初中数学中考总复习教案

合集下载

安徽中考数学总复习教学案:第一章数与式

安徽中考数学总复习教学案:第一章数与式

第一章数与式第一章数与式第1讲实数及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:有理数、数轴、相反数、绝对值、平方根、算数平方根、立方根、无理数、实数、近似数等的相关概念;有理数的加、减、乘方运算;有理数的大小比较,用科学记数法表示数等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.科学记数法、实数的运算,都是安徽中考的重点考查对象,要求考生熟练掌握.年份考察内容题型题号分值有理数的乘法选择题14科学记数法填空题115倒数选择题14科学记数法选择题24有理数的加法选择题14科学记数法填空题11 51.实数的有关概念(1)数轴:规定了__原点__,__正方向__和__单位长度__的直线叫做数轴,数轴上所有的点与全体__实数__一一对应.(2)相反数:只有__符号__不同,而__绝对值__相同的两个数称为互为相反数.a ,b 互为相反数⇔a +b =__0__.(3)倒数:1除以一个不等于零的实数所得的__商__,叫做这个数的倒数.a ,b 互为倒数⇔ab =__1__.(4)绝对值:在数轴上,一个数对应的点离开原点的__距离__,叫做这个数的绝对值.|a |=⎩⎨⎧ a ,(a >0) 0 ,(a =0) -a ,(a <0)|a |是一个非负数,即|a |__≥0__. (5)科学记数法,近似数:科学记数法就是把一个数表示成__±a ×10n __(1≤a <10,n 是整数)的形式;一个近似数,__四舍五入__到哪一位,就说这个数精确到哪一位.(6)平方根,算术平方根,立方根:如果x 2=a ,那么x 叫做a 的平方根,记作__x =±a __;正数a 的正的平方根,叫做这个数的算术平方根;如果x 3=a ,那么x 叫做a 的立方根,记作__x =3a __.(7)识记:112=________,122=________,132=________,142=________,152=________,162=________,172=________,182=________,192=________,202=________,212=________,222=__________,232=________,242=________,252=__________.13=________,23=________,33=__________,43=________,53=________,63=__________,73=________,83=________,93=__________,103=________.2.实数的分类按实数的定义分类:实数⎩⎪⎪⎨⎪⎪⎧ 有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎨⎧ ⎭⎪⎬⎪⎫ 正整数 零 自然数负整数分数⎩⎪⎨⎪⎧ 正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫ 正无理数负无理数 无限不循环小数根据需要,我们也可以按符号进行分类,如:实数⎩⎪⎨⎪⎧正实数零负实数3.零指数幂,负整数指数幂任何非零数的零次幂都等于1,即__a 0=1(a ≠0)__;任何不等于零的数的-p 次幂,等于这个数p 次幂的倒数,即__a -p =1ap (a ≠0,p 为正整数)__.4.实数的运算实数的运算顺序是先算__乘方和开方__,再算__乘除__,最后算__加减__,如果有括号,先算__小括号__,再算__中括号__,最后算__大括号__,同级运算应__从左到右依次进行__.五种大小比较方法实数的大小比较常用以下五种方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数比较法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a ,b 是两个任意实数,则:a -b >0⇒a >b ;a -b =0⇒a =b ;a -b <0⇒a <b .(4)倒数比较法:若1a >1b,a >0,b >0,则a <b .(5)平方比较法:∵由a >b >0,可得a >b ,∴可以把a 与b 的大小问题转化成比较a 和b 的大小问题.1.(·安徽)(-2)×3的结果是( C )A .-5B .1C .-6D .6 2.(·安徽)-2的倒数是( A ) A .-12 B .12C .2D .-23.(·安徽)下面的数中,与-3的和为0的是( A ) A .3 B .-3 C .13 D .-134.(·安徽)据报载,我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为__2.5×107__.5.(·安徽)安徽省棉花产量约37800吨,将37800用科学记数法表示应是__3.78×104__.实数的分类【例1】 (·合肥模拟)实数π,15,0,-1中,无理数是( A )A .πB .15C .0D .-1【点评】 判断一个数是不是无理数,关键就看它能否写成无限不循环小数,初中常见的无理数共分三种类型:(1)化简后含π(圆周率)的式子;(2)含根号且开不尽方的数;(3)有规律但不循环的无限小数.掌握常见无理数类型有助于识别无理数.1.(1)(·安顺)下列各数中,3.14159,-38,0.131131113…,-π,25,-17无理数的个数有( B )A .1个B .2个C .3个D .4个 (2)(·安庆模拟)下列各数中,为负数的是( B )A .0B .-2C .1D .12实数的运算【例2】 (·重庆)计算:4+(-3)2-0×|-4|+(16)-1.解:原式=2+9-1×4+6=11-4+6=13【点评】 实数运算要严格按照法则进行,特别是混合运算,注意符号和顺序是非常重要的.2.(·东营)计算:(-1)+(sin 30°)-1+(35-2)0-|3-18|+83×(-0.125)3.解:原式=1+2+1-32+3-1=6-3 2科学记数法与近似值、有效数字【例3】 (1)(·芜湖模拟)餐桌上的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( A )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克(2)下列近似数中精确到千位的是( C ) A .90200 B .3.450×102 C .3.4×104 D .3.4×102【点评】 (1)科学记数法一般表示的数较大或很小,所以解题时一定要仔细,确定n 的值时,把大数的总位数减1即为n 的值,较小的数表示时就数第1个有效数字前所有“0”的个数(含小数点前的那个“0”)即为n 的值;(2)科学记数法写出这个数后可还原成原数进行检验;(3)用有效数字表示的数,在确定其精确度时,要还原成原数后再进行处理判断.3.(1)近似数2.5万精确到__千__位. (2)(·内江)一种微粒的半径是0.00004米,这个数据用科学记数法表示为( C )A .4×106B .4×10-6C .4×10-5 D .4×105与实数相关的概念【例4】 (1)(·河北)-2是2的( B )A .倒数B .相反数C .绝对值D .平方根(2)已知|a |=1,|b |=2,|c |=3,且a >b >c ,那么a +b -c =__2或0__.【点评】 (1)互为相反数的两个数和为0;(2)正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;(3)两个非负数的和为0,则这两个数分别等于0.4.(1)计算:-(-12)=__12__;|-12|=__12__;(-12)0=__1__;(-12)-1=__-2__. (2)若ab >0,则|a |a +|b |b -|ab |ab的值等于__1或-3__.数轴【例5】 (·呼和浩特)实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是( D )A .ac >bcB .|a -b|=a -bC .-a <-b <cD .-a -c >-b -c【点评】 数形结合借助数轴找到数的位置,或由数找到在数轴上的点的位置及其相反数的位置,再根据数轴上右边的数大于左边的数,确定各数的大小或根据大减小为正,小减大为负,以及有理数的加法、乘法法则来确定数的运算后的符号.5.(1)(·蚌埠模拟)在如图所示的数轴上,点B 与点C 关于点A 对称,A ,B 两点对应的实数分别是3和-1,则点C 所对应的实数是( D )A .1+ 3B .2+ 3C .23-1D .23+1 (2)(·宁夏)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( D )A .a +b =0B .b <aC .ab >0D .|b|<|a|实数的大小比较【例6】 (1)(·绍兴)比较-3,1,-2的大小,下列判断正确的是( A ) A .-3<-2<1 B .-2<-3<1 C .1<-2<-3 D .1<-3<-2(2)(·河北)a ,b 是两个连续整数,若a <7<b ,则a ,b 分别是( A ) A .2,3 B .3,2 C .3,4 D .6,8【点评】 实数的大小比较要依据数值特点来灵活运用比较大小的几种方法来进行.6.(1)(·阜阳模拟)比较大小:-2__>__-3. (2)比较2.5,-3,7的大小,正确的是( A ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3第2讲整式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用字母表示数,代数式的实际背景或几何意义,求代数式的值,代数式的分类,整式加、减、乘、除运算,运用乘法公式进行计算,整数指数幂的简单计算,这里要重点指出的是用字母表示数中渗透合情推理思想,它是安徽中考的一个重点,同时也是难点,要求复习时重点突破.年份考察内容题型题号分值乘方运算选择题 2 4整式加减解答题15 8整式运算选择题 4 4乘方运算选择题 3 4代数式的表示选择题 5 4整式加减解答题15 81.单项式:由__数与字母__或__字母与字母__相乘组成的代数式叫做单项式,所有字母指数的和叫做__单项式的次数__,数字因数叫做__单项式的系数__.单独的数、字母也是单项式.2.多项式:由几个__单项式相加__组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个__多项式的次数__,其中不含字母的项叫做__常数项__.3.整式:__单项式和多项式__统称为整式.4.同类项:多项式中所含__字母__相同并且__相同字母的指数__也相同的项,叫做同类项.5.幂的运算法则:(1)同底数幂相乘:__a m·a n=a m+n(m,n都是整数,a≠0)__;(2)幂的乘方:__(a m)n=a mn(m,n都是整数,a≠0)__;(3)积的乘方:__(ab)n=a n·b n(n是整数,a≠0,b≠0)__;(4)同底数幂相除:__a m÷a n=a m-n(m,n都是整数,a≠0)__.6.整式乘法:单项式与单项式相乘,把系数、同底数幂分别相乘作为积的因式,只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘多项式:m(a+b)=__ma+mb__;多项式乘多项式:(a+b)(c+d)=__ac+ad+bc+bd__.7.乘法公式:(1)平方差公式:__(a+b)(a-b)=a2-b2__;(2)完全平方公式:__(a±b)2=a2±2ab+b2__.8.整式除法:单项式与单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的一个因式.多项式除以单项式,将这个多项式的每一项分别除以这个单项式,然后把所得的商相加.一座“桥梁”用字母表示数是从算术过渡到代数的桥梁,是后续学习的基础,用字母表示数能够简明地表示出事物的规律及本质特征.只有借助字母,才能把一些数量规律及数量更简洁、准确地表示出来.用字母表示数:(1)注意字母的确定性;(2)注意字母的任意性;(3)注意字母的限制性.二种思维方法法则公式既可正向运用,也可逆向运用.逆向运用和灵活变式运用既可简化计算,又能进行较复杂的代数式的大小比较.当直接计算有较大困难时,考虑逆向运用,可起到化难为易的功效.1.(·安徽)x2·x4=( B )A.x5B.x6C.x8D.x92.(·安徽)下列运算正确的是( B )A .2x +3y =5xyB .5m 2·m 3=5m 5C .(a -b)2=a 2-b 2D .m 2·m 3=m 6 3.(·安徽)计算(-2x 2)3的结果是( B ) A .-2x 5 B .-8x 6 C .-2x 6 D .-8x 5 4.(·安徽)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( B )A .(a -10%)(a +15%)万元B .a(1-10%)(1+15%)万元C .(a -10%-15%)万元D .a(1-10%-15%)万元5.(·枣庄)如图,在边长为2a 的正方形剪去一边长为(a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2整式的加减运算【例1】 (1)(·邵阳)下列计算正确的是( A ) A .2x -x =x B .a 3·a 2=a 6 C .(a -b)2=a 2-b 2 D .(a +b)(a -b)=a 2+b 2 (2)(·威海)已知x 2-2=y ,则x(x -3y)+y(3x -1)-2的值是( B ) A .-2 B .0 C .2 D .4【点评】 整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果.1.(1)(·威海)下列运算正确的是( C ) A .2x 2÷x 2=2x B .(-12a 2b)3=-16a 6b 3C .3x 2+2x 2=5x 2D .(x -3)3=x 3-9(2)(·厦门)先化简下式,再求值:(-x 2+3-7x)+(5x -7+2x 2),其中x =2+1.解:原式=x 2-2x -4=(x -1)2-5,把x =2+1代入原式,原式=(2+1-1)2-5=-3同类项的概念及合并同类项【例2】 若-4x a y +x 2y b =-3x 2y ,则a +b =__3__.【点评】 (1)判断同类项时,看字母和相应字母的指数,与系数无关,也与字母的相关位置无关,两个只含数字的单项式也是同类项;(2)只有同类项才可以合并.2.(·淮南模拟)已知12x n -2m y 4与-x 3y 2n 是同类项,则(mn)的值为( C )A .B .-C .1D .-1幂的运算【例3】 (1)(·济南)下列运算中,结果是a 5的是( A ) A .a 3·a 2 B .a 10÷a 2 C .(a 2)3 D .(-a)5(2)(·芜湖模拟)计算(a 2)3÷(a 2)2的结果是( B ) A .a B .a 2 C .a 3 D .a 4【点评】 (1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.3.(1)(·)下列各式计算正确的是( D ) A .a 2+2a 3=3a 5 B .(a 2)3=a 5 C .a 6÷a 2=a 3 D .a ·a 2=a 3(2)(·随州)计算(-12xy 2)3,结果正确的是( B )A .14x 2y 4B .-18x 3y 6C .18x 3y 6D .-18x 3y 5 整式的混合运算及求值【例4】 (·绍兴)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2=1+14=54【点评】 注意多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项,再代值计算.4.(·合肥模拟)化简2[(m -1)m +m(m +1)][(m -1)m -m(m +1)],若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?解:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)]=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘,或者说是一个立方数,8的倍数等乘法公式【例5】 (·芜湖模拟)如图①,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图②的等腰梯形.(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2;(2)请写出上述过程所揭示的乘法公式.(1)S 1=a 2-b 2;S 2=12(2b +2a)(a -b)=(a +b)(a -b)(2)(a +b)(a -b)=a 2-b 2【点评】 (1)在利用完全平方公式求值时,通常用到以下几种变形: ①a 2+b 2=(a +b)2-2ab ; ②a 2+b 2=(a -b)2+2ab ;③(a+b)2=(a-b)2+4ab;④(a-b)2=(a+b)2-4ab.注意公式的变式及整体代入的思想.(2)算式中的局部直接使用乘法公式、简化运算,任何时候都要遵循先化简,再求值的原则.5.(1)整式A与m2-2mn+n2的和是(m+n)2,则A=__4mn__.(2)(·广州)已知多项式A=(x+2)2+(1-x)(2+x)-3.①化简多项式A;②若(x+1)2=6,求A的值.解:①A=(x+2)2+(1-x)(2+x)-3=x2+4x+4+2-2x+x-x2-3=3x+3②(x+1)2=6,则x+1=±6,∴A=3x+3=3(x+1)=±3 6第3讲因式分解~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:用提取公因式法、公式法(直接用公式不超过两次)分解因式等.题型多以选择题、填空题为主,偶尔也有解答题出现,但难度都属于基础题的要求.年份考察内容题型题号分值因式分解选择题 4 4因式分解填空题12 5因式分解选择题 4 41.因式分解把一个多项式化成几个__整式__积的形式,叫做因式分解,因式分解与__整式乘法__是互逆运算.2.基本方法(1)提取公因式法:ma+mb-mc=__m(a+b-c)__.(2)公式法:运用平方差公式:a2-b2=__(a+b)(a-b)__;运用完全平方公式:a2±2ab+b2=__(a±b)2__.3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么必须先提取公因式;(2)如果各项没有公因式,那么尽可能尝试用公式法来分解;(3)分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式写成幂的形式,这样才算分解彻底;(4)注意因式分解中的范围,如x4-4=(x2+2)(x2-2),在实数范围内分解因式,x4-4=(x2+2)(x+2)(x-2),题目不作说明的,表明是在有理数范围内因式分解.思考步骤多项式的因式分解有许多方法,但对于一个具体的多项式,有些方法是根本不适用的.因此,拿到一道题目,先试试这个方法,再试试那个办法.解题时思考过程建议如下:(1)提取公因式;(2)看有几项;(3)分解彻底.在分解出的每个因式化简整理后,把它作为一个新的多项式,再重复以上过程进行思考,试探分解的可能性,直至不可能分解为止.变形技巧当n为奇数时,(a-b)n=-(b-a)n;当n为偶数时,(a-b)n=(b-a)n.1.(·安徽)下列四个多项式中,能因式分解的是( B)A.a2+1B.a2-6a+9C.x2+5y D.x2-5y2.(·毕节)下列因式分解正确的是( A)A.2x2-2=2(x+1)(x-1)B.x2+2x-1=(x-1)2C.x2+1=(x+1)2D.x2-x+2=x(x-1)+23.(·安徽)因式分解:x2y-y=__y(x+1)(x-1)__.4.(·安徽)下面的多项式中,能因式分解的是( D)A.m2-n B.m2-m-1C.m2+n D.m2-2m+15.(·哈尔滨)把多项式3m2-6mn+3n2分解因式的结果是__3(m-n)2__.因式分解的意义【例1】(·泉州)分解因式x2y-y3结果正确的是( D )A.y(x+y)2B.y(x-y)2C.y(x2-y2) D.y(x+y)(x-y)【点评】因式分解是将一个多项式化成几个整式积的形式的恒等变形,若结果不是积的形式,则不是因式分解,还要注意分解要彻底.1.(·玉林)下面的多项式在实数范围内能因式分解的是( D )A.x2+y2B.x2-yC.x2+x+1 D.x2-2x+1提取公因式法分解因式【例2】阅读下列文字与例题:将一个多项式分组后,可提取公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n);(2)x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1).试用上述方法分解因式:a2+2ab+ac+bc+b2=__(a+b)(a+b+c)__.【点评】(1)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(2)当某项正好是公因式时,提取公因式后,该项应为1,不可漏掉;(3)公因式也可以是多项式.2.(1)多项式ax2-4a与多项式x2-4x+4的公因式是__x-2__.(2)把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( D )A.m+1 B.2mC.2 D.m+2运用公式法分解因式【例3】(1)(·东营)3x2y-27y=__3y(x+3)(x-3)__;(2)(·邵阳)将多项式m2n-2mn+n因式分解的结果是__n(m-1)2__.【点评】(1)用平方差公式分解因式,其关键是将多项式转化为a2-b2的形式,需注意对所给多项式要善于观察,并作适当变形,使之符合平方差公式的特点,公式中的“a”“b”也可以是多项式,可将这个多项式看作一个整体,分解后注意合并同类项;(2)用完全平方公式分解因式时,其关键是掌握公式的特征.3.分解因式:(1)9x2-1;(2)25(x+y)2-9(x-y)2;(3)(·淮北模拟)a-6ab+9ab2;(4)(·湖州)mx2-my2.解:(1)9x2-1=(3x+1)(3x-1)(2)25(x+y)2-9(x-y)2=[5(x+y)+3(x-y)][5(x+y)-3(x-y)]=(8x+2y)(2x+8y)=4(4x+y)(x+4y)(3)a-6ab+9ab2=a(1-6b+9b2)=a(1-3b)2(4)mx2-my2=m(x2-y2)=m(x+y)(x-y)综合运用多种方法分解因式【例4】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算,并把结果分解因式.解:(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x(x +4);(12x 2+x -1)+(12x 2-x)=x 2-1=(x+1)(x -1);(12x 2+3x +1)+(12x 2-x)=x 2+2x +1=(x +1)2【点评】 灵活运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.4.(1)(·武汉)分解因式:a 3-a =__a(a +1)(a -1)__; (2)(·黔东南州)分解因式:x 3-5x 2+6x =__x(x -3)(x -2)__;因式分解的应用 【例5】 (1)(·河北)计算:852-152=( D )A .70B .700C .4900D .7000 (2)已知a 2+b 2+6a -10b +34=0,求a +b 的值.解:∵a 2+b 2+6a -10b +34=0,∴a 2+6a +9+b 2-10b +25=0,即(a +3)2+(b -5)2=0,∴a +3=0且b -5=0,∴a =-3,b =5,∴a +b =-3+5=2【点评】 (1)利用因式分解,将多项式分解之后整体代入求值;(2)一个问题有两个未知数,只有一个条件,根据已知式右边等于0,若将左边转化成两个完全平方式的和,而它们都是非负数,要使和为0,则每个完全平方式都等于0,从而使问题得以求解.5.(1)(·马鞍山模拟)若ab =2,a -b =-1,则代数式a 2b -ab 2的值等于__-2__.(2)已知a ,b ,c 是△ABC 的三边长,且满足a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 的形状是( C )A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形(3)(·北京)已知x -y =3,求代数式(x +1)2-2x +y(y -2x)的值.解:原式=x 2-2xy +y 2+1=(x -y)2+1,把x -y =3代入,原式=3+1=4第4讲 分式及其运算~安徽中考命题分析安徽中考命题预测预测安徽省中考仍将主要考查:分式的概念、分式的基本性质、约分与通分,分式的加、减、乘、除运算等,题型有选择题、填空题,也有解答题,但难度都属于基础题和中档题的要求.这里要重点指出的是分式的加减乘除运算,它一直是安徽中考的一个重点,这是因为分式的加减乘除运算几乎可以涵盖所有代数式的基本运算,因此考生一定要注意.年份 考察内容 题型 题号 分值 分式方程的计算 填空题 13 5 分式方程的应用解答题 20(2) 8 分式计算选择题 6 41.分式的基本概念(1)形如__AB(A ,B 是整式,且B 中含有字母,B ≠0)__的式子叫分式;(2)当__B ≠0__时,分式A B 有意义;当__B =0__时,分式AB 无意义;当__A =0且B ≠0__时,分式AB的值为零.2.分式的基本性质分式的分子与分母都乘(或除以)__同一个不等于零的整式__,分式的值不变,用式子表示为__A B =A ×M B ×M ,A B =A÷MB÷M(M 是不等于零的整式)__.3.分式的运算法则(1)符号法则:分子、分母与分式本身的符号,改变其中任何两个,分式的值不变. 用式子表示:a b =-a -b =-a -b =--a b ;-a b =a-b =-a b .(2)分式的加减法:同分母加减法:__a c ±b c =a±bc __;异分母加减法:__b a ±d c =bc±adac __.(3)分式的乘除法: a b ·c d =__acbd __; a b ÷c d =__adbc __. (4)分式的乘方:(a b )n =__a nbn (n 为正整数)__. 4.最简分式如果一个分式的分子与分母没有公因式,那么这个分式叫做最简分式. 5.分式的约分、通分把分式中分子与分母的公因式约去,这种变形叫做约分,约分的根据是分式的基本性质.把几个异分母分式化为与原分式的值相等的同分母分式,这种变形叫做分式的通分,通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.分式的混合运算在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.7.解分式方程,其思路是去分母转化为整式方程,要特别注意验根.使分母为0的未知数的值是增根,需舍去.两个技巧(1)分式运算中的常用技巧分式运算题型多,方法活,要根据特点灵活求解.如:①分组通分;②分步通分;③先“分”后“通”;④重新排序;⑤整体通分;⑥化积为差,裂项相消.(2)分式求值中的常用技巧分式求值可根据所给条件和求值式的特征进行适当的变形、转化.主要有以下技巧:①整体代入法;②参数法;③平方法;④代入法;⑤倒数法.1.(·温州)要使分式x +1x -2有意义,则x 的取值应满足( A )A .x ≠2B .x ≠-1C .x =2D .x =-1 2.(·广州)计算:x 2-4x -2,结果是( B )A .x -2B .x +2C .x -42D .x +2x3.(·安徽)化简x 2x -1+x1-x 的结果是( D )A .x +1B .x -1C .-xD .x 4.(·济南)化简m -1m ÷m -1m 2的结果是( A )A .mB .1mC .m -1D .1m -15.(·安徽)方程4x -12x -2=3的解是x =__6__.分式的概念,求字母的取值范围【例1】 (1)(·贺州)分式2x -1有意义,则x 的取值范围是( A )A .x ≠1B .x =1C .x ≠-1D .x =-1 (2)(·毕节)若分式x 2-1x -1的值为零,则x 的值为( C )A .0B .1C .-1D .±1【点评】 (1)分式有意义就是使分母不为0,解不等式即可求出,有时还要考虑二次根式有意义;(2)首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值.1.(1)(·铜陵模拟)若代数式xx -1有意义,则实数x 的取值范围是( D )A .x ≠1B .x ≥0C .x >0D .x ≥0且x ≠1(2)当x =__-3__时,分式|x|-3x -3的值为0.分式的性质【例2】 (1)(·贺州)先化简,再求值:(a 2b +ab)÷a 2+2a +1a +1,其中a =3+1,b =3-1.解:原式=ab(a +1)·a +1(a +1)2=ab ,当a =3+1,b =3-1时,原式=3-1=2(2)(·济宁)已知x +y =xy ,求代数式1x +1y-(1-x)(1-y)的值.解:∵x +y =xy ,∴1x +1y -(1-x)(1-y)=y +x xy -(1-x -y +xy)=x +y xy -1+x +y -xy=1-1+0=0【点评】 (1)分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;(2)将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;(3)巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.2.(1)(·安庆模拟)下列计算错误的是( A ) A .0.2a +b 0.7a -b =2a +b 7a -b B .x 3y 2x 2y 3=x yC .a -b b -a=-1 D .1c +2c =3c(2)(·广安)化简(1-1x -1)÷x -2x 2-2x +1的结果是__x -1__.分式的四则混合运算【例3】 (·深圳)先化简,再求值:(3x x -2-x x +2)÷xx 2-4,在-2,0,1,2四个数中选一个合适的代入求值.解:原式=3x (x +2)-x (x -2)(x +2)(x -2)·(x +2)(x -2)x =2x +8,当x =1时,原式=2+8=10【点评】 准确、灵活、简便地运用法则进行化简,注意在取x 的值时,要考虑分式有意义,不能取使分式无意义的0与±2.3.(1)(·十堰)已知a 2-3a +1=0,则a +1a-2的值为( B )A .5+1B .1C .-1D .-5(2)(·黄山模拟)先化简x 2-4x 2-9÷(1-1x -3),再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解:原式=(x +2)(x -2)(x +3)(x -3)÷x -3-1x -3=(x +2)(x -2)(x +3)(x -3)·x -3x -4=(x +2)(x -2)(x +3)(x -4),不等式2x -3<7,解得x <5,其正整数解为1,2,3,4,当x =1时,原式=14分式方程的解法【例4】 (·舟山)解方程:x x +1-4x 2-1=1.解:去分母,得x(x -1)-4=x 2-1,去括号,得x 2-x -4=x 2-1,解得x =-3,经检验x =-3是分式方程的解【点评】 (1)按照基本步骤解分式方程,其关键是确定各分式的最简公分母.若分母为多项式时,应首先进行分解因式.将分式方程转化为整式方程,乘最简公分母时,应乘原分式方程的每一项,不要漏乘常数项;(2)检验是否产生增根:分式方程的增根是分式方程去分母后整式方程的某个根,但因为它使分式方程的某些分母为零,故应是原方程的增根,需舍去.4.(1)(·阜阳模拟)若分式方程x x -1-m1-x =2有增根,则这个增根是__x =1__;(2)(·)解分式方程:3x 2-9+xx -3=1.解:方程两边都乘(x +3)(x -3),得3+x(x +3)=x 2-9,3+x 2+3x =x 2-9,解得x =-4,检验:把x =-4代入(x +3)(x -3)≠0,∴x =-4是原分式方程的解第5讲 二次根式及其运算~安徽中考命题分析 安徽中考命题预测预测安徽省中考仍将主要考查:二次根式的加、减、乘、除运算(不要求分母有理化),用有理数估计无理数的大致范围仍将是安徽中考的主要考察点.尤其是用有理数估计无理数的大致范围是安徽中考的一个重点.题型以选择题、填空题居多.无论什么形式,计算的难度都不会太大,难度均属于基础题.年份 考察内容 题型题号 分值 用有理数估计无理数的大致范围选择题6 4 二次根式有意义 填空题 11 5 - ---1.二次根式的概念式子__a(a ≥0)__叫做二次根式. 2.二次根式的性质 (1)(a)2=__a(a ≥0)__.(2)a 2=|a|=⎩⎪⎨⎪⎧ a (a >0) ; 0(a =0) ; -a (a <0) W.3.二次根式的运算(1)二次根式加减法的实质是合并同类根式;(2)二次根式的乘法:a·b =__ab(a ≥0,b ≥0)__; (3)二次根式乘法的反用:ab =a·b(a ≥0,b ≥0); (4)二次根式的除法:ab=__ab(a ≥0,b >0)__;(5)二次根式除法的反用:a b =__ab(a ≥0,b >0)__. 4.最简二次根式运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式,需满足两个条件:(1)被开方数不含分母;(2)被开方数中不含开得尽方的因数或因式.“双重非负性”算术平方根a 具有双重非负性,一是被开方数a 必须是非负数,即a ≥0;二是算术平方根a 的值是非负数,即a ≥0.算术平方根的非负性主要用于两方面:(1)某些二次根式的题目中隐含着“a ≥0”这个条件,做题时要善于挖掘隐含条件,巧妙求解;(2)若几个非负数的和为零,则每一个非负数都等于零. 求值问题“五招”(1)巧用平方;(2)巧用乘法公式;(3)巧用配方;(4)巧用换元;(5)巧用倒数.1.(·安徽)设n 为正整数,且n <65<n +1,则n 的值为( D ) A .5 B .6 C .7 D .82.(·安徽)若1-3x 在实数范围内有意义,则x 的取值范围是__x ≤13__.3.(·徐州)下列运算中错误的是( A ) A .2+3= 5 B .2×3= 6 C .8÷2=2 D .(-3)2=34.(·福州)若(m -1)2+n +2=0,则m +n 的值是( A ) A .-1 B .0 C .1 D .25.(·内江)按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( C )A .14B .16C .8+5 2D .14+ 2二次根式概念与性质【例1】 (1)等式2k -1k -3=2k -1k -3成立,则实数k 的范围是( D ) A .k >3或k <12 B .0<k <3C .k ≥12D .k >3(2)已知a ,b ,c 是△ABC 的三边长,试化简:(a +b +c )2+(a -b -c )2+(b -c -a )2+(c -a -b )2.解:原式=|a +b +c|+|a -b -c|+|b -c -a|+|c -a -b|=(a +b +c)+(b +c -a)+(c +a -b)+(a +b -c)=2a +2b +2c【点评】 (1)对于二次根式,它有意义的条件是被开方数大于或等于0;(2)注意二次根式性质(a)2=a(a ≥0),a 2=|a|的区别,判断出各式的正负性,再化简.1.(1)(·达州)二次根式-2x +4有意义,则实数x 的取值范围是( D ) A .x ≥-2 B .x >-2 C .x <2 D .x ≤2(2)如果(2a -1)2=1-2a ,则( B ) A .a <12 B .a ≤12C .a >12D .a ≥12二次根式的运算【例2】 (1)(·济宁)如果ab >0,a +b <0,那么下面各式:①a b =ab;②a b ·ba=1;③ab÷ab=-b.其中正确的是( B ) A .①② B .②③C .①③D .①②③ (2)计算:24-32+23-216. 解:原式=26-126+136-136=326【点评】(1)二次根式化简,依据ab=a·b(a≥0,b≥0),ab=ab(a≥0,b>0),前者将被开方数分解,后者分子、分母同时乘一个适当的数使分母变成一个完全平方数,即可将其移到根号外;(2)二次根式加减,即化简之后合并同类二次根式.2.(1)(·黄山模拟)若20n是整数,则正整数n的最小值为__5__.(2)(·抚州)计算:27-3=__23__.二次根式混合运算【例3】计算:(10-3)·(10+3).解:原式=(10-3)×(10+3)×(10+3)=[(10-3)(10+3)]×(10+3)=1×(10+3)=10+3【点评】(1)二次根式混合运算,把若干个知识点综合在一起,计算时要认真仔细;(2)可以运用运算律或适当改变运算顺序,使运算简便.3.(1)(·荆门)计算:24×13-4×18×(1-2)0;解:原式=26×33-4×24×1=22-2= 2(2)已知10的整数部分为a,小数部分为b,求a2-b2的值.解:∵3<10<4,∴10的整数部分a=3,小数部分b=10-3.∴a2-b2=32-(10-3)2=9-(10-610+9)=-10+610。

初中数学中考总复习教案

初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。

6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。

第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。

7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。

初中数学复习课教案15篇

初中数学复习课教案15篇

初中数学复习课教案15篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初中数学复习课教案15篇初中数学复习课教案大全15篇教案是教师为了有效地组织和安排教学活动而制定的计划。

人教版中考数学第一轮总复习教案(135课时)

人教版中考数学第一轮总复习教案(135课时)

其中 a、 b、 c 表示任意实数.运用运算律有时可使运算简便
3.实数的运算顺序 : 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.同
一级运算按照从左到 右的顺序依次进行 .
4. 实数大小的比较
⑴ 数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大
.
⑵ 正数> 0,负数< 0,正数>负数;两个负数比较大小,绝对值大的
(6) 开方 如果 x 2= a 且 x ≥ 0,那么
a = x; 如果 x3=a,那么 3 a x
2.实数的运算律
(1) 加法交换律 a+b = b+a ; (2) 加法结合律 (a+b)+c=a+(b+c) ; (3) 乘法交换律 ab = ba.
(4) 乘法结合律 (ab)c=a(bc) ; (5) 分配律 a(b+c)=ab+ac
⑶十字相乘法 ,⑷ 分组分解法 .
3. 提公因式法 : ma mb mc m(a+b+c).
4. 公式法 : ⑴ a 2 b 2 ( a+ b)(a - b) ;⑵ a 2 2ab b 2 (a + b) 2; ⑶ a 2 5. 十字相乘法 : x2 a b x ab ( x a)( x b) .
6. 因式分解的一般步骤 : (1) 一 “提”(取公因式) ,二“用”(公式); (2)
3. 实数的分类 有理数和无理数统称实数 . 有理数 : 有限小数或无限循环小数 . 无理数 : 无限不循环小数 . 注 : 凡是分数都是有理数 .
4.易错知识辨析
实数
有理数 无理数
正整数
整数 0
负整数
有限小数或无限循环小数

2024年中考数学复习矩形、菱形、正方形精彩教案设计

2024年中考数学复习矩形、菱形、正方形精彩教案设计

2024年中考数学复习矩形、菱形、正方形精彩教案设计一、教学内容本教案依据人教版初中数学九年级上册第四章“矩形、菱形、正方形”的相关内容进行设计。

详细内容包括:矩形的性质与判定;菱形的性质与判定;正方形的性质与判定;特殊四边形的面积计算。

二、教学目标1. 理解并掌握矩形、菱形、正方形的性质与判定方法,能准确识别这些特殊四边形。

2. 学会运用矩形、菱形、正方形的性质解决实际问题,提高解决问题的能力。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点教学难点:矩形、菱形、正方形的性质与判定的应用。

教学重点:矩形的性质与判定;菱形的性质与判定;正方形的性质与判定。

四、教具与学具准备教具:多媒体教学设备、几何画板、直尺、圆规、量角器。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入(5分钟)通过展示生活中的矩形、菱形、正方形物品,引导学生观察并说出它们的共同特点,激发学生的学习兴趣。

2. 矩形、菱形、正方形的性质与判定(15分钟)(1)矩形的性质与判定:引导学生回顾矩形的定义,通过实例讲解矩形的性质,如对边平行且相等、对角线相等、四个角都是直角等。

然后给出判定定理,让学生进行练习。

(2)菱形的性质与判定:引导学生回顾菱形的定义,通过实例讲解菱形的性质,如四边相等、对角线垂直平分、对角线互相垂直等。

然后给出判定定理,让学生进行练习。

(3)正方形的性质与判定:引导学生回顾正方形的定义,通过实例讲解正方形的性质,如四边相等、四个角都是直角、对角线相等且垂直等。

然后给出判定定理,让学生进行练习。

3. 例题讲解(15分钟)讲解与矩形、菱形、正方形相关的例题,让学生理解性质与判定的应用。

4. 随堂练习(10分钟)布置与矩形、菱形、正方形相关的练习题,让学生巩固所学知识。

5. 小结与拓展(5分钟)六、板书设计1. 矩形的性质与判定2. 菱形的性质与判定3. 正方形的性质与判定4. 例题解析5. 随堂练习七、作业设计1. 作业题目:(1)已知四边形ABCD,AB=CD,AD=BC,且∠A=90°,证明:四边形ABCD是矩形。

数学中考复习备考方案(精选6篇)

数学中考复习备考方案(精选6篇)

数学中考复习备考方案(精选6篇)数学中考复习备考方案1一、指导思想以课程标准为指南,以考试说明为依据,以教材为载体,以训练为主线,以考试为渠道,以心理素养和应试实力培育为突破口,面对全体学生,全面提中学考成果。

二、复习原则1、低起点,小步伐,快反馈,高密度;2、讲练结合,以练代讲;3、面对全体,关注差异;4、培优扶差;5、有效教学,向课堂要质量。

三、复习设计(一)确立目标,结合每次考试成果比照指标找差距1、学校制定升学指标。

把重点中学一榜、指标到校、一般中学、职高指标确定总数后分解到各班级,张榜公示。

2、班级制定升学指标。

即对分解到班级的指标落实到人头。

要和学生谈话、沟通、指导,让学生给自己定位。

3、任课老师制定分数指标。

对每一名学生应当达到多少分定位。

4、学生自我设计目标。

对升入学校,各科志向分数预设。

(二)制订安排1、初三上半年结束全年课程;2、寒假时间同科老师集体探讨制订复习安排,体现:(1)复习课时;(2)每课时复习内容;(3)复习方法;(4)实现目标。

制订复习安排要从二个方面入手:(1)资源:课标——比照课标,反复学习,吃透标准,明确方向;考纲——依据考纲,反复探讨,定量、定位。

考题——收集近几年中考题,老师做题、析题、探讨各学问点,生成的题型、分值和难易度。

教材——不离教材,挖掘教材,提炼升华,熟知教材编写意图、体系,归纳学问点,形成学问网络。

学情——充分了解学生,知根知底,知彼知己,对症下药,因材施教。

信息——刚好捕获中考有关的信息,筛选、疏理,择用和调整。

(2)三轮复习法:第一轮:单元章节复习。

(3月1日——4月20日)复习时重点抓学科学问的单元、章节过关。

每天定量记忆。

复习各学问点、考点时,将其题型化(即设计成题)。

要四平八稳,要由易到难;重视基础学问和基本实力的训练。

其次轮:专项复习(4月20日——5月20日)首先要对中考的考点学问进行训练,其次要对中考题型进行专项训练。

在训练考点学问时,着重训练标准和考纲所涉及的重点和难点。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

中考数学总复习教案七篇

中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。

负数的'意义是难点。

下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。

在正数前加上“-”号的数叫做负数如-5,-3,-等。

负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位零既不是正数,也不是负数,但它是自然数。

它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。

在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。

最新初中数学中考总复习教案

最新初中数学中考总复习教案

最新初中数学中考总复习教案2021最新初中数学中考总复习教案1本学期是初中学习的关键时期,教学任务非常艰巨。

因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。

九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。

下面特制定以下教学复习计划。

一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。

通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。

虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。

其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。

二、指导思想坚持贯彻党的十八大教育方针,继续深入开展新课程教学改革。

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。

并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。

三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。

如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。

初中数学复习课教案

初中数学复习课教案

初中数学复习课教案课程目标:1. 巩固本学期所学数学知识,提高学生的数学思维能力。

2. 培养学生自主学习、合作学习的能力,提高学生的学习效率。

3. 帮助学生发现自己的不足,制定合适的复习计划,为中考做好准备。

教学内容:1. 数学科目:有理数、整式、分式、方程、不等式、函数等。

2. 数学思想:分类讨论、归纳总结、数形结合等。

教学过程:一、导入(5分钟)1. 教师简要回顾本学期的学习内容,引导学生回顾自己的学习成果和不足。

2. 学生分享自己的学习心得和复习计划。

二、自主学习(15分钟)1. 学生根据教师提供的复习提纲,自主复习相关知识点。

2. 教师巡回指导,解答学生的疑问。

三、合作学习(20分钟)1. 教师布置合作学习任务,学生分组讨论、交流。

2. 各小组展示合作学习成果,分享解题思路和经验。

四、课堂讲解(20分钟)1. 教师针对学生的共性问题进行讲解,巩固重点知识点。

2. 结合中考题型,讲解数学题目的解题技巧和方法。

五、练习巩固(15分钟)1. 教师布置练习题,学生独立完成。

2. 教师批改练习题,及时反馈学生的答题情况。

六、总结与反思(5分钟)1. 学生自我总结本节课的学习收获,发现自己的不足。

2. 教师引导学生制定针对性的复习计划,为中考做好准备。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言、提问、解答等情况,了解学生的学习积极性。

2. 学生练习答题情况:分析学生练习题的答案,了解学生的掌握程度。

3. 学生反馈:收集学生的学习反馈,了解学生的学习需求和意见。

教学反思:本节课结束后,教师应认真反思教学效果,针对学生的学习情况调整教学策略,以提高复习课的教学质量。

同时,关注学生的心理健康,鼓励学生克服学习困难,提高学生的自信心。

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料

初三数学中考复习教案数学复习资料一、教学内容1. 实数与代数式:实数的性质、运算法则,代数式的化简、求值等;2. 方程与不等式:一元一次方程、不等式的解法,一元二次方程的求根公式及应用;3. 函数:一次函数、二次函数的性质,函数图像的识别与应用;4. 图形与几何:三角形的性质,四边形的性质,圆的性质,相似与全等,解三角形;5. 统计与概率:数据的收集、整理、描述,概率的计算与应用。

二、教学目标1. 熟练掌握实数与代数式的运算,提高解题能力;2. 掌握方程与不等式的解法,并能应用于解决实际问题;3. 理解函数的性质,能分析解决与函数相关的问题;4. 掌握图形与几何的基本知识,提高空间想象能力和逻辑思维能力;5. 了解统计与概率的基本概念,能应用于实际问题的解决。

三、教学难点与重点1. 教学难点:方程与不等式的综合应用,函数的性质及图像分析,几何图形的计算与证明;2. 教学重点:实数的运算,方程与不等式的解法,函数的性质,图形与几何的计算。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、草稿纸。

五、教学过程1. 导入:通过一道实际问题的引入,激发学生的学习兴趣,引导学生复习所学知识;2. 知识回顾:带领学生回顾实数、代数式、方程、不等式、函数、图形与几何、统计与概率等知识点;3. 例题讲解:针对每个知识点,精选典型例题进行讲解,分析解题思路和方法;4. 随堂练习:布置与例题相关的练习题,让学生及时巩固所学知识;5. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导;六、板书设计1. 实数与代数式:性质、运算法则、化简、求值;2. 方程与不等式:解法、应用;3. 函数:性质、图像、应用;4. 图形与几何:性质、计算、证明;5. 统计与概率:概念、计算、应用。

七、作业设计1. 作业题目:(1)计算题:实数的运算,代数式的化简;(2)解答题:解一元一次方程、不等式,求解一元二次方程;(3)应用题:函数的性质,图形与几何的计算;(4)统计与概率题:数据的收集、整理、描述,概率的计算。

中考数学总复习几何部分教案教案

中考数学总复习几何部分教案教案

中考数学总复习几何部分教案一、教学目标1. 知识与技能:使学生掌握初中数学几何部分的基本概念、性质、定理和公式,提高学生的空间想象能力和逻辑思维能力。

2. 过程与方法:通过复习,使学生能够熟练运用几何知识解决实际问题,培养学生的数学应用能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习几何的兴趣,培养学生勇于探索、积极思考的科学精神,提高学生对数学美的鉴赏能力。

二、教学内容1. 第一章:平面几何基本概念1.1 点、线、面的位置关系1.2 平行线、相交线1.3 三角形、四边形、五边形等基本图形的性质2. 第二章:三角形2.1 三角形的性质2.2 三角形的判定2.3 三角形的证明方法3. 第三章:四边形3.1 四边形的性质3.2 特殊四边形的性质及判定3.3 四边形的不等式4. 第四章:圆4.1 圆的定义及性质4.2 圆的方程4.3 圆与直线、圆与圆的位置关系5. 第五章:几何变换5.1 平移、旋转的性质5.2 相似三角形的性质及判定5.3 位似与坐标变换三、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生主动参与、积极思考。

2. 利用多媒体教学手段,直观展示几何图形的性质和变换过程,提高学生的空间想象能力。

3. 注重个体差异,针对不同学生进行分层教学,使每位学生都能在复习过程中得到提高。

四、教学评价1. 定期进行课堂检测,了解学生掌握几何知识的情况。

2. 组织中考模拟试题训练,检验学生的应用能力和解题水平。

3. 关注学生在复习过程中的学习态度、方法及合作精神,进行全面评价。

五、教学计划1. 课时安排:每个章节安排4课时,共20课时。

2. 教学进度:按照章节顺序进行复习,每个章节安排一周时间。

3. 复习方法:先梳理每个章节的基本概念、性质、定理和公式,进行典型例题分析,进行课堂练习和总结。

4. 课外作业:每章节安排2-3道课后习题,巩固所学知识。

5. 课后辅导:针对学生疑难问题进行解答,提供个性化的学习指导。

人教版九年级中招考试数学总复习教学设计

人教版九年级中招考试数学总复习教学设计

人教版九年级中招考试数学总复习教学设计一. 教材分析人教版九年级中招考试数学总复习涵盖了整个初中阶段的数学知识点,包括代数、几何、概率等多个方面。

教材以模块化设计,每个模块都有相应的学习目标和习题。

本教学设计将全面梳理初中阶段的数学知识,帮助学生系统地复习和巩固所学内容。

二. 学情分析九年级的学生已经掌握了大部分的初中数学知识,但部分学生可能对某些知识点掌握得不够扎实。

学生的学习动机较强,希望能通过中招考试证明自己的学习能力。

然而,由于时间紧张,学生可能存在焦虑情绪。

因此,教师需要关注学生的心理状况,帮助他们合理安排学习时间,调整学习策略。

三. 教学目标1.知识与技能:使学生掌握初中阶段的数学知识,提高解决问题的能力。

2.过程与方法:通过复习,让学生掌握学习数学的方法,提高学习效率。

3.情感态度与价值观:激发学生的学习兴趣,培养他们积极面对考试的信心和勇气。

四. 教学重难点1.重点:初中阶段的所有数学知识点。

2.难点:部分学生对某些知识点的理解和应用。

五. 教学方法1.讲授法:教师讲解知识点,引导学生理解和掌握。

2.案例分析法:通过典型例题,让学生学会解题思路和方法。

3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。

4.反馈评价法:教师及时给予学生反馈,提高他们的学习效果。

六. 教学准备1.教材:人教版九年级中招考试数学总复习。

2.辅导资料:相关习题和案例分析。

3.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)教师简要介绍本节课的教学目标和内容,激发学生的学习兴趣。

2.呈现(15分钟)教师通过讲解、案例分析等方式,呈现本节课的知识点,让学生理解和掌握。

3.操练(20分钟)学生独立完成相关习题,巩固所学知识点。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师挑选一些重点和难点的题目,让学生上台展示解题过程,其他学生跟随讲解。

5.拓展(10分钟)教师给出一些拓展题目,学生分组讨论,共同解决问题。

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!九年级数学总复习教案(优秀6篇)好的数学教学教案很有意义的。

数学复习中考教案七篇

数学复习中考教案七篇

数学复习中考教案七篇数学复习中考教案七篇数学复习中考教案如何写?数学科学家们不断争论计算机辅助认证的严谨性。

当大量计算难以验证时,很难说证明是有效的和严谨的。

下面是小编为大家带来的数学复习中考教案七篇,希望大家能够喜欢!数学复习中考教案篇1一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:1、在学习本课之前应具备的基本知识和技能:①同类项的定义。

②合并同类项法则③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:在学习完全平方公式之前,学生已经能够整理出公式的右边形式。

这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:(一)教学目标:1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

初三数学专题复习教案

初三数学专题复习教案

初三数学专题复习教案【篇一:2016年数学中考第一轮复习整套教案(完整版)】中考数学一轮复习资料第一轮复习的目的1、第一轮复习的目的是要“过三关”:(1)过记忆关。

必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。

我要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容我还重点串讲。

(2)过基本方法关。

如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。

(3)过基本技能关。

如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

做到对每道题要知道它的考点。

基本宗旨:知识系统化,练习专题化。

2、一轮复习的步骤、方法(1)全面复习,把书读薄:全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义(2)突出重点,精益求精:在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多.”猜题”的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,”猜题”便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.(3)基本训练反复进行:学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张”题海”战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下”盲棋”一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,”熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会”粗心”地出错3、数学:过来人谈中考复习数学巧用“两段”法中考数学复习大致分为两个阶段。

中考数学第一轮复习教案(实数、整式、分式、根式)

中考数学第一轮复习教案(实数、整式、分式、根式)

中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。

a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。

即a x =。

规定:0的算术平方根是0。

定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。

即如果x 2=a ,那么x 叫做a 的平方根。

即a x ±=。

定义3:求一个数a 的平方根的运算,叫做开平方。

因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。

2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。

即3a x =。

求一个数的立方根的运算,叫做开立方。

正数的立方根是正数;负数的立方根是负数;0的立方根是0。

3、无理数无限不循环小数又叫做无理数。

初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。

即实数包括有理数和无理数。

备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。

有理数关于相反数和绝对值的意义同样适合于实数。

例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。

5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。

例如:不是分数,是无理数。

6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。

备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。

九年级数学中考总复习教案

九年级数学中考总复习教案

初三数学中考总复习解题方法总结: 一、选择题(1)代入法:有的题目可以不用具体算出来,可通过直接带入选项答案进行验算即可。

(2)排除法:有的难题算不出答案,可通过排除其他错误选项得出相应答案。

此处输入文本 (3)工具法:几何题求长度、比值、角度,草稿纸化标准图,用直尺或量角器直接度量。

二、规律探索题(1)几何探索题:多利用角度、高、平分线等去找相应的变化关系,总结规律。

(2)函数探索题:先利用函数关系式算出几个特殊点的坐标,总结变化规律 (3)实数探索题:写3--5项,找规律!1、与n 有关(前后两项相差一样)(5、7、9、11、13.....)2、与n 平方有关(前后两次相差一样)(2、5、10、17、26....)3、与2的n 次方有关系(作差与2、4、8、16等有关系)(3、5、9、17..........)三、辅助线法:(1)解三角函数类题目要会添加辅助线构造直角三角形,以构造后含有特殊角最佳。

(2)正方形、矩形、菱形:对角线。

梯形:作高、腰的平行线。

(3)等腰三角形:必做高,出现三线合一。

等腰直角三角形高是底的一半。

(4)圆:连切线半径,直径所对圆周角,作弦的垂线(5)反比例函数:过点作x 轴、y 轴垂线。

二次函数:作对称轴,作点x 轴垂线四、相似法(1)圆中告诉你两条线段长,求另外线段长,找相等角证相似。

(2)函数图象中相似,找两角相等,或找特殊角,再找夹这个角的两条边对应成比例,一般会有两种情况。

(3)直角中会存在“K ”型相似五、函数与方程:1、一次函数:注意发现特殊角2、一元二次方程的常用解法:① 因式分解法(优先考虑) ② 配方法(二次项系数先化为1) ③ 直接开方法 ④公式法2b x a-=()221221)(y y x x -+-3、一元二次方程根与系数的关系(韦达定理):12,b x x a +=- 12cx x a⋅=。

(注意:使用韦达定理一定要保证根的存在,所以需检验Δ)4、分式方程一定要注意检验是否有增根。

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集一、教学内容1. 实数与函数实数的概念、性质与运算一次函数、二次函数的性质与图像比例函数、反比例函数的性质与应用2. 方程与不等式一元一次方程、一元二次方程的解法二元一次方程组的解法与应用不等式的性质与解法3. 几何图形三角形、四边形的性质与判定圆的性质与计算解析几何初步4. 统计与概率数据的收集、整理与描述概率的计算与应用二、教学目标1. 系统掌握初中数学的基本知识和技能,提高解决问题的能力。

2. 培养学生的逻辑思维能力和空间想象力,提高数学素养。

3. 培养学生运用数学知识解决实际问题的能力,增强数学应用意识。

三、教学难点与重点1. 教学难点:函数的性质与图像、几何图形的判定、统计与概率的计算。

2. 教学重点:实数的运算、方程的解法、几何图形的性质与计算、统计与概率的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实数与函数(1)导入:通过生活中的实例,引出实数的概念。

(2)讲解:详细讲解实数的性质与运算,结合例题进行讲解。

(3)随堂练习:让学生练习实数的运算,及时解答学生的疑问。

2. 方程与不等式(1)导入:通过实际问题,引出方程与不等式的概念。

(2)讲解:详细讲解方程与不等式的解法,结合例题进行讲解。

(3)随堂练习:让学生练习解方程与不等式,及时解答学生的疑问。

3. 几何图形(1)导入:通过观察生活中的几何图形,引出几何图形的性质。

(2)讲解:详细讲解三角形、四边形、圆的性质与计算,结合例题进行讲解。

(3)随堂练习:让学生练习几何图形的计算,及时解答学生的疑问。

4. 统计与概率(1)导入:通过数据分析,引出统计与概率的重要性。

(2)讲解:详细讲解统计与概率的计算方法,结合例题进行讲解。

(3)随堂练习:让学生练习统计与概率的计算,及时解答学生的疑问。

六、板书设计1. 实数与函数:板书实数的性质、函数的性质与图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年中考总复习(初中数学)衢江区峡川镇中心学校胡荣进第一章实数与代数式1.1 有理数 (4)1.2实数 (6)1.3整式 (8)1.4 因式分解 (10)1.5分式 (12)1.6二次根式 (14)•单元综合评价 (16)第二章方程与不等式2.1 一次方程(组) (20)2.2分式方程 (23)2.3 一元二次方程 (25)2.4 一元一次不等式(组)282.5方程与不等式的应用 (30)•单元综合评价 (33)第三章函数3.1 平面直角坐标系与函数 (37)3.2 一次函数 (39)3.3反比例函数 .................3.4二次函数 ...................3.5函数的综合应用 .............•单元综合评价..................第四章图形的认识4.1简单空间图形的认识•…4.2线段、角、相交线与平行线4.3三角形及全等三角形•…4.4等腰三角形与直角三角形4.5平行四边形 .................4.6矩形、菱形、正方形•…4.7梯形 ......................•单元综合评价................ 第五章圆5.1圆的有关性质 .............5.2与圆有关的位置关系•5.3圆中的有关计算 ...........5.4几何作图 .................•单元综合评价................ 第六章图形的变换6.1图形的轴对称 .............6.2图形的平移与旋转••…6.3图形的相似 ...............6.4图形与坐标 ...............6.5锐角三角函数 .............6.6锐角三角函数的应用••单元综合评价................ 第七章统计与概率7.1数据的收集、整理与描述7.2数据的分析 ................7.3概率 ......................•单元综合评价................ 第八章拓展性专题8.1数感与符号感 .............8.2空间观念 .................8.3统计观念 .................8.4应用性问题 ...............8.5推理与说理 ...............8.6分类讨论问题 .............8.7方案设计问题 .............8.8探索性问题 ...............8.9阅读理解问题 .............1.1有理数【教学目标】1. 理解有理数的有关概念,能用数轴上的点表示有理数,会求倒数、相反数、绝对值.2. 掌握有理数的加、减、乘、除、乘方及简单的混合运算,会比较两个有理数的大小.3. 理解近似数和有效数字的概念,会将一个数表示成科学记数法的形式4. 能运用有理数的运算解决简单的实际问题,会探索有规律性的计算问题【重点难点】重点:有理数的加、减、乘、除、乘方运算及简单的混合运算难点:对含有较大数字的信息作出合理的解释和推断【考点例解】1 1例1 (1)-5 的绝对值是()A. -5 B. 5 C. D.5 5(2)2007年3月5日温总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了西部地区和部分中部地区农村义务教育阶段约52000000名学生的学杂费.这个数据保留两个有效数字用科学记数法表示为()A. 52 107B. 5.2 107C. 5.2 108D. 52 108(3)2008年2月4日,我国遭受特大雪灾,部分城市的平均气温情况如下表(记温A. 广州福州北京哈尔滨分析:本题主要是考查学生对有理数相关概念的理解.第(1 )小题考查绝对值的意义;第(2)小题考查科学记数法;第(3)小题考查有理数的大小比较.解答:(1)B ;(2)B; (3)D.1 例2 计算:1 ( 1)332(一)2.3分析:本题主要是考查有理数的乘方运算及有理数混合运算的顺序1 1 80解答:原式1 ( 1) 9 一1 .9 81 81例3观察表①,寻找规律,表②、表③、表④分别是从表①中截取的一部分,其中a 、b 、分析:本题主要考查有理数运算的简单应用 .表①中第一行中的数均为连续的自然数,而下面各行依次是第一行的 2倍、3倍、4倍、…;表①中第一列中的数均为连续的自然数,依次从左往右各列的最大公约数分别是2、3、4、解答:D. 【考题选粹】1. (2007 •宜宾)数学家发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2 b 1.如把(3,-2 )放入其中,会得到 32 ( 2) 1 8.现将实 数对(-2,3)放入其中得到实数 m ,再将实数对(m ,1)放入其中得到的数是 _」2. ( 2007 •玉溪)小颖中午回家自己煮面条吃,有下面几道工序:①洗锅盛水 2分钟;②洗菜3分钟;③准备面条及佐料 2分钟;④用锅把水烧开 7分钟;⑤用烧开的水煮面条和 菜3分钟.以上各道工序,除④外,一次只能进行一道工序,则小颖要将面条煮好,最 少用 __________ 分钟. 【自我检测】见《数学中考复习一课一练》 .1 2 3 42 4 683 69 1248 12 16□□□表②表③表④A.20,29,30B. 18,30,26 C. 18,20,26 D. 18,30,28c 的值分别是(表①1.2实数【教学目标】1. 了解算术平方根、平方根、立方根的概念,会求非负数的算术平方根和实数的立方根2. 了解无理数与实数的概念,知道实数与数轴上的点的------------ 对应关系,能用有理数估计一个无理数的大致范围.3. 会用算术平方根的性质进行实数的简单四则运算,会用计算器进行近似计算【重点难点】重点:用算术平方根的性质进行实数的简单四则运算难点:实数的分类及无理数的值的近似估计【考点例解】例1 (1)下列实数:一,sin60o,,,3.14159,. 9,( x7)2,-. 8 中,7 3无理数有()A. 1 个B. 2 个C. 3 个D. 4 个(2)下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数.其中正确的是()A.①②③B. ②③④C.①②④D. ②④分析:本题主要是考查学生对无理数与实数概念的理解解答: (1)C;(2)C.例2计算:1运0 21 si n30g2008 2718.分析:本题主要是考查零指数幕、负指数幕及算术平方根的化简与运算解答:原式2 1 1£4 3、—2 1 1 2 3& 2兀例3我国《劳动法》对劳动者的加班工资作出了明确规定: 春节长假期间,前3天是法定休假日,用人单位应按照不低于劳动者本人日工资或小时工资的后4天是休息日,用人单位应首先安排劳动者补休,不能安排补休的,按照不低于劳动者本人日工资或小时工资的200%支付加班工资.小王由于工作需要,今年春节的初一、初二、初三共加班三天(春节长假从十二月卅日开始).如果小王的月平均工资为2800元,那么小王加班三天的加班工资应不低于 _________________________ 元.分析:本题主要考查学生灵活应用实数运算的相关知识解决实际问题的能力.要注意的是今解答:2800 21.75 2 300% 1 200% 1030 (元).【考题选粹】的算术平方根为(7, 2)表示的实数是【自我检测】见《数学中考复习一课一练》300%支付加班工资年的法定假期共有11天,因此日工资标准的计算方法是:2800 21.75.1. (2007 •内江)若a , b 均为整数,且当x ,3 1时,代数式ax b 的值为0,则a b2. (2007 •嘉兴)计算:、81 32 辽 tan 45o. 2第一排 3. (2007 •重庆)将正整数按如右图所示的规律排列第二排 下去.若用有序实数对(n , m )表示第n 排、 第三排从左到右第 m 个数,如(4, 3)表示实数9,则910第四排【教学目标】1. 了解整式的有关概念,理解去括号法则,能熟练进行整式的加减运算2. 掌握正整数指数幕的运算性质,能在运算中灵活运用各种性质3. 会进行简单的整式乘法运算和简单的多项式除法运算,了解两个乘法公式及其几何背景,能运用乘法公式进行简便4. 会通过对问题的分析列出代数式,能熟练进行整式的化简与求值【重点难点】重点:列代数式表示数量关系,整式的化简与求值 难点:乘法公式的灵活运用 【考点例解】(2)下列运算中正确的是((3)如果x m 5,x n 25,那么代数式x 5m 2n 的值是分析:本题主要是考查同类项的概念和整式的加法、乘法和正整数指数幕的运算解答:(1)A ; ( 2)C ; ( 3)5.例2( 1)王老板以每枝 a 元的单价买进玫瑰花 100枝.现以每枝比进价多两成的价格卖出70枝后,再以每枝比进价低 b 元的价格将余下的 30枝玫瑰花全部卖出,则1.3整式1例1( 1 )已知整式-ix a 1y 3与23x b y 2ab是同类项,那么a ,b 的值分别是(A. 2,-1B. 2C. -2,-1D. -2A.3 5 8x x x B.x 32x 9 C.D. x 3 2 x 2 9(2)如图3-1所示,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:S 3-1①第4个图案中有白色纸片____________ 张;②第n个图案中有白色纸片 _____________ 张.分析:本题主要考查列代数式表示数量关系,第(1)题的关键是弄清前70枝玫瑰花的单价和后30枝的单价分别是多少;第(2 )题的关键是要发现图案中的规律:第一个将整式化简,然后再将字母的值代入计算解答:原式9x2 45x25x4x2 4x 1 9x 5.当x1时, 原式915 8.33【考题选粹】1. (2006 •济宁)2006882005能被下列数整除的是()A. 3B. 5C.7 D. 92. (2007 •淄博)根据以下10个乘积,回答问题:11 29 ; 12 28 ; 13 27 ; 14 26;15 25;16 24;17 23;18 22;19 21;20 20.(1)试将以上各乘积分别写成一个“口2-O2”(两数平方差)的形式,并写出其中一个的思考过程;(2)将以上10个乘积按照从小到大的顺序排列起来;王老板的全部玫瑰花共卖了元(用含a,b的代数式表示)解答:分析:图形有4张白色纸片,以后每个图形都比前一个图形多(1) 70 1 20% a 30 a b 114a 30b.3张白色纸片.(2[① 13 ;②3n 1.先化简,再求值:3x 2 3x 2 5x x 1 2x21 ,其中x本题主要考查乘法公式的灵活应用及整式的化简求值.解答这一类题目时,一般应先(3)试由(1)、(2)猜测一个一般性的结论(不要求证明)【自我检测】见《数学中考复习一课一练》.1.4因式分解【教学目标】1. 理解因式分解的概念,了解因式分解与整式乘法之间的关系2. 掌握因式分解的一般思考顺序,会运用提公因式法和公式法进行因式分解,会利用因式分解解决一些简单的实际问题.【重点难点】重点:运用提公因式法和公式法进行因式分解难点:利用因式分解解决一些简单的实际问题.【考点例解】例1 (1 )在一次数学课堂练习中,小聪做了以下4道因式分解题,你认为小聪做得不够完整的一道题是()3A. X X x 2 x1B. 2 x2xy 2 2 y x yC.22D.22x y xy xy x y x y x y x y(2)因式分解x219的结果是()A.x 8x1B.x 2 x4C.x 2x4 D.x10 x8 .分析:本题主要是考查因式分解的概念和因式分解一般思考顺序, 强调因式分解一定要分解到结果中的每个因式都不能再分解为止解答:(1)A ;( 2)B.例2利用因式分解说明:257 512能被120整除.分析:要说明257 512能被120整除,关键是通过因式分解得到257 512含有因数120,可将257512化为同底数形式,然后利用提公因式法分解因数解答:•/257 512 514 512 512 52 1 512 24 511 120,••• 257 512 能被 120 整除.例3在日常生活中经常需要密码,如到银行取款、上网等 .有种用“因式分解”法产生的密码方便记忆,原理是:如对于多项式,因式分解的结果是 x y x y x 2 y 2 , 若取x 9, y 9,则各因式的值分别是:x y 0, x y 18 , x 2 y 2 162 , 于是就可以把“ 018162”作为一个六位数的密码.同理,对于多项式 4a 3 ab 2,若 取a 10, b 10,则产生的密码是: ____ (写出一个即可).分析:本题是因式分解的知识在实际生活中的简单应用.解答时只需要先对多项式进行因式分解,再求各因式的值就可以了【考题选粹】(2)指出A 与C 的大小关系,并说明理由的形状.阅读下面的解题过程: 解:由 a 4 b 2c 2 b 4 a 2c 2 得 a 4 b 4即 a 2 b 2 a 2 b 2 c 2 a 2 b 2 ,②a 2b 2c 2,③解答:4a 3 ab 2a 4a 2b 2 a 2a b 2a b ,当a 10 , b 10时,各因式的值分别是:a10, 2a10, 2a b 30,所以密码可以为 101030 (也可以为103010 或 301010 ).1. (2006 •南通)已知 A a a 2 a 2 5a 19 ,其中a 2.(1)求证:B A 0,并指出A 与B 的大小关系;2. (2007 •临安)已知a 、b 、c 是 ABC 的三边,且满足a 4b 2c 2 b 4a 2c 2,判断 ABCa 2c 2b 2c 2,①••• ABC是直角三角形. ④试问:以上解题过程是否正确?. 若不正确,请指出错在哪一步?(填代号)_________ ;错误原因是__________________________________________ ;本题的正确结论应该是____________________________ . __________________________【自我检测】见《数学中考复习一课一练》.1.5分式【教学目标】1. 了解分式概念,会求分式有意义、无意义和分式值为o时,分式中所含字母的条件2. 掌握分式的基本性质和分式的变号法则,能熟练地进行分式的通分和约分3. 掌握分式的加、减、乘、除四则运算,能灵活地运用分式的四则运算法则进行分式的化简和求值.【重点难点】重点:分式的基本性质和分式的化简.难点:分式的化简和通过分式的运算解决简单的实际问题【考点例解】例1 (1)在函数y X中,自变量X的取值范围是()2x303 3 门 c 3A. XB.XC. X 且X 0D.x 0 且x 一222(2)若分式2 X3的值为零,贝U X的值为X<3(3)下列分式的变形中,正确的是()分析解答: 例2 分析解答: 例32A B X y X y C X y x y D 2x y x yb 1 b 1 x y x y x2y2x y 2x y x y本题主要考查分式的概念与分式的基本性质.在分式中,要使分式有意义,分式的分母要不为零;要使分式值为0,则要求分子的值为0且分式有意义.(1)B ;(2)x ,3 ;(3)C.1 x先化简:1 —亠,再选择一个恰当的x的值代入求值.x 1 x2 1本题主要考查分式的化简和分式有意义的条件法改为乘法,再利用“分解约分”法进行化简原式.在分式化简中,经常可以把分式的除.在本题中的x不能取0和±1.x 1,当x 2时,原式=3.(1)已知一个正分数m n 0,如果分子、分母同时增加1,分数的值是增大m减小?请证明你的结论;(2)若正分数卫m n 0中分子和分母同时增加2,3,…,mk (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定,民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板的比应不小于10%并且这个比值越大,住宅的采光条件越好.问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由分析: 解答: 本题考查了分式的大小比较,并要求利用有关知识解决实际问题.解题的关键是理解题意,得到正确的结论(1)正分数—m n 0中,若分子、分母同时增加m1,分数的值增大,证明如下:m n 0, m m 1 0(2)正分数」m n 0中分子和分母同时增加m 2, 3,…,k (整数k >0)时, 分式的值也增大(3)住宅的采光条件变好,理由略【考题选粹】再求值.”小明代入某个数后求得值为 3.你能确定小明代入的是哪一个数吗?你认为他代入的这个数合适吗?为什么?2. (2007 •嘉兴)解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若矩形的两边长分别为3和4,求矩形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若矩形的周长(2)提出(1)的一个“逆向”问题,并解答这个问题【自我检测】见《数学中考复习一课一练》.1.6二次根式【教学目标】1. 了解二次根式的概念,掌握二次根式有意义的条件2. 了解二次根式的加、减、乘、除运算法则,会对简单的二次根式进行化简,会用二次根式的运算法则进行实数的简单四则运算.【重点难点】重点:二次根式的化简和用二次根式的运算法则进行实数的简单四则运算.难点:二次根式的化简.【考点例解】例1 (1 )若代数式x 2在实数范围内有意义,则x的取值范围是()A. x 2B. x 2C. x 2D. x 2.(2)若x为实数,则下列各式中一定有意义的是()1. (2007 •东营)小明在考试时看到一道这样的题目: “先化简2a2 1为14,且一边长为3,求另一边的长”;也可以是“若矩形的周长为14,求矩形面积的(1 )设A3xx 2求A与B的值;A. . 2 xB. x21C. .2D. •、x22\ x分析:本题主要考查二次根式的概念,即在二次根式中,被开方数必须是非负数解答:(1)B ;(2)B.例2 (1)计算:V75 J48 .(2)比较大小: 3. 7 ________ 2 15.分析:本题主要考查二次根式性质的灵活应用和二次根式的混合运算.第(1)题中,可先利用二次根式的性质进行化简,然后利用实数的运算法则进行计算;第(2)题要先逆用性质:Ma2a a 0,再进行两个数的大小比较.解答:(1)原式2・..35、..3 .3 4.3 2.3 2.3 12.f~ I f J J J(2 )••• 3 ..7 . 63 , 2 15 .60,且.63 . 60 ,37 2,15.例3 已知ABC的三边a , b , c满足a2 b 2 10a 2扌厂4 22,则ABC 为().A.等腰三角形B. 正三角形C. 直角三角形D. 等腰直角三角形分析:本题考查了二次根式的非负性,即:在二次根式Ja中,a 0且■< a 0.解答:将原式变形,得 a 10a25 J b 4 〜2Jb 4 1J c 1 2 02 ---------------------------- 2J c 1 20.即a 5 vb 4 1a 5 0,了b 4 1 0,vc 1 2 0.a b c 5.ABC为等边三角形,故选B.【考题选粹】1. (2006 •南充)已知a 0,那么化简寸a22a的正确结果是()A. aB. aC.3aD. 3a2. (2007 •烟台)观察下列各式:数nn 1的等式表示出来: ______________________ . _______________【自我检测】见《数学中考复习一课一练》.第一单元综合测试(数与式)班级______________ 学号______________________ 姓名____________________ 得分.一、选择题(本题有10小题,每小题4分,共40分)1.如果水库的水位高于标准水位3m时,记作+3m那么低于标准水位2m时,应记作()A. -2 mB. -1mC. +1mD. +2m2. 2007年我国某省国税系统完成税收收入为3.45065 X 1011元,也就是收入了().34506.5 亿元 D. 345065 亿元A. 345.065亿元 B. 3450.65亿元C3.若整式x2 2 m 3 x 16 是-个完全平方式,那么m的值是()A. -5B. 7C. -1D. 7或-14.估计.88的大小应在()A. 9.1 〜9.2 之间B. 9.2 〜9.3 之间C. 9.3个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是 ()二、填空题(本题有 6小题,每小题5分,共30分)11. 写出一个小于2的无理数: ________________ . _______12. 列代数式表示:“数a 的2倍与10的和的二分之一”应为 _________________________ . ______________14. 一个矩形的面积是x 2 9米2,它的一条边为 x 3米,那么它的另一边为 ________________________ 米.15. 数学家发现一个魔术盒,当任意实.数.对.a,b 进入时,会得到一个新的实数:a 2 b 1.例如把(3, -2 )放入其中后,就会得到32+ (-2 ) +仁8.现将实数对(-2, 3)放入其中得到实数m ,再将实数对 m,1放入其中后,得到的实数是.16.如果2007个整数a 1 , a 2 ,…,a 2007满足下列条件:6 0 , a ? 印2 ,9.4 之间 D. 9.4 〜9.55.如图 1,点 A , B 在数轴上对应的实数分别是A. mn B. m nC. n mD.n m6.下列运算中,错误的是()A aaca b 一A.c 0 B.1 C.b bca bAB |------- ►m 0n 0.5a b 5a 10b D x y y x0.2a 0.3b 2a 3b x y y xA. 31 个B. 33C.35D.378.如果代数式3x 2 4x 6的值为则代数式6的值为A. 7B. 9C. 12D. 189.如图2,图中阴影部分的面积是( A. 5xy B. 9xy C. 8.5xy D. 7.5xy10.已知m , n 是两个连续自然数(mv n ),且 qmn ,p . q n . q m ,那么p 的值是()A.奇数B.偶数C.奇数或偶数13.已知x y 7,且xy 12,则当x1 1y 时,代数式——的值为 __________________ . ________x y7.某种细胞开始有2个,1小时后分裂成m , n ,那么A , B 两点间的距离是()4个并死去1个,2小时后分裂成6个并死去1D.三、解答题(本题有 7小题,共80 分)17. (10 分)计算:,8 2sin45o 2 1 3.14b 值代入求值19. ( 10分)观察下面一列数,探求其中的规律:彳 11111d _ _ _ _ _・・・3 4 5 6(1) 请在上面的横线上填出第 7, 8, 9个数;(2) 第2008个数是什么?第n 个数是什么?如果这一列数无限地排列下去,那么与哪 个数越来越接近?20. (10分)分解因式:2(2) 4xy 8xy 4x21. (12分)2007年4月18日是全国铁路第六次大提速的第一天 .这一天,小明爸爸因要出差,于是他到火车站查询列车的开行时间,下表是他从火车站带回家的最新时刻表: 2007年4月18日起XX次列车时刻表始发站发车时间 终点站 到站时间a 3,a2007a2006a200718.( 10分)先化简代数式:a b a 2b2 ,2a b ~22a 4ab 4b1,然后选择一个使原式有意义的(1) x 4y 4A站上午8:20B站次日12:20小明爸爸找出了以前同一车次的时刻表如下:始发站发车时间终点站到站时间A站下午14:30B站第三日8:30比较了两张时刻表后,小明爸爸提出了下面两个问题,请你帮小明解答:(1 )现在该次列车的运行时间比以前缩短了多少小时?(2)如果该次列车提速后的平均时速为200千米/小时,那么该次列车原来的平均时速为多少?(结果精确到个位)b的小正方形后余下的图22. (14分)下面的图(1)是由边长为a的正方形剪去一个边长为形.把图(1)剪开后,再拼成一个四边形,可以用来验证公式:a2 b2 (a b)(a b).(1) 请你通过对图(1)的剪拼,画出三种不同拼法的示意图要求:①拼成的图形是四边形;②在图(1)上画出剪裁线(用虚线表示);③在拼出的图形上标出已知的边长.(2) 选择其中的一种拼法写出验证上述公式的过程.2 2 2 2 2 223. (14分)设a! 3 1 , a2 5 3 ,…,a n2n 1 2n 1 (n > 0 的自然数).(1)探究:a n是8的倍数吗?请说明理由,并用文字语言表述你所获得的结论;(2 )若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a1, a2,…,a n,…,这一列数中从小到大排列的前4个完全平方数,并求:当n满足什么条件时,a n为完全平方数?2.1 一次方程(组)【教学目标】1. 理解方程、方程组,以及方程和方程组的解的概念2. 掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解.3. 能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性.【重点难点】重点:解一元一次方程和二元一次方程组的一般步骤与方法难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组【考点例解】2x k x3kM dN,1的解是x 1,则k 的值是(17U 1\ 1 丿八V"/|土322 厂,13A.B. 1C.D. 0.717分析 :本题主要考查方程和方程组的概念,以及 兀一次方程和二兀「次方程组的解法解答: (1) B ;(2) C.匚、十,2a 3b 13 _a 8.32x23 y 1 13 j例2已知方程组 的解是,则方程组的3a 5b 30.9b 1.2 3x 2 5 y 130.9解是 ___________ .分析:本题主要考查一元一次方程或二元一次方程组的解法和整体代换的思想.在解答时,既可以直接求方程组的解,也可以利用整体思想,分别把x 2和y 1 “看作” a 和b ,通过解一元一次方程来解决 . x 6.3解答:y 2.2例3陈老师为学校购买运动会的奖品后,回学校向总务处王老师交帐时说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了 1500元,现在还剩余418元.…” 王老师算了一下说:“你肯定搞错了” .(1) 王老师为什么说陈老师搞错了呢?请你用方程的知识给予解释 (2) 陈老师连忙拿出购物发票进行核对, 发现自己的确是弄错了,因为他还买了一个笔记本.但笔记本的单价已经模糊不清了,只能辨认出应该是小于 10元的整数.问:笔记本的单价可能是多少元?分析:本题考查了列一元一次方程解应用题.列方程(组)解应用题的一般步骤是:审题、 设元、列方程、解方程、检验和作答.在检验时,不仅要检验所求得的结果是否是所列方程的解,而且还要检验方程的解是否符合实际问题(2)若二元一次方程组x ay 3x by3 的解为42,则a b 的值为(1A. 1B. 3C. -1D. -3解答:(1 )设单价为8元的书买了 x 本,则单价为12元的书买了 105 x 本.由题意得8x 12 105 x 1500418.解这个方程,得 x 44.5.因为书的本数一定是正整数,所以x 44.5 (本)不合题意,因此陈老师错了(2)设笔记本的单价为 y 元,则由题意得8x 12 105 x 1500418 y .解这个关于y 的方程,得 y 4x 178 .例4新星学校的一间阶梯教室内,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位.(1)请你在下表的空格内填写一个适当的代数式:(2)已知第4排有18个座位,第15排的座位数是第5排的座位数的2倍,则第21 排有多少个座位?分析:本题考查了列二元一次方程组解应用题.解答本题的关键是会从表中数据的变化中寻找出一定的规律,再利用规律求出a 和b 的值.解答:(1) a 3b .••• 0 y 10,••• 0 4x 178 10,又••• x 为正整数,• X 可以取 45、46.当x 45 时,y 4x 178 4 45 178 2 当x46 时,y4x 178 4 46 1786笔记本的单价可能是 2 元或6 元.解得178188x(2 )根据题意,得a 3b18a 1,解得a 14b 2 a 4bb 2(元); (元).••• 12 20 2 52.答:第21排有52个座位.【考题选粹】1. (2007 •济宁)甲、乙两人同时从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动,已知山坡长为360m,甲、乙两人上山的速度比是6:4,并且甲、乙两人下山的速度都是各自上山速度的 1.5倍,当甲第三次到达山顶时,则此时乙所在的位置是_____________ . __________2. (2007 •北京)某地区为了改善生态环境,增加农民收入,自2004年起就鼓励农民在荒山上广泛种植某种果树,并且出台了一项激励措施:即在开荒种树的过程中,每一年新增果树达到100棵的农户,当年都可得到生活补贴1200元,且每超出一棵,政府还给予每棵a元的奖励.另外,种植的果树,从下一年起,每年每棵平均将有b元的果实收入下表是某农户在头两年通过开荒种树每年获得的总收入情况:(注:年总收入=生活补贴费+政府奖励费+果实收入)【自我检测】见《数学中考复习一课一练》.2.2分式方程【教学目标】1. 了解分式方程的概念,能将实际问题中的等量关系用分式方程表示出来2. 会解可化为一元一次方程(或一元二次方程)的分式方程,体验转化的数学思想;了解增根的概念,会进行分式方程的验根.3. 能根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性. 【重点难点】重点:解可化为一元一次方程(或一元二次方程)的分式方程的一般步骤与方法 难点:根据实际问题中的数量关系,列出分式方程,并检验解的合理性 【考点例解】的整式方程,但不满足原分式方程意验根.解答:去分母,得 x x2x 2 x 21去括号,得x 2 2x x 2 4 1移项,合并同类项, 得2x 3 方程两边同时除以2,得x3 2经检验,x-是原方程的解.2例3某公司投资某个项目, 现有甲、乙两个工程队有能力承包这个项目.公司经调查发现:乙工程队单独完成工程所需的时间是甲工程队单独完成工程所需时间的2倍,;甲、乙两队合作完成工程需要 20天,甲队每天的工作费用为 1000元,乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,该公司应选择哪个工程队来承 包这个项目?公司应付出的费用为多少元?如果关于x 的分式方程 无解,那么a 的值是(A. 1B. -1C. 3D.-3.分析:本题主要考查分式方程的增根概念需要注意的是:分式方程的增根应该满足变形后解答: A. 例2x1解分式方程:12x 2x 2 4.在解答时,应按照解分式方程的一般步骤进行,并注分析:本题主要考查分式方程的解法分析:本题考查了列分式方程解应用题 .解答本题的关键是根据题意求出甲、乙两队单独完 成工程所需的时间,进而求出各自的总费用解答:设甲队单独完成工程需要 x 天,则乙队单独完成工程需要 2x 天.根据题意,得1 1 201 解得 x 30x 2x经检验,x 30是原方程的解,且 x 30和2x 60都符合题意•••应付甲工程队的费用为: 30 1000 30000 (元),应付乙工程队的费用为:30 2 550 33000 (元).•/ 30000 33000,•••该公司应选择甲工程队,需付出的总费用为30000元.答:该公司应选择甲工程队,需付出的总费用为30000元.【考题选粹】1. ( 2007 •青岛)某市在旧城改造过程中,需要整修一段全长2400米的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了2. ( 2007 •怀化)解方程:【自我检测】见《数学中考复习一课一练》2.3 —兀二次方程【教学目标】1. 理解一元二次方程的概念和一般形式,能把一个一元二次方程化为一般形式2. 理解配方法,会用因式分解法、 直接开平方法和公式法解简单的一元二次方程,掌握一元二次方程的求根公式.3. 能用一元二次方程解决实际问题,能根据具体问题的实际意义检验结果的合理性.【重点难点】重点:用因式分解法、直接开平方法和公式法解简单的一元二次方程20%结果提前8小时完成任务.若设原计划每小时修路x 米,则根据题意可得方程5x 2 3x 2 x x 1。

相关文档
最新文档