是( ) A .8B .-8C .D .6.2=-( ) A .-2B .2C .2±D .47.3的绝对值为:( ) A .3B .一3C .1/3D .一138.在(1)-+,(3)+-,(2)--,0-,5这5个数中,负数有( ) A .5个B .4个C .3个D .2个9.下列比较大小的结果正确的是( ) A .33>-B .65->C .02002->.. D .1156-<-10.下列各对数中,互为相反数的是( ) A .-()3+和 +()3- B .-()3-和+()3- C .-()3-和 +3- D .+()3-和﹣3-11.-5的绝对值是( ) A .-5B .15C .5D .±512.在有理数-(-2),-2-,-5,0,3,-1.5中负数的个数为( )A .1个B .2个C .3个D .4个 13.若∣-a∣=a ,则a 的取值范围是( ) A .a<0B .a>0C .a≥0D .a≤014.2021的绝对值是( ) A .12021B .﹣12021C .2021D .﹣202115.-|-8|的相反数是( ) A .8 B .-8 C .18D .-18二、填空题1.化简:-|-2|=____,-(-3)=____. 2.已知|x|=|y|,x=-3,则y=_______.3.已知数,,a b c 的大小关系如图所示:则下列各式:①()0b a c ++->;②()0a b c --+>;③1a cca b b ++=;④0bc a ->;⑤2a b c b a c b --++-=-.其中正确的有_____(请填写编号).4.比较大小:(1)﹣3_____2;(2)﹣34_____﹣45(填“>”或“<”) 5.若|a|>a ,则a_____0(填“>”,“<”,“”,“”).6.0的相反数是________;6的倒数是_________; 绝对值等于7的有理数是_________ 7.数轴上到原点的距离是3个单位长度的点表示的数是______. 8.若||=x x ,则x 的取值范围是__________;若||1x x=,则x 的取值范围是______. 9.7的相反数是________,-3.5的绝对值是________.10.(1)2.5的相反数是______,0的相反数是________,-115的相反数是________. (2)∣24∣=______,∣—3.1∣=_____,∣0∣=______. 11.用“>”或“<”或“=”填空:(1)﹣|﹣9|_____﹣(﹣9); (2)34-_____78-. 12.若5a =,则a =______,如果13a =-,那么a -=______; 13.32-的相反数是________,绝对值是__________. 14.若a 与1互为相反数,则1a -等于___. 15.比较大小:(1)314-__________ 415-, 41-______________ 0三、解答题1.先比较下列各式的大小,再回答问题, (1)|-3|+|5| _______ |-3+5|; (2)|-2|+|-1.3|________ |(-2)+(-1.3)| (3)|-7|+|0| _______ |-7+0|通过上述比较,请你归纳出当,a b 为有理数时,||||a b +与||a b +的大小关系2.如果4,7a b ==,且a b <,求a b +的值.3.点A ,B 在数轴上分别表示有理数a ,b .A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a ﹣b|.利用数形结合思想回答下列问题: (1)数轴上表示﹣2和8两点之间的距离是________.(2)数轴上表示x 和﹣4两点A 和B 之间的距离表示为__________;如果AB =2,那么x =___________.(3)若点C 表示的数为x,当点C 在什么位置时,|12 x+1|+|12x −1|取得的值最小,并直接写出最小值.4.在数轴上表示下列各数.并把它们用“<”连接起来.5-,123-,0,112, 3.5-,2+5.把下列各数填在相应的表示集合的括号内.1-,13-,3--,0,227,0.3-,1.7,()2--整数:( ……) 非负整数:( ……) 正数:( ……)有理数:(……)参考答案一、选择题1.C解析:首先根据a与-1互为相反数,可得a=1;然后根据绝对值的含义和求法,求出|a+2|等于多少即可.详解:∵a与-1互为相反数,∴a=1,∴|a+2|=|1+2|=|3|=3.故选C.点睛:此题主要考查了相反数的含义和求法,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.2.A解析:绝对值是指一个数在数轴上所对应点到原点的距离,-4表示的点到原点距离为4,故-4的绝对值为4,答案选A.3.B解析:用绝对值的概念直接求解.详解:解:﹣3的绝对值是3,故选B.点睛:本题考查求一个数的绝对值,难度不大.4.A解析:试题分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解:|﹣2015|=2015,故选A . 考点:绝对值. 5.A解析:试题解析:负数的绝对值是它的相反数,所以-8的绝对值是8. 故选A. 考点:绝对值. 6.B解析:根据绝对值的定义,易得B. 7.A解析:3的绝对值为:|3|=3; 故选A . 8.D解析:利用绝对值,相反数,负数的意义,先分别计算,根据结果判断即可选出答案. 详解:∵(1)1-+=-;(3)3+-=-;(2)2--=;00-=,55-=, ∴这5个数中,负数有2个, 故选D. 点睛:本题考查绝对值,相反数,负数的有关内容,正确进行计算是解此题的关键. 9.D解析:根据绝对值运算、有理数的大小比较法则逐项判断即可得. 详解:A 、33=-,此项错误;B 、65-<,此项错误;C 、0.20.02-<,此项错误;D 、因为1156>,所以1156-<-,此项正确; 故选:D . 点睛:本题考查了绝对值运算、有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.10.B解析:直接利用绝对值的性质以及相反数的定义分析得出答案.详解:解:A、-()3+=﹣3,+()3-=﹣3,两数不互为相反数,故A错误;B、-()3-=3,+()3-=﹣3,3与﹣3互为相反数,故B正确;C、-()3-=3,+3-=3,两数不互为相反数,故C错误;D、+()3-=﹣3,﹣3-=﹣3,两数不互为相反数,故D错误.故选:B.点睛:此题主要考查了绝对值的性质以及相反数的定义,正确把握相反数的定义是解题关键.11.C解析:数轴上表示数a的点到原点的距离叫做数a的绝对值,根据定义解答.详解:-5的绝对值是5,故选:C.点睛:此题考查绝对值的定义:数轴上表示数a的点到原点的距离叫做数a的绝对值.12.C解析:根据负数的定义:负数小于0逐个判断即可.详解:解:在有理数-(-2),-2-,-5,0,3,-1.5中,负数有:-2-,-5,-1.5,共3个.故选:C.点睛:本题考查了负数的概念,属于应知应会题型,掌握负数的定义是关键.13.C解析:根据绝对值得定义求解即可.详解:解:∵∣-a∣=a 且∣-a∣≥0 ∴a≥0 故选C. 点睛:本题主要考查了绝对值的定义,熟练掌握绝对值得定义是解题的关键. 14.C解析:根据绝对值的定义即可得出正确选项. 详解:解:2021的绝对值是2021, 故选:C . 点睛:本题考查求绝对值.正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数. 15.A解析:依题意,根据绝对值、相反数的定义即可; 详解:由题知:∵8-的绝对值为:8(即88-=),∴8(8)8--=-=-; 又8-的相反数为:8 ∴8--的相反数为:8; 故选:A 点睛:本题主要考查负数的绝对值及相反数,难点在绝对值前面的负号的理解;二、填空题 1.-2, 3解析:分析:由绝对值的性质及相反数的性质解答即可. 详解:-|-2|=2;-(-3)=3.点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0; 2.3±解析:解:∵|x|=|y|,x=-3,∴|y|=3,∴y=±3.故答案为±3.3.②③⑤解析:有数轴判断a 、b 、c 的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案. 详解:由数轴知b<0<a<c ,|a|<|b|<|c|, ①b+a+(−c)<0,故原式错误; ②(−a)−b+c>0,故正确;③()1111ca b ca b ++=+-+=,故正确; ④bc −a<0,故原式错误;⑤2a b c b a c a b c b c a b --++-=---+-=-,故正确; 其中正确的有②③⑤. 点睛:此题考查数轴、绝对值,解题关键在于数轴结合绝对值的综合运用.4.<、 >.解析:(1)根据正数大于负数进行分析,即可得到答案;(2)先分别求出这两个负数的绝对值,在根据负数的绝对值越大,其值反而越小进行比较即可得到答案. 详解:解:根据分析,可得 (1)﹣3<2;(2)|﹣34|=34,|﹣45|=45, ∵3445, ∴﹣34>﹣45. 故答案为<、>. 点睛:本题考查有理数大小的比较和绝对值的计算,解题的关键是掌握有理数大小的比较法则. 5.<解析:根据绝对值的意义得到当a <0时,|a|>a . 详解:∵|a|>a,∴a<0.故答案为<.点睛:此题考查绝对值,解题关键在于掌握绝对值的定义.6.0 , 16, +7,-7.解析:根据相反数的定义,倒数的定义,互为倒数的两数积为1;绝对值的定义,即可得出答案.详解:0的相反数是它本身0;∵161 6⨯=∴6的倒数是16;∵到数轴上到原点距离为7有数有7±,∴绝对值等于7的有理数是7±.故答案是:0,16,7±.点睛:考查了相反数、倒数的定义和绝对值的概念,根据定义得出是解题关键.7.±3.解析:设这点表示的数为a,根据题意有,|a|=3,进而可得答案.详解:根据题意,该点离原点的距离是3个单位长度设这点表示的数为a,即|a|=3进而可得:a=3或a=-3.故答案为±3.点睛:此题考查绝对值,解题关键在于熟悉绝对值的概念.8.0x≤0x<解析:根据绝对值的求法以及分式进行计算,即可得到答案.详解:因为||=x x ,所以x 的取值范围是0x ≤;因为||1x x=,则0x ≠,且||=x x ,所以0x <. 点睛:本题考查绝对值和分式,解题的关键是掌握绝对值的求法.9.-7 3.5解析:根据相反数和绝对值的定义解答即可. 正数的相反数是负数,0的相反数是0,负数的相反数是正数;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.详解:7的相反数是-7,-3.5的绝对值是3.5.故答案为-7;3.5.点睛:本题考查了相反数和绝对值的定义,解答本题的关键是熟练掌握定义.10.-2.5 0 115 24 3.1 0解析:(1)根据相反数的概念直接填写答案即可;(2)根据绝对值的意义可得出答案.详解:解:(1)2.5的相反数是-2.5,0的相反数是0,-115的相反数是115;故答案为-2.5,0,115;(2)∣24∣=24,∣—3.1∣=3.1,∣0∣=0.故答案为24,3.1,0点睛:本题考查了相反数和绝对值,熟记性质是解题关键.11.<>解析:(1)先化简绝对值、去括号,再根据有理数的大小比较法则即可得;(2)根据有理数的大小比较法则即可得.详解:(1)99--=-,()99--=, 则()99--<--;(2)346788=<, 则8347->-;故答案为:<,>.点睛:本题考查了绝对值、去括号、有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.12.5±; 13.解析:互为相反数的两个数绝对值相等;求一个数的相反数即在这个数前添加负号,然后再计算解题.详解:55a a =∴=±,; 如果13a =-,则13a -=故答案为:5±;13. 点睛:本题考查绝对值、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.13.3232解析:只有符号不同的两个数互为相反数.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.利用这些知识即可求解.详解:解:32-的相反数为32,32-=32. 故答案为:32,32.点睛:本题考查相反数、绝对值,要求学生牢固掌握相反数、绝对值的性质及其定义,并能熟练运用.14.2解析:由题意易得a 的值,然后代入求解即可.详解:解:由a 与1互为相反数,则有1a =-,∴1112a-=--=;故答案为2.点睛:本题主要考查相反数及绝对值,熟练掌握求一个数的绝对值及相反数是解题的关键.15.>>解析:根据有理数的大小比较法则解答.详解:解:33451414210-==,44561515210-==,∵4556 210210<,∴314->415-;∵41-=1,∴41->0,故答案为:>,>.点睛:本题考查的是有理数的大小比较,熟知有理数大小比较的法则是解答此题的关键.三、解答题1.>;=;=;|a|+|b|≥|a+b|.解析:(1)根据绝对值的意义得到|−3|+|+5|=8,|−3+5|=2;(2)根据绝对值的意义得到|−2|+|-1.3|=3.3,|(-2)+(-1.3)| =3.3;(3)根据绝对值的意义得到|-7|+|0|=7, |-7+0|=7根据前面的结论可得到|a|+|b|≥|a+b|.详解:解:(1)∵|−3|+|5|=8,|−3+5|=2∴|−3|+|5|>|−3+5|;(2)∵|−2|+|-1.3|=3.3,|(-2)+(-1.3)|= |-3.3|=3.3;∴|-2|+|-1.3|=|(-2)+(-1.3)|(3)∵|-7|+|0|=7, |-7+0|=7;∴|-7|+|0| = |-7+0|根据前面的结论可得到|:|a|+|b|≥|a+b|.故答案为:>;=;=;|a|+|b|≥|a+b|.点睛:本题考查了绝对值:若a >0,则|a|=a ;若a =0,则|a|=0;若a <0,则|a|=−a .2.3或13 解析:先由4,7a b ==和a b <得到4,7a b =±=,再分4,7a b ==和4,7a b =-=进行计算即可得到答案.详解: 因为4,7a b ==,所以4,7a b =±=±,因为a b <,所以4,7a b =±=;当4,7a b ==时,4713a b +=+=;当4,7a b =-=时,473a b +=-+=;故3a b +=或13.点睛:本题考查绝对值、有理数大小的比较和有理数的加法,解题的关键是掌握求绝对值、有理数大小的比较和有理数的加法.3.(1)10;(2)|x-(-4)|,-2或-6;(3)2;解析:(1)利用两点间的距离公式得出两数所对应的两点之间的距离;(2)利用两点间的距离公式得出两数所对应的两点之间的距离,再解绝对值方程可求x 的值;(3)根据绝对值的几何意义,可得出-2和2之间的任何一点均满足题意.详解:(1)数轴上表示−2和8两点之间的距离是8−(−2)=10.(2)数轴上表示x 和−4两点A 和B 之间的距离表示为|x-(-4)|;∵AB=2,∴|x -(-4)|=2,解得x=-2或-6;(3)若点C 表示的数为x,当点C 在−2和2之间位置时,| 12x+1|+|12x −1|=12x+1−12x+1=2. 故最小值是2.点睛:此题考查数轴,绝对值,解题关键在于掌握运算法则和数轴的特征.4.数轴图见解析,115 3.5201232-<-<-<<<+.解析:先化简绝对值,再根据数轴的定义将各数表示出来,然后将它们用“<”连接起来即可.详解: 3.5 3.5-=-,22+=,则在数轴上表示各数如下:用“<”把这些数连接起来为:115 3.5201232-<-<-<<<+.点睛:本题考查了化简绝对值、数轴,掌握理解数轴的定义与性质是解题关键.5.1-,3--,0,()2--;0,()2--;227,1.7,()2--;1-,13-,3--,0,227,0.3-,1.7,()2--解析:先把给出的数化简后,利用数集的分类标准赛选即可.详解: 整数:(){}1,3,0,2-----,;非负整数:(){}0,2--,;正数:()22,1.7,27⎧⎫--⎨⎬⎩⎭, 有理数:()1221,,3,0,,0.3,1.7,237⎧⎫-------⎨⎬⎩⎭,. 点睛:本题考查数集问题,掌握数集的概念,会用数集选数、判断和区分,掌握数集的分类标准,清楚数集的表示.。
人教版七年级数学上册《绝对值的化简》专题训练-附带答案
![人教版七年级数学上册《绝对值的化简》专题训练-附带答案](https://img.taocdn.com/s3/m/17a231c182d049649b6648d7c1c708a1284a0aa9.png)
人教版七年级数学上册《绝对值的化简》专题训练-附带答案类型一 绝对值之间是加号的化简1.计算: 34ππ-+-=________.【答案】1【解析】【分析】先化简绝对值 再加减运算即可求解.【详解】解:∵3<π<4 ∵34ππ-+-=34-+-=1故答案为:1.【点睛】本题考查化简绝对值、实数的加减运算 会利用绝对值的性质化简绝对值是解答的关键. 2.a 、b 两个有理数在数轴上的位置如图所示 则|a +b |=____.【答案】a b --##b a --【解析】【分析】 先根据数轴可得0,,b a b a 再确定a b +的符号 再化简绝对值即可.【详解】 解:由题意得:0,,b a b a 0,a b ∴+< .a b a b a b故答案为:.a b【点睛】本题考查的是利用数轴比较有理数的大小 绝对值的含义与化简 有理数的和的符号的确定掌握“0000x x x x xx ”是解本题的关键.3.若有理数,,a b c 在数轴上的位置如图:则b a b c -+-=____________ .【答案】c a -##-a+c【解析】【分析】根据数轴得出0a b c <<< ||||c a > 先去掉绝对值符号 再合并同类项即可.【详解】 解:从数轴可知:0a b c <<< ||||c a >0b c ∴-< 0b a ->||||b a b c b a b c c a ∴-+-=--+=-故答案是:c a -.【点睛】本题考查了数轴 绝对值 整式的加减 解题的关键是能正确去绝对值符号.4.已知32y -<< 化简23y y -++=_____.【答案】5【解析】【分析】根据绝对值的性质去掉绝对值号 然后化简即可.【详解】解:32y -<<23y y ∴-++=-(y -2)+(y +3)23y y =-++5=.故答案为:5.【点睛】本题考查了整式的加减、绝对值的意义 熟练掌握绝对值的意义是解题的关键.5.数a b 在数轴上的位置如图所示 化简:|b ﹣a |+|b |=______.【答案】2a b -##-2b +a【解析】【分析】根据数a b 在数轴上的位置得出2101b a --<<<<<然后化简绝对值即可. 【详解】解:根据数a b 在数轴上的位置可得:2101b a --<<<<<∵0b a -< 0b <∵|b ﹣a |+|b |=()2b a b b a b a b ---=-+-=-故答案为:2a b -.【点睛】本题考查了在数轴上表示有理数 化简绝对值 根据点在数轴上的位置得出相应式子的正负是解本题的关键.6.已知a b c 是∵ABC 的三边 化简:|a +b -c |+|b -a -c |=________.【答案】2a【解析】【分析】首先利用三角形的三边关系得出0,0a b c b a c +->--< 然后根据求绝对值的法则进行化简即可.【详解】解:∵,,a b c 是ABC ∆的三条边∵00a b c b a c +->--<, ∵||()()a a b c b a c b a c b c =+-+-+--+++-=2a b c b a c a +--++=.故答案为:2a .【点睛】熟悉三角形的三边关系和求绝对值的法则 是解题的关键 注意 去绝对值后 要先添加括号 再去括号 这样不容易出错.|a +b -c |+|b -a -c |7.若a 、b 、 c 为整数 且 | a - b |19 + | c - a |99 =1 则| c - a | + | a - b | + | b -c |=________.【答案】2【解析】【分析】根据题意 ,,a b c 三个数中有2个数相等 设a b = 则1c a -= 1b c -= 进而即可求得答案.【详解】解:,,a b c 为整数 则,a b c a --也为整数 且| a - b |19 与| c - a |99 为非负数 和为1 ,,a b c ∴三个数中有2个数相等当a b =时 则1c a -= 1b c -= 0a b -=∴| c - a | + | a - b | + | b -c |=1012++=同理 当a c =或c b =时 均得到| c - a | + | a - b | + | b -c |=2故答案为:2.【点睛】本题考查了非负数的性质 根据题意求出,,a b c 三个数中有2个数相等是解题的关键.8.有理数a b c 在数轴上的位置如图所示 化简:|c ﹣a |+|c ﹣b |+|a +b |=_____.【答案】2b【解析】【分析】根据有理数a b c 在数轴上的位置可得c ﹣a >0 c ﹣b <0 a +b >0 再根据绝对值的意义进行化简即可.【详解】根据有理数a b c 在数轴上的位置可知 a <0<c <b b a >∵c ﹣a >0 c ﹣b <0 a +b >0∵|c ﹣a |+|c ﹣b |+|a +b |=c ﹣a +b ﹣c +a +b=2b故答案为:2b【点睛】本题考查的是利用数轴比较有理数的大小 有理数的加减法的运算法则 绝对值的化简 去括号 整式的加减运算 掌握以上知识是解题的关键.类型二 绝对值之间是减号的化简9.在数轴上数a 、b 、c 所对应的点如图所示 化简:b a c b --+=__________.【答案】a -2b -c【解析】【分析】根据数轴得到b <0<a <c 且b c < 由此得到b -a <0 c+b >0 利用绝对值性质化简合并即可.【详解】解:由数轴得b <0<a <c 且b c <∵b -a <0 c+b >0 ∵b a c b --+=-b+a -c -b=a -2b -c故答案为:a -2b -c .【点睛】此题考查了利用数轴比较数的大小 有理数绝对值的性质化简计算 整式的加减法 正确比较有理数的大小化简绝对值是解题的关键.10.若a <1 化简:31a a ---=__________.【答案】2【解析】【分析】由题意根据a 的取值范围 可以将题目中的式子的绝对值去掉 从而可以解答本题.【详解】解:∵a <1∵|3-a |-|a -1|=3-a +a -1=2故答案为:2.【点睛】本题考查整式的加减、绝对值 解答本题的关键是明确相关的计算方法.11.a 、b 两个数在数轴上的位置如图所示 则化简||||b b a --的结果是________.【答案】a【解析】【分析】由数轴得0b > 0a < 0b a -> 去绝对值有()b b a -- 从而得出结果.【详解】解:0b > 0a <0b a ∴->()b b a b b a b b a a ∴--=--=-+=故答案为:a .【点睛】本题考查了数轴 去绝对值.解题的关键与难点在于判断绝对值里数值的正负.12.a b c 在数轴上的位置如图所示 化简:2a b a c +--=__________.【答案】2a b c --【解析】【分析】 由题意可得:0,,a b c ab c 再判断0,0,a b a c 【详解】 解:0,,a b c a b c 0,0,a b a c∴ ()()22a b a c a b a c +--=-+---⎡⎤⎣⎦2a b a c22a b a c2a b c故答案为:2a b c --【点睛】本题考查的是利用数轴比较有理数的大小 化简绝对值 去括号 合并同类项 熟练的“化简绝对值”是解题的关键.13.若有理数a 、b 、c 在数轴上的位置如图所示 则a b b c --+可化简为__.【答案】a c --##c a --【解析】【分析】根据数轴判断出0a b c <<< b c < 即可得到0a b -< 0b c +> 再利用绝对值性值计算即可;【详解】由数轴可得:0a b c <<< b c <∵原式b a b c a c =---=--;故答案是:a c --.【点睛】本题主要考查了利用数轴比较式子大小 绝对值的性质 准确分析计算是解题的关键.14.若2<x <5 则|x ﹣2|﹣|5﹣x |=_______.【答案】2x -7##-7+2x【解析】【分析】根据2<x <5 得到x -2>0 5-x <0 根据绝对值的意义去绝对值 去括号 合并同类项即可求解.【详解】解:因为2<x <5所以x -2>0 5-x <0所以|x ﹣2|﹣|5﹣x |=(x -2)-(5-x )=2x-7.故答案为:2x-7【点睛】本题考查了绝对值的化简合并同类项去括号等知识根据x的取值脱去绝对值是解题关键.15.有理数a b c在数轴上的对应点如图所示化简代数式:|a|﹣|﹣b|+|c|=_____.【答案】a b c-++【解析】【分析】由数轴知a<b<0<c去绝对值即可求解.【详解】解:由数轴知a<b<0<c∵|a|﹣|﹣b|+|c|=a b c a b c.故答案为:a b c-++.【点睛】本题考查绝对值的性质.确定绝对值符号内代数式的性质符号是解答此类题目的关键.16.若0<a<1 -2<b<-1 则1212a ba b-+--+=_____.【答案】﹣2【解析】【分析】先根据题意得出a﹣1<0 b+2>0 再根据绝对值的性质化简即可解答.【详解】解:∵0<a<1 -2<b<-1∵a﹣1<0 b+2>0∵1212 a ba b-+--+=(1)212 a ba b--+--+=﹣1﹣1故答案为:-2.【点睛】本题考查有理数的减法运算、绝对值的性质 会利用绝对值的性质化简是解答的关键. 类型三 绝对值之间有加有减的化简17.有理数a b c 在数轴上表示的点如图所示 化简||||2||a b a c b c +---+=__________.【答案】33b c --##33c b【解析】【分析】根据数轴得出a b + a c - 1b -的符号 再去绝对值即可.【详解】 由数轴得0a b c b c <<<,< ∵0a b +< 0a c -< 0b c +>∵||||2||a b a c b c +---+()()2a b a c b c =-++--+22a b a c b c =--+---33b c =--.故答案为:33b c --.【点睛】本题主要考查了数轴和绝对值 掌握数轴、绝对值以及合并同类项的法则是解题的关键. 18.已知a b c 是有理数 它们在数轴上的对应点如图所示 化简:|a ﹣c |﹣|a ﹣b |+|b ﹣c |=_____.【答案】22a c -##22c a -+【解析】【分析】根据数轴 判断出a b c ,,的符号 从而得到a c a b b c ---,,的符号 化简求解即可.【详解】所以 0a c -> 0a b -< 0b c -> ∵||||22a c a b b c a c a b b c a c --+--+-+--=-=故答案为:22a c -【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.19.若有理数a b c 在数轴上的位置如图所示 则化简:||||||a c b c b ++--+=_________.【答案】a -【解析】【分析】根据有理数在数轴上的位置求得0c b a <<< c a >进而可得0a c +< 0b -> 0c b +< 进而化简绝对值即可【详解】解:根据有理数a b c 在数轴上的位置 可得0c b a <<< c a >∴0a c +< 0b -> 0c b +<∴||||||a c b c b ++--+=()a c b c b ------a c b c b a =---++=-故答案为:a -【点睛】本题考查了根据有理数在数轴上的位置判断式子的符号 绝对值化简 整式的加减运算 正确的判断式子的符号化简绝对值是解题的关键.20.有理数a b c 在数轴上的位置如图所示.化简代数式:323c a b c a b -+--+=_______ .【答案】5c +b##b+5c【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负 利用绝对值的代数意义化简 去括号合并即可.【详解】由图可知a <b <0<c则a +b <0 c -a >0 b -c <0 ∵==,c a c a b c c b a b a b ----+=--,∵原式=3()2()3()c a c b a b -+----332233c a c b a b =-+-++5c b =+故答案为:5c b +.【点睛】本题考查了整式的加减、数轴及绝对值的知识 掌握数轴上右边的数总比左边的数大是解答本题的关键.21.有理数a b c 在数轴上的位置如图所示 若m =|a +b |﹣|b ﹣1|﹣|a ﹣c | 则m =____.【答案】-1-c【解析】【分析】根据数轴上点的位置可得01b a c <<<< 即可推出0a b +< 10b -< 0a c -< 由此化简绝对值求解即可.【详解】解:由数轴上点的位置可知:01b a c <<<<∵0a b +< 10b -< 0a c -< ∵1m a b b a c =+----()()()1a b b c a =-+----1a b b c a =---+-+1c =--故答案为:1c --.【点睛】本题主要考查了根据数轴上点的位置化简绝对值 解题的关键在于能够熟练掌握数轴的相关知识.22.已知a <0 b <0 c >0 化简:2a b c a b a +--+--=________.【答案】3a b c ---【解析】【分析】根据条件分别求得2,,a b c a b a +---的符号 进而化简绝对值即可【详解】a <0b <0c >020,0,0a b c a b a ∴+<->--> ∴2a b c a b a +--+--=()2()a b c a b a ----+--2a b c a b a =---+--3a b c =---故答案为:3a b c ---【点睛】本题考查了化简绝对值 整式的加减 正确的化简绝对值是解题的关键.23.有理数a 、b 、c 在数轴上的位置如下图所示则a c a b b a a c +-+--+-=________.【答案】0【解析】【分析】由数轴上右边的点比左边点表示的数字大可知 c >b >a 且c >0 0>b >a a b c >> 再根据绝对值的性质解答即可.【详解】解:根据数轴可知c >b >a 且c >0 0>b >a a b c >>∵0a c +< 0a b +< 0b a -> 0a c -< ∵a c a b b a a c +-+--+-=()()()()a c a b b a a c -+++----=a c a b b a a c --++-+-+=0.故答案为:0.【点睛】注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号 难度适中. 24.已知a b c 为三个有理数 它们在数轴上的对应位置如图所示 则式子|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=______.【答案】0【解析】【分析】根据点在数轴上的位置判断式子的符号 然后根据绝对值的意义化简即可.【详解】解:根据数轴可知:1012c a b -<<<<<<∵0c b -< 0b a -> 0a c ->∵|c ﹣b |﹣|b ﹣a |﹣|a ﹣c |=()()()c b b a a c ------=c b b a a c -+-+-+=0;故答案为:0.【点睛】本题考查了根据点在数轴的位置判断式子的符号 化简绝对值 能够准确判断式子的符号化简绝对值是解本题的关键.25.已知点A 、B 在数轴上表示的数分别是a 和b :化简|2|||3||a a b a b ---++=__________.【答案】44a b --##44b a【解析】【分析】根据A B 两点在数轴上的位置得到 然后进行计算即可.【详解】解:由图可知:a <0<b a b >∵-2a >0 a -b <0 a +b <0∵|2|||3||a a b a b ---++=233a a b a b -+---=44a b --故答案为:44a b --.【点睛】本题考查数轴的基本知识结合绝对值的综合运用 一定要看清题中条件.26.实数a b c 在数轴上的位置如图所示 化简:c b b a c -+--=______.【答案】a【解析】【分析】由题意得 0c b a <<< 0c b -< 0b a -< 根据绝对值的非负性进行解答即可得.【详解】解:由题意得 0c b a <<<∵0c b -< 0b a -< ∵c b b a c -+--=()()b c a b c -+---=b c a b c -+-+=a故答案为:a .【点睛】本题考查了绝对值 解题的关键是掌握绝对值的非负性.27.已知有理数a 、b 在数轴上的对应点位置如图所示 请化简:2a a b a b ++--=____________.【答案】3b -【解析】【分析】根据有理数a 、b 在数轴上的对应点位置 化简即可.【详解】解:根据数轴可知:101a b <-<<< ∵2a a b a b ++--=()2()a a b a b --++-=22a a b a b ---+-=3b -故答案为:3b -.【点睛】本题考查了数轴 化简绝对值根据有理数在数轴上的位置得出相应式子的符号是解本题的关键.。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-14专项练习(人教版,含解析)
![七年级数学上册1.2.4 绝对值-求一个数的绝对值-14专项练习(人教版,含解析)](https://img.taocdn.com/s3/m/e2b6a028a58da0116d17498e.png)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值一、选择题1.若a、b、c是有理数且a b c1a b c ,则abcabc的值是()A.-1 B.±1C.3±或±1D.1 2.下列说法中,正确的是()A.正数和负数统称为有理数B.0是最小的有理数C.如果两个数的绝对值相等,那么这两个数一定相等D.互为相反数的两个数之和为零3.﹣5的绝对值是()A.5 B.1 C.0 D.﹣5 4.﹣3的绝对值是()A.3 B.﹣3 C.0 D.15.13-的绝对值是()A.3B.3-C.13或-13D.136.3的绝对值为()A.3 B.C.D.7.﹣3的绝对值是()A.3 B.│-3|C.-3 D.±3 8.若5x=,则x是()A.5 B.-5 C.±5D.1 5 -9.下列各组数中,相等的是()A.﹣9和﹣19B.﹣|﹣9|和﹣(﹣9) C.+(-9)和|﹣9| D.-(﹣9)和|﹣9|10.等于()A .2B .-2C .D .11.5的绝对值是( ) A .15B .15-C .5D .-512.如图,点A 所表示的数的绝对值为( )A .-4B .0C .14D .413.12021-的值为( ) A .2021B .-2021C .12021D .12021-14.13的绝对值是( ) A .3B .3-C .13D .13-15.在 ﹣(+2),﹣(﹣8),﹣|﹣3|,+(﹣4)中,负数的个数有( ) A .1个 B .2个 C .3个 D .4个二、填空题1.若|m|+|n|=0,则m =____,n =________. 2.已知5x =,1y =,那么x y x y --+=______.3.比较大小,用“<”“>”或“=”连接:-3.14_____-|-π|. 4.已知||1a =,||3b =,||4c =,且c b a <<,则c a b -++=___________. 5.若a 与1互为相反数,则||a 等于______.6.﹣6的相反数为____________;绝对值等于5的数有____________. 7.在数轴上,绝对值为6,且在原点左边的点所表示的数是__________. 8.已知||2018x =,||2019y =,且x y >,则x =______,y =______.9.一个正数的绝对值是______;一个负数的绝对值是它的______;0的绝对值是____. 102____,绝对值是____;实数12___ ,绝对值是_______. 11.一个数a 在数轴上对应位置在原点的左侧,且 3.6a =,则a =__________. 12.若2a -=-,则a 的值是______. 13.-2019的绝对值是_______________. 14.-|-6|=______15.把下列各数﹣1.5,0,132-,2.5,﹣(﹣1),﹣|﹣4|按从小到大的顺序用“<”连接起来_______. 三、解答题1.求下列各数的绝对值 -1.6 , 850, -10, +102.把下列各数在数轴上表示出来,并用“>”把它们连接起来.11(4),| 3.5|,,0,( 2.5),123⎛⎫----+-++ ⎪⎝⎭3.已知点A 、B 分别表示有理数m 、n ,且在数轴上对应位置如下图,计算n m m m n m-+4.若2=a ,3b =,求a+b 的值.5.m =2,n =3,求m+n 的值参考答案一、选择题1.D解析:根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可得到结果.详解:,解:∵a,b,c为三个不为0的有理数,且a b c1a b c∴a,b,c中负数有2个,正数有1个,∴abc>0,=1.则abcabc故选:D.点睛:此题考查了绝对值的意义,熟练掌握绝对值的性质是解本题的关键.2.D解析:根据有理数以及互为相反数和绝对值的性质分别判断得出即可.详解:A、根据整数和分数统称为有理数,故此选项错误;B、有理数也可以是负数,故此选项错误;C、如果两个数的绝对值相等,那么这两个数可能相等也可能互为相反数,故此选项错误;D、互为相反数的两个数之和为零,此选项正确;故选:D.点睛:此题考查有理数、绝对值以及互为相反数的定义,熟练利用定义判断注意它们的区别是解题关键.3.A解析:分析:根据绝对值的定义进行回答即可.详解:根据绝对值的定义,可知5 的绝对值为5.点睛:考查绝对值的定义,熟练掌握绝对值的定义是解题的关键.4.A解析:分析:根据绝对值的意义进行解答即可.详解:-3的绝对值是3.故选A.点睛:熟记“一个负数的绝对值是它的相反数”是解答本题的关键. 5.D解析:试题解析:由绝对值的定义,知:|-13|=136.A解析:根据一个正数的绝对值是它本身得出.解:|3|==3.故选A.“点睛”考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是是它的相反数;0的绝对值是0.7.A解析:试题分析:因为-3的绝对值等于3,即│-3|=3.故选A.考点:绝对值.8.C解析:根据绝对值的性质解答即可.详解:5x=,5x∴=±.故选:C.点睛:本题考查了绝对值的性质,是基础题,熟记性质是解题的关键.9.D解析:根据相反数的定义,绝对值的性质对各选项分别进行计算,然后利用排除法求解.解:A、-9≠-19,故本选项不符合题意;B、-|-9|=-9,-(-9)=9,-9≠9,故本选项不符合题意;C、+(-9)=-9,|-9|=9,-9≠9,故本选项不符合题意;D、-(-9)=9,|-9|=9,故本选项符合题意;故选D.点睛:本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念和性质并准确进行计算是解题的关键.10.A解析:试题分析:根据绝对值定义去掉这个绝对值的符号.试题解析:∵-2<0,∴|-2|=2.故选A.考点:绝对值.11.C解析:根据绝对值的性质即可得.详解:解:因为正数的绝对值是它本身,所以5的绝对值是5,故选:C.点睛:本题考查了绝对值,熟练掌握绝对值的性质是解题关键.12.D解析:根据绝对值的代数意义判断即可.详解:由图可知点A表示的是-4,所以4=4故选D.点睛:本题主要考查绝对值的代数意义,熟练掌握代数意义是关键.解析:负数的绝对值等于它的相反数.详解:解:11 20212021-=,故选:C.点睛:本题考查绝对值,是基础考点,难度较易,掌握相关知识是解题关键.14.C解析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.详解:解:根据正数的绝对值是它本身,得|13|=13.故选:C.点睛:考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.15.C解析:先化简双重符号,然后判断负数的个数.详解:解:﹣(+2)=-2,是负数;﹣(﹣8)=8,是正数;﹣|﹣3|=-3,是负数;+(﹣4)=-4,是负数负数有3个故选:C.点睛:本题考查绝对值和双重符号的化简,掌握求一个数绝对值和相反数是解题关键.二、填空题1.0 0解析:根据绝对值的非负性即可得到解决. 详解:解:∵|m|+|n|=0 ∴|m|=0, |n|=0 ∴m=0,n=0. 故答案为0,0. 点睛:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零. 2.±2解析:分析:由5x =,1y =可得: 5,1x y =±=± ,再分情况计算x y x y --+的值; 解:因为5x =,1y =,所以5,1x y =±=±, 当5x =时,1y =时,x y x y --+表示5到1点的距离与5点到1-点的距离之差,即462-=-;当5x =时,1y =-时,x y x y --+表示5到1-点的距离与5到1点的距离之差,即:642-=;当5x =-时,1y =时,x y x y --+表示5-点到1点的距离与5-点到1-点的距离之差,即:642-=;当5x =-时,1y =-时,x y x y --+表示5-点到1-点的距离与5-点到1点的距离之差,即462-=-;综上:2x y x y --+=± 故答案是±2.点睛:绝对值的含义是数表示的点到原点的距离,所以一个非0数的绝对值等于一个正数,其这个非0数一定有两个,且一正一负互为相反数,对存在不同取值的情况,题目应对所在取值进行分情况讨论. 3.>.解析:试题解析:-|-π|=-π, |-3.14|=3.14,|-π|=π, ∵3.14>π, ∴-3.14<-π, ∴-3.14<-|-π|.考点:有理数大小比较.4.2或0解析:分别求出a 、b 、c 的值,然后计算c a b -++即可解答. 详解:解:∵||1a =,||3b =,||4c =,且c b a <<, ∴a=1,b=-3,c=-4或a=-1,b=-3,c=-4 ∴4132c a b -++=+-=或0; 故答案为2或0. 点睛:本题考查了绝对值的性质和有理数的计算,熟练掌握是解题的关键. 5.1解析:先求相反数,再求绝对值. 详解:因为a 与1互为相反数, 所以a=-1 所以||a =1 故答案为1 点睛:考核知识点:绝对值.理解定义是关键.6.6; ±5解析:﹣6的相反数为:-(-6)=6; 绝对值等于5的数有: ±5. 故答案是:6, ±5. 7.-6.解析:本题考查了绝对值及数轴的知识,关键明确数轴上原点左边的数是负数;绝对值为6的数是±6,原点左边的数小于0,应取负数,可得答案. 详解:∵该数在数轴上原点左边, ∴该数为负数,又∵该数离开原点6个单位, ∴该数为-6.故答案为-6. 点睛:此题考查数轴,绝对值,解题关键在于掌握数轴的性质.8.-2018 -2019解析:根据绝对值意义求出各数. 详解:因为||2018x =,||2019y = 所以x=±2018,y=±2019 因为x y >所以x=-2018,y=-2019 点睛:考核知识点:绝对值.理解定义是关键.9.本身 相反数 0 解析:根据绝对值的性质填空即可. 详解:解:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 故答案为:本身,相反数,0. 点睛:本题考查了绝对值的性质,需熟记.10.解析:根据相反数和绝对值的概念即可得出答案. 详解:实数111.故答案为:11. 点睛:本题考查了相反数和绝对值,熟练掌握概念是解题的关键.11.3.6- 解析:首先根据a 在数轴上的对应点在原点左边,可得0a <,然后根据 3.6a =,即可求出a 的值.详解:∵a在数轴上的对应点在原点左边,∴0a<,a=,∵ 3.6∴ 3.6a=-.故答案为: 3.6-.点睛:本题主要考查了数轴的特征,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.12.2±解析:利用绝对值的意义,进行化简即可.详解:a-=-解:∵2=2∴=2a-±∴a的值是2±.故答案为2±.点睛:本题考查绝对值的意义,掌握绝对值的几何意义,绝对值表示一个数到原点的距离是本题的解题关键.13.2019解析:根据绝对值的意义,即可得到答案.详解:-=;解:20192019故答案为2019.点睛:本题考查了绝对值的意义,解题的关键是熟记绝对值的意义.14.-6解析:根据绝对值和相反数的定义可得出答案.详解:解:∵|-6|=6,∴-|-6|=-6故答案为-6点睛:本题考查了绝对值和相反数,熟练掌握绝对值和相反数的定义是关键.15.()143 1.501 2.52--<-<-<<--< 解析:根据有理数的大小比较,先计算(1)4----、 便可比较了 详解:解: (1)=1-- 4=4---143 1.50(1) 2.52∴--<-<-<<--<. 点睛:本题考查有理数的比较大小,负数小于0,0小于正数,掌握这个是关键.三、解答题1.1.6,85,0,10,10解析:根据绝对值的意义解答即可.详解:解:881.6 1.6,,00,1010,101055-===-==. 点睛:本题考查了有理数的绝对值,属于基础题型,熟练掌握绝对值的意义是关键.2.在数轴上表示见解析;11(4)( 2.5)10| 3.5|32⎛⎫-->++>>>+->-- ⎪⎝⎭ 解析:首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由大到小用“>”号连接起来即可. 详解:各数在数轴上表示为:11(4)( 2.5)10| 3.5|32⎛⎫-->++>>>+->-- ⎪⎝⎭点睛:本题考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大,要熟练掌握.3.-1.解析:根据题意结合数轴可得m<0、n>0,则可得求出其对应||m m ,n n ,m m 的值,代入||n m m m n m -+中运算即可求解. 详解:根据题意结合数轴可得m<0、n>0 则可求得:||m m =-1,n n =1,m m =1 将值代入||n m m m n m -+可得||n m m m n m-+=-1-1+1=-1. 故答案为-1.点睛:此题考查绝对值,数轴,解题关键在于根据数轴判断m,n 的正负.4.±1或±5.解析:根据绝对值的性质求出a 、b 的值,把a 、b 的值代入所求式计算即可;详解:由题意得:a=±2,b=±3,∴a+b=2+3=5或a+b=-2+3=1a+b=2-3=-1a+b=-2-3=-5.即a+b=±1或±5.点睛:此题考查绝对值,解题关键在于把所有可能的情况都考虑进去.5.M=2± n=3± m+n=15±±或 解析:试题解析:2, 2.m m =∴=±3, 3.n n =∴=±当2,3m n ==时,23 5.m n +=+= 当2,3m n ==-时,23 1.m n +=-=- 当2,3m n =-=时,23 1.m n +=-+=当2,3m n =-=-时,()()23 5.m n +=-+-=- 综上所述:1m n +=±或 5.±。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《绝对值》典型例题
知识点一:绝对值的概念
例1 判断下列各式是否正确(正确入“T”,错误入“F”):
(1)a a =-;( )
(2)a a -=-;( )
(3)若|a |=|b|,则a =b ;( )
(4)若a =b ,则|a |=|b|;( )
分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a =1,则-|a |=-|1|=-1,而|-a |=|-1|=1,所以-|a |≠|-a |.在第(3)小题中取a =5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.
解:其中第(2)(3)小题不正确,(1)(4)小题是正确的.
说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便.
例2 求下列各数的绝对值:
(1)-38;(2)0.15;(3))0(<a a ;(4))0(3>b b ;
(5))2(2<-a a ;(6)b a -.
分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论.
解:(1)|-38|=38;(2)|+0.15|=0.15;
(3)∵a <0,∴|a |=-a ;
(4)∵b >0,∴3b >0,|3b|=3b ;
(5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ;
(6)()0()().a b a b a b a b b a a b ->⎧⎪-==⎨⎪-<⎩
;;
说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论.
例3 一个数的绝对值是6,求这个数.
分析:根据绝对值的意义我们可以知道,绝对值是6的数应该是6±.
解:这个数是6±.
说明:互为相反数的两个数的绝对值相等.
变式练习:
求下列各数的绝对值:
+5,0.3,13,57
-,-9.563,0.
参考答案:
5,0.3,13,57
,9.563,0. 知识点二:数的大小比较
例4 求下列各数的绝对值,并把它们用“>”连起来.
87-,9
1+,0,-1.2 分析:首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.18
7->-
,其他数的比较就容易了. 解:771100 1.2 1.2.8899-=+==-=,,, .2.18
7091->->>+ 说明:利用绝对值只是比较两个负数.
变式练习:
比较下列各对数的大小:
(1)5和-4;(2)-3和-5;(3)-2.5和-|-2.25|.
参考答案:
(1)5>-4;(2)-3>-5;(3)-2.5<-|-2.25|.。