微生物发酵制药
微生物发酵制药的基本过程
微生物发酵制药的基本过程嘿,朋友们!今天咱来唠唠微生物发酵制药的那些事儿。
你想啊,微生物就像是一群小小的魔法师,它们能在特定的环境下施展神奇的魔法,把普通的东西变成治病救人的良药呢!首先呢,咱得找到合适的微生物。
这就好比是要挑选出最有天赋的小魔法师,可不是随便抓一个就行的哦!科研人员们得瞪大眼睛,在无数的微生物中精挑细选,找到那个最有可能创造奇迹的小家伙。
然后呢,给这些小魔法师们搭建一个舒适的家,也就是培养环境啦。
温度啦、湿度啦、营养啦,都得安排得妥妥当当,不然它们可不乐意好好工作哟!这就好像你给小朋友准备了一个满是玩具和好吃的房间,他们才会开开心心地玩耍呀。
接下来,小魔法师们就开始干活啦!它们在这个舒适的家里尽情地施展魔法,把那些原材料一点一点地变成我们需要的药物成分。
这过程可神奇了,就像变魔术一样,一点点地积累,一点点地变化。
在这个过程中,可不能掉以轻心啊!得时刻关注着小魔法师们的状态,看看它们有没有偷懒,有没有遇到什么困难。
这就像是照顾小婴儿,得时刻留意着,稍有不对就得赶紧想办法解决。
等小魔法师们工作得差不多了,就该收获成果啦!把它们制造出来的药物成分提取出来,这可不容易哦,得小心翼翼地,不能把好东西给破坏了。
再经过一系列的加工和处理,一瓶瓶救命的药就诞生啦!你说神奇不神奇?微生物发酵制药,不就是大自然给我们的一份特别礼物嘛!我们人类利用自己的智慧,和这些小小的微生物合作,创造出了能帮助我们战胜疾病的武器。
你说,要是没有这些微生物,我们的生活得失去多少色彩呀!它们虽然小,但力量可大着呢!所以啊,我们得好好珍惜这份大自然的馈赠,好好利用微生物发酵制药的技术,让更多的人受益。
咱也得感谢那些科研人员,是他们花费了大量的时间和精力,才让这些小魔法师为我们所用。
他们就像是牵线搭桥的人,让微生物和我们人类一起创造美好。
总之呢,微生物发酵制药就是这么一个神奇又有趣的过程,它给我们带来了希望,带来了健康。
简述微生物发酵制药的基本流程
简述微生物发酵制药的基本流程《简述微生物发酵制药的基本流程微生物发酵制药啊,就像是一场微生物们的奇妙“打工之旅”,可有趣又神秘啦。
首先呢,得有个强大的“微生物战队”,这就需要筛选菌种。
就好比挑选超级英雄一样,要找那些有特殊本领的微生物,它们能生产出我们想要的药物成分。
科学家们得在各种各样的微生物里,像是土里面的细菌啊,水里的真菌之类的,找那些符合要求的。
这个过程有时候就像大海捞针,但一旦发现合适的菌种,就像挖到了宝藏一样兴奋。
找到菌种后,就要好好招待它们,这就是培养菌种的过程。
就像照顾小婴儿一样精心。
要给它们准备合适的“小窝”——培养基。
这培养基可有讲究啦,要包含碳源、氮源这些营养物质,就像是给小微生物们准备了美味佳肴。
还要控制好环境条件,温度、pH值啥的,不能太冷也不能太热,不能太酸也不能太碱,不然微生物们可会“闹脾气”不干活的哦。
然后呢,就是发酵过程了。
这个时候微生物们就开始在培养基里开起了“制药工厂”。
它们吃着培养基里的营养物质,不停地繁殖后代,还生产出那些我们需要的药物的前体物质啥的。
这个过程就像是一个热闹的大派对,微生物们在里面忙活着呢。
不过呢,为了保证这个“派对”顺利进行,我们得时刻盯着,控制发酵的时间,要是发酵太短了,产量不够;发酵太长了,可能还会出现一些不好的东西。
发酵完之后,不能直接就说得到药啦。
还得有一系列的“后处理工序”。
就像从粗糙的石头里把宝石打磨出来一样。
要把发酵液进行分离和纯化。
这个时候可能就会用上过滤啊、离心啊这些手段,把微生物尸体还有其他没用的杂质去掉,只留下含有药物成分的精华部分。
最后还得经过一些化学加工或者制剂的手段,把它们变成我们在药店能看到的药剂,像胶囊啊、片剂之类的。
微生物发酵制药的整个流程就像是一场精心编排的戏剧,每个环节都很重要,少了哪个步骤,这场“制药之剧”就可能演砸啦。
这其中充满了科学家们的心血和智慧,看似简单的过程背后,可都是无数次的尝试和失败换来的呀。
微生物发酵技术在制药中的应用
微生物发酵技术在制药中的应用制药,是通过化学和生物学的方法进行药物制备、加工和生产的过程。
随着科技的不断进步,越来越多的新技术被应用到制药中,其中微生物发酵技术是一个非常重要的技术。
本文将从微生物发酵技术的基本原理、在制药中的应用以及其发展前景三个方面,探讨微生物发酵技术在制药中的应用。
一、微生物发酵技术的基本原理微生物发酵技术是指利用微生物代谢物质的过程中,通过控制条件使产生的物质在微生物体内积累和分泌出来,达到制作特定产品的目的。
这是一种生化反应,其基本原理是微生物的代谢分为两个阶段:生长期和产物积累期。
在生长期,微生物繁殖迅速,并利用培养基中的营养物质进行代谢,产生能量和生长分子等。
而在产物积累期,微生物的增殖速率逐渐降低,此时代谢转化方向发生变化,合成一些新的代谢产物,并排出细胞外。
应用微生物发酵技术,制得的产品包括抗生素、基因工程药物、酶制剂、氨基酸、有机酸、醇类等,同时还可以生产消化系药物、缓释剂、控释剂、维生素等。
二、微生物发酵技术在制药中的应用非常广泛,下面就举几个具体的例子:(一)利用微生物发酵技术制造抗生素抗生素是一种由微生物产生的一类药物,是微生物发酵技术最早应用的领域之一。
抗生素可以有效地抵抗病原体,特别是某些细菌感染,对人类健康起到了至关重要的作用。
(二)基因工程药物的生产基因工程药物的设计和生产需要利用微生物发酵技术,涉及到的步骤有基因克隆及转染、表达优化、发酵、提纯和制剂等。
微生物发酵技术是基因工程药物能够量产的基石。
(三)氨基酸的生产氨基酸作为一种生物化学物质,具有多种用途。
在制药业中能够合成天然的和人工的氨基酸,是利用微生物发酵技术实现的。
(四)酶制剂的生产酶是一种生物催化剂,能够在温和条件下加速某些化学反应的进行。
与传统的化学催化剂相比,酶具有温和的反应条件、高效率、高特异性和易回收等优点。
利用微生物发酵技术可生产出多种酶制剂,包括生物体内酶、生物外酶和微生物发酵培养液中所含的酶等。
微生物发酵制药
整理课件
3
发酵罐发酵
整理课件
4
摇床发酵
立式
卧式
整理课件
5
静置发酵
整理课件
6
发酵制药
利用制药微生物的生长繁殖,通过发酵、代谢 合成药物,然后从中提取、精制纯化,获得药 品的过程。
整理课件
的缺失。还有慢化离子、移位原子和本底元素复合反
应造成的化学损伤以及电荷交换引起的生物分子电子
转移造成的损伤。离子注入生物学效应显示出一些不
同于辐射生物学的特征,相当于物理和化学诱变两者
相结合的复合诱变效应
(2)激光辐射诱变和微波电整理磁课件辐射诱变
整理课件
17
二、制药微生物菌种的选育
1、选育的目的
改善菌种的特性,使产量提高,改进质 量、降低成本、改革工艺、方便管理及综 合利用等
2、选育的方法:
A、自然选育;
B、诱变育种
C、杂交育种
整理课件
18
自然选育
定义:不经过人工诱变处理,根据菌种的自然突变 而进行的菌种筛选过程。
应用: 1)菌种的纯化 2)菌株的复壮。 2)选育高产菌株
菌体自溶期(cell autolysis phase)
整理课件
10
发酵前期特征
从接种至菌体达到一定临界浓度的时间,包括延 滞期、对数生长期和减速期。
代谢特征:碳源、氮源等基质不断消耗 生长特征:菌体不断地生长和繁殖,生物量增加。 溶氧变化:不断下降,菌体临界值时,浓度最低。 pH变化:先升后降-以氨基酸为碳源,释放氨,整理Βιβλιοθήκη 件22诱变方案设计
微生物发酵制药工艺
3发酵制药的基本过程
菌种选育
孢子制备
实验室、种子库
种子制备
发酵工段
发酵车间
发酵控制
提炼工段
成品工段
预处理
分离提取
浓缩纯化
成品工段
提炼车间
包装车间
包装
原料药
2.2 微生物的生长特征
微生物发酵基本过程特征(批式)菌体生长与产物生成的特征,
三个阶段
❖
❖
❖
❖
❖
❖
发酵前期(fermentation prophase)
甲羟戊酸、糖类、不常见的氨基酸(如D-氨基酸、
β-氨基酸等)、环多醇和氨基环多醇等。
次级代谢产物的生物合成的基本过程
❖
次级代谢产物的合成基本过程包括构建单位
的聚合—再修饰—装配。在此过程中,次级
代谢产物的累积受合成途径中某些酶活性的
限制,这些关键酶活性大小与产量正相关。
(1)前体聚合
❖
微生物合成生源后,通过缩合反应形成聚酮体、寡肽、聚乙
菌体生长期(cell
发酵中期(fermentation metaphase)
产物合成(生产)期(product synthesis phase)
growth phase)
发酵后期(fermentation anaphase)
菌体自溶期(cell autolysis phase)
发酵前期特征
❖
❖
❖
❖
往往在静止期,加入诱导物,基因转录和产物表达,
所以产物生成速率和比速率分别为:
代谢产物的生物合成
❖
代谢(metabolism)是生物体内进行的生理生化反应的统称。
生物制药利用生物体产生药物的方法
生物制药利用生物体产生药物的方法生物制药是指利用生物体(包括微生物、哺乳动物等)作为药物生产的工具,通过生物体内的生物反应合成和提取药物。
这种方法具有高效、环保、可再生等特点。
下面将介绍几种常见的生物制药方法。
1. 微生物发酵生产药物微生物发酵是最常用的生物制药方法之一。
通过培养发酵菌株并提供合适的培养条件,使其产生所需药物。
例如,青霉素的生产就是利用青霉菌进行大规模发酵。
这种方法的优点在于微生物可以快速繁殖,产量高,且生产成本较低。
2. 基因工程技术基因工程技术是指将外源基因导入到宿主生物体中,使其产生目标药物。
常见的方法是将目标基因插入到大肠杆菌等细菌的染色体中,通过细菌的复制和表达机制,合成目标蛋白,进而得到所需药物。
这种方法的优势在于可通过基因技术使生产目标蛋白更加高效,有利于降低生产成本。
3. 哺乳动物细胞培养对于一些复杂的蛋白质药物,如抗体药物,常采用哺乳动物细胞培养进行生产。
通过将目标基因导入到哺乳动物细胞中,使其表达所需的药物。
这种方法能够确保药物的正确折叠和糖基化等重要的后修饰,从而增加药物的活性和稳定性。
4. 植物表达系统植物表达系统是一种新兴的生物制药方法。
通过将目标基因导入植物细胞中,通过植物的生长和代谢过程,合成目标药物。
植物表达系统具有许多优点,如生产成本低、易于扩大规模、无需复杂的设备等。
而且植物可以合成复杂的蛋白质,并且可以进行正确的修饰。
5. 动物体内制药某些药物,特别是针对罕见病的特效药物,可能需要通过动物体内制药来生产。
这种方法是将目标基因导入到动物的遗传物质中,使其在生长发育过程中产生所需药物,并通过动物的乳汁、血液或其他组织提取所需药物。
总结起来,生物制药利用生物体产生药物的方法包括微生物发酵、基因工程技术、哺乳动物细胞培养、植物表达系统和动物体内制药等。
这些方法在药物生产中发挥着重要的作用,为医药行业提供了更多有效、安全的药物选择。
未来随着生物技术的不断发展,生物制药的方法也会进一步创新和完善。
微生物发酵制药技术基础—培养基和设备的灭菌
K1
K `1
ln( K 2 ) ln( K`2 )
K1
K `1
即随着温度的上升,微生物的死亡速率常数增加倍数要
大于培养基成分破坏速率的增加倍数。
从上述的分析可知,在热灭菌过程中,同时会发生微生 物死亡和培养基破坏这两种过程。温度升高,菌体死亡 速率大于培养基成分破坏的速率。
不同灭菌温度、时间与培养基成分破坏情况(Ns/No=10-3)
缺点: • 设备较庞大; • 维持罐直径较大,不能保证物料先进先出,易发生
局部过热或灭菌不足的现象; • 喷淋冷却管道很长,对于黏度较高、固形物含量较
多的培养基极易堵塞。
2.喷射加热器加热的连续灭菌流程
优点:能保证培养液在喷射加热器和维持管中的先进 先出,避免了培养基过热和灭菌不彻底现象,培养基 总的受热时间短,营养物质的损失不严重。
依设备和工艺条件的不同,连续灭菌分:
• 连消塔加热的连续灭菌流程 • 喷射加热器加热的连续灭菌流程 • 薄板换热器加热的连续灭菌流程
1.连消塔加热的连续灭菌流程
这是国内味精厂普遍采用的连续灭菌流程。培养基用泵打入连 消塔与蒸汽直接混合,在连消塔内的停留时间为20~30s,达 到灭菌温度132℃。再送入维持罐保温,时间8~25min,最后 由喷淋冷却器冷却至后续的发酵或培养温度。
连续灭菌的优缺点
优点 • 短时间内加热到保温温度且能快速冷却,减少养分的损失 • 操作条件恒定,灭菌质量稳定 • 易于实行管道化和自动化控制 • 避免反复加热和冷却,提高了热利用率 • 发酵设备利用率高
缺点 • 设备要求高,需另外设置加热冷却装置 • 操作比较麻烦 • 染菌机会多 • 对蒸汽要求高 • 不适合大量固体物料的灭菌
(二)对数残留定律
生物制药领域中的发酵工艺
生物制药领域中的发酵工艺生物制药是指利用生物体表达和生产能产生治疗作用的药物。
发酵工艺是生物制药过程中的核心技术之一,通过生物转化将酵母菌、细菌、真菌等微生物与培养基反应,从而得到目的性的化学物质,进行后续的制药工艺处理,最终制成药品。
发酵工艺具有高效、环保、可控性好等优点,在生物医药产业中具有重要地位。
一、发酵工艺的概述发酵工艺是指利用微生物,如酵母菌、细菌、真菌等进行有机物质的生物合成,从而得到目的性的化学物质和生物制品的技术过程。
这种生物转化过程可以在液态或固态介质中进行。
发酵工艺的主要过程包括培养基的制备、微生物的接种、发酵过程的控制、发酵产物的分离纯化等。
在生物制药中,具有自然和复杂的化学结构的产物,通常通过发酵过程来制造。
二、发酵工艺在生物制药中的应用生物制药是现代医药领域的重要研究方向。
利用发酵工艺可以生产出多种生物药物,如抗体、重组蛋白、基因治疗药物、酶类药物等。
其中,重组蛋白在生物制药中具有重要地位,其制备过程主要是通过基因重组技术将人类生长因子、激素等基因植入到宿主细胞中,在培养基中进行发酵过程将产生的蛋白进行提取和纯化。
三、发酵工艺的控制发酵工艺的控制是指对发酵过程的各个环节进行调节和监控,以实现高产、高质量的目标。
发酵过程涉及到多个因素,如温度、pH、氧气供应、营养物质的供应等。
这些因素对产物的产量和质量都有重要影响。
因此,发酵工艺的控制主要包括以下几个方面:1. 培养基配方的优化。
不同的微生物需要不同的培养基成分。
通过优化培养基的成分和比例来提高产物的产量和质量。
2. 微生物的筛选和改良。
通过筛选高产、高稳定性的微生物,并进行基因工程改造,来提高产物的产量和质量。
3. 发酵过程参数的优化。
针对不同的微生物和产物特点,优化发酵过程的温度、pH、氧气供应、营养物质的供应等参数,以实现高产、高质量的目标。
4. 发酵产物的提取和纯化。
通过合理的提取和纯化工艺,来提高产物的纯度和活性。
微生物发酵制药
迅速工业大规摸生产。 • 深层培养、生产大规模化、多种抗生素、氨基酸、
核酸发酵成功。
2019/11/7
河南中广集团.天义生物谷
发酵工程的第四阶段
第四阶段 • 20世纪50年代,利用代谢调控发酵氨基酸、核酸。 • 20世纪70年代,利用固定化酶或细胞连续发酵。 • 20世纪80年代,基因工程、蛋白质工程、细胞融合
真菌之头孢霉菌属(Cephalosporium)
• 产黄头孢霉(Cephalosporium chrysogen)、 • 顶孢头孢霉菌(Cephalosporium acremonium)
都生产头孢菌素C
2019/11/7
河南中广集团.天义生物谷
真菌之酵母菌属(Saccharomyces)
啤酒酵母 (Saccharomyces cerevisiae):生产啤 酒、酒精、药用酵母等;核酸、麦角固醇、细胞 色素C、凝血质和辅酶A等。
灰色链霉菌(Streptomyces griseus) 金霉素链霉菌(Streptomyces aureofaciens) 红霉素链霉菌(Streptomyces erythreus) 龟裂链霉菌 (Streptomyces rimosus)
产链霉素 产金霉素 产红霉素 产土霉素
2019/11/7
河南中广集团.天义生物谷
2019/11/7
河南中广集团.天义生物谷
发酵菌种的选育要求
生产力:能在廉价的培养基上迅速生长,所需的代 谢产物的产量高,其它类似代谢产物少
操作性:培养条件简单,发酵易控制,产品易分离 稳定性:抗噬菌体能力强,菌种纯粹,遗传性状稳
定、不易变异退化 安全性:非病源菌,不产有害生物活性物质或毒素
生物制药工艺学灭菌技术及微生物发酵的操作方式
分批培养的优缺点
优点: 操作简单,周期短,染菌机会少, 生产过程和产品质量容易掌握。
缺点: 存在基质抑制的问题,产率低,不 适宜测定动力学数据。
连续培养(continuous culture)
连续培养是指微生物培养到对数生长期 时,在发酵罐中不断添加新鲜的培养基,同时 不断放出代谢物,使微生物细胞在近似恒定状 态下生长的培养方式。 特点:菌的浓度,产物浓度,限制性基质浓度 均处于恒定状态。
❖ 使用范围:用于室内空气及器皿表面灭菌。对固 体物料灭菌不彻底, 也不能用于液体物料的灭菌。
过滤介质除菌法
❖ 原理:利用微生物不能透过滤膜除菌。 ❖方法: 0.01-0.45um孔径滤膜 ❖ 使用范围:用于压缩空气、酶溶液及其他不耐热
化合物溶液除菌。工业上常用过滤法大量制备无 菌空气, 供好氧微生物 培养过程使用。
处理方法:发酵液用高压蒸汽灭菌后放掉,严防发酵液 任意流失;全部停产,对环境进行全面的清洗和消毒,断 绝噬菌体的寄生基础;更换生产菌种,筛选抗噬菌体的菌 种,防止重复污染。
防止染菌的措施
设备方面:要求发酵罐及其附属设备应做到无渗漏, 无死角。凡与物料、空气、下水道连接的管件都应保证 严密不漏,蛇形管和夹套应定期试漏。 空气净化系统方面:提高空气进口的空气洁净度,除尽 压缩空气中夹带的油和水,保持过滤介质的除菌效率。 定期检查更换空气过滤器过滤介质,使用过程中要经常 排放油水。 工艺方面:放罐后要进行全面检查清洗。(清理罐内残
❖ (4) 泡沫 培养基的泡沫对灭菌极为不利, 因为泡沫中的 空气形成隔热层,使传热困难, 热难穿透过去杀灭微生物。 对易产生泡沫的培养基在灭菌时, 可加入少量消泡剂。对 有泡沫的培养基进行连续灭菌时更应注意。
无菌检查与染菌处理
微生物发酵制药工艺
合子
虽然有成功报导,但多数效果不显著。
发酵制药
生产菌种的建立
(3)原生质体融合育种
概念 通过生物学、化学或物理学的方法,使两个不同 种类的体细胞融合在一起,从而产生具有两个亲 本遗传性状的新细胞.
发酵制药
操作过程
a. 原生质体制备: 用去壁酶处理将微生 物细胞壁除去,制成 原生质体。 e.高产菌株
发酵制药
生产菌种的建立
药物的筛选
琼脂扩散法——活性测定: 非致病菌为对象,筛选生物活性物质。 耐药和超敏菌种。 HPLC、LC-MS等,分析鉴定活性物质。 靶向筛选 高通量筛选 高内涵筛选
发酵制药
生产菌种的建立
2、菌种选育——自然选育(1)
定义:不经过人工诱变处理,根据菌种的自 然突变而进行的菌种筛选过程。 应用: (1)菌种的提纯复壮。(2)防止退 化,稳定生产水平。1年1次。 过程 菌 种 单孢 子 平板 单菌落 优良 分离 测活 菌株 效率低, 增产幅度小
dX r= dt
比生长速率μ:单位菌体浓度的生长速率 生长速率的标准化,菌体活力大小
dX ⎛ 1 ⎞ μ= ⎜ ⎟ dt ⎝ X ⎠
发酵制药
生长与生产的关系
菌体生物量与时间的关系是S形曲线。 分为五个阶段
减速期 dX/dt =μmax X dX/dt =μ X dX/dt = (μ - kd) X = 0 dX/dt = - kd X 延滞期 指数生长期 衰亡期 静止期
发酵前期(fermentation prophase) 菌体生长期(cell growth phase) 发酵中期(fermentation metaphase) 产物合成(生产)期(product synthesis phase) 发酵后期(fermentation anaphase) 菌体自溶期(cell autolysis phase)
发酵工程与生物制药
发酵工程与生物制药发酵工程在生物制药领域扮演着至关重要的角色。
通过利用微生物、细胞培养和生物催化等技术,发酵工程帮助我们生产出了许多重要的生物制药产品。
本文将介绍发酵工程在生物制药中的应用,并探讨其在药物生产中的重要性。
一、发酵工程在生物制药中的应用在现代生物制药过程中,发酵工程被广泛应用于药物的生产和制造。
其主要涉及三个方面:微生物发酵、细胞培养和生物催化。
1. 微生物发酵:微生物发酵是一种常见且重要的生物制药生产方式。
在该过程中,微生物(如细菌或真菌)通过在合适条件下生长和繁殖,合成所需的药物分子。
例如,青霉素的生产就是基于青霉菌的发酵过程。
通过将青霉菌培养在合适的培养基中,提供适当的营养物质和温度,使其合成青霉素。
这种微生物发酵技术不仅生产出高质量的药物,还有较低成本和高效率的优势。
2. 细胞培养:细胞培养是一种利用细胞生物学技术进行药物生产的方法。
这一过程中,细胞(如哺乳动物细胞、细菌或真核细胞)在合适的营养基中培养和繁殖,合成所需的药物分子。
细胞培养技术广泛应用于生产重组蛋白药物、抗体药物等生物制药产品。
通过调节培养条件、改进培养基配方和优化发酵过程,可以提高产品的产量和纯度,满足市场需求。
3. 生物催化:生物催化是指利用微生物、酶或细胞等生物催化剂来促进药物合成的过程。
这种方法具有选择性高、反应条件温和等优点,广泛应用于药物合成中。
生物催化可以通过提供合适的底物和酶催化剂来增加反应速率和选择性,从而生产出高效、高纯度的药物。
二、发酵工程在药物生产中的重要性发酵工程在药物生产中具有重要的作用,其重要性主要体现在以下几个方面:1. 高效性:发酵工程利用微生物或细胞培养技术,使药物的生产过程大大加快。
通过优化发酵条件和培养工艺,可以提高产量和产出速度,从而满足市场的需求。
2. 降低成本:与传统的化学合成方法相比,发酵工程具有较低的成本。
微生物和细胞培养可以在相对低成本的条件下产生药物,从而降低了生产成本。
微生物发酵一种重要的制药生产方法
微生物发酵一种重要的制药生产方法微生物发酵——一种重要的制药生产方法微生物发酵是一种重要的制药生产方法,通过利用微生物的代谢活性来合成目标药物。
该方法具有高效、可控、经济的优势,已成为现代制药业中不可或缺的一环。
1. 发酵的原理及过程微生物发酵的原理是通过微生物(如细菌、真菌等)在特定条件下进行代谢活性产生目标化合物。
其过程大致可分为以下几个步骤:(1) 选材与培养:选取适宜的微生物菌株,并进行预培养和扩大培养,以获得足够的微生物种子。
(2) 发酵培养:将种子接种到发酵培养基中进行培养,提供适宜的温度、pH值、氧气、营养物质等条件,使微生物得以生长和繁殖。
(3) 代谢产物提取与纯化:待发酵过程结束后,通过提取、分离和纯化等手段,得到目标化合物。
2. 微生物发酵在制药中的应用微生物发酵在制药中应用广泛,涉及药物的生产、合成和改良等多个环节。
(1) 抗生素的制备:抗生素如青霉素、链霉素等,常采用微生物发酵的方式进行大规模生产。
(2) 重组蛋白的合成:通过基因工程技术将目标基因导入到微生物中,使其能够合成目标蛋白,如胰岛素、生长激素等。
(3) 代谢产物改良:通过调控微生物菌株的基因表达、优化培养条件等手段,提高代谢产物的产量和纯度,实现对药物性能的改良。
3. 微生物发酵优势与展望微生物发酵作为一种制药生产方法,具有以下优势:(1) 高效可控:微生物的繁殖周期相对较短,培养条件相对容易控制,能够实现高度的生产效率和产品质量控制。
(2) 经济可行:相较于化学合成方法,微生物发酵生产具有较低的成本,且可利用廉价的废弃物作为培养基,降低环境污染。
(3) 生物可持续性:微生物发酵是一种绿色生产方式,可实现可持续性发展,符合现代社会对环境保护的要求。
展望未来,微生物发酵在制药领域仍有较大的发展空间。
随着生物技术的进步和基因编辑技术的出现,微生物菌株的改良和创新将更加高效和精确。
同时,与其他生产方法的结合也将成为一个发展方向,如微生物与植物的联合制备等,将进一步拓展微生物发酵在制药领域的应用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细菌之大肠杆菌属(Escherichia coli)
• 生产天冬氨酸、苏氨酸、缬氨酸等氨基酸类药物 • 基因工程的载体
细菌之短杆菌属(Brevibacterium)
• 维生素B12、氨基酸、核苷酸类药物生产中常用的
菌种,也是酶法合成生产辅酶A的菌种。
细菌之棒状杆菌属(Corynebacterium)
发酵罐的类型
• 搅拌釜反应器 • 鼓泡式反应器 • 气升式反应器
发酵辅助设备
无菌空气系统
• 无菌空气的要求 灭菌系统、管道、阀门
培养基及其灭菌
培养基(medium)
培养基的成分 • 碳源、氮源、无机盐、前体物、促进剂、抑制剂
培养基的类型
• 按组成 • 按状态 • 按用途
培养基灭菌
可的松(Cortisone)
药用发酵产品分类
生物来源 作用对象 作用机制 化学结构
细菌 真菌 放线菌
抗菌药 抗肿瘤药 抗病毒药 除草剂 酶抑制剂 免疫调节剂
抑制细胞壁合成药
抗生素 影响细胞膜功能药 维生素 氨基酸 干扰蛋白质合成药 核苷酸 抑制核酸合成药 甾体激素 抑制生物能量反应药 酶及酶抑制剂
第一阶段
• 1676年制成第一台显微镜 ——微生物的存在 • 1857年巴斯德证明了酒精是由活的酵母发酵引起 的 • 1897年毕希纳发现磨碎的酵母仍使糖发酵形成酒 精——酶
第二阶段
• 对发酵技术的认识起始于19世纪末,主要来自于
厌氧发酵,如利用酵母菌、乳酸菌生产酒精、乳
酸和各种发酵食品。
第三阶段
啤酒酵母 (Saccharomyces cerevisiae):生产啤 酒、酒精、药用酵母等;核酸、麦角固醇、细胞 色素C、凝血质和辅酶A等。 红酵母 (Rhodotorula):β-胡萝卜素 棉病针孢酵母(Nematspora gossypii):核黄素
真菌之其它
牛肝菌属:含有人体必需的8种氨基酸,还含有腺膘呤、 胆碱和腐胺等生物碱。 灵芝属:灵芝多糖、灵芝多肽、三萜类、16种氨基酸(其 中含有七种人体必需氨基酸)、蛋白质、甾类、甘露醇、
需要诱导或遭受阻遏、抑制等调控作用,在菌种
选育、培养基配制以及发酵条件等方面需注意。
3、微生物代谢产物发酵
初级代谢产物: 与菌体生长相伴随的产物、对菌体生长、分化和繁殖是必须的 氨基酸、核苷酸、维生素、糖类等 菌体对其合成反馈控制严密,一般不过量积累 次级代谢产物:
与菌体生长不相伴随,以初级代谢的中间产物为原料而合成
主要指标与中间分析项目雷同
抗生素、生物碱、毒素、色素、胞外多糖等
结构常较复杂对环境条件敏感
4、微生物转化发酵
利用微生物细胞的一种或几种酶,对外源化合物的
特定部位进行加工,如加入羟基、还原双键、脱氧
或切断支链等。 反应最显著的特点是特异性强,包括反应特异性、
结构位置特异性、立体特异性。 如: 甾体转化:环戊烷多氢菲核的化合物
产链霉素
产金霉素 产红霉素 产土霉素
放线菌之诺卡氏菌属 (Norcadia)
• 生产利福霉素、蚊霉素等
放线菌之小单胞菌属 (Micromonospora)
• 多种可产抗生素,如棘孢小单胞菌(M. echinospora) 产庆大霉素。
放线菌之游动放线菌属 (Actinoplanes)
• 典型代表:济南游动放线菌 (Actinoplanes
微生物发酵制药
L/O/G/O
第一节 概述
L/O/G/O
微生物发酵制药的定义
利用微生物技术,通过高度工程化的新型综 合技术,以利用微生物反应过程为基础,依赖于 微生物机体在反应器内的生长繁殖及代谢过程来 合成一定产物,通过分离纯化进行提取精制,并 最终制剂成型来实现药物产品的生产。
发酵工程的4个阶段
tsinanesisn) 产创新霉素(creatmycin;1964)
真菌之根霉属(Rhizopus)
• 生产甾体激素、延胡索酸及酶制剂等。
真菌之曲霉属(Aspergillus)
• 生产枸橼酸、葡萄糖酸、有机酸类、抗生素,进 行甾体转化。
真菌之青霉属(Penicillum)
• 产黄青霉(Penicillum chrysogenum)
目的:保证菌种经过较长时间后仍保持生活能力,
防止被杂菌污染,形态特征和生理形状尽可能不 发生变异。
菌种保藏三要素
典型菌种的优良纯种的休眠体;
创造有利于种子休眠的环境(低温、干燥、缺氧、 避光、缺少营养); 尽可能采用多种不同的手段保藏同一菌株。
菌种保藏的常用方法
斜面低温保藏法
石蜡油封存法
温度
• 考虑菌种及生长阶段 • 综合考虑其他培养条件 • 考虑菌种生长情况
Hale Waihona Puke • 发酵热pH• 补加酸或碱和补料的方式
溶氧和CO2
• 溶氧异常下降 • 溶氧异常上升 措施
泡沫
• 负面影响 • 措施
染菌
• 发酵前期染菌
• 发酵后期染菌
发酵终点的判断
• 提高产物的产量和经济效益 • 降低生产成本
物理诱变剂:紫外线、X-射线、γ-射线等
化学诱变剂:氮芥、亚硝酸、5-氟尿嘧啶等
杂交育种:借助有性重组,使不同菌株的遗传
物质得以交换
原生质体融合育种:借助原生质融合技术实现
遗传物质的交换
基因工程育种:DNA体外重组技术定向育种,
技术含量高,应用面广
菌种保藏(Culture conservation)
温度
pH
溶氧 泡沫 染菌 发酵终点的判断
菌体浓度
• 在适合的生长速率下,发酵产物的产率与菌体浓 度成正比关系。特别是初级代谢产物。 • 菌体浓度过低,产物产率下降。 • 菌体浓度过高,产生其他影响。 • 措施:调节培养基中的营养物质的浓度。
营养物质
• 碳源 • 氮源 • 磷酸盐:生长亚适量浓度 • 补料:半饥饿状态
发酵工程制药的特点
• 微生物菌种选育获得高产
• 发酵的理论产量存在约10%的变量
• 发酵过程常温常压,操作条件温和
• 纯种培养、无菌条件
• 生产过程是以生物体的自动调节方式进行的
• 分子水平生产,定向发酵、突变、杂交等手段
• 投资少、见效快
发展趋势
• 利用DNA重组技术和细胞工程技术的发展、新的
适用范围 各种微生物的短期保藏。 各种微生物的中短期保藏, 不适用某些能分解烃类的菌 种。 产孢子微生物和芽孢细菌的 长期保藏,不适用对干燥敏 感的微生物 产孢子霉菌和某些放线菌, 工厂多采用此法 基因工程菌
保藏期 1-6个月 1-2年
砂土管保藏法
1-10年
麸皮保藏法 甘油悬液保藏法
1年 1年/10年
工程菌和新型微生物的开发
• 新型的生理活性多肽和蛋白质类药物:干扰素、
白介素促红细胞生成素等;
• 新型菌体制剂和疫苗。
红细胞生成素
生长激素 胰岛素 干扰素
( 治疗贫血)
( 促进生长) (治疗糖尿病) (抗病毒、抗肿瘤)
第二节 发酵制药中的微生物
L/O/G/O
常见的制药用微生物
• 细菌
• 放线菌 • 真菌
生产青霉素,也可用来生产葡萄糖氧化酶、葡萄 糖酸、柠檬酸和抗坏血酸
真菌之头孢霉菌属(Cephalosporium)
• 产黄头孢霉(Cephalosporium chrysogen)、
• 顶孢头孢霉菌(Cephalosporium acremonium) 都生产头孢菌素C
真菌之酵母菌属(Saccharomyces)
微生物发酵类型
1、微生物菌体的发酵
SCP、药用真菌(冬虫夏草、茯苓等)
生物防治制剂(如苏云金杆菌)
活性乳制剂
细胞的生长与产物的积累成平行关系,
生长速率最大的时期也是产物合成最高阶段
2、微生物酶发酵
各种酶制剂 糖化酶、α-淀粉酶、蛋白酶、脂肪酶等 天冬酰胺酶: 抗癌
纳豆激酶、链激酶: 治疗血栓
青霉素酰化酶:青霉素生产
第三节 发酵设备及消毒灭菌
L/O/G/O
发酵的一般流程
培养基配制 种子扩大培养 空气除菌 发酵设备
培养基灭菌
发酵生产
下游处理
发酵设备——发酵罐
发酵罐的特点
轴封严密,泄漏少 能承受一定压力、温度
搅拌通风装置保证气液充分混合
具有足够的冷却面积
死角少,灭菌彻底
适宜的径高比(高与直径的比值为2.5—4)
砂土管保藏法
麸皮保藏法
甘油悬液保藏法 冷冻真空干燥保藏法 液氮超低温保藏法 宿主保藏法
方法名称 斜面低温保藏法 石蜡油封存法
主要特点 传代培养,4℃保藏 石蜡油隔绝空气,室温 或4℃保藏 沙土管作载体,干燥器 中抽真空,室温或4℃保 藏 麸皮作载体,干燥,4℃ 保藏 悬浮于10-15%甘油中, 需低温冰箱
安全性:非病源菌,不产有害生物活性物质或毒素
发酵菌种的选育方法
从自然界中获得新菌种 诱变育种 杂交育种
原生质体融合
基因工程
从自然界中获得新菌种
土壤、空气、动植物等,严重污染的水域,极端
环境等 基本程序: • 采样预处理富集培养筛选鉴定野生型
菌株
诱变育种
物理或化学方法诱发突变
• 20世纪40年代初,第二次世界大战爆发,青霉素 迅速工业大规摸生产。 • 深层培养、生产大规模化、多种抗生素、氨基酸、 核酸发酵成功。
第四阶段 • 20世纪50年代,利用代谢调控发酵氨基酸、核酸。 • 20世纪70年代,利用固定化酶或细胞连续发酵。 • 20世纪80年代,基因工程、蛋白质工程、细胞融合 技术等高新技术应用阶段。
• 空罐灭菌 • 实罐灭菌 • 连续灭菌