《材料力学》弯曲应力 ppt课件
合集下载
材料力学弯曲应力PPT课件
M
Fl
F 解:1.画梁的剪力图和弯矩图
按正应力计算
max
M max Wz
6F1l bh2
F1
bh2
6l
107 100 1502 109 6
3750N
3.75kN
按切应力计算
max 3FS / 2A 3F2 / 2bh
F2 2 bh / 3 2106 100150106 / 3 10000N 10kN 35
截面为bh=30 60mm2 的矩形
求:1截面竖放时距离中性层20mm 处的正应力和最大正应力max; (2) 截面横放时的最大正应力max
b
解: M Fa 5103 0.18 900Nm
竖放时
横放时
IZ
bh3 12
30 603 12
54cm 4
y 20mm : M y 33.3MPa
主要公式:
变形几何关系 y
物理关系 E
E y
静力学关系
1 M
EIZ
My
IZ
为曲率半径
1
为梁弯曲变形后的曲率
11
§5.2 纯弯曲时的正应力
弯曲正应力公式适用范围
弯曲正应力
My
IZ
•横截面惯性积 Iyz =0
•弹性变形阶段 ( p )
•细长梁的纯弯曲或横力弯曲近似使用
12
试校核梁的强度。
分析: 非对称截面,要寻找中性轴位置 作弯矩图,寻找需要校核的截面
要同时满足 t,max t , c,max c
25
例题
解:(1)求截面形心
52
z1 z
yc
80 2010 120 2080 80 20 120 20
材料力学弯曲应力_图文
§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
材料力学-弯曲应力分析与强度计算幻灯片
111
MPa
B点
B
M1 yB Iz
300 10 103 4.05 104 1012
71.1 MPa
C点
C
M1 yC Iz
300 0 4.05 104 1012
0
MPa
求得的A点的应力为正值,表明该点为拉应力,B点的应力
为负值,表明该点为压应力,C点无应力。当然,求得的正应
通常取梁的轴线来代替梁。 2. 载荷简化
作用于梁上的载荷(包括支座反力)可简化为三种类型: 集中力、集中力偶和分布载荷。 3. 支座简化
10
① 固定铰支座 2个约束,1个自由度。
如:桥梁下的固定支座,止 推滚珠轴承等。
② 可动铰支座 1个约束,2个自由度。
如:桥梁下的辊轴支座,滚 珠轴承等。
11
③ 固定端
x dx
图a y
M(x)
Q(x)+d Q(x)
图b
Q(x) dx M(x)+d M(x)
z
1
x
1 图c
y
1、两点假设: ① 剪应力与剪力平行; ② 矩中性轴等距离处,剪应 力相等。
2、研究方法:分离体平衡。
① 在梁上取微段如图b; ② 在微段上取一块如图c,平衡
X
N2
N1
1b(dx)
动,距中性轴等高处,变形相等。
横截面上只有正应力。 (可由对称性及无限分割法证明)
28
4.几何条件
dq
a
b
A c
B d
O A1
) ))
)
x
A1B1 AB AB
材料力学5弯曲应力_图文
(1)合理安排载荷 (2)分散载荷(从使用方案考虑) (3)调整支座位置(从设计角度)
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;
1、合理安排梁的受力
(1)合理安排载荷
P
(降低最大弯矩)
P
a
b
l
1、合理安排梁的受力(降低最大弯矩)
(2)分散载荷(从使用方面考虑)
P P
P
若:
l
1、合理安排梁的受力(降低最大弯矩)
(3)调整支座位置(从设计角度)
aP
q
A
C
E
l
P
B D
弯曲切应力强度校核
一般而言,对于等直梁,梁上的最大切应力发生在剪力最大 截面的中性轴上,且
是中性轴一侧的面积对中性轴的静矩 。
型钢可查表
切应力强度条件:
梁上的最大切应力max≤[]
例题4-10 图示梁为工字型截面,跨长2a=4 m、 q=25 KN/m;材
料许用应力[]=160 MPa,[]=100 MPa。试选择工字钢型号。
3950
(3)合理截面要符合材料的力学性能
塑性材料
z
z
采用关于中性轴对称的截面
y
y
脆性材料
z
采用关于中性轴不对称的截面
y
理想情况: 可调整各部分尺寸,使
z
y
y1 z
y2 y
3、采用变截面梁
以危险截面的弯矩设计梁的截面,而在其
他截面的弯矩较小,材料不能被充分利用。
从强度的角度来看,如果在弯矩大的部位采用较大的截面,弯矩较 小的部位采用较小的截面,就比较合理。截面尺寸沿梁轴线变化的梁 叫变截面梁。 若各个截面上的最大应力都等于材料的许用应力,这种梁叫等强度梁。
正应力大小与其到中 性轴距离成正比;
材料力学土木类第四章 弯曲应力.ppt
2、这些切应力沿 y方向的分量
ty沿宽度相等。
最大切应力tmax 在中性轴z处
t max
FS
S
* z
Izd
FS
1 2
πd 2 4
2d
3π
πd 4 d
64
4FS 4FS 3 π d 2 3A 4
2d /3p
d
tmax
O
k
k'
O' y
薄壁环形截面梁弯曲切 应力的分布特征:
(1) <<r0→沿壁厚切应 tmax
r0
tmax
力的大小不变;
O
(2) 内、外壁上无切应力 t
→切应力的方向与圆周
y
相切;
(3) y轴是对称轴→切应 力分布与 y轴对称;与 y
最大切应力tmax 仍发生
在中性轴z上。
轴相交的各点处切应力
为零。
薄壁环形截面梁最大切应力的计算
45
45
Wz
Iz ymax
75103 9.5 274.6
28.8MPa [t ]
满足强度条件
例4-20 图示外伸梁,由工字钢制成。已知材料的许 用正应力[σ ]=160MPa,许用剪应力 [τ ]=90MPa。试 选择工字钢的型号。
50kN
80kN
A 150 500
B 500 47.5kN
50kN 7.5kN.m
料均为Q235钢,其[s ]=170MPa,[t ]=100MPa。试校
核该梁的强度。
50kN 50kN 50kN
F1 F2
100 9.5
10 320 10
ty沿宽度相等。
最大切应力tmax 在中性轴z处
t max
FS
S
* z
Izd
FS
1 2
πd 2 4
2d
3π
πd 4 d
64
4FS 4FS 3 π d 2 3A 4
2d /3p
d
tmax
O
k
k'
O' y
薄壁环形截面梁弯曲切 应力的分布特征:
(1) <<r0→沿壁厚切应 tmax
r0
tmax
力的大小不变;
O
(2) 内、外壁上无切应力 t
→切应力的方向与圆周
y
相切;
(3) y轴是对称轴→切应 力分布与 y轴对称;与 y
最大切应力tmax 仍发生
在中性轴z上。
轴相交的各点处切应力
为零。
薄壁环形截面梁最大切应力的计算
45
45
Wz
Iz ymax
75103 9.5 274.6
28.8MPa [t ]
满足强度条件
例4-20 图示外伸梁,由工字钢制成。已知材料的许 用正应力[σ ]=160MPa,许用剪应力 [τ ]=90MPa。试 选择工字钢的型号。
50kN
80kN
A 150 500
B 500 47.5kN
50kN 7.5kN.m
料均为Q235钢,其[s ]=170MPa,[t ]=100MPa。试校
核该梁的强度。
50kN 50kN 50kN
F1 F2
100 9.5
10 320 10
材料力学弯曲切应力ppt课件
m
F*
B N2 n
dFs
FN*2
FN*1
dM Iz
S
* z
3 求纵截面 AB1 上的切应力 ’
S dFs 1 dM *
b dx bI z dx z
Fs
S
* z
bI z
z x
y
A1
FN*1
m
B1 dFs
A
n
bm
dx
B FN*2 n
Fs
S
* z
bI z
4 横截面上距中性轴为任意 y 的点,其切应力 的计 算公式。
*
z max [ ]
I zb
式中 :[] 为材料在横力弯曲时的许用切应力。
S* z max
为中性轴任一边的半个横截面面积对中性轴的静矩
F S s,max
*
z max [ ]
I zb
在选择梁的截面时,通常先按正应力选出截面, 再按切应力进行强度校核。
例题3 : 简支梁受均布荷载作用,其荷载集度 q 3.6 kN m
Fs,max 所在的横截面上,而且一般说是位于该截面的中性轴上。 全梁各横截面中最大切应力可统一表达为
S Fsmax
* z max
max
Izb
S Fsmax
* z max
max
Izb
S* z max
—— 中性轴一侧的横截面面积对中性轴的静矩
b —— 横截面在中性轴处的宽度
Fs max —— 全梁的最大剪力
q
m
C
E
G
H D
m
l 2
l
Fs 图 F
M图
ql 2
ql 2 8
E
τ max
F*
B N2 n
dFs
FN*2
FN*1
dM Iz
S
* z
3 求纵截面 AB1 上的切应力 ’
S dFs 1 dM *
b dx bI z dx z
Fs
S
* z
bI z
z x
y
A1
FN*1
m
B1 dFs
A
n
bm
dx
B FN*2 n
Fs
S
* z
bI z
4 横截面上距中性轴为任意 y 的点,其切应力 的计 算公式。
*
z max [ ]
I zb
式中 :[] 为材料在横力弯曲时的许用切应力。
S* z max
为中性轴任一边的半个横截面面积对中性轴的静矩
F S s,max
*
z max [ ]
I zb
在选择梁的截面时,通常先按正应力选出截面, 再按切应力进行强度校核。
例题3 : 简支梁受均布荷载作用,其荷载集度 q 3.6 kN m
Fs,max 所在的横截面上,而且一般说是位于该截面的中性轴上。 全梁各横截面中最大切应力可统一表达为
S Fsmax
* z max
max
Izb
S Fsmax
* z max
max
Izb
S* z max
—— 中性轴一侧的横截面面积对中性轴的静矩
b —— 横截面在中性轴处的宽度
Fs max —— 全梁的最大剪力
q
m
C
E
G
H D
m
l 2
l
Fs 图 F
M图
ql 2
ql 2 8
E
τ max
材料力学弯曲正应力课件
第5章 弯曲应力
回顾与比较:
1.轴向拉压杆横截面上有轴力、正应力σ。
2.扭转的圆轴横截面上有扭矩、剪应力τ。
M
F
F
M
3.梁弯曲变形后,横截面上的应力有哪些?
5.1 纯弯曲
•具有纵向对称面; •外力都作用在纵向对称面内; •弯曲变形后轴线变成纵向对称面内的平面曲线.
2.什么是纯弯曲、横力弯曲?
F A
3、静力学方面
s Ey
FN
sdA 0
A
M y
zsdA 0
A
M z
ysdA M
A
M ysdA
A
M
yE y dA E y2dA
A
A
令Iz y2dA 截面对z轴的惯性矩
1 M
EI z
A
ρ为曲率半径
s My
Iz
比较t
T
IP
M
yx
z s dA
s My
Iz
z
M
y
理解为 s M y
yC
A
ydA A
0
中性轴z必过截面形心
内力与应力的关 系!
s Ey
M
3、静力学方面
FN
sdA 0
A
M y
zsdA 0
A
M z
ysdA M
A
M y
zsdA 0
A
A
zE
y
dA
E
A
zydA
0
zydA I yz 0
A
yx
z s dA
如果y轴为横截面的对 称轴,这一条件恒满足。
z
抗弯刚度? EI z
z
2m
回顾与比较:
1.轴向拉压杆横截面上有轴力、正应力σ。
2.扭转的圆轴横截面上有扭矩、剪应力τ。
M
F
F
M
3.梁弯曲变形后,横截面上的应力有哪些?
5.1 纯弯曲
•具有纵向对称面; •外力都作用在纵向对称面内; •弯曲变形后轴线变成纵向对称面内的平面曲线.
2.什么是纯弯曲、横力弯曲?
F A
3、静力学方面
s Ey
FN
sdA 0
A
M y
zsdA 0
A
M z
ysdA M
A
M ysdA
A
M
yE y dA E y2dA
A
A
令Iz y2dA 截面对z轴的惯性矩
1 M
EI z
A
ρ为曲率半径
s My
Iz
比较t
T
IP
M
yx
z s dA
s My
Iz
z
M
y
理解为 s M y
yC
A
ydA A
0
中性轴z必过截面形心
内力与应力的关 系!
s Ey
M
3、静力学方面
FN
sdA 0
A
M y
zsdA 0
A
M z
ysdA M
A
M y
zsdA 0
A
A
zE
y
dA
E
A
zydA
0
zydA I yz 0
A
yx
z s dA
如果y轴为横截面的对 称轴,这一条件恒满足。
z
抗弯刚度? EI z
z
2m
《材料力学弯曲》课件
定义方式
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
弯曲应变通常用曲率半径的变化量与原始曲率半径的比值来表示,即 ΔR/R。其中 ΔR 是曲率半径的变化量,R 是原始曲率半径。
弯曲应变的计算
应变计法
通过在物体上粘贴应变片 ,并利用应变计测量应变 值,从而计算出弯曲应变 。
有限元分析法
利用有限元分析软件,建 立物体的有限元模型,通 过模拟受力情况下的变形 过程,计算出弯曲应变。
实验法
通过实验测试物体的弯曲 变形,利用相关公式计算 出弯曲应变。
弯曲应变的分布
应变分布图
通过绘制应变分布图,可以直观地了 解物体在弯曲变形过程中应变的大小 和分布情况。
应变集中
应变梯度
在弯曲变形过程中,物体不同部位上 的应变大小和方向可能不同,形成应 变梯度。
在物体受力点附近区域,应变会集中 增大,可能导致材料疲劳或断裂。
材料力学的重要性
总结词
材料力学在工程设计和实践中具有重要意义。
详细描述
在工程设计和实践中,材料力学是必不可少的学科之一。通过对材料力学的研究 ,工程师可以更好地理解材料的性能,预测其在各种工况下的行为,从而设计出 更加安全、可靠、经济的工程结构。
材料力学的基本假设
总结词
材料力学基于一系列基本假设,这些假设简 化了问题的复杂性,使得分析更为简便。
学习目标
01
02
03
04
掌握材料力学的基本概念、原 理和分析方法。
理解弯曲问题的特点和解决方 法。
能够运用所学知识解决简单的 弯曲问题。
培养分析问题和解决问题的能 力,提高力学素养。
02
材料力学基础
材料力学的定义
总结词
材料力学是一门研究材料在各种 力和力矩作用下的行为的学科。
材料力学精美ppt第七章弯曲应力课件
max
Q Izb
BH 2
8
(
B
b
)
h2 8
min
QB Izb 8
H 2 h2
3
工字形梁腹板上的切应力分布
讨论
4、当B=10b, H=20b, t=2b时
max /min=1.18, 大致均匀
分布
Hh
5、腹板上能承担多少剪力? 积分 得 —— 总剪力的95%~97%
近似计算公式:
Q
对称
L/5
4L/5
M qL2/10
ymax
0.014 PL3 EI
x
ymax
0.0073 PL3 EI
21
提高弯曲强度的措施之四 —— 用超静定梁
qL2
M8 q
L
x
ymax
0.013 qL4 EI
超静定梁
M q
L/2 L/2
9qL2 /512 x
qL2 32
ymax
0.326103 qL4 EI
或
(+)
(拉应力小)
(-) (-)
钢筋混凝土 [ t ] [ c ]
(压应力小)
(+)
18
提高弯曲强度的措施之二 —— 整体考虑
变截面梁的例子 1. 梁的纵向 —— 变截面、开孔或等强度 2. 梁的变型 —— 单根梁转化为结构
19
提高弯曲强度的措施之三 ——改善受力状态
1.支座位置 合理布置支座位置,使 M max 尽可能小
12
如何确定弯曲中心的位置
弯心处,主矩 M= Q1h-Qe= 0
e Q1h b2h2t Q 4Iz
弯曲中心位置与外 力大小和材料的性 质无关,是截面图 形的几何性质之一
材料力学07弯曲应力ppt课件
分离部分 ——平衡分析……
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述
+
-F
Q
Fa
-
M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
x
y 26
dA1
s
, b s
顶面有 ,存在.
两截面M 不等—— s 不等
(X 0)
左侧面
dx
N1
M
A1 sdA1 I z
A1 ydA1
右侧面
MS
z
Iz
dM
S
* z
, b( dx ) 0
Iz
FS
,
dM dx
S
z
Izb
FS
S
z
Izb
(∵切应力互等 )
2s
h
2 ( bdy )y s
bh2
M
0
4
s
4M bh2
2. 按沿梁高线性分布:
s max
M h2 Iz
s
6M bh2
s1 2 s2 3
(相差三分之一)
13
[例2]:
15KN
6KN
求B截面K点应力
B
1m
1m
解: M
3
6kNm
s
My Iz
90
K 90
60
120 ( 拉? 压应力? )
IZ
bh3 12
第七章 弯曲应力
§1 弯曲正应力 §2 正应力强度条件 §3 弯曲剪应力 §4 剪应力强度条件 梁的合理截面 §5 非对称截面梁弯曲弯曲中心 §6 考虑塑性的极限弯矩
1
概述
+
-F
Q
Fa
-
M
CD段:只有弯矩没有剪力- 纯弯曲
AC和BD段:既有弯矩又有剪力- 剪切弯曲
2
剪力FS
弯矩M
切应力τ
正应力s
先分析纯弯梁横截面的正应力s ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力学关系 正应力公式
1M
EIZ
My
IZ
E y
5、横截面上最大弯曲正应力
max
Mym a x Iz
M I z / ymax
Wz
Iz ym a x
——截面的抗弯截面系数;。
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式
max
M
WZ
适用条件 截面关于中性轴对称。
四 横力弯曲正应力
弹性力学精确分析表明:
对于跨度 L 与横截面高度 h 之比 L / h > > 5的细长梁,
用纯弯曲正应力公式计算横力弯曲正应力,
满足工程中所需要的精度。
误差<<2%
横力弯曲最大正应力
max
Mymax Iz
弯曲正应力公式适用范围
弯曲正应力公式 My
IZ
1、纯弯曲或细长梁的横力弯曲;
3、静力学关系
dA FN 0
A
E y
Sz 0 中性轴过截面形心
M y z dA 0
A
M z y dA M
A 1M
EIZ
坐标轴是主轴
中性层的曲率计算公式 EIz 抗弯刚度
4、弯曲正应力计算公式
变形几何关系 y
物理关系 E
1、变形几何关系 2、物理关系
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
变形与应变 观察在竖直平面内发生纯弯曲的梁,研究其表面变形情况
<1>. 弯曲前画在梁的侧面上相邻横向线mm和nn间的 纵向直线段aa和bb,在梁弯曲后成为弧线,靠近梁的顶面 的线段aa缩短,而靠近梁的底面的线段bb则伸长;
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
求最大拉应力、最大压应力。
9KN 4KN
A
C
B
1m 1m
1m
Iz 7.64 106 m4
52 zc
88
分析: 非对称截面, 要寻找中性轴位置; 作弯矩图,寻找最大弯矩的截面 计算最大拉应力、最大压应力
9KN 4KN
IZ
bh3 12
0.12 0.183 12
5.832105 m4
q=60KN/m
A
1m C
FAY
3m
此假设已为弹性力学的理论分析结果所证实。
横截面的转动使梁凹入一侧的纵向线缩短,凸出一侧 的纵向线伸长,从而根据变形的连续性可知,中间必有一 层纵向线只弯曲而无长度改变的中性层 (图f),而中性层与 横截面的交线就是梁弯曲时横截面绕着它转动的轴━━ 中 性轴 (neutral axis)。
(f)
1、变形几何关系
2、横截面惯性积 IYZ=0;
3、弹性变形阶段;
推导弯曲正应力计算公式的方法总结
(1)理想模型法:纯弯曲(剪力为零,弯矩为常数) 横力弯曲
(2)“实验—观察—假设” :梁弯曲假设
(3)外力
内力
应力法
(4)三关系法
变形几何关系 物理关系 静力学关系
(5)数学方法
积分
应力合成内力
注意
(1)计算正应力时,必须清楚所求的是哪个截面上的应力, 从而确定该截面上的弯矩及该截面对中性轴的惯性矩;
(2)必须清楚所求的是该截面上哪一点的正应力, 并确定该点到中性轴的距离,以及该点处应力的符号
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
<2>. 相邻横向线mm和nn,在梁弯曲后仍为直线,只是
相对旋转了一个角度,且与弧线aa和bb保持正交。
根据表面变形情况,并设想梁的侧面上的横向线mm和 nn是梁的横截面与侧表面的交线,可作出如下推论(假设):
平面假设 梁在纯弯曲时,其原来的横截面仍保持为平面, 只是绕垂直于弯曲平面(纵向平面)的某一轴转动,转动后 的横截面与梁弯曲后的轴线保持正交。
回顾与比较
内力
应力公式及分布规律
均匀分布 F
A
线形分布 T
IP
M
?
FA
FS
?
y
§7-1 梁弯曲时的正应力 一、纯弯曲
Fs
F
F
M
Fa
Fa
梁段CD上,只有弯矩,没有剪力--纯弯曲
梁段AC和BD上,既有弯矩,又有剪力--横力弯曲
二、弯曲时的正应力
纯弯曲的内力 剪力Fs=0
A
CB
FA
1m 1m
1m
2.5KNm FB
M
(1)求支反力,作弯矩图 FA=2.5KN (2)计算应力: B截面应力分布
4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
例2:矩形截面简支梁承受均布载荷作用,如图所示
q=60KN/m
120
A
B
1m C
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
46.1MPa
9KN
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1B m
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
2.5103 88103 7.64 106
28.8MPa
(3)结论
52 zc
88
c,max 46.1MPa t,max 28.8MPa
线应变的变化规律 与纤维到中性层的距离成正比。 从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时
虎克定律
弯曲正应力的分布规律
E E y
a、与点到中性轴的距离成正比;
沿截面高度 线性分布;
y
z
b、沿截面宽度 均匀分布;
c、正弯矩作用下, 上压下拉;
d、危险点的位置, 离开中性轴最远处.
6、常见图形的惯性矩及抗弯截面系数:
z hb
d z
D dz
Iz
1 bh3, 12
Wz
1 bh2 6
Iz
d4,
64
Wz
32
d3
Iz
(D4
64
d4)
D4 (1 4 )
64
Wz
32
D3(1 4 )
三、横力弯曲
F
Fs
F
x
M x
FL
横截面上内力
剪力+弯矩
横截面上的应力 既有正应力, 又有切应力