最新电大作业-工程数学考核作业(第四次)
工程数学第四次作业
工程数学第四次作业随着工程的复杂性和综合性日益增长,工程数学成为了工程师必备的重要工具。
本次作业的主题为“线性代数与矩阵运算”。
线性代数是工程数学的一个重要分支,它研究的是向量空间及线性变换。
在工程领域,线性代数被广泛应用于计算机图形学、机器学习、物理建模和经济学等领域。
通过对线性代数的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
矩阵是线性代数中的一个重要概念,它是向量空间中的一种特殊元素。
矩阵的运算是工程数学中的基本运算之一,它可以表示物体之间的相对位置和运动状态。
在工程中,矩阵被广泛应用于计算机图形学、计算机视觉、机器人学和控制系统等领域。
通过对矩阵的学习,工程师可以更好地理解和分析工程问题,提高解决问题的效率和质量。
本次作业的任务是完成一份关于线性代数与矩阵运算的试卷。
试卷包括了填空题、选择题和计算题等多种题型,涵盖了线性代数与矩阵运算的基本概念和基本运算。
完成本次作业需要学生掌握线性代数与矩阵运算的基本概念和基本运算,能够灵活运用所学知识解决实际问题。
通过本次作业,学生可以更好地理解和掌握线性代数与矩阵运算的基本概念和基本运算,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
工程数学第四次作业是关于线性代数与矩阵运算的一次重要实践。
通过本次作业,学生可以更好地理解和掌握工程数学的基本概念和基本方法,提高解决实际问题的能力。
本次作业还可以帮助学生培养良好的学习习惯和思维方式,为未来的学习和工作打下坚实的基础。
第四次中东战争中东战争是指在中东地区发生的多次军事冲突和战争,其中第四次中东战争是指1973年埃及和叙利亚等国家与以色列之间爆发的一场大规模战争。
这场战争的爆发原因和战场情况以及战争的影响和后果都值得我们深入探讨。
在第四次中东战争爆发前,中东地区已经存在着紧张的政治和军事局势。
以色列和埃及、叙利亚等国家之间长期存在着领土争端和民族矛盾,这是导致战争爆发的重要原因之一。
2024年电大工程数学
离线作 业专业:土木工程(本) 班级:07土木工程(本) 学号: 姓名:张波要求:1、在大连校园网(.edu.cn)上实名注册。
2、按上面次序注明教学班、年级、专业、姓名、学号。
3、上传离线作业时,必须用学号和姓名作为上传离线作业的文献名,否则视为未交离线作业。
4、假如没有本课程的离线作业,得不到平时成绩。
离线作业答题卡1.(C) 2.(C) 3.(C) 4.(B) 5.(D)6.(D)7.(C)8.(B)9.(B) 10.(C)11.(-48) 12.(1) 13.(线性无关) 14.( 特性相量)115.()216.(无偏估量量) 17.(20) 18.() 19.( 0.8 )20.(μ)⎰+∞∞-)(dxxfx 一、填空题:1. 向量组的秩是(C ).0222,0543,0321,0021,0001 (A) (B) 12 (C) (D) 342. 都是阶矩阵,则下列命题正确的是 (C) .B A ,n (A) (B) 若,则或BA AB =0AB =0A =0B = (C) (D) BA AB 2222)(BAB A B A +-=-3.若都是n 阶矩阵,则等式(C )成立.A B ,A . B . A B A B +=+ABAB =')( C . D . AB BA =()()A B A B A B+-=-224.若,则秩()=(B).⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=743222301521A A A . 1 B . 2 C . 3 D . 45.向量组的极大线性无关[][][][]αααα1234000100120123====,,,,,,,,,,,组是(D ). (A) (B) 32,αααα24, (C) (D)αα34,ααα234,,6. 甲、乙二人射击,分别表示甲、乙射中目标,则表示(D )的事件.A B ,AB (A ) 二人都没射中 (B) 最少有一人射中 (C) 两人都射中 (D ) 最少有一人没射中7.若随机事件,满足,则结论(C )成立.A B AB =∅ (A) 与是对立事件 (B) 与相互独立A B A B (C ) 与互不相容 (D) 与互不相容A B A B 8. 设是来自正态总体的样本,则(B)是统计量.x x x n 12,,, N (,)μσ2 (A); (B) ;x 1-μσ11n x i i n=∑(C); (D)σμx 2+μx 19.对给定的正态总体的一个样本,未知,求的置信区间,选),(2σμN ),,,(21n x x x 2σμ用的样本函数服从(B).A.χ分布B .t 分布C .指数分布 D.正态分布210.下列数组中,(C)中的数组能够作为离散型随机变量的概率分布.A . B .41414121161814121 C . D. 163161412181834121- 二、填空题 11.设均为3阶矩阵,,,则 -48 .B A ,2=A 3=B ='--13B A 12. 设矩阵,则 1 .A =⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥111111111r A ()=13.线性无关的向量组的部分组一定 线性无关 .14. 设为阶方阵,若存在数和非零维向量,使得,则称为相A n λn x x x A λ=x A 应于特性值的 特性相量 .λ 15.设随机变量的密度函数,则 .X f x A x x ()sin ,,=<<⎧⎨⎩00π其它A =2116.若参数的估量量满足,则称为的 无偏估量量 .θ θE ( )θθ= θθ17.假如随机变量的期望,,那么 20 .X 2)(=X E 9)(2=X E =)2(X D 18.设是来自正态总体的一个样本,则 µ .1021,,,x x x )4,(μN ~101101∑=i i x 19.已知,则 0.8 .5.0)(,3.0)(=-=A B P A P =+)(B A P 20.设连续型随机变量的密度函数是,则.X )(x f =)(X E dx x xf ⎰+∞∞-)(。
工程数学(本科)形考任务答案
工程数学作业(一)答案第 2 章矩阵(一)单项选择题(每小题 2 分,共 20 分)⒈设,则( D ).A. 4B. - 4C. 6D. - 6⒉若,则( A ).A. B. - 1 C. D. 1⒊乘积矩阵中元素( C ).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是( B ).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是( D ).A. B.C. D.⒍下列结论正确的是( A ).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为( C ).A. B.C. D.⒏方阵可逆的充分必要条件是( B ).A. B. C. D.⒐设均为阶可逆矩阵,则( D ).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是( A ).A. B.C. D.(二)填空题(每小题 2 分,共 20 分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5 × 4 矩阵.⒋二阶矩阵.⒌设,则⒍设均为 3 阶矩阵,且,则72 .⒎设均为 3 阶矩阵,且,则- 3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题 8 分,共 48 分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⒉设,求.解:⒊已知,求满足方程中的.解:⒋写出 4 阶行列式中元素的代数余子式,并求其值.答案:⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.解:( 1 )( 2 )( 过程略 ) (3)⒍求矩阵的秩.解:(四)证明题(每小题 4 分,共 12 分)⒎对任意方阵,试证是对称矩阵.证明:是对称矩阵⒏若是阶方阵,且,试证或.证明:是阶方阵,且或⒐若是正交矩阵,试证也是正交矩阵.证明:是正交矩阵即是正交矩阵工程数学作业(第二次)第 3 章线性方程组(一)单项选择题 ( 每小题 2 分,共 16 分 )⒈用消元法得的解为( C ).A. B.C. D.⒉线性方程组( B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则( B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则( D ).A. 秩秩B. 秩秩C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组( A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解⒎以下结论正确的是( D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组线性相关,则向量组( A )可被该向量组其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9 .设 A ,B为阶矩阵,既是A又是B的特征值,既是A又是B的属于的特征向量,则结论()成立.A.是 AB 的特征值B.是 A+B 的特征值C.是 A - B 的特征值D.是 A+B 的属于的特征向量10 .设A,B,P为阶矩阵,若等式(C)成立,则称A和B相似.A.B.C.D.(二)填空题 ( 每小题 2 分,共 16 分 )⒈当1时,齐次线性方程组有非零解.⒉向量组线性相关.⒊向量组的秩是3.⒋设齐次线性方程组的系数行列式,则这个方程组有无穷多解,且系数列向量是线性相关的.⒌向量组的极大线性无关组是.⒍向量组的秩与矩阵的秩相同.⒎设线性方程组中有 5 个未知量,且秩,则其基础解系中线性无关的解向量有2个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为.9 .若是A的特征值,则是方程的根.10 .若矩阵A满足,则称A为正交矩阵.(三)解答题 ( 第 1 小题 9 分,其余每小题 11 分 )1 .用消元法解线性方程组解:方程组解为2.设有线性方程组为何值时,方程组有唯一解 ? 或有无穷多解 ?解:]当且时,,方程组有唯一解当时,,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组线性表出,当且仅当方程组有解这里方程组无解不能由向量线性表出4.计算下列向量组的秩,并且( 1 )判断该向量组是否线性相关解:该向量组线性相关5.求齐次线性方程组的一个基础解系.解:方程组的一般解为令,得基础解系6.求下列线性方程组的全部解.解:方程组一般解为令,,这里,为任意常数,得方程组通解7.试证:任一4维向量都可由向量组,,,线性表示,且表示方式唯一,写出这种表示方式.证明:任一4维向量可唯一表示为⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解.证明:设为含个未知量的线性方程组该方程组有解,即从而有唯一解当且仅当而相应齐次线性方程组只有零解的充分必要条件是有唯一解的充分必要条件是:相应的齐次线性方程组只有零解9 .设是可逆矩阵A的特征值,且,试证:是矩阵的特征值.证明:是可逆矩阵A的特征值存在向量,使即是矩阵的特征值10 .用配方法将二次型化为标准型.解:令,,,即则将二次型化为标准型工程数学作业(第三次)第 4 章随机事件与概率(一)单项选择题⒈为两个事件,则( B )成立.A. B.C. D.⒉如果( C )成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件⒊ 10 奖券中含有 3 中奖的奖券,每人购买 1 ,则前 3 个购买者中恰有 1 人中奖的概率为( D ).A. B. C. D.4. 对于事件,命题( C )是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容⒌某随机试验的成功率为, 则在 3 次重复试验中至少失败 1 次的概率为( D ).A. B. C. D.6. 设随机变量,且,则参数与分别是( A ).A. 6, 0.8B. 8, 0.6C. 12, 0.4D. 14, 0.27. 设为连续型随机变量的密度函数,则对任意的,( A ).A. B.C. D.8. 在下列函数中可以作为分布密度函数的是( B ).A. B.C. D.9. 设连续型随机变量的密度函数为,分布函数为,则对任意的区间,则( D ).A. B.C. D.10. 设为随机变量,,当( C )时,有.A. B.C. D.(二)填空题⒈从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.2. 已知,则当事件互不相容时, 0.8 ,0.3 .3. 为两个事件,且,则.4. 已知,则.5. 若事件相互独立,且,则.6. 已知,则当事件相互独立时,0.65 , 0.3 .7. 设随机变量,则的分布函数.8. 若,则 6 .9. 若,则.10. 称为二维随机变量的协方差.(三)解答题1. 设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解 : (1) (2) (3)(4) (5) (6)2. 袋中有 3 个红球, 2 个白球,现从中随机抽取 2 个球,求下列事件的概率:⑴ 2 球恰好同色;⑵ 2 球中至少有 1 红球.解 : 设= “ 2 球恰好同色”,= “ 2 球中至少有 1 红球”3. 加工某种零件需要两道工序,第一道工序的次品率是 2% ,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是 3% ,求加工出来的零件是正品的概率.解:设“第 i 道工序出正品”( i=1,2 )4. 市场供应的热水瓶中,甲厂产品占 50% ,乙厂产品占 30% ,丙厂产品占20% ,甲、乙、丙厂产品的合格率分别为 90%,85%,80% ,求买到一个热水瓶是合格品的概率.解:设5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是,求所需设计次数的概率分布.解:……………………故 X 的概率分布是6. 设随机变量的概率分布为试求.解:7. 设随机变量具有概率密度试求.解:8. 设,求.解:9. 设,计算⑴;⑵.解:10. 设是独立同分布的随机变量,已知,设,求.解:工程数学作业(第四次)第 6 章统计推断(一)单项选择题⒈设是来自正态总体(均未知)的样本,则( A )是统计量.A. B. C. D.⒉设是来自正态总体(均未知)的样本,则统计量( D )不是的无偏估计.A. B.C. D.(二)填空题1 .统计量就是不含未知参数的样本函数.2 .参数估计的两种方法是点估计和区间估计.常用的参数点估计有矩估计法和最大似然估计两种方法.3 .比较估计量好坏的两个重要标准是无偏性,有效性.4 .设是来自正态总体(已知)的样本值,按给定的显著性水平检验,需选取统计量.5 .假设检验中的显著性水平为事件( u 为临界值)发生的概率.(三)解答题1 .设对总体得到一个容量为 10 的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0试分别计算样本均值和样本方差.解:2 .设总体的概率密度函数为试分别用矩估计法和最大似然估计法估计参数.解:提示教材第 214 页例 3矩估计:最大似然估计:,3 .测两点之间的直线距离 5 次,测得距离的值为(单位: m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布的,求与的估计值.并在⑴;⑵未知的情况下,分别求的置信度为 0.95 的置信区间.解:( 1 )当时,由 1 -α= 0.95 ,查表得:- -- - 专业资料- 故所求置信区间为:( 2 )当 未知时,用 替代 ,查 t (4, 0.05 ) ,得故所求置信区间为: 4 .设某产品的性能指标服从正态分布,从历史资料已知 ,抽查 10 个样品,求得均值为 17 ,取显著性水平,问原假设 是否成立. 解: ,由,查表得:因为> 1.96 ,所以拒绝 5 .某零件长度服从正态分布,过去的均值为 20.0 ,现换了新材料,从产品中随机抽取 8 个样品,测得的长度为(单位: cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5 问用新材料做的零件平均长度是否起了变化().解:由已知条件可求得:∵ | T | < 2.62 ∴ 接受 H 0。
国开电大《工程数学(本)》形考任务四答案
国家开放大学《工程数学(本)》形成性考核作业四测验答案一、解答题(答案在最后)
二、证明题(答案在最后)
参考答案
试题1答案:解:
试题2答案:
试题3答案:解:
试题4答案:
试题5答案:
试题6答案:
试题7答案:
试题8答案:
试题9答案:
试题10答案:
证明:(A+A′)′=A′+(A′)′=A′+A=A+A′∴A+A′是对称矩阵
试题11答案:
证明:∵A是n阶方阵,且AA′=I
∴|AA′|=|A||A′|=|A|2=|I|=1
∴|A|=1或|A|=-1
试题12答案:
证明:设AX=B为含n个未知量的线性方程组
该方程组有解,即R(Ā)=R(A)=n
从而AX=B有唯一解当且仅当R(A)=n
而相应齐次线性方程组AX=0只有零解的充分必要条件是R(A)=n
∴AX=B有唯一解的充分必要条件是:相应的齐次线性方程组AX=0只有零解。
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析
2020年秋季国家开放大学《工程数学本》形考任务(1-5)试题与答案解析(红色标注为正确答案)工程数学作业(第一次)(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B).A. B. C. D.⒐设均为阶可逆矩阵,则(D).A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(D).A. B.C. D.(二)填空题(每小题2分,共20分)⒈7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为5×4 矩阵.⒋二阶矩阵.⒌设,则.⒍设均为3阶矩阵,且,则-72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则.(三)解答题(每小题8分,共48分)⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.⒉设,求.⒊已知,求满足方程中的.⒋写出4阶行列式中元素的代数余子式,并求其值.⒌用初等行变换求下列矩阵的逆矩阵:⑴;⑵;⑶.⒍求矩阵的秩.(四)证明题(每小题4分,共12分)⒎对任意方阵,试证是对称矩阵.⒏若是阶方阵,且,试证或.⒐若是正交矩阵,试证也是正交矩阵.工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122 ⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为(A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量(二)填空题(每小题2分,共16分) ⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的. ⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是 .⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为 .(三)解答题(第1小题9分,其余每小题11分) 1.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ为何值时,方程组有唯一解?或有无穷多解?2.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,,3.计算下列向量组的秩,并且(1)判断该向量组是否线性相关;(2)求出该向量组的一个极大无关组。
【第4次】2022年国家开放大学工程数学第4次作业及答案
工程数学(本)形成性考核作业4综合练习书面作业(线性代数部分)一、解答题(每小题10分,共80分)1. 设矩阵1213A ⎡⎤=⎢⎥⎣⎦,123110B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,已知XA B =,求X . 解:[]121012101032 130101110111A I -⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 13211A --⎡⎤=⎢⎥-⎣⎦11232311110X BA --⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦548532-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦2. 设矩阵012213114,356211A B ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦,解矩阵方程AX B '= 解:[]012100114010114010,114 010012100012100211001211001037021A I ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦114010012100001321⎡⎤⎢⎥→⎢⎥⎢⎥--⎣⎦1101274010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦100532010742001321-⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 1532742321A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦1532237421532136X A B ---⎡⎤⎡⎤⎢⎥⎢⎥'==-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦131********-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦3. 解矩阵方程AX X B -=,其中4559A ⎡⎤=⎢⎥⎣⎦,1234B ⎡⎤=⎢⎥⎣⎦. 解:AX IX B -=()A I X B -=[]3510,5801A I I ⎡⎤-=⎢⎥⎣⎦35101221⎡⎤→⎢⎥---⎣⎦12213510---⎡⎤→⎢⎥⎣⎦12210153---⎡⎤→⎢⎥--⎣⎦12210153-⎡⎤→⎢⎥-⎣⎦10850153-⎡⎤→⎢⎥-⎣⎦()18553A I --⎡⎤-=⎢⎥-⎣⎦()1X A I B -=-8553-⎡⎤=⎢⎥-⎣⎦1234⎡⎤⎢⎥⎣⎦7442⎡⎤=⎢⎥--⎣⎦4. 求齐次线性方程组12341234134 30240 450x x x x x x x x x x x -+-=⎧⎪--+=⎨⎪-+=⎩的通解.解:113111312114017610450176A ----⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦104501760000-⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦134234450760x x x x x x -+=⎧⎨-+=⎩方程组的一般解为1342344576x x x x x x =-⎧⎨=-⎩(其中34,x x 是自由未知量)令341,0x x ==,得14710X ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦令330,1x x ==,得25601X -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1122k X k X +(其中12,k k 为任意常数) 5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪的通解.解:13125123111253504A --⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥⎣⎦13120143701437014310--⎡⎤⎢⎥--⎢⎥→⎢⎥--⎢⎥-⎣⎦13120143700000003--⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦1312310114200010000--⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦131030101400010000-⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦5101430101400010000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦13234501430140x x x x x ⎧+=⎪⎪⎪-=⎨⎪=⎪⎪⎩,一般解为132345143140x x x x x ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩(其中3x 为自由未知量) 令314x =,得1245,3,0x x x =-==基础解系为153140X -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦通解为1X kX =(k 为任意常数) 6. 当λ取何值时,齐次线性方程组123123123204503720x x x x x x x x x λ++=⎧⎪++=⎨⎪++=⎩有非零解?在有非零解的情况下求方程组的通解. 解:将齐次线性方程组的系数矩阵化为阶梯形12112145034372011A λλ⎡⎤⎡⎤⎢⎥⎢⎥=→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦103011034λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦ 103011007λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦故当7λ=时,方程组有非零解方程组的一般解为13233x x x x =-⎧⎨=⎩(其中3x 是自由未知量)令31x =,得方程组的一个基础解系1312X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦方程组的通解为1kX (其中k 为任意常数) 7. 当λ取何值时,非齐次线性方程组123123123124225x x x x x x x x x λ++=⎧⎪-+-=⎨⎪+-=⎩ 有解?在有解的情况下求方程组的通解.解:11111242251A λ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦111103330332λ⎡⎤⎢⎥→-⎢⎥⎢⎥--⎣⎦111103330005λ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦当5λ=时,方程组有解111103330000A ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦111101110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦102001110000⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦一般解为132321x x x x =-⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0010X ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)8. 求线性方程组12312312312324523438213496x x x x x x x x x x x x -+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩的通解.解:将方程组的增广矩阵化为阶梯形矩阵12452314382134196A --⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥--⎣⎦124507714014142807714--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥-⎣⎦1245011200000000--⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦1021011200000000-⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥⎣⎦ 方程组的一般解为1323212x x x x =--⎧⎨=+⎩(其中3x 是自由未知量)令30x =,得到方程组的一个特解为0120X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦不计最后一列,令31x =,得到相应的齐次线性方程组的一个基础解系1211X -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦于是,方程组的通解为01X X kX =+(其中k 为任意常数)二、证明题(每题10分,共20分) 1. 对任意方阵A ,试证A A +'是对称矩阵. 证明:()()A A A A A A ''''''+=+=+ 故A A '+是对称矩阵2. 设n 阶方阵A 满足2A A I O +-=,试证矩阵A 可逆. 证明:2A A I += A A A I I ⋅+⋅= ()A A I I += 所以矩阵A 可逆。
最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)
最新国家开放大学电大本科《工程数学》期末试题标准题库及答案(试卷号:1080)
考试说明:本人汇总了历年来该科的试题及答案,形成了一个完整的标准考试题库,对考生的复习和考试起着非常重要的作用,会给您节省大量的时间。
内容包含:单选题、填空题、计算题、证明题。
做考题时,利用本文档中的查找工具(Ctrl+F),把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。
本文库还有其他网核、机考及教学考一体化试题答案,敬请查看。
《工程数学》题库一
试题答案及评分标准(仅供参考)
《工程数学》题库二
试题答案及评分标准(仅供参考)
《工程数学》题库三一、单项选择题(每小题3分.共15分)
试题答案及评分标准
(仅供参考)
《工程数学》题库四
试题答案及评分标准
(仅供参考)
《工程数学》题库五
试题答案及评分标准(仅供参考)
《工程数学》题库六一、单项选择题(每小题3分,共15分)
二、填空题(每小题3分,共15分)
三、计算题(每小题16分,共64分)
四、证明题(本题6分)
试题答案及评分标准
(仅供参考)。
电大数学思想与方法形考作业最新国家开放大学电大《数学思想与方法(本)》形考任务4试题及答案
电大数学思想与方法形考作业最新国家开放大学电大《数学思想与方法(本)》形考任务4试题及答案最新国家开放大学电大《数学思想与方法(本)》形考任务4试题及答案形考任务4题目1 三段论是演绎推理的主要形式,由( )三部分组成。
选择一项:D.大前提、小推理、结论题目2自然科学研究存在着两种方式:定性研究和定量研究。
定性研究揭示研究对象是否具有(),定量研究揭示研究对象具有某种特征的()。
选择一项:C.某种特征数量状态题目3 公理方法就是从()出发,按照一定的规定(逻辑规则)定义出其他所有的概念,推导出其他一切命题的一种演绎方法。
选择一项:C.初始概念和公理题目4 公理化方法的发展大致经历了这样三个阶段:(),用它们建构起来的理论体系典范分别对应的是《几何原本》、《几何基础》和ZFC公理系统。
选择一项:B.实质公理化阶段、形式公理化阶段和纯形式公理化阶段题目5 第三次数学危机产生于十九世纪末和二十世纪初,当时正是数学空前兴旺发达的时期。
首先是逻辑的(),促使了数理逻辑这门学科诞生,其中,十九世纪七十年代康托尔创立的()是产生危机的直接来源。
选择一项:C.数学化集合论题目6 罗素悖论引发了数学的第三次危机,它的一个通俗解释就是理发师悖论:在某个城市中有一位理发师,他的广告词是这样写的:“本人的理发技艺十分高超,誉满全城。
我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。
我对各位表示热诚欢迎!”现在的问题是:如果理发师的胡子长了,他能给自己刮脸吗?()选择一项:C.无结果题目7 为避免数学以后再出现类似问题,数学家对集合论的严格性以及数学中的概念构成法和数学论证方法进行逻辑上、哲学上的思考,其目的是力图为整个数学奠定一个坚实的基础。
随着对数学基础的深入研究,在数学界产生了数学基础研究的三大学派:()。
选择一项:B.逻辑主义、直觉主义、形式主义题目8 哥德尔不完备性定理是他在1931年提出来的。
这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑。
中央电大土木工程本科工程数学形成性考核册答案
工程数学作业(一)答案(满分100分)第2章 矩阵(一)单项选择题(每小题2分,共20分)⒈设a a a b b b c c c 1231231232=,则a a a a b a b a b c c c 123112233123232323---=(D ).A. 4B. -4C. 6D. -6⒉若000100002001001a a=,则a =(A ).A.12 B. -1 C. -12D. 1 ⒊乘积矩阵1124103521-⎡⎣⎢⎤⎦⎥-⎡⎣⎢⎤⎦⎥中元素c 23=(C ).A. 1B. 7C. 10D. 8⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是( B ). A. A BAB +=+---111 B. ()AB BA --=11C. ()A B A B +=+---111 D. ()AB A B ---=111⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ). A. A B A B +=+ B. AB n A B =C. kA k A =D. -=-kA k A n()⒍下列结论正确的是( A ).A. 若A 是正交矩阵,则A -1也是正交矩阵B. 若A B ,均为n 阶对称矩阵,则AB 也是对称矩阵C. 若A B ,均为n 阶非零矩阵,则AB 也是非零矩阵D. 若A B ,均为n 阶非零矩阵,则AB ≠0⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C ). A. 1325--⎡⎣⎢⎤⎦⎥ B. --⎡⎣⎢⎤⎦⎥1325C. 5321--⎡⎣⎢⎤⎦⎥D. --⎡⎣⎢⎤⎦⎥5321⒏方阵A 可逆的充分必要条件是(B ).A.A ≠0B.A ≠0C. A *≠0D. A *>0⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ).A. ()'---B A C 111 B. '--B C A 11 C. A C B ---'111() D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ). A. ()A B A AB B +=++2222 B. ()A B B BA B +=+2C. ()221111ABC C B A ----= D. ()22ABC C B A '='''(二)填空题(每小题2分,共20分)⒈21014001---= 7 . ⒉---11111111x 是关于x 的一个一次多项式,则该多项式一次项的系数是 2 . ⒊若A 为34⨯矩阵,B 为25⨯矩阵,切乘积AC B ''有意义,则C 为 5×4 矩阵.⒋二阶矩阵A =⎡⎣⎢⎤⎦⎥=11015⎥⎦⎤⎢⎣⎡1051. ⒌设A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=--⎡⎣⎢⎤⎦⎥124034120314,,则()A B +''=⎥⎦⎤⎢⎣⎡--815360 ⒍设A B ,均为3阶矩阵,且A B ==-3,则-=2AB 72 .⒎设A B ,均为3阶矩阵,且A B =-=-13,,则-'=-312()A B -3 .⒏若A a =⎡⎣⎢⎤⎦⎥101为正交矩阵,则a = 0 .⒐矩阵212402033--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥的秩为 2 . ⒑设A A 12,是两个可逆矩阵,则A O OA 121⎡⎣⎢⎤⎦⎥=-⎥⎦⎤⎢⎣⎡--1211A O O A . (三)解答题(每小题8分,共48分)⒈设A B C =-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥123511435431,,,求⑴A B +;⑵A C +;⑶23A C +;⑷A B +5;⑸AB ;⑹()AB C '.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设A B C =--⎡⎣⎢⎤⎦⎥=-⎡⎣⎢⎤⎦⎥=--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥121012103211114321002,,,求AC BC +.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC⒊已知A B =-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=-⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥310121342102111211,,求满足方程32A X B -=中的X .解: 32A X B -=∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式1020143602533110--中元素a a 4142,的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ 122212221--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥; ⑵ 1234231211111026---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥; ⑶1000110011101111⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥.解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r r r I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵1011011110110010121012113201⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-00000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵A ,试证A A +'是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴ A A +'是对称矩阵⒏若A 是n 阶方阵,且AA I '=,试证A =1或-1.证明: A 是n 阶方阵,且AA I '=∴ 12==='='I A A A A A∴A =1或1-=A⒐若A 是正交矩阵,试证'A 也是正交矩阵. 证明: A 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即'A 是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C ).A. [,,]102-'B. [,,]--'722C. [,,]--'1122D. [,,]---'1122⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪(B ). A. 有无穷多解 B. 有唯一解 C. 无解 D. 只有零解⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( A ). A. 3 B. 2 C. 4 D. 5⒋设向量组为αααα12341100001110101111=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥,,,,则(B )是极大无关组.A. αα12,B. ααα123,,C. ααα124,,D. α1⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩()A =秩()A B. 秩()A <秩()A C. 秩()A >秩()A D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 B. 有唯一解 C. 有无穷多解 D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量 B. 没有一个向量 C. 至多有一个向量 D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分)⒈当λ= 1 时,齐次线性方程组x x x x 121200+=+=⎧⎨⎩λ有非零解.⒉向量组[][]αα12000111==,,,,,线性 相关 .⒊向量组[][][][]123120100000,,,,,,,,,,,的秩是 3 .⒋设齐次线性方程组ααα1122330x x x ++=的系数行列式ααα1230=,则这个方程组有 无穷多 解,且系数列向量ααα123,,是线性 相关 的.⒌向量组[][][]ααα123100100===,,,,,的极大线性无关组是21,αα. ⒍向量组ααα12,,, s 的秩与矩阵[]ααα12,,, s 的秩 相同 .⒎设线性方程组AX =0中有5个未知量,且秩()A =3,则其基础解系中线性无关的解向量有 2 个. ⒏设线性方程组AX b =有解,X 0是它的一个特解,且AX =0的基础解系为X X 12,,则AX b =的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组x x x x x x x x x x x x x x x x 123412341234123432638502412432---=-++=-+-+=--+--=⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-261210009039270188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-3100010100100102000131004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组λλλλλ11111112⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥=⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥x y z λ 为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==A R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量β能否由向量组ααα123,,线性表出,若能,写出一种表出方式.其中βααα=---⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=--⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥83710271335025631123,,, 解:向量β能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA )()(A R A R ≠∴ 方程组无解∴ β不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关αααα1234112343789131303319636=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=-⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥,,,解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=00000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组x x x x x x x x x x x x x x x 1234123412341243205230112503540-+-=-+-+=--+-=++=⎧⎨⎪⎪⎩⎪⎪ 的一个基础解系. 解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-000100001431001450100010002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.x x x x x x x x x x x x x x x 12341234124123452311342594175361-+-=-+-+=----=++-=-⎧⎨⎪⎪⎩⎪⎪解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=++-+-+-++00000000002872140121790156144280287214028721401132511163517409152413113251423212413121214553r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---−−→−-0000000000221711012179012141r ∴方程组一般解为⎪⎪⎩⎪⎪⎨⎧---=++-=2217112197432431x x x x x x令13k x =,24k x =,这里1k ,2k 为任意常数,得方程组通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00211021210171972217112197212121214321k k k k k k k k x x x x 7.试证:任一4维向量[]'=4321,,,a a a a β都可由向量组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00112α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=01113α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11114α线性表示,且表示方式唯一,写出这种表示方式.证明:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=00011α ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-001012αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-010023αα ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-100034αα任一4维向量可唯一表示为)()()(10000100001000013442331221143214321αααααααβ-+-+-+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=a a a a a a a a a a a a44343232121)()()(ααααa a a a a a a +-+-+-=⒏试证:线性方程组有解时,它有唯一解的充分必要条件是:相应的齐次线性方程组只有零解. 证明:设B AX =为含n 个未知量的线性方程组 该方程组有解,即n A R A R ==)()(从而B AX =有唯一解当且仅当n A R =)(而相应齐次线性方程组0=AX 只有零解的充分必要条件是n A R =)(∴ B AX =有唯一解的充分必要条件是:相应的齐次线性方程组0=AX 只有零解9.设λ是可逆矩阵A的特征值,且0≠λ,试证:λ1是矩阵1-A 的特征值.证明: λ是可逆矩阵A的特征值∴ 存在向量ξ,使λξξ=A∴ξξλλξξξξ=====----1111)()()(A A A A A A I∴ξλξ11=-A即λ1是矩阵1-A 的特征值 10.用配方法将二次型43324221242322212222x x x x x x x x x x x x f +--++++=化为标准型. 解:42244232322143324224232212)(2)(222)(x x x x x x x x x x x x x x x x x x x f -++-+++=+--+++=222423221)()(x x x x x x -+-++=∴ 令211x x y +=,4232x x x y +-=,23x y =,44y x =即⎪⎪⎩⎪⎪⎨⎧=-+==-=44432332311y x y y y x y x y y x则将二次型化为标准型 232221y y y f -+=工程数学作业(第三次)(满分100分)第4章 随机事件与概率(一)单项选择题⒈A B ,为两个事件,则( B )成立.A. ()A B B A +-=B. ()A B B A +-⊂C. ()A B B A -+=D. ()A B B A -+⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件. A. AB =∅ B. AB U =C. AB =∅且AB U =D. A 与B 互为对立事件⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为(D ). A. C 10320703⨯⨯.. B. 03. C. 07032..⨯ D. 307032⨯⨯.. 4. 对于事件A B ,,命题(C )是正确的. A. 如果A B ,互不相容,则A B ,互不相容 B. 如果A B ⊂,则A B ⊂ C. 如果A B ,对立,则A B ,对立D. 如果A B ,相容,则A B ,相容⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D ). A.3)1(p - B. 31p - C. )1(3p - D. )1()1()1(223p p p p p -+-+- 6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(A ). A. 6, 0.8 B. 8, 0.6 C. 12, 0.4 D. 14, 0.27.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰B.xf x x ab()d ⎰C.f x x ab()d ⎰D.f x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).A. f x x x ()sin ,,=-<<⎧⎨⎪⎩⎪ππ2320其它B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它C. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪0320π其它 D. f x x x ()sin ,,=<<⎧⎨⎩00π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a P ( D ). A. F a F b ()()- B. F x x a b()d ⎰ C. f a f b ()()- D.f x x ab()d ⎰10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01. A. Y X =+σμ B. Y X =-σμC. Y X =-μσD. Y X =-μσ2(二)填空题⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为52. 2.已知P A P B ().,().==0305,则当事件A B ,互不相容时,P A B ()+= 0.8 ,P AB ()= 0.3 . 3.A B ,为两个事件,且B A ⊂,则P A B ()+=()A P .4. 已知P AB P AB P A p ()(),()==,则P B ()=P -1.5. 若事件A B ,相互独立,且P A p P B q (),()==,则P A B ()+=pq q p -+.6. 已知P A P B ().,().==0305,则当事件A B ,相互独立时,P A B ()+= 0.65 ,P A B ()= 0.3 .7.设随机变量X U ~(,)01,则X 的分布函数F x ()=⎪⎩⎪⎨⎧≥<<≤111000x x x x .8.若X B ~(,.)2003,则E X ()= 6 .9.若X N ~(,)μσ2,则P X ()-≤=μσ3)3(2Φ.10.E X E X Y E Y [(())(())]--称为二维随机变量(,)X Y 的 协方差 . (三)解答题1.设A B C ,,为三个事件,试用A B C ,,的运算分别表示下列事件: ⑴ A B C ,,中至少有一个发生; ⑵ A B C ,,中只有一个发生; ⑶ A B C ,,中至多有一个发生; ⑷ A B C ,,中至少有两个发生; ⑸ A B C ,,中不多于两个发生; ⑹ A B C ,,中只有C 发生.解:(1)C B A ++ (2)C B A C B A C B A ++ (3) C B A C B A C B A C B A +++ (4)BC AC AB ++ (5)C B A ++ (6)C B A2. 袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率: ⑴ 2球恰好同色;⑵ 2球中至少有1红球.解:设A =“2球恰好同色”,B =“2球中至少有1红球”521013)(252223=+=+=C C C A P 1091036)(25231213=+=+=C C C C B P 3. 加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:设=i A “第i 道工序出正品”(i=1,2)9506.0)03.01)(02.01()|()()(12121=--==A A P A P A A P4. 市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:设""1产品由甲厂生产=A ""2产品由乙厂生产=A ""3产品由丙厂生产=A""产品合格=B)|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=865.080.02.085.03.09.05.0=⨯+⨯+⨯=5. 某射手连续向一目标射击,直到命中为止.已知他每发命中的概率是p ,求所需设计次数X 的概率分布. 解:P X P ==)1(P P X P )1()2(-==P P X P 2)1()3(-==…………P P k X P k 1)1()(--==…………故X 的概率分布是⎥⎦⎤⎢⎣⎡⋯⋯-⋯⋯--⋯⋯⋯⋯-p p p p p p p k k 12)1()1()1(321 6.设随机变量X 的概率分布为012345601015020*********.......⎡⎣⎢⎤⎦⎥ 试求P X P X P X (),(),()≤≤≤≠4253.解:87.012.03.02.015.01.0)4()3()2()1()0()4(=++++==+=+=+=+==≤X P X P X P X P X P X P72.01.012.03.02.0)5()4()3()2()52(=+++==+=+=+==≤≤X P X P X P X P X P7.03.01)3(1)3(=-==-=≠X P X P7.设随机变量X 具有概率密度f x x x (),,=≤≤⎧⎨⎩2010其它 试求P X P X (),()≤<<12142. 解:412)()21(210221021====≤⎰⎰∞-x xdx dx x f X P 16152)()241(1412141241====<<⎰⎰x xdx dx x f X P 8. 设X f x x x ~(),,=≤≤⎧⎨⎩2010其它,求E X D X (),(). 解:32322)()(10310==⋅==⎰⎰+∞∞-x xdx x dx x xf X E 21422)()(10410222==⋅==⎰⎰+∞∞-x xdx x dx x f x X E 181)32(21)]([)()(222=-=-=x E X E X D 9. 设)6.0,1(~2N X ,计算⑴P X (..)0218<<;⑵P X ()>0.解:8164.019082.021)33.1(2)33.1()33.1()33.12.0133.1()8.12.0(=-⨯=-Φ=-Φ-Φ=<-<-=<<X P X P 0475.09525.01)67.1(1)67.16.01()0(=-=Φ-=<-=>X P X P 10.设X X X n 12,,, 是独立同分布的随机变量,已知E X D X (),()112==μσ,设X n X i i n==∑11,求E X D X (),().解:)]()()([1)(1)1()(21211n n n i i X E X E X E n X X X E n X nE X E +⋯⋯++=+⋯⋯++==∑= μμ==n n1 )]()()([1)(1)1()(2122121n n n i i X D X D X D nX X X D n X n D X D +⋯⋯++=+⋯⋯++==∑= 22211σσn n n=⋅=工程数学作业(第四次)第6章 统计推断(一)单项选择题⒈设x x x n 12,,, 是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则(A )是统计量.A. x 1B. x 1+μC. x 122σ D. μx 1 ⒉设x x x 123,,是来自正态总体N (,)μσ2(μσ,2均未知)的样本,则统计量(D )不是μ的无偏估计.A. max{,,}x x x 123B. 1212()x x + C. 212x x - D. x x x 123--(二)填空题1.统计量就是 不含未知参数的样本函数 .2.参数估计的两种方法是 点估计 和 区间估计 .常用的参数点估计有 矩估计法 和 最大似然估计 两种方法.3.比较估计量好坏的两个重要标准是 无偏性 , 有效性 .4.设x x x n 12,,, 是来自正态总体N (,)μσ2(σ2已知)的样本值,按给定的显著性水平α检验H H 0010:;:μμμμ=≠,需选取统计量nx U /0σμ-=.5.假设检验中的显著性水平α为事件u x >-||0μ(u 为临界值)发生的概率.(三)解答题1.设对总体X 得到一个容量为10的样本值4.5, 2.0, 1.0, 1.5, 3.5, 4.5, 6.5,5.0, 3.5, 4.0 试分别计算样本均值x 和样本方差s 2. 解:6.336101101101=⨯==∑=i i x x878.29.2591)(110121012=⨯=--=∑=i i x x s2.设总体X 的概率密度函数为f x x x (;)(),,θθθ=+<<⎧⎨⎩1010其它 试分别用矩估计法和最大似然估计法估计参数θ.解:提示教材第214页例3 矩估计:,121)1()(110∑⎰===++=+=n i i x n x dx x x X E θθθθx x --=112ˆθ 最大似然估计:θθθθθ)()1()1();,,,(21121n n i n i n x x x x x x x L +=+==0ln 1ln ,ln )1ln(ln 11=++=++=∑∑==n i i n i i x n d L d x n L θθθθ,1ln ˆ1--=∑=n i ixn θ 3.测两点之间的直线距离5次,测得距离的值为(单位:m ):108.5 109.0 110.0 110.5 112.0测量值可以认为是服从正态分布N (,)μσ2的,求μ与σ2的估计值.并在⑴σ225=.;⑵σ2未知的情况下,分别求μ的置信度为0.95的置信区间.解: 11051ˆ51===∑=i i x x μ 875.1)(151ˆ5122=--==∑=i i x x s σ (1)当σ225=.时,由1-α=0.95,975.021)(=-=Φαλ 查表得:96.1=λ故所求置信区间为:]4.111,6.108[],[=+-n x nx σλσλ(2)当2σ未知时,用2s 替代2σ,查t (4, 0.05 ) ,得 776.2=λ 故所求置信区间为:]7.111,3.108[],[=+-ns x n s x λλ 4.设某产品的性能指标服从正态分布N (,)μσ2,从历史资料已知σ=4,抽查10个样品,求得均值为17,取显著性水平α=005.,问原假设H 020:μ=是否成立.解:237.0162.343|10/42017||/|||0=⨯=-=-=n x U σμ, 由975.021)(=-=Φαλ ,查表得:96.1=λ 因为 237.0||=U > 1.96 ,所以拒绝0H5.某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ):20.0, 20.2, 20.1, 20.0, 20.2, 20.3, 19.8, 19.5问用新材料做的零件平均长度是否起了变化(α=005.). 解:由已知条件可求得:0125.20=x 0671.02=s 1365.0259.0035.0|8/259.0200125.20||/|||0==-=-=n s x T μ 62.2)05.0,9()05.0,1(==-=t n t λ ∵ | T | < 2.62 ∴ 接受H 0即用新材料做的零件平均长度没有变化。
电大国开大学期末复习资料:《工程数学》期末考试练习题(2024秋版本)(简化版)
工程数学期末考试练习题(共224题)目录【知识点1】【行列式的递归定义】单选6题 (2)【知识点2】【余子式与代数余子式】单选6题 (2)【知识点3】【行列式的性质】单选8题 (3)【知识点4】【矩阵的运算】单选8题 (3)【知识点5】【方阵乘积行列式定理】单选8题 (4)【知识点6】【可逆矩阵(逆矩阵)】单选7题/判断1题 (4)【知识点7】【高斯消元法解线性方程组】单选8题 (5)【知识点8】【极大线性无关组,向量组的秩】单选6题 (5)【知识点9】【(非)齐次线性方程组解的性质及解的结构】单选8题 (6)【知识点10】【特征值与特征向量的求法】单选6题 (7)【知识点11】【随机事件的概率和性质】单选8题 (7)【知识点12】【古典概型】单选8题 (7)【知识点13】【概率的加法公式,条件概率与乘法公式】单选8题 (8)【知识点14】【离散型随机变量的概率分布】单选8题 (8)【知识点15】【连续型随机变量的概率密度,分布函数】单选8题 (9)【知识点16】【方差与方差的性质】单选8题 (9)【知识点17】【正态分布和它的数字特征】单选8题 (10)【知识点18】【统计量】单选4题 (10)【知识点19】【置信区间】单选4题 (10)【知识点20】【假设检验】单选4题 (11)【判断题1】【特殊矩阵】判断8题 (11)【判断题2】【矩阵的秩】判断7题/选择1题 (11)【判断题3】【线性方程组的相容性定理】判断10题 (12)【判断题4】【向量组的线性相关性】判断10题 (13)【判断题5】【矩阵特征值、特征向量的定义】判断8题 (13)【判断题6】【随机事件的关系与运算】判断8题 (13)【判断题7】【事件的独立性,全概公式】判断8题 (14)【判断题8】【数学期望与期望的性质】判断8题 (14)【判断题9】【二项分布和它的数字特征】判断8题 (14)【判断题10】【无偏性与有效性】判断8题 (15)工程数学期末考试练习题说明:题型为单项选择题和判断题,涵盖 1-7 章的内容,其中单项选择题涉及20 个知识点,判断题涉及 10 个知识点,每个知识点下有 6-8 道题目可供练习,预祝大家取得好成绩!【知识点 1】【行列式的递归定义】单选6题1.110240001−−= ( -2 )2.若行列式210140700a−−=,则a =( -1 )3.若行列式000100020200100a a=,则a =( 1 )4.10011111x −−−是关于x 的一个一次多项式,则该多项式一次项的系数是(1). 5.求解二元线性方程组1212321221x x x x −=⎧⎨+=⎩,则x 1=( 2 ),x 2=( -3 )6.计算三阶行列式124221342D −=−=−−( -14 )【知识点 2】【余子式与代数余子式】单选6题1.n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是( ()1i jij ij A M +=− )2.三阶行列式120438012−−的余子式23M =(1201− ) 3.三阶行列式12438012−−的代数余子式32A =( 1048−)4.三阶行列式11111111x −−−中元素x 的代数余子式23A =( 1111−− )5.行列式512107的元素21a的代数余子式21A的值为(-56)6.设111213212223313233a a aD a a aa a a=,21233133a aMa a=,23213331a aNa a=,则12a的余子式(是M)【知识点3】【行列式的性质】单选8题1.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c−−−=(-2)2.设1231231232a a ab b bc c c=,则123112233123222a a aa b a b a bc c c+++=(2)3.设1231231232a a ab b bc c c=,则123112233123333a a aa b a b a bc c c+++=−−−(-2)4.若1101200153x−−=−,则x=(3)5.若1101200151x−−=+,则x=(-1)6.行列式114228153−−−=(0)7.下列等式成立的是(111111a b a bc d c d+=++),其中a,b,c,d为常数8.行列式111111111D=−=−−(4)【知识点4】【矩阵的运算】单选8题1.若A为3×4矩阵,B为2×5矩阵,且乘积AC B''有意义,则C为(5×4)矩阵.2. 若A为3×4矩阵,B为2×5矩阵,且乘积AC B'有意义,则C为(2×4)矩阵.3.若A为3×4矩阵,B为4×3矩阵,则下列运算可以进行的是(AB)4.设4034A ⎢⎥=⎢⎥⎢⎥−⎣⎦,120314B −⎡⎤=⎢⎥−⎣⎦,则()A B ''+=( 063518−⎡⎤⎢⎥−⎣⎦ ) 5.已知10102A a ⎡⎤=⎢⎥−⎣⎦,10210112B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若1131AB ⎡⎤=⎢⎥⎣⎦,则a =( -1 ) 6.设147426310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则2A =( 28148412620⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )7.设147440310A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,101426115B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A B +=( 248866425⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ )8.已知50302A a ⎡⎤=⎢⎥−⎣⎦,500832B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若A B '=,则a =( -8 ) 【知识点5】【方阵乘积行列式定理】单选8题1.A ,B 都是n 阶矩阵(n >1),则下列命题正确的是( AB A B = )2.设A ,B 均为n 阶方阵,则下列等式成立的是( AB BA = )3.设A ,B 均为n 阶方阵,0k >且1k ≠,则下列等式正确的是( ()nkA k A −=− )4.设A ,B 均为3阶方阵,且1A =−,3B =−,则A B '=( 3 )5.设A ,B 均为n 阶方阵,则下列命题中正确的是( AB A B = )6.设A ,B 均为3阶方阵,且1A =−,1B =,则1AB −=( -1 ) 7. A ,B 是3阶方阵,其中3A =,2B =,则12A B −'⋅=( 12 )8. A ,B 都是n 阶方阵(n >1),则下列命题正确的是( AB A B = ) (题干或为“设A ,B 均为n 阶方阵,n >1,则下列等式正确的是”) 【知识点 6】【可逆矩阵(逆矩阵)】单选7题/判断1题1.设方阵A 可逆,且A 是对称矩阵,则等式( ()11A A −−'= )成立2.设方阵A 可逆,则下列命题中不正确的是( 线性方程组AX O =必有非零解 )3.设方阵A 可逆,则下列命题中正确的是( A O ≠ )4.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()11AB BA −−= )5.方阵A 可逆的充分必要条件是( 0A ≠ )6.设A ,B 均为n 阶可逆矩阵,则下列运算关系正确的是( ()111AB B A −−−= )7.设矩阵011112210A ⎡⎤⎢⎥=⎢⎥⎢⎥−⎣⎦,判断A 是否可逆?( 是 )8.设A ,B 为三阶可逆矩阵,且0k >,则下式( AB A B '= )成立【知识点 7】【高斯消元法解线性方程组】单选8题1. 用消元法得123233241 0 2x x x x x x +−=⎧⎪+=⎨⎪−=⎩的解123x x x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦为( []11,2,2'−− )2.方程组12122125x x x x +=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []3,1'− )3.方程组1212233x x x x −=⎧⎨+=⎩的解12x x ⎡⎤⎢⎥⎣⎦为( []2,1' )4.线性方程组122310x x x x +=⎧⎨+=⎩( 一般解为13231x x x x =+⎧⎨=−⎩(3x 是自由未知量) )5.齐次线性方程组AX O =的系数矩阵经初等行变换化为102101020000A ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦则方程组的一般解为( 1342422x x x x x =−−⎧⎨=⎩(34,x x 是自由未知量) )6.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]102501020000A B ⎡⎤⎢⎥→→⎢⎥⎢⎥⎣⎦则方程组的一般解为( 132252x x x =−+⎧⎨=⎩(3x 是自由未知量) )7.线性方程组12341234134332462 3x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+−=⎩一般解的自由未知量的个数为( 2 )8.设4元线性方程组AX B =有解且()1r A =,那么AX B =的相应齐次方程组的一般解中含有( 3 )个自由未知量【知识点 8】【极大线性无关组,向量组的秩】单选6题1.向量组100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,121⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,304⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的秩为( 3 ) 2.向量组[]1,2,3,[]1,2,0,[]1,0,0,[]0,0,0的秩为( 3 )3.设向量组为11100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20011α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31010α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,则(123,,ααα)是极大无关组4.向量组[]10,0,0α=,[]21,0,0α=,[]30,1,0α=,[]40,0,1α=的极大线性无关组是( 234,,ααα )5.向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的极大线性无关组是( 1234,,,αααα )6.求向量组11001α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,20100α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦31111α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,41110α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,51101α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦的秩是( 4 )【知识点 9】【(非)齐次线性方程组解的性质及解的结构】单选8题 1.设线性方程组AX B =的两个解为12,X X ,(12X X ≠),则下列向量中(212X X −)一定是AX B =的解2.若0X 是线性方程组AX O =的解,1X 是线性方程组AX B =的解,则有 ( 10X X +是AX B =的解 )3.非齐次线性方程组AX B =的增广矩阵经初等行变换化为[]100001020011/2A B ⎡⎤⎢⎥→→−⎢⎥⎢⎥⎣⎦,则(方程组AX B =的通解为1230212x x x ⎧⎪=⎪=−⎨⎪⎪=⎩ )4.设齐次线性方程组AX O =的方程组的一般解为1342344576x x x x x x =−⎧⎨=−⎩(其中34,x x 是自由未知量)则它的一个基础解系为( [][]124710,5601X X ''==−− ) 5.设齐次线性方程组AX O =的方程组的一般解为 13232x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1121X '=−) 6.设齐次线性方程组AX O =的方程组的一般解为13233x x x x =−⎧⎨=⎩(其中3x 是自由未知量),则它的一个基础解系为([]1311X '=−)7.设线性方程组AX B =的系数矩阵A 的秩为r ,增广矩阵[]|A B 的秩为r+1,那么方程组:( 无解 )8.如果线性方程组AX B =的系数矩阵A 的列向量线性无关,那么方程组: ( 解的情况取决于向量B )【知识点 10】【特征值与特征向量的求法】单选6题1.矩阵4001A ⎡⎤=⎢⎥−⎣⎦的特征值为( -1,4 ) 2.已知矩阵A 的特征值为-1,4,则2A 的特征值为( -2,8 )3.已知矩阵A 的特征值为2,0,则12A 的特征值为( 1,0 )4.已知矩阵A 的特征值为-1,4,则1A −的特征值为( -1,14)5.设矩阵A 有一个特征值λ,对应的特征向量为ν,那么矩阵T A 的特征值和特征向量是( ,T λν )6.已知矩阵A 的特征多项式为()256f λλλ=−+,那么矩阵A 的特征值为( 2,3)【知识点 11】【随机事件的概率和性质】单选8题1.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 至少有一人没射中目标的概率 )2.甲、乙二人射击,A , B 分别表示甲、乙射中目标,则()P AB 表示( 两人都射中目标的概率 )3.下列所列的概率性质中不正确是(对于任意两个事件A ,B ,有()()()P A B P A P B +=+ )4. 下列所列的概率性质中正确是( 对任一事件A ,有()01P A ≤≤ )5.某购物抽奖活动中,每人中奖的概率为0.3.则{}31A =个抽奖者中恰有人中奖的概率()P A =( 1230.70.3C ⨯⨯ )6.某购物抽奖活动中,每人中奖的概率为0.4.则{}41A =个抽奖者中恰有人中奖的概率()P A =( 1340.60.4C ⨯⨯ )7.关于概率的公式错误的是( ()()()P A B P A P B +=+ ) 8.设()0p AB =,则正确的是( ()()p A B p A −= ) 【知识点 12】【古典概型】单选8题1.掷两颗均匀的骰子,事件“点数之和为5”的概率是( 19 )2.掷两颗均匀的骰子,事件“点数之和为3”的概率是( 118 )3.同时掷3枚均匀硬币,恰好有1枚正面向上的概率为( 38 )4.同时掷3枚均匀硬币,恰好有2枚正面向上的概率为( 38)5.设袋中有3个红球,2个白球,现从中随机抽取2个球,则2个球恰好不同色的概率是( 35)6.袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为( 485C )7.设袋中有3个红球,2个白球,第一次取出一球后放回,第二次再取一球,则两次都取到白球的概率是( 425)8.袋中有5个球,3个新2个旧,每次取1个,无放回地取两次,则第二次取到新球的概率是( 35)【知识点 13】【概率的加法公式,条件概率与乘法公式】单选8题 1.已知()0P B >,12A A =Φ,则( ()()()1212|||P A A B P A B P A B +=+⎡⎤⎣⎦ )成立 2.设A ,B 是两事件,则下列等式中(()()()P AB P A P B =,其中A ,B 互不相容 )是不正确的3.已知()0.3P A =,()0.5P B =,则当事件A ,B 互不相容时,()P A B +=( 0.8 )4.设A ,B 为两个事件,且B A ⊂,则()P A B +=( ()P A )5.若事件A 与B 互斥,则下列等式中正确的是( ()()()P A B P A P B +=+ )6.设A ,B 为两个事件,且B A ⊂,则()P A B −=( ()()P A P B − )7.假设生男孩和生女孩是等可能的,现考虑有两个小孩的家庭。
国家开放大学《工程数学(本)》形成性考核作业1-4参考答案
d. 齐次线性方程组一定有解
3-2.
2
若某个非齐次线性方程组相应的齐次线性方程组只有零解,则
该线性方程组(D).
a. 有无穷多解
b. 有唯一解
c. 无解
d. 可能无解
4-1.若
向量组线性无关,则齐次线性方程组
(D).
a. 有非零解
b. 有无穷多解
c.
d.
正确答案是:
试题 7
7-1.二阶矩阵
(B).
a.
b.
c.
d.
正确答案是:
7-2.二阶矩阵
a.
b.
c.
d.
(B).
正确答案是:
试题 8
8-1.向量组
的秩是(D).
a. 1
b. 2
c. 4
d. 3
正确答案是:3
8-2.向量组
的秩为(C).
a. 2
b. 4
c. 3
d. 5
正确答案是:3
试题 9
9-1.设向量组为
1-1.同时掷 3 枚均匀硬币,恰好有 2 枚正面向上的概率为(B).
a. 0.125
b. 0.375
c. 0.25
d. 0.5
1-2.从数字 1,2,3,4,5 中任取 3 个,组成没有重复数字的三位数,则这个三位数是
偶数的概率为(A).
a. 0.4
b. 0.1
c. 0.5
d. 0.3
2-1.设 A,B 是两事件,则下列等式中( A)是不正确的.
正确答案是: 5×4
试题 3
,则 BA-1(B).
3-1.设
a.
b.
最新电大工程数学形成性考核册作业【1-4】答案参考知识点复习考点归纳总结
三一文库()*电大考试*电大工程数学作业(一)答案(满分100分)第2章矩阵(一)单项选择题(每小题2分,共20分)⒈设,则(D).A. 4B. -4C. 6D. -6⒉若,则(A).A. B. -1 C. D. 1⒊乘积矩阵中元素(C).A. 1B. 7C. 10D. 8⒋设均为阶可逆矩阵,则下列运算关系正确的是(B).A. B.C. D.⒌设均为阶方阵,且,则下列等式正确的是(D).A. B.C. D.⒍下列结论正确的是(A).A. 若是正交矩阵,则也是正交矩阵B. 若均为阶对称矩阵,则也是对称矩阵C. 若均为阶非零矩阵,则也是非零矩阵D. 若均为阶非零矩阵,则⒎矩阵的伴随矩阵为(C).A. B.C. D.⒏方阵可逆的充分必要条件是(B ). A. B.C.D.⒐设均为阶可逆矩阵,则(D ). A. B.C. D.⒑设均为阶可逆矩阵,则下列等式成立的是(A ).A. B. C.D.(二)填空题(每小题2分,共20分)⒈ 7 .⒉是关于的一个一次多项式,则该多项式一次项的系数是 2 .⒊若为矩阵,为矩阵,切乘积有意义,则为 5×4 矩阵.⒋二阶矩阵⎥⎦⎤⎢⎣⎡1051. ⒌设,则⎥⎦⎤⎢⎣⎡--815360 ⒍设均为3阶矩阵,且,则72 .⒎设均为3阶矩阵,且,则-3 .⒏若为正交矩阵,则 0 .⒐矩阵的秩为 2 .⒑设是两个可逆矩阵,则⎥⎦⎤⎢⎣⎡--1211A O O A .(三)解答题(每小题8分,共48分) ⒈设,求⑴;⑵;⑶;⑷;⑸;⑹.答案:⎥⎦⎤⎢⎣⎡=+8130B A ⎥⎦⎤⎢⎣⎡=+4066C A ⎥⎦⎤⎢⎣⎡=+73161732C A⎥⎦⎤⎢⎣⎡=+01222265B A ⎥⎦⎤⎢⎣⎡=122377AB ⎥⎦⎤⎢⎣⎡='801512156)(C AB⒉设,求.解:⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=+=+10221046200123411102420)(C B A BC AC ⒊已知,求满足方程中的.解:∴ ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=252112712511234511725223821)3(21B A X ⒋写出4阶行列式中元素的代数余子式,并求其值.答案:0352634020)1(1441=--=+a 45350631021)1(2442=---=+a⒌用初等行变换求下列矩阵的逆矩阵:⑴ ; ⑵ ; ⑶ .解:(1)[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=+-+--+-++-+-91929292919292929110001000191929203132032311002120112201203231900630201102012001360630221100010001122212221|2313323212312122913123222r r r r r r r r r r r r rr I A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--=∴-9192929291929292911A (2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-35141201132051717266221A (过程略) (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-11000110001100011A ⒍求矩阵的秩.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+-+-+-000000001110001110110110110101110000111000111011011011011221110011100011101101101101102311210121010011011110110143424131212r r r r r r r r r r ∴ 3)(=A R(四)证明题(每小题4分,共12分) ⒎对任意方阵,试证是对称矩阵. 证明:'')''(')''(A A A A A A A A +=+=+=+∴是对称矩阵 ⒏若是阶方阵,且,试证或.证明:是阶方阵,且∴ 12==='='I A A A A A∴ 或1-=A⒐若是正交矩阵,试证也是正交矩阵.证明: 是正交矩阵∴ A A '=-1∴ )()()(111''==='---A A A A即是正交矩阵工程数学作业(第二次)(满分100分)第3章 线性方程组(一)单项选择题(每小题2分,共16分)⒈用消元法得的解为(C ).A. B. C.D.⒉线性方程组(B ).A. 有无穷多解B. 有唯一解C. 无解D. 只有零解⒊向量组的秩为( A ).A. 3B. 2C. 4D. 5⒋设向量组为,则(B )是极大无关组.A. B. C. D.⒌与分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则(D ). A. 秩秩 B. 秩秩 C. 秩秩D. 秩秩⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ).A. 可能无解B. 有唯一解C. 有无穷多解D. 无解 ⒎以下结论正确的是(D ).A. 方程个数小于未知量个数的线性方程组一定有解B. 方程个数等于未知量个数的线性方程组一定有唯一解C. 方程个数大于未知量个数的线性方程组一定有无穷多解D. 齐次线性方程组一定有解 ⒏若向量组线性相关,则向量组内(A )可被该向量组内其余向量线性表出.A. 至少有一个向量B. 没有一个向量C. 至多有一个向量D. 任何一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( )成立. A.λ是AB 的特征值 B.λ是A+B 的特征值C.λ是A -B 的特征值 D.x 是A+B 的属于λ的特征向量10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似. A.BA AB = B.AB AB =')( C.B PAP =-1 D.B P PA =' (二)填空题(每小题2分,共16分) ⒈当1 时,齐次线性方程组有非零解.⒉向量组线性 相关 .⒊向量组的秩是 3 . ⒋设齐次线性方程组的系数行列式,则这个方程组有 无穷多 解,且系数列向量是线性 相关 的.⒌向量组的极大线性无关组是21,αα.⒍向量组的秩与矩阵的秩 相同 .⒎设线性方程组中有5个未知量,且秩,则其基础解系中线性无关的解向量有 2 个.⒏设线性方程组有解,是它的一个特解,且的基础解系为,则的通解为22110X k X k X ++.9.若λ是A的特征值,则λ是方程0=-A I λ 的根. 10.若矩阵A满足A A '=-1 ,则称A为正交矩阵. (三)解答题(第1小题9分,其余每小题11分) 1.用消元法解线性方程组解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------=+-+++++-2612100090392700188710482319018431001850188710612312314112141205183612314132124131215323r r r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−+-+-+---+3311000411004615010124420011365004110018871048231901136500123300188710482319014323133434571931213r r r r r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−→−++-+-31000101001001020001310004110046150101244200134241441542111r r r r r r r ∴方程组解为⎪⎪⎩⎪⎪⎨⎧-==-==31124321x x x x2.设有线性方程组为何值时,方程组有唯一解?或有无穷多解?解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=++-+-↔22322222)1)(1()1)(2(00)1(110111110110111111111111111132312131λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλr r r r r r r r A ]∴ 当1≠λ且2-≠λ时,3)()(==R A R ,方程组有唯一解当1=λ时,1)()(==A R A R ,方程组有无穷多解3.判断向量能否由向量组线性表出,若能,写出一种表出方式.其中解:向量能否由向量组321,,ααα线性表出,当且仅当方程组βααα=++332211x x x 有解这里 []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------==571000117100041310730110123730136578532,,,321βαααA)()(A R A R ≠∴ 方程组无解 ∴不能由向量321,,ααα线性表出4.计算下列向量组的秩,并且(1)判断该向量组是否线性相关解:[]⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−→−⋯⋯⋯⋯−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=0000001800021101131631343393608293711131,,,4321αααα ∴该向量组线性相关5.求齐次线性方程组的一个基础解系.解:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=+-+-+-+-++30000000731402114501103140731407314021314053521113215213142321241312114335r r r r r r r r r r r r A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-−−−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−→−⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−→−+-+↔-0001000143100145010001002114310211450100030002114310211450123133432212131141r r r r r r r r ∴ 方程组的一般解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=014314543231x x x x x 令13=x ,得基础解系 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10143145ξ 6.求下列线性方程组的全部解.。
国家开放大学工程数学(本)形成性考核作业一、二、三
工程数学(本)网上形考作业1—3参考答案每个题序号里是两个题型, 做题时对应抽题序号核对题和答案形成性考核作业11.n阶行列式中/元素/的代数余子式/与余子式/之间的关系是(/ ).1.三阶行列式/的余子式M23=(/).2.若A为3×4矩阵, B为2×5矩阵, 且乘积AC'B'有意义, 则C为( 5×4 )矩阵.2.设A为3×4矩阵, B为4×3矩阵, 则下列运算可以进行的是(AB).3.设/, 则/(/ ).3.设/, 则BA-1(/).4.设A,B均为n阶可逆矩阵, 则下列运算关系正确的是(/).4.设A,B均为n阶方阵, k>0且/, 则下列等式正确的是(/).5、下列结论正确的是(对任意方阵A, A+A'是对称矩阵).5.设A,B均为n阶方阵, 满足AB=BA, 则下列等式不成立的是(/).6.方阵A可逆的充分必要条件是(/).6.设矩阵A可逆, 则下列不成立的是(/).7、二阶矩阵/(/).7、二阶矩阵/(/).8、向量组/的秩为(3).8、向量组/的秩是(3).9、设向量组为/, 则(/)是极大无关组.9、向量组/的极大线性无关组是(/).10、用消元法得/ 的解/ 为(/).10、方程组/的解/为(/).11.行列式的两行对换, 其值不变.(错)11.两个不同阶的矩阵可以相加. (错)12.设A是对角矩阵, 则A=A'.(对)12.同阶对角矩阵的乘积仍然是对角矩阵. (对)13.若/为对称矩阵, 则a=-3. (错)13.若/为对称矩阵, 则x=0. (对)14、设/, 则/. (错)14.设/, 则/.(对)15.零矩阵是可逆矩阵. (错)15.设A是n阶方阵, 则A可逆的充要条件是r(A)=n.(对)16./ 7 .16.设行列式/, 则/ -6 .17、若行列式/, 则a= 1 .17、/是关于x的一个一次多项式, 则该多项式一次项的系数是 2 .18、乘积矩阵/中元素C23= 10 .18、乘积矩阵/中元素C21= -16 .19、设A,B均为3阶矩阵, 且/, 则/ -72 .19、设A,B均为3阶矩阵, 且/, 则/ 9 .20、矩阵/的秩为 1 .20、矩阵/的秩为 2 .形成性考核作业21.设线性方程组/的两个解//, 则下列向量中(/)一定是/的解.1.设线性方程组/的两个解/, 则下列向量中(/)一定是/的解.2.设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组有解, 则(/).2、设/与/分别代表非齐次线性方程组/的系数矩阵和增广矩阵, 若这个方程组无解, 则(/).3.若某个非齐次线性方程组相应的齐次线性方程组只有零解, 则该线性方程组(可能无解).3.以下结论正确的是(齐次线性方程组一定有解).4、若向量组/线性相关, 则向量组内(至少有一个向量)可被该向量组内其余向量线性表出.4.若/向量组线性无关, 则齐次线性方程组/(只有零解).5.矩阵/的特征值为(-1,4).5.矩阵A的特征多项式/, 则A的特征值为(/).6.设矩阵/的特征值为0, 2, 则3A的特征值为(0,6 ).6.已知可逆矩阵A的特征值为-3,5, 则A-1的特征值为(/ ).7、设A, B为n阶矩阵, /既是A又是B的特征值, x既是A又是B的特征向量, 则结论(x是A+B的特征向量)成立.7、设/是矩阵A的属于不同特征值的特征向量, 则向量组/的秩是(3).8、设A,B为两个随机事件, 则(/)成立.8、设A,B为两个随机事件, 下列事件运算关系正确的是(/).9、如果(/且/)成立, 则事件A与B互为对立事件.9、若事件A, B满足/, 则A与B一定(不互斥).10、袋中有5个黑球, 3个白球, 一次随机地摸出4个球, 其中恰有3个白球的概率为(/).10、某购物抽奖活动中, 每人中奖的概率为0.3. 则3个抽奖者中恰有1人中奖的概率为(/).11.线性方程组/可能无解. (错)11.非齐次线性方程组/相容的充分必要条件是/. (对)12.当/1时, 线性方程组/只有零解. (对)12.当/1时, 线性方程组/有无穷多解. (错)13.设A是三阶矩阵, 且r(A)=3, 则线性方程组AX=B有唯一解. (对)13.设A是三阶矩阵, 且/, 则线性方程组AX=B有无穷多解. (错)14、若向量组/线性相关, 则/也线性相关. (错)14.若向量组/线性无关, 则/也线性无关.(对)15.特征向量必为非零向量. (对)15.若A矩阵可逆, 则零是A的特征值. (错)16、当/ 1 时, 齐次线性方程组/有非零解.16.若线性方程组/有非零解, 则/ -1 .17、向量组/线性相关 .17、一个向量组中如有零向量, 则此向量组一定线性相关 .18、设齐次线性方程组/的系数行列式/, 则这个方程组有非零解。
《工程数学》广播电视大学历年期末试题及答案及中央电大工程数学形成性考核册答案
试卷代号:1080中央广播电视大学2011~2012学年度第一学期“开放本科”期末考试(半开卷)工程数学(本) 试题2012年1月一、单项选择题(每小题3分,共15分)1. 设A ,B 为三阶可逆矩阵,且0k >,则下列( )成立.A . AB A B +=+ B .AB A B '=C . 1AB A B -=D .kA k A =2. 设A 是n 阶方阵,当条件( )成立时,n 元线性方程组AX b =有惟一解.3.设矩阵1111A -⎡⎤=⎢⎥-⎣⎦的特征值为0,2,则3A 的特征值为( )。
A .0,2 B .0,6C .0,0D .2,64.若随机变量(0,1)X N :,则随机变量32Y X =-: ( ).5. 对正态总体方差的检验用( ).二、填空题(每小题3分,共15分)6. 设,A B 均为二阶可逆矩阵,则111O A B O ---⎡⎤=⎢⎥⎣⎦ .8. 设 A , B 为两个事件,若()()()P AB P A P B =,则称A 与B .9.若随机变量[0,2]X U :,则()D X = .10.若12,θθ都是θ的无偏估计,且满足 ______ ,则称1θ比2θ更有效。
三、计算题(每小题16分,共64分)11. 设矩阵234123231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111111230B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,那么A B -可逆吗?若可逆,求逆矩阵1()A B --. 12.在线性方程组123121232332351x x x x x x x x λλ++=⎧⎪-+=-⎨⎪++=⎩中λ取何值时,此方程组有解。
在有解的情况下,求出通解。
13. 设随机变量(8,4)X N :,求(81)P X -<和(12)P X ≤。
(已知(0.5)0.6915Φ=,(1.0)0.8413Φ=,(2.0)0.9773Φ=)14. 某切割机在正常工作时,切割的每段金属棒长服从正态分布,且其平均长度为10.5cm ,标准差为0.15cm 。
国家开放大学电大本科《工程数学》2023-2024期末试题及答案(试卷代号:1080)
国家开放大学电大本科《工程数学(本)》2023-2024期末试题及答案(试卷代号:1080)一、单项选择题(每小题3分,共15分)I.设方阵A可逆.则下列命8S中不正确的是<).A.人尹OK税性方程组AX =。
必有非冬解C. I A |# OD.矩阵A'可逆2 .若向at组到血.・〃•线忤相关,则(MKM内(> 可被该向败组内其余向屈线性表出・A.任何一个向歌B.没有一个向量C.至多一个向量D.至少有一个向做3. 设A.B均为”阶方阵.则下列结论正确的是().A.若A既乂是H的特征值,叫必是A +B的特征值Lk若A既是人,又是B的特征值,则必是八B的特征值C. 若x既是A,又是B的特征向量,则必是A+8的特征向量D. A的特征向量的线性组合仍为A的特征向足4. 设袋中有3个红球■?个白球,现从中随机抽取2 4球-则2个球恰好不同色的横率屉();Q a To5. 对箪•正态.总体X 〜巳知时,关于均值“的假设检弗应采用()・A.F检脸法氏』检验法C・U检睑法D・F检验法二、填空题(每小题3分,共15分)6. 设A为3X5地阵,H为1X3矩阵,且乘人C'B有意义,则「为矩阵•pcj += I7. 当A=_ —时.非齐次线性方秘纽j有无列多觥・[3z(— 6 工】=38. 设人,B是两个随机事件•若P(人)=0.7/(人耳〉=0.3.则P<AB) =.9. 设随挑变地X ~ N<2.妒〉,则随机要址Y=~ N(0.l〉.10. 设Rfi挑变地X/E(X〉=L则E(2X 1)~・三、计算题(每小题16分,共64分)H.解炬阵方程人X-X = B,其中八=12.当人取何值时•齐次。
性方Ktfl有作零解?II TW的情况F求力程蛆的通解.13.世 X - NOS.bt >R I <I>P (X<5)I (2)F (X > 9).(CM0(n 0. 8413.0(2) ■ 0.9772.也(3)・Q. 9987〉为r 对完成某项工作所箫时间建立・个标准,工厂随机抽查了 16名工人分别去完成 这项工作.结果发现他们所需的平均时间为15分钟,佯本标准差为3分钟•假设完成这项工作 所需的时间服从正态分布•在标准差不变的情况下,试确定完成此项工作所需平均时间的置信 度为0.95的置值区间(已知 5 =1.96).四、证明题(本题6分)15.设随机事件A 与B 相互:独立.IS 证A 与百也相互独立.试题答案及评分标准:一•单顼堆择JH (哥小Bl X 分■共15分)L B 2. fj3.CLA二、坡空踏(<3小《1彳分出葺分)C. 4 X 5-2H.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 统计推断
一、单项选择题
1 设1x ,2x ,…,n x 是来自正态总体()2,σμN ()均未知2,σμ的样本,则(A )是统计量。
A 1x
B μ+1x
C 22
1σ
x D 1x μ
2 设1x ,2x ,3x 是来自正态总体()2,σμN ()均未知2,σμ的样本,则统计量(D )不是μ的无偏估计。
A {}321,,max x x x B
()212
1
x x + C 212x x - D 321x x x -- 二、填空题
1 统计量就是不含未知参数的样本函数。
2 参数估计的两种方法是点估计和区间估计。
常用的参数点估计有矩估计法和极大似然估计法两种方法。
3 比较估计量好坏的两个重要标准是无偏性,有效性。
4 设1x ,2x ,…,n x 是来自正态总体()2,σμN ()已知2σ的样本值,按给定的显著性水平α检验00:μμ=H ;01:μμ≠H ,需选取统计
量
U =
5 假设检验中的显著性水平α为“弃真”错误(或“第一类错误”)发生的概率。
三、解答题
1 设对总体X 得到一个容量为10的样本值
4.5,2.0,1.0,1.5,3.5,4.5,6.5,
5.0,3.5,4.0 试分别计算样本均值x 和样本方差2s 。
解:样本均值:()45.355.65.45.35.1125.410
1
101101+++++++++==∑=i i x x
6.33610
1
=⨯=
样本方差:
()
()2
10
1
212
6.39111∑∑==-=--=i i n i i x x x n s
()()()()()()()[]
22222226.35.66.35.46.35.36.35.16.316.326.35.491
-+-+-+-+-+-+-=
+()()()[]
2226.346.35.36.3591
-+-+- ()16.001.096.141.881.001.041.476.656.281.091
+++++++++= 88.29.2591
=⨯= 2 设总体X 的概率密度函数为
()()1,01
;0,x x f x θθθ⎧+<<=⎨⎩
其它
试分别用矩估计法和最大似然估计法估计参数θ。
3P 214例 解:⑴矩估计法求θ的估计量
()()()θθ
θ
θθθθ
++=
++=+==+∞
+∞-⎰⎰210121121
0x dx x x dx x xf X E 样本的一阶原点矩为∑==n
i i x n x 1
1
令()x X E =,得x =++θθ
21,从中解出∑∑==Λ--=--=n
i i
n
i i x n x n x
x 1
11112112θ
θθ是Λ
的矩估计量。
⑵ 极大似然估计法求θ的估计量
似然函数:()()()()n n x f x f x f x x x L ⋯=⋯2121;,,θ ()()θθn n x x x ⋯⋅+=211 两边取对数,得()()()121n lnL nln ln x x x θθθ=++⋯ 求导,()121n dlnL n
ln x x x d θθ
=+⋯+, 令
0dlnL
d θ
=,得 ()1201n n
ln x x x θ
+⋯=+,从中解得 ()
()
()
1
121
1n
i i n
n i
i n ln x n
ln x x x ln x θΛ
==+=--=-
⋯∑∑,
Λ
θ是θ的极大似然估计。
3 测两点之间的直线距离5次,测得距离的值为(单位:m ): 108.5,109.0,110.0,110.5,112.0
测量值服从正态分布()2,σμN ,在⑴5.22=σ⑵2σ未知的情况下,分别求μ的置信度为0.95的置信区间。
解:⑴在5.22=σ情况下,有95.01=-α,所以05.0=α,2
12
α
α-
=⎪⎪⎭
⎫ ⎝
⎛ΦZ
975.0=,查正态分布数值表有()975.096.1=Φ,于是96.12
=αZ ,
又()1101125.1101101095.1085
1
11=++++==∑=n i i x n x
于是6141.1083859.11102
1
96.11105
5.29
6.11102
=-=⋅
-=⋅
-=-n
Z x σ
α
3859.1113859.11102
1
96.11105
5.29
6.11102
=+=⋅
+=⋅
+=+n
Z x σ
α
于是μ的置信度为0.95的置信区间是[]3859.111,6141.108 ⑵在2σ未知的情况下,有 总体均值μ的置信区间是:⎥⎦
⎤
⎢⎣⎡
+-n s x n s x λ
λ
, 查t 分布数值表可知,
()776.205.0,4==t λ
计算知:()1101125.1101101095.1085
1
5151=++++==∑=i i x x
()
()()()()[]
22222
12
1105.1101101101101091105.1084
1
11-+-+-+-=--=∑=n i i
x x n s ()21101124
1-+
()875.1425.00125.24
1
=++++= 所以70.15
875
.1776.2=⨯
=n
s λ
3.10870.1110=-=-n s x λ
70.11170.1110=+=+n
s x λ
故μ的置信度为0.95的置信区间是[]70.111,3.108。
4 设某产品的性能指标服从正态分布()2,σμN ,从历史资料已知
4=σ,抽查10个样本,求得均值为17,取显著水平05.0=α,问原
假设20:0=μH 是否成立。
解:作假设20:0=μH ;20:1≠μH
由样本均值:17=x ,又40=σ,选统计量:
()37.24
10
310
420170
-≈⨯
-=
-=
-=
n
x U σμ
显著水平05.0=α,查正态分布数值表有96.1=λ()()975.096.1=Φ 由 2.37 1.96U =>,知小概率事件发生,不合理,应拒绝20:0=μH 即原假设20:0=μH 不成立。
5 某零件长度服从正态分布,过去的均值为20.0,现换了新材料,从产品中随机抽取8个样品,测得的长度为(单位:cm ): 20.0,20.2,20.1,20.0,20.2,20.3,19.8,19.5 问用新材料做的零件平均长度是否起了变化()05.0=α。
解:作假设:0.20:0=μH ,0.20:1≠μH 由于总体方差2σ未知,故选取统计量n
s
x T 0μ-=
由已知条件可知:8,200==n μ 通过计算可知样本均值:
()0125.205.198.193.202.20201.202.20208
1
8181=+++++++==∑=i i x x 样本方差为:
()
()()()[]
2222
812
0125.201.200125.202.200125.20207
1
181-+-+-=--=∑=i i
x x s ()()()()[]
2
2220125.208.190125.203.200125.202.200125.202071-+-+-+-+
+()20125.205.1971
-
()()()()()()[]
2
222222875.01875.00125.00875.01875.00125
.071+++++= ()()[]
225125.02125.07
1
++
()03515625.000015625.000765625.003515625.000015625
.07
1++++= ()26265625.004515625.008265625
.07
1+++ 0670.046875.07
1
≈⨯= 计算检验量1366.0927.100125.08
0670.0200125.200≈⨯≈-=
-=
n s
x T μ
由显著水平05.0=α,查t 分布临界值表(自由度是7)得临界值
365.205.0=t ,由0.1366 2.365T =<,故应接受0.20:0=μH ,
即新材料做的零件平均长度没有发生变化。