美国钢结构学会钢结构规范全文AISC-LRFD中文译稿

合集下载

钢结构英文翻译对照

钢结构英文翻译对照

钢结构英文翻译对照第一篇:钢结构英文翻译对照钢结构部分术语中英文Steel structure 面积:area 结构形式:framework 坡度:slope 跨度:span 柱距:bay spacing 檐高:eave height 屋面板:roof plate 墙面板:wall plate 梁底净高: clean/net height 屋面系统: roof sys 招标文件: tender doc 建筑结构结构可靠度设计统一标准: unified standard for designing of architecture construction reliability 建筑结构荷载设计规范: load design standard for architecture construction 建筑抗震设计规范: anti-seismic design standard for architecture 钢结构设计规范: steel structure design standard 冷弯薄壁型钢结构技术规范: technical standard for cold bend and thick steel structure 门式钢架轻型房屋钢结构技术规范: technical specification for steel structure of light weight building with gabled frames 钢结构焊接规程: welding specification for steel structure 钢结构工程施工及验收规范: checking standard for constructing and checking of steel structure 压型金属板设计施工规程: design and construction specification for steel panel 荷载条件:load condition 屋面活荷载:live load on roof屋面悬挂荷载:suspended load in roof 风荷载:wind load 雪荷载:snow load 抗震等级:seismic load 变形控制:deflect control 柱间支撑X撑:X bracing 主结构:primary structure 钢架梁柱、端墙柱: frame beam, frame column, and end-wall column 钢材牌号为Q345或相当牌号,大型钢厂出品:Q345 or equivalent, from the major steel mill 表面处理:抛丸除锈Sa2.5级,环氧富锌漆,两底两面,总厚度为125UM。

中文版美国钢结构建筑设计规范(ANSI-AISC-360-05_)

中文版美国钢结构建筑设计规范(ANSI-AISC-360-05_)

ANSI/AISC 360-05美国国家标准钢结构建筑设计规范2005年3月9日发布本规范取代下列规范:1999年12月27日颁布的《钢结构建筑设计规范:荷载和抗力系数设计法》(LRFD)、1989年6月1日颁布的《钢结构建筑设计规范:容许应力设计法和塑性设计法》、其中包括1989年6月1日颁布的附录1《单角钢杆件的容许应力法设计规范》、2000年11月10日颁布的《单角钢杆件的荷载和抗力系数设计法设计规范》、2000年11月10日颁布的《管截面杆件的荷载和抗力系数设计法设计规范》、以及代替上述规范的所有从前使用的相关版本。

本规范由美国钢结构协会委员会(AISC)及其理事会批准发布实施。

本规范由美国钢结构协会规范委员会(AISC)审定,由美国钢结构协会董事会出版发行。

美国钢结构学会One East Wacker Drive,Suite 700芝加哥,伊利诺斯州60601-1802版权©2005美国钢结构学会拥有版权保留所有权利。

没有出版人的书面允许,不得对本书或本书的任何部分以任何形式进行复制。

本规范中所涉及到的相关信息,基本上是根据公认的工程原理和原则进行编制的,并且只提供一般通用性的相关信息内容。

虽然已经提供了这些精确的信息,但是,这些信息,在未经许可的专业工程师、设计人员或建筑工程师对其精确性、适用性和应用范围进行专业审查和验证的情况下,不得任意使用或应用于特定的具体项目中。

本规范中所包含的相关材料,并非对美国钢结构协会的部分内容进行展示或担保,或者,对其中所涉及的相关人员进行展示或担保,并且这些相关信息在适用于任何一般性的或特定的项目时,不得侵害任何相关专利权益。

任何人在侵权使用这些相关信息时,必须承担由此引起的所有相关责任。

必须注意到:在使用其它机构制订的规范和标准时,以及参照相关标准制订的其它规范和标准时,可以随时对本规范的相关内容进行修订或修改并且随后印刷发行。

本协会对未参照这些标准信息材料,以及未按照标准规定在初次出版发行时不承担由此引起的任何责任。

美国钢结构设计手册第七章十三十四节

美国钢结构设计手册第七章十三十四节

7.13 LRFD FOR COMPOSITE BEAM WITH UNIFORM LOADSThe typical floor construction of a multistory building is to have composite framing. The floor consists of 31⁄4-in-thick lightweight concrete over a 2-in-deep steel deck. The concrete weighs 115 lb/ft3and has a compressive strength of 3.0 ksi. An additional 30% of the dead load is assumed for equipment load during construction. The deck is to be supported onsteel beams with stud shear connectors on the top flange for composite action (Art. 7.12).Unshored construction is assumed. Therefore, the beams must be capable of carrying their own weight, the weight of the concrete before it hardens, deck weight, and construction loads. Shear connectors will be3⁄4 in in diameter and 31⁄2 in long. The floor system should be investigated for vibration, assuming a damping ratio of 5%.FIGURE 7.6 Seven locations of the plastic neutral axis used for determining the strength of a composite beam.(a) For cases 6 and 7, the PNA lies in the web. (b) For cases 1 through 5, the PNA lies in the steel flange.A typical beam supporting the deck is 30 ft long. The distance to adjacent beams is 10 ft. Ribs of the deck are perpendicular to the beam. Uniform dead loads on the beam are construction, 0.50 kips per ft, plus 30% for equipment loads, and superimposed load, 0.25 kips per ft. Uniform live load is 0.50 kipsper ft.Q for Partial Composite Design(kips)TABLE 7.3nLocation of PNA n Q and concrete compression(1)y x F A (2)to (5)*2y f y s F A F A ∆- (6) 0.5[C(5)+C(7)] †(7)0.25y s F A* A ƒ area of the segment of the steel flange above the plastic neutral axis (PNA). †C (n ) compressive force at location (n ). Beam Selection. Initially, a beam of A36 steel that can support the construction loads is selected. It is assumed to weigh 26 lb /ft. Thus the beam is to be designed for a service dead load of 0.5×1.3+0.026=0.676 kips per ft.Factored load=0.676*1.4=0.946 kips per ftFactored moment = u M =0.946×302/8=106.5 kip-ftThe plastic section modulus required therefore isZ=369.0125.106⨯⨯=y u F M φ=39.43in Use a W16 ×26 (Z =44.2 3in and moment of inertia I =301 4in ).The beam should be cambered to offset the deflection due to a dead load of 0.50 +0.026 =0.526 kips per ft.Camber =1.1301000,293841230526.0534=⨯⨯⨯⨯⨯in Camber can be specified on the drawings as 1 in.Strength of Fully Composite Section.Next, the composite steel section is designed to support the total loads. The live load may be reduced in accordance with area supported (Art. 7.9). The reduction factor is R = 0.0008(300-150) =0.12. Hence the reduced live load is 0.5(1 - 0.12) = 0.44 kips per ft. The factored load is the larger of the following:1.2(0.50 + 0.25 + 0.026) × 1.6 +0.44= 1.635 kips per ft1.4(0.5 + 0.25 + 0.026) =1.086 kips per ftHence the factored moment is9.1838/30635.12=⨯=u M kip-ftThe concrete-flange width is the smaller of b = 10 ×12 = 120 in or b = 2(30 ×12⁄8) =90 in (governs).The compressive force in the concrete C is the smaller of the values computed from Eqs. (7.24) and (7.25).=⨯⨯⨯==25.390385.085.0'c c c A f C 745.9kips==y s t F A C 7.68×36=276.5 kips (governs)The depth of the concrete compressive-stress block (Fig. 7.5) isa==⨯⨯=900.385.02760585.0'b f C c 1.205in Since t c C C >,the plastic neutral axis will line in the concrete slab (case 3, Art.7.12). The distance between the compression and tension forces on the W16 ×26 (Fig.7.5d) ise =0.5d + 5.25 - 0.5a= 0.5 × 15.69 + 5.25- 0.5 ×1.205 =12.493 inThe design strength of the W16 × 26 is==e C M t n 85.0φ0.85×276.5×12.493/12=244.7 kip-ft >183.9 kip-ft —OKPartial Composite Design. Since the capacity of the full composite section is more than required, a partial composite section may be satisfactory. Seven values of the composite section (Fig. 7.6) are calculated as follows, with the flange area f A = 5.5 ×0.345 = 1.8982in .1.Full composite:y s n F A Q =∑= 276.5 kips=n M φ 276.5 kips2.Plastic neutral axis f f A A =∆/4 = 0.4745 in below the top of the top flange. From Table7.3,y f y s n F A F A Q ∆-=∑2∑n Q =276.5 -2 × 0.4745 ×36 = 242.3a =242.3/(0.85 × 3.0 × 90) = 1.0558 ine = 15.69/2 × 5.25 - 1.0558/2 = 12.567 inn M =242.3 × 12.567 +0.5(276.5-242.3)×(15.69 - 0.34536898.123.2425.276⨯⨯-)= 3,312 kip-in =n M φ 0.85 × 3312/12 ? 234.6 kip-ft3.PNA 2/f A Af =∆=0.949 in below the top of the top flange:=∑n Q 208.2 kips=n M φ 224.0 kip-ft4. PN f f A A 3=∆/4 =1.4235 in below the top of the top flange:=∑n Q 174.0 kips=n M φ 212.8 kip-ft5. PNA at the bottom of the top flange (f f A A =∆):=∑n Q 139.9 kips=n M φ201.0 kip-ft6. Plastic neutral axis within the web.∑n Q is the average of items 5 and 7. (See Table 7.3.) =∑n Q (139.9 ? 69.1)/2 ? 104.5 kips=n M φ186.4 kip-ft7. =∑n Q 0.25 ? 276.5 ? 69.1 kips=n M φ166.7 kip-ftFrom the partial composite values 2 to 7, value 6 is just greater than =u M 183.9 kip-ft. The AISC ‘‘Manual of Steel Construction ’’ includes design tables for composite beams that greatly simplify the calculations. For example, the table for the W16 × 26, grade 36, composite beam gives n M φfor the seven positions of the PNA and for several values of the distance 2Y (in) from the concrete compressive force C to the top of the steel beam. For the preceding example,con Y Y =2-a/2 (7.31)where con Y = total thickness of floor slab, ina=depth of the concrete compressive-stress block, inFrom the table for case 6,∑n Q =104 kips. a=900.385.0104⨯⨯=0.453 in Substitution of a and =con Y 5.25 in in Eq. (7.31) gives=2Y 5.25-0.453/2 =5.02 inThe manual table gives the corresponding moment capacity for case 6 and =2Y 5.02 in as =n M φ186 kip-ft > 183.9 kip-ft —OKThe number of shear studs is based on C=104.5 kips. The nominal strength n Q of one stud is given by Eq. (7.28). For a 3⁄4-in stud, with shearing area sc A = 0.442 2in and tensile strength u F =60 ksi, the limiting strength is u sc F A = 0.442× 60 = 26.5 kips. With concrete unit weight w=115 lb/3ft and compressive strength 'c f =3.0 ksi, and modulus of elasticity c E = 2136 ksi, the nominal strength given by Eq. (7.28) isn Q =0.5 ×0.442 21360.3⨯= 17.7 kips < 26.5 kipsThe number of shear studs required is 2 × 104.5/17.7 =11.8. Use 12. The total number of metal deck ribs supported on the steel beam is 30. Therefore, only one row of shear studs is required, and no reduction factor is needed.Deflection Calculations. Deflections are calculated based on the partial composite properties of the beam. First, the properties of the transformed full composite section (Fig. 7.7) are determined. The modular ratio n s E E is n = 29,000/2136 = 13.6. This is used to determine the transformed concrete area 1A = 3.25 × 90/13.6 = 21.52 in2. The area of the W16 × 26 is 7.68 2in , and its moment of inertia s I = 301 4in . The location of the elastic neutral axis is determined by taking moments of the transformed concrete area and the steel area about the top of the concrete slab: X=68.752.21)25.569.155.0(68.72/25.352.21++⨯+⨯=4.64 in The elastic transformed moment of inertia for full composite action is1065301)64.425.5269.15(68.7)225.364.4(52.21126.1325.390223=+-++-+⨯⨯=tr I 4in Since partial composite construction is used, the effective moment of inertia is determined from 47.7705.276/5.104)3011065(301in I eff =-+=eff I is used to calculate the immediate deflection under service loads (without long-term effects). For long-term effect on deflections due to creep of the concrete, the moment of inertia is reduced to correspond to a 50% reduction in c E . Accordingly, the transformed moment of inertia with full composite action and 50% reduction in c E is tr I = 900.34in and is based on a modular ratio 2n =27.2. The corresponding transformed concrete area is 1A =10.76 2in .FIGURE 7.7 Transformed section of a composite beam.The reduced effective moment of inertia for partial composite construction with long- term effect is determined from Eq. (7.32):。

美国结构设计规范简介

美国结构设计规范简介

详见规范第B章节
11
1. 总的设计要求(继续)

宽厚比,高厚比的要求:
截面分类: COMPபைடு நூலகம்CT;NON-COMPACT;SLENDERNESS. AISC允许局部屈曲
12
2. 整体稳定设计要求

稳定设计是钢结构设计的重点 稳定设计分为整体稳定设计和构件稳定设计(有效长 度系数或计算长度系数是联系两者的桥梁)
Extended End-Plate Moment Connection
42
常见的连接形式:
栓焊连接
Flush End-Plate Moment Connection
43
常见的连接形式:

铰接连接:
端板连接
双角钢连接
刀板连接
44
三、抗震相关内容简介
地震反应修正系数 (Seismic response modification coefficient) R >3
支撑框架

特殊中心支撑框架(SCBF); 普通中心支撑框架(OCBF); 偏心支撑框架(EBF); 屈曲约束支撑框架(BRBF)
钢板剪力墙(Special Plate Shear Walls)
53
抗震设计的几个问题



抗震钢结构的材料 宽厚比限值, 保护区(Protected Zone) 特殊抗弯框架的一些设计概念
16
P-Delta效应
17
二阶弹性分析方法

一阶弯矩放大法‘B1-B2“法:
其中 GB的公式类似,但缺少B1系数: 类似B1的系数出现在:
Cm 为等效弯矩系数
18
直接分析法和有效长度法
19

2005版美国钢结构设计规范_部分简介_中文

2005版美国钢结构设计规范_部分简介_中文

2005版美国钢结构设计规范摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。

极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。

两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。

这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。

在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。

关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要1介绍2基本设计理念2.1容许应力设计2.2荷载与阻力因素设计2.2.1强度不足和超载3 2005年AISC说明书3.1 背景3.2 格式规范3.3 基本设计要求4 新规范内容布置4.1内容概述4.2总则4.3设计要求B1 总则B3.6连接点B3.6.1简单连接B3.6.2弯矩连接4.4稳定性设计分析4.4.1稳定性设计要求4.4.2需求强度计算4.5 构件抗拉设计4.6 构件抗压设计4.7 构件抗弯设计4.8 构件抗剪设计4.9 构件组合受力设计和抗扭设计4.10 组合构件设计4.11 连接设计4.12高速钢和箱形构件连接设计5 注释6 摘要参考文献1.介绍1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。

虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。

因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。

美国钢结构建筑设计规范(ANSI-AISC-360-05)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。

)序言本设计规范旨在提供完善的标准设计之用。

本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。

本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。

在本条文说明文本中首次出现的术语使用了斜体。

准线图。

用于决定某些柱体计算长度系数K的列线图解。

双轴弯曲。

某一构件在两垂直轴同时弯曲。

脆性断裂。

在没有或是只有轻微柔性变形的情况下突然断裂。

柱体弧线。

表达砥柱强度和直径长度比之间关系的弧线。

临界负荷。

根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。

循环负荷。

重复地使用可以让结构体变得脆弱的额外负荷。

位移残损索引。

用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。

构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。

同理,基于局部歪曲构件的有效宽度的惯性矩。

同理,用于设计部分组合构件的惯性矩。

有效劲度。

通过构件横截面有效惯性矩计算而得的构件劲度。

疲劳界限。

不计载荷循环次数,不发生疲劳断裂的压力范围。

一阶逆性分析。

基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。

柔性连接。

连接中,允许构件末端简支梁的一部分发生旋转,而非全部。

挠曲。

受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。

非弹性作用。

移除促生作用力后,材料变形仍然不消退的现象。

非弹性强度。

当材料充分达到屈服应力时,结构体或是构件所具有的强度。

美国钢结构学会单角钢规范(英文

美国钢结构学会单角钢规范(英文
Load and Resistance Factor Design Specification for Single-Angle Members
November 10, 2000
Supersedes the Specification for Load and Resistance Factor Design of Single-Angle Members dated December 1, 1993 Prepared by the American Institute of Steel Construction, Inc. Under the Direction of the AISC Committee on Specifications and approved by the AISC Board of Directors
When a load is transmitted by transverse weld through just one leg of the angle, Ae is the area of the connected leg and U 1.
2.
TENSION The tensile design strength tPn shall be the lower value obtained according to the limit states of yielding, t 0.9, Pn Fy Ag, and fracture, t 0.75, Pn FuAe. a. For members connected by bolting, the net area and effective net area shall be determined from AISC LRFD Specification Sections B1 to B3 inclusive. When the load is transmitted by longitudinal welds only or a combination of longitudinal and transverse welds through just one leg of the angle, the effective net area Ae shall be: Ae AgU (2-1)

美国钢结构规范

美国钢结构规范

SECTION10COLD-FORMED STEEL DESIGNR.L.Brockenbrough,P.E.President,R.L.Brockenbrough&Associates,Inc.,Pittsburgh,PennsylvaniaThis section presents information on the design of structural members that are cold-formedto cross section shape from sheet steels.Cold-formed steel members include such productsas purlins and girts for the construction of metal buildings,studs and joists for light com-mercial and residential construction,supports for curtain wall systems,formed deck for theconstruction offloors and roofs,standing seam roof systems,and a myriad of other products.These products have enjoyed significant growth in recent years and are frequently utilizedin some shape or form in many projects today.Attributes such as strength,light weight,versatility,non-combustibility,and ease of production,make them cost effective in manyapplications.Figure10.1shows cross sections of typical products.10.1DESIGN SPECIFICATIONS AND MATERIALSCold-formed members for most application are designed in accordance with the Specificationfor the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC.Generally referred to as the AISI Specification,it applies to members cold-formed to shape from carbon or low-alloy steel sheet,strip,plate,or bar,not more than1-in thick,used for load carrying purposes in buildings.With appropriate allowances,it canbe used for other applications as well.The vast majority of applications are in a thicknessrange from about0.014to0.25in.The design information presented in this section is based on the AISI Specification and its Commentary,including revisions being processed.The design equations are written indimensionless form,except as noted,so that any consistent system of units can be used.Asynopsis of key design provisions is given in this section,but reference should be made tothe complete specification and commentary for a more complete understanding.The AISI Specification lists all of the sheet and strip materials included in Table1.6(Art.1.4)as applicable steels,as well several of the plate steels included in Table1(A36,A242,A588,and A572).A283and A529plate steels are also included,as well as A500structuraltubing(Table1.7).Other steels can be used for structural members if they meet the ductilityrequirements.The basic requirement is a ratio of tensile strength to yield stress not less than1.08and a total elongation of at least10%in2in.If these requirements cannot be met,alternative criteria related to local elongation may be applicable.In addition,certain steelsthat do not meet the criteria,such as Grade80of A653or Grade E of A611,can be used10.110.2SECTION TENFIGURE10.1Typical cold-formed steel members.for multiple-web configurations(roofing,siding,decking,etc.)provided the yield stress istaken as75%of the specified minimum(or60ksi or414MPa,if less)and the tensile stressis taken as75%of the specified minimum(or62ksi or428MPa if less).Some exceptionsapply.Suitability can also be established by structural tests.10.2MANUFACTURING METHODS AND EFFECTSAs the name suggests,the cross section of a cold-formed member is achieved by a bendingoperation at room temperature,rather than the hot rolling process used for the heavier struc-tural steel shapes.The dominant cold forming process is known as roll-forming.In thisprocess,a coil of steel is fed through a series of rolls,each of which bends the sheetprogressively until thefinal shape is reached at the last roll stand.The number of roll standsmay vary from6to20,depending upon the complexity of the shape.Because the steel isfed in coil form,with successive coils weld-spliced as needed,the process can achieve speedsup to about300ft/min and is well suited for quantity production.Small quantities may beproduced on a press-brake,particularly if the shape is simple,such as an angle or channelcross section.In its simplest form,a press brake consists of a male die which presses thesteel sheet into a matching female die.In general,the cold-forming operation is beneficial in that it increases the yield strength of the material in the region of the bend.Theflat material between bends may also showan increase due to squeezing or stretching during roll forming.This increase in strength isattributable to cold working and strain aging effects as discussed in Art.1.10.The strengthincrease,which may be small for sections with few bends,can be conservatively neglected.Alternatively,subject to certain limitations,the AISI Specification includes provisions forusing a section-average design yield stress that includes the strength increase from cold-forming.Either full section tension tests,full section stub column tests,or an analyticalmethod can be employed.Important parameters include the tensile-strength-to-yield-stressCOLD-FORMED STEEL DESIGN10.3 TABLE10.1Safety Factors and Resistance Factors Adopted by the AISI SpecificationCategoryASDsafetyfactor,⍀LRFDresistancefactor,␾Tension members 1.670.95 Flexural members(a)Bending strengthSections with stiffened or partially stiffened compressionflanges 1.670.95 Sections with unstiffened compressionflanges 1.670.90 Laterally unbraced beams 1.670.90 Beams having oneflange through-fastened to deck or sheathing(C-or Z-sections) 1.670.90 Beams having oneflange fastened to a standing seam roof system 1.670.90 (b)Web designShear strength controlled by yielding(Condition a,Art.10.12.4) 1.50 1.00 Shear strength controlled by buckling(Condition b or c,Art.10.12.4) 1.670.90 Web crippling of single unreinforced webs 1.850.75 Web crippling of I-sections 2.000.80 Web crippling of two nested Z-sections 1.800.85 Stiffeners(a)Transverse stiffeners 2.000.85(b)Shear stiffeners 1.50/1.67 1.00/0.90 Concentrically loaded compression members 1.800.85 Combined axial load and bending(a)Tension component 1.670.95(b)Compression component 1.800.85(c)Bending component 1.670.90/0.95 Cylindrical tubular members(a)Bending 1.670.95(b)Axial compression 1.800.85 Wall studs(a)Compression 1.800.85(b)Bending 1.670.90/0.95 Diaphragm construction 2.00/3.000.50/0.65 Welded connections(a)Groove weldsTension or compression2500.90 Shear,welds 2.500.80 Shear,base metal 2.500.90 (b)Arc spot weldsShear,welds 2.500.60 Shear,connected part 2.500.50/0.60 Shear,minimum edge distance 2.500.60/0.70 Tension 2.500.60 (c)Arc seam weldsShear,welds 2.500.60 Shear,connected part 2.500.60 (d)Fillet weldsWelds 2.500.60 Connected part,longitudinal loadingWeld length/sheet thicknessϽ25 2.500.60 Weld length/sheet thicknessՆ25 2.500.55 Connected part,transverse loading 2.500.6010.4SECTION TENTABLE10.1Safety Factors and Resistance Factors Adopted by the AISI Specification(Continued)CategoryASDsafetyfactor,⍀LRFDresistancefactor,␾(e)Flare groove weldsWelds 2.500.60 Connected part,longitudinal loading 2.500.55 Connected part,transverse loading 2.500.55 (f)Resistance welds 2.500.65 Bolted connections(a)Minimum spacing and edge distance*When Fu /FsyՆ1.08 2.000.70When Fu /FsyϽ1.08 2.220.60(b)Tension strength on net sectionWith washers,double shear connection 2.000.65 With washers,single shear connection 2.220.55 Without washers,double or single shear 2.220.65(c)Bearing strength 2.220.55/0.70(d)Shear strength of bolts 2.400.65(e)Tensile strength of bolts 2.00/2.250.75 Screw connections 3.000.50*Fu is tensile strength and Fsyis yield stress.ratio of the virgin steel and the radius-to-thickness ratio of the bends.The forming operation may also induce residual stresses in the member but these effects are accounted for in the equations for member design.10.3NOMINAL LOADSThe nominal loads for design should be according to the applicable code or specificationunder which the structure is designed or as dictated by the conditions involved.In the absenceof a code or specification,the nominal loads should be those stipulated in the AmericanSociety of Civil Engineers Standard,Minimum Design Loads for Buildings and Other Struc-tures,ASCE7.The following loads are used for the primary load combinations in the AISISpecification:DϭDead load,which consists of the weight of the member itself,the weight of allmaterials of construction incorporated into the building which are supported by the mem-ber,including built-in partitions;and the weight of permanent equipmentEϭEarthquake loadLϭLive loads due to intended use and occupancy,including loads due to movable objectsand movable partitions and loads temporarily supported by the structure during mainte-nance.(L includes any permissible load reductions.If resistance to impact loads is takeninto account in the design,such effects should be included with the live load.)COLD-FORMED STEEL DESIGN 10.5L r ϭRoof live load S ϭSnow loadR r ϭRain load,except for ponding W ϭWind loadThe effects of other loads such as those due to ponding should be considered when signif-icant.Also,unless a roof surface is provided with sufficient slope toward points of free drainage or adequate individual drains to prevent the accumulation of rainwater,the roof system should be investigated to assure stability under ponding conditions.10.4DESIGN METHODSThe AISI Specification is structured such that nominal strength equations are given for various types of structural members such as beams and columns.For allowable stress design (ASD),the nominal strength is divided by a safety factor and compared to the required strength based on nominal loads.For Load and Resistance Factor Design (LRFD),the nominal strength is multiplied by a resistance factor and compared to the required strength based on factored loads.These procedures and pertinent load combinations to consider are set forth in the specification as follows.10.4.1ASD RequirementsASD Strength Requirements.A design satisfies the requirements of the AISI Specification when the allowable design strength of each structural component equals or exceeds the required strength,determined on the basis of the nominal loads,for all applicable load combinations.This is expressed asR ՅR /⍀(10.1)n where R ϭrequired strengthR n ϭnominal strength (specified in Chapters B through E of the Specification )⍀ϭsafety factor (see Table 10.1)R n /⍀ϭallowable design strength ASD Load Combinations.In the absence of an applicable code or specification or if the applicable code or specification does not include ASD load combinations,the structure and its components should be designed so that allowable design strengths equal or exceed the effects of the nominal loads for each of the following load combinations:1.D2.D ϩL ϩ(L r or S or R r )3.D ϩ(W or E )4.D ϩL ϩ(L r or S or R r )ϩ(W orE )Wind or Earthquake Loads for ASD.When the seismic load model specified by the applicable code or specification is limit state based,the resulting earthquake load (E )is permitted to be multiplied by 0.67.Additionally,when the specified load combinations in-clude wind or earthquake loads,the resulting forces are permitted to be multiplied by 0.75.However,no decrease in forces is permitted when designing diaphragms.10.6SECTION TENComposite Construction under ASD.For the composite construction offloors and roofs using cold-formed deck,the combined effects of the weight of the deck,the weight of thewet concrete,and construction loads(such as equipment,workmen,formwork)must beconsidered.10.4.2LRFD RequirementsLRFD Strength Requirements.A design satisfies the requirements of the AISI Specificationwhen the design strength of each structural component equals or exceeds the requiredstrength determined on the basis of the nominal loads,multiplied by the appropriate loadfactors,for all applicable load combinations.This is expressed asRϽ␾R(10.2)u nwhere Ruϭrequired strengthRnϭnominal strength(specified in chapters B through E of the Specification)␾ϭresistance factor(see Table10.1)␾R nϭdesign strengthLRFD Load Factors and Load Combinations.In the absence of an applicable code or specification,or if the applicable code or specification does not include LRFD load combi-nations and load factors,the structure and its components should be designed so that design strengths equal or exceed the effects of the factored nominal loads for each of the following combinations:1.1.4DϩL2.1.2Dϩ1.6Lϩ0.5(Lr or S or Rr)3.1.2Dϩ1.6(Lr or S or Rr)ϩ(0.5L or0.8W)4.1.2Dϩ1.3Wϩ0.5Lϩ0.5(Lr or S or Rr)5.1.2Dϩ1.5Eϩ0.5Lϩ0.2S6.0.9DϪ(1.3W or1.5E)Several exceptions apply:1.The load factor for E in combinations(5)and(6)should equal1.0when the seismic loadmodel specified by the applicable code or specification is limit state based.2.The load factor for L in combinations(3),(4),and(5)should equal1.0for garages,areasoccupied as places of public assembly,and all areas where the live load is greater than 100psf.3.For wind load on individual purlins,girts,wall panels and roof decks,multiply the loadfactor for W by0.9.4.The load factor for Lr in combination(3)should equal1.4in lieu of1.6when the rooflive load is due to the presence of workmen and materials during repair operations.Composite Construction under LRFD.For the composite construction offloors and roofs using cold-formed deck,the following additional load combination applies:1.2Dϩ1.6Cϩ1.4C(10.3)S Wwhere DSϭweight of steel deckCWϭweight of wet concreteCϭconstruction load(including equipment,workmen,and form work but excluding wet concreteCOLD-FORMED STEEL DESIGN10.7 10.5SECTION PROPERTY CALCULATIONSBecause of theflexibility of the manufacturing method and the variety of shapes that can bemanufactured,properties of cold-formed sections often must be calculated for a particularconfiguration of interest rather than relying on tables of standard values.However,propertiesof representative or typical sections are listed in the Cold-Formed Steel Design Manual,American Iron and Steel Institute,1996,Washington,DC(AISI Manual).Because the cross section of a cold-formed section is generally of a single thickness of steel,computation of section properties may be simplified by using the linear method.Withthis method,the material is considered concentrated along the centerline of the steel sheetand area elements are replaced by straight or curved line elements.Section properties arecalculated for the assembly of line elements and then multiplied by the thickness,t.Thus,the cross section area is given by AϭLϫt,where L is the total length of all line elements;the moment of inertia of the section is given by IϭIЈϫt,where IЈis the moment ofinertia determined for the line elements;and the section modulus is calculated by dividingI by the distance from the neutral axis to the extremefiber,not to the centerline of theextreme element.As subsequently discussed,it is sometimes necessary to use a reduced oreffective width rather than the full width of an element.Most sections can be divided into straight lines and circular arcs.The moments of inertia and centroid location of such elements are defined by equations from fundamental theory aspresented in Table10.2.10.6EFFECTIVE WIDTH CONCEPTThe design of cold-formed steel differs from heavier construction in that elements of mem-bers typically have large width-to-thickness(w/t)ratios and are thus subject to local buck-ling.Figure10.2illustrates local buckling in beams and columns.Flat elements in com-pression that have both edges parallel to the direction of stress stiffened by a web,flange,lip or stiffener are referred to as stiffened elements.Examples in Fig.10.2include the topflange of the channel and theflanges of the I-cross section column.To account for the effect of local buckling in design,the concept of effective width is employed for elements in compression.The background for this concept can be explainedas follows.Unlike a column,a plate does not usually attain its maximum load carrying capacity at the buckling load,but usually shows significant post buckling strength.This behavior isillustrated in Fig.10.3,where longitudinal and transverse bars represent a plate that is simplysupported along all edges.As the uniformly distributed end load is gradually increased,thelongitudinal bars are equally stressed and reach their buckling load simultaneously.However,as the longitudinal bars buckle,the transverse bars develop tension in restraining the lateraldeflection of the longitudinal bars.Thus,the longitudinal bars do not collapse when theyreach their buckling load but are able to carry additional load because of the transverserestraint.The longitudinal bars nearest the center can deflect more than the bars near theedge,and therefore,the edge bars carry higher loads after buckling than do the center bars.The post buckling behavior of a simply supported plate is similar to that of the grid model.However,the ability of a plate to resist shear strains that develop during bucklingalso contributes to its post buckling strength.Although the grid shown in Fig.10.3a buckledinto only one longitudinal half-wave,a longer plate may buckle into several waves as illus-trated in Figs.10.2and10.3b.For long plates,the half-wave length approaches the widthb.After a simply supported plate buckles,the compressive stress will vary from a maximum near the supported edges to a minimum at the mid-width of the plate as shown by line1of10.8SECTION TENTABLE10.2Moment of Inertia for Line ElementsSource:Adapted from Cold-Formed Steel Design Manual,American Iron and Steel Institute,1996,Washington,DC.COLD-FORMED STEEL DESIGN10.9FIGURE10.2Local buckling of compression elements.(a)In beams;(b)incolumns.(Source:Commentary on the Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)Fig.10.3c.As the load is increased the edge stresses will increase,but the stress in the mid-width of the plate may decrease slightly.The maximum load is reached and collapse is initiated when the edge stress reaches the yield stress—a condition indicated by line2of Fig.10.3c.The post buckling strength of a plate element can be considered by assuming that after buckling,the total load is carried by strips adjacent to the supported edges which are at a uniform stress equal to the actual maximum edge stress.These strips are indicated by the dashed lines in Fig.10.3c.The total width of the strips,which represents the effective width of the element b,is defined so that the product of b and the maximum edge stress equals the actual stresses integrated over the entire width.The effective width decreases as the applied stress increases.At maximum load,the stress on the effective width is the yield stress.Thus,an element with a small enough w/t will be able to reach the yield point and will be fully effective.Elements with larger ratios will have an effective width that is less than the full width,and that reduced width will be used in section property calculations.The behavior of elements with other edge-support conditions is generally similar to that discussed above.However,an element supported along only one edge will develop only one effective strip.Equations for calculating effective widths of elements are given in subsequent articles based on the AISI Specification.These equations are based on theoretical elastic buckling theory but modified to reflect the results of extensive physical testing.10.10SECTION TENFIGURE10.3Effective width concept.(a)Buckling of grid model;(b)buckling ofplate;(c)stress distributions.10.7MAXIMUM WIDTH-TO-THICKNESS RATIOSThe AISI Specification gives certain maximum width-to-thickness ratios that must be adhered to.For flange elements,such as in flexural members or columns,the maximum flat width-to-thickness ratio,w/t ,disregarding any intermediate stiffeners,is as follows:Stiffened compression element having one longitudinal edge connected to a web or flange element,the other stiffened by (a)a simple lip,60(b)other stiffener with I S ϽI a ,90(c)other stiffener with I S ՆI a ,90Stiffened compression element with both longitudinal edges connected to other stiffened elements,500Unstiffened compression element,60In the above,I S is the moment of inertia of the stiffener about its centroidal axis,parallel to the element to be stiffened,and I a is the moment of inertia of a stiffener adequate for the element to behave as a stiffened element.Note that,although greater ratios are permitted,stiffened compression elements with w /t Ͼ250,and unstiffened compression elements with w/t Ͼ30are likely to develop noticeable deformations at full design strength,but ability to develop required strength will be unaffected.For web elements of flexural members,the maximum web depth-to-thickness ratio,h/t ,disregarding any intermediate stiffeners,is as follows:Unreinforced webs,200Webs with qualified transverse stiffeners that include (a)bearing stiffeners only,260(b)bearing and intermediate stiffeners,30010.8EFFECTIVE WIDTHS OF STIFFENED ELEMENTS10.8.1Uniformly Compressed Stiffened ElementsThe effective width for load capacity determination depends on a slenderness factor ␭defined as1.052wƒ␭ϭ(10.4)ͩͪΊt E͙kwhere k ϭplate buckling coefficient (4.0for stiffened elements supported by a web alongeach longitudinal edge;values for other conditions are given subsequently)ƒϭmaximum compressive stress (with no safety factor applied)E ϭModulus of elasticity (29,500ksi or 203000MPa)FIGURE 10.4Illustration of uniformly compressed stiffened element.(a )Actual element;(b )stress on effective element.(Source:Specification for the Design of Cold-Formed Steel Structural Members,Amer-ican Iron and Steel Institute,Washington,DC,1996,with permission.)For flexural members,when initial yielding is in compression,ƒϭF y ,where F y is the yield stress;when the initial yielding is in tension,ƒϭthe compressive stress determined on the basis of effective section.For compression members,ƒϭcolumn buckling stress.The effective width is as follows:when ␭Յ0.673,b ϭw (10.5)when ␭Ͼ0.673,b ϭ␳w(10.6)where the reduction factor ␳is defined as␳ϭ(1Ϫ0.22/␭)/␭(10.7)Figure 10.4shows the location of the effective width on the cross section,with one-half located adjacent to each edge.Effective widths determined in this manner,based on maximum stresses (no safety factor)define the cross section used to calculate section properties for strength determination.How-ever,at service load levels,the effective widths will be greater because the stresses are smaller,and another set of section properties should be calculated.Therefore,to calculate effective width for deflection determination,use the above equations but in Eq.10.4,sub-stitute the compressive stress at design loads,ƒd .10.8.2Stiffened Elements with Stress GradientElements with stress gradients include webs subjected to compression from bending alone or from a combination of bending and uniform compression.For load capacity determination,the effective widths b 1and b 2illustrated in Fig.10.5must be determined.First,calculate the ratio of stresses␺ϭƒ/ƒ(10.8)21where ƒ1and ƒ2are the stresses as shown,calculated on the basis of effective section,with no safety factor applied.In this case ƒ1is compression and treated as ϩ,while ƒ2can be either tension (Ϫ)or compression (ϩ).Next,calculate the effective width,b e ,as if the element was in uniform compression (Art.10.8.1)using ƒ1for ƒand with k determined as follows:3k ϭ4ϩ2(1Ϫ␺)ϩ2(1Ϫ␺)(10.9)Effective widths b 1and b 2are determined from the following equations:FIGURE10.5Illustration of stiffened element with stress gradient.(a)Actual element;(b)stress on ef-fective element varying from compression to tension;(c)stress on effective element with non-uniform com-pression.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)bϭb/(3Ϫ␺)(10.10)1ebϭb/2(10.11)2eThe sum of b1and b2must not exceed the width of the compression portion of the webcalculated on the basis of effective section.Effective width for deflection determination is calculated in the same manner except that stresses are calculated at service load levels based on the effective section at that load.FIGURE 10.6Illustration of uniformly compressed unstiffened element.(a )Actual element;(b )stress on effective element.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC,1996,with permission.)10.9EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS10.9.1Uniformly Compressed Unstiffened ElementsThe effective widths for uniformly compressed unstiffened elements are calculated in the same manner as for stiffened elements (Art.10.8.1),except that k in Eq.10.4is taken as 0.43.Figure 10.6illustrates the location of the effective width on the cross section.10.9.2Unstiffened Elements and Edge Stiffeners with Stress GradientThe effective width for unstiffened elements (including edge stiffeners)with a stress gradient is calculated in the same manner as for uniformly loaded stiffened elements (Art.10.9.1)except that (1)k in Eq.10.4is taken as 0.43,and (2)the stress ƒ3is taken as the maximum compressive stress in the element.Figure 10.7shows the location of ƒ3and the effective width for an edge stiffener consisting of an inclined lip.(Such lips are more structurally efficient when bent at 90Њ,but inclined lips allow nesting of certain sections.)10.10EFFECTIVE WIDTHS OF UNIFORMLY COMPRESSED ELEMENTS WITH EDGE STIFFENERA commonly encountered condition is a flange with one edge stiffened by a web,the other by an edge stiffener (Fig.10.7).To determine its effective width for load capacity determi-nation,one of three cases must be considered.The case selection depends on the relation between the flange flat width-to-thickness ratio,w/t ,and the parameter S defined asS ϭ1.28͙E /ƒ(10.12)For each case an equation will be given for determining I a ,the moment of inertia required for a stiffener adequate so that the flange element behaves as a stiffened element,I S is the moment of inertia of the full section of the stiffener about its centroidal axis,parallel to the element to be stiffened.A ЈS is the effective area of a stiffener of any shape,calculated by methods previously discussed.The reduced area of the stiffener to be used in section property calculations is termed A S and its relation to A ЈS is given for each case.Note that for edge stiffeners,the rounded corner between the stiffener and the flange is not considered as part of the stiffener in calculations.The following additional definitions for a simple lip stiffener illustrated in Fig.10.7apply.The effective width d S Јis that of the stiffener calculated ac-cording to Arts.10.9.1and 10.9.2.The reduced effective width to be used in section propertyFIGURE 10.7Illustration of element with edge stiffener.(a )Actual element;(b )stress on effective element and stiffener.(Source:Specification for the Design of Cold-Formed Steel Structural Members,American Iron and Steel Institute,Washington,DC 1996,with permission.)calculations is termed d S and its relation to d S Јis given for each case.For the inclined stiffener of flat depth d at an angle ␪as shown in Fig.10.7,32I ϭ(d t sin ␪)/12(10.13)S A Јϭd Јt(10.14)S S Limit d /t to 14.Case I:w /t ՅS /3For this condition,the flange element is fully effective without an edge stiffener so b ϭw ,I a ϭ0,d S ϭd S Ј,A S ϭA ЈS .Case II:S /3Ͻw /t ϽS43I ϭ399t {[(w /t )/S ]Ϫ͙k /4}(10.15)a u where k u ϭ0.43.The effective width b is calculated according to Art.10.8.1using the following k :。

美国钢铁协会标准AISI1(中英文对照)

美国钢铁协会标准AISI1(中英文对照)

美国钢铁协会标准AISI1(中英文对照)第一篇:美国钢铁协会标准AISI1(中英文对照)美国钢铁协会标准,AISI标准About AISIFor over a century, North American steel producers have left their day-to-day rivalries behind to work as partners and members of the American Iron and Steel Institute in furthering its mission to promote steel as the material of choice and to enhance the competitiveness of the North American steel industry and its member companies.AISI's overall mission centers around common goals and a clear vision for the future: To provide high-quality, value-added products to a wide array of customers;lead the world in innovation and technology in the production of steel;produce steel in a safe and environmentally friendly manner;andincrease the market for North American Steel in both traditional and innovative applications.近一个世纪以来,北美钢铁商已经将在他们背后工作的对手作为美国钢铁协会的伙伴和成员了。

中美钢结构设计规范对比及工程应用分析

中美钢结构设计规范对比及工程应用分析

建筑与结构设计A rchitectural and Structural Design中美钢结构设计规范对比及工程应用分析Comparison of Chinese and American Steel Structure Design Codes andthe Engineering Application Analysis陈永强(蓝星工程有限公司,北京100143)CHEN Yong-qiang(Bluestar Engineering Co.Ltd.,Beij ing100143,China)【摘要】以中美两国钢结构设计规范为研究内容,选取有代表性的若干内容进行简要对比,为研究中美两国钢结构设计规范的差异提供参考。

[Abstract]Taking the design specifications of steel structures in China and the United States as the research content,some representative contents are selected for brief comparison,so as to provides reference for the study of the differences between Chinese and American steel structure codes.【关键词】中美;钢结构;设计规范[Keywords JChina-US;steel structure;design specification【中图分类号1TU391【文献标志码】A[D01]10.13616/ki.gcjsysj.2020.08.2081引言我国钢结构设计起步相对较晚,美国作为第一阵营的发达国家。

本文以我国GB50017-2017《钢结构设计规范》为基准,对比美国钢结构AISC-ASD、AISC-LRFD以及AISC360等标准。

标准翻译

标准翻译

(a)Department of Occupational Safety and Health, Malaysia(DOSH) 马来西亚职业安全与健康部(b)E nergy Commission of Malaysia(Suruhanjaya Tenaga , EC)马来西亚能源委员会(c)Factory And Machinery Department工厂和机械部门(d)T he Department of Environmental Regulation, Malaysia马来西亚环境监管部(e)The Fire and Rescuer Services Department, Malaysia(BOMBA) 马来西亚消防救援服务部(f)All Relevant Malaysia National Statutory Regulations所有相关的马来西亚国家法规(g)Malaysia Standard(MS)马来西亚标准(h)L ocal Authorities当地政府,地方当局P10:Environmental Quality Act, 1974, (Act 127) Subsidiary Legislations Made Thereunder ;《环境质量法案》,1974,(第127条)附属法批注Electricity Regulation Act, 1951(Revised 1997);《电子监管条例》,1951(1997年修订)Factories and Machinery Regulations 1970;《1970年工厂和机械法规》Laws of Malaysia Act 447;《马来西亚法律》第447法案Electricity Supply Act 1990;《1990年电供法令》Laws of Malaysia Act 448;《马来西亚法律》第448法案Electricity Supply(Successor Company)Act 1990;《1990年(继任者公司)电力供应法案》Factories and Machinery Act 1967(No.64 of 1967);《1970年工厂和机械法规》(No.64 of 1967)Petroleum (Safety Measures)Act,1984;《石油(安全措施)条例》,1984Uniform Building By-Laws, 1984(G.N.5178/85); 《建筑统一章程》,1984(G.N.5178/85)Other applicable laws in Malaysia;其他在马来西亚适应的法律。

美国钢结构建筑设计规范(ANSI-AISC-360-05)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。

)序言本设计规范旨在提供完善的标准设计之用。

本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。

本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。

在本条文说明文本中首次出现的术语使用了斜体。

准线图。

用于决定某些柱体计算长度系数K的列线图解。

双轴弯曲。

某一构件在两垂直轴同时弯曲。

脆性断裂。

在没有或是只有轻微柔性变形的情况下突然断裂。

柱体弧线。

表达砥柱强度和直径长度比之间关系的弧线。

临界负荷。

根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。

循环负荷。

重复地使用可以让结构体变得脆弱的额外负荷。

位移残损索引。

用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。

构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。

同理,基于局部歪曲构件的有效宽度的惯性矩。

同理,用于设计部分组合构件的惯性矩。

有效劲度。

通过构件横截面有效惯性矩计算而得的构件劲度。

疲劳界限。

不计载荷循环次数,不发生疲劳断裂的压力范围。

一阶逆性分析。

基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。

柔性连接。

连接中,允许构件末端简支梁的一部分发生旋转,而非全部。

挠曲。

受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。

非弹性作用。

移除促生作用力后,材料变形仍然不消退的现象。

非弹性强度。

当材料充分达到屈服应力时,结构体或是构件所具有的强度。

美国钢结构学会钢结构规范全文AISC-LRFD中文译稿

美国钢结构学会钢结构规范全文AISC-LRFD中文译稿

…一 焊 缝 之 间 的 板 宽
对于连接构件的有效面积,见 10.5.2。
2.4 稳定性
通常的稳定性应包括结构的整体稳定及每个构 件的稳定。荷载对于结构及其单个构件的挠曲形状 的重要效应应给予考虑。
2.5 局部屈曲
2 . 5 . 1 钢构件截面的分类 钢构件截面可分为紧凑,非紧凑及细长截面。 对于一个可称为紧凑的截面,其翼缘必须连续地与 腹板相连. 且其受压件的宽厚比不应超过表格2.5.1 的允许宽厚比 如果一个或更多受压板件的宽厚比超过七, 但 不 超 过 ; 该截面是非紧凑的。如果任一截面 的宽厚比超过表格2.5.1中 的 ;该 截 面 叫 细 长 受
对于某一部分沿对角线或之字线方向有一系列 孔洞横贯排列吋,该部分的净宽度应是从总宽度里 减掉所有孔洞的直径或如10.3.2中给出的槽的尺寸 之和,对于一排中每个线距,再 加 上 数 值 5-74?。 其 中 5 为任何两个连续孔洞纵向中对中间距(栓 距I 名为在紧固件规线之间横向中对中间距(线 距I
宽厚比
办/,
允许宽厚比 又“ 紧 凑 )
6 5 / ^ 7 10
工字型组合或焊接梁的翼缘
设 力口 组 装 的 受 压 构 件 的 外 伸 翼 缘 劲 连续接触的成对角钢的外伸肢 肋 受轴压的工字型构件及槽钢的翼缘 的 梁或受压构件的外伸角钢和板 构 单角钢支柱的肢; 件 带有膈板的双角钢支柱的肢;
未 设 加 劲 肋 的 构 件 ,即 仅 沿 一 边 支 承
⑷ 对 于 塑 性 设 计 , 使 用 1,300/厂 ;
1^1厂 - 翼 缘 中 的 残 余 压 应 力
^10^
(对 于 轧 制 类 型 )
:1匕51^ (对 于 焊 接 类 型 )
但 不 小 于 0.35^;乂 〈 0.76

2005版美国钢结构设计规范

2005版美国钢结构设计规范

2005版美国钢结构设计规范摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。

极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。

两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。

这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。

在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。

关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要1.介绍2.基本设计理念容许应力设计荷载与阻力因素设计2.2.1强度不足和超载3. 2005年AISC说明书3.1 背景3.2 格式规范3.3 基本设计要求4 新规范内容布置4.1内容概述4.2总则4.3设计要求B1 总则B3.6连接点B3.6.1简单连接B3.6.2弯矩连接4.4稳定性设计分析4.4.1稳定性设计要求4.4.2需求强度计算4.5 构件抗拉设计4.6 构件抗压设计4.7 构件抗弯设计4.8 构件抗剪设计4.9 构件组合受力设计和抗扭设计4.10 组合构件设计4.11 连接设计4.12高速钢和箱形构件连接设计5 注释6 摘要参考文献1.介绍1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。

虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。

因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。

美国焊接学会(AWS)钢结构焊接规范1983年版修订内容

美国焊接学会(AWS)钢结构焊接规范1983年版修订内容

美国焊接学会(AWS)钢结构焊接规范1983年版修订内容佚名
【期刊名称】《铁道技术监督》
【年(卷),期】1984(000)004
【摘要】无
【总页数】1页(P55)
【正文语种】中文
【相关文献】
1.AWS《钢结构焊接规范》首次面向中国地区推出中译本
2.美国焊接学会将推出D14.3/D14.3M《土方、建筑和农业设备焊接规范》授权中译本
3.美国焊接学会(AWS)/上海市焊接学会(SWS)焊接检验技术培训及CWI注册焊接检验师考试
4.AWSD1.1/D1.1M:2010《AWS钢结构焊接规范》(唯一AWS授权中文翻译本)
5.美国结构焊接规范:(96版与94版修订内容简介)
因版权原因,仅展示原文概要,查看原文内容请购买。

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

表1
结构体系超强系数Oo 值
地震荷载抗力体系分类
OO
满足本《规定》第Ⅰ部分要求的抗弯框架体系
3
满足本《规定》第Ⅰ部分要求的偏心支撑框架(EBF)
2.5
满足本《规定》第Ⅰ部分要求的其他类型体系
2
在ASCE 7、2000IBC 、2000NEHRP和1997UBC 等规范中,对水平地震荷载QE 的放大系数Oo 均作了规定,从表2所列可见,各规范的定义是不相同的。在各规范 的早期版本中,认为通过荷载组合就可以澄清这些差别(如在1997版《钢结构建筑 抗 震 设 计 规 定 》 中 所 采 用 的 放 大 的 地 震 荷 载 的 附 加 荷 载 组 合 : 1.2D+1.0E +0.2S+OoQE (4-1式)0.9D-OoQE (4-2式))。但由于各种规范所使用的原始资 料和背景的差别,荷载组合(4-1式)及(4-2式)反而造成了更大的混淆。为此, 在本《规定》中取消了荷载组合(4-1式)及(4-2式),而代之以“放大地震荷载 (Amplified Seismic Load)”。明确了当在规范中使用放大地震荷载时,则要求使 用超强(overstrength )系数Oo。
7. 接头、连接和紧固件
钢结构建筑抗震规定介绍(一)
5
6/23/2003
冶 金工 业部 建筑 研究 总院
7.1 适用范围
作为地震荷载抗力体系组成部分的接头、连接和紧固件应符合LRFD 规范第十 章(Chapter J)的要求。
7.2 螺栓连接
7.2.1 所有螺栓应采用完全受拉高强螺栓。所有螺栓连接摩擦面应按A级接触 面或摩擦型连接要求制作。螺栓连接的设计剪切承载力允许按承压型连接的设计剪 切承载力 进行计算。A 级接触面 是未经涂装的干净轧制表面 ,或经喷砂 (丸) 处理 后涂复以A 型面层的表面。其最小抗滑移系数µ=0.33。

美国国家标准《钢结构焊接规范》简介

美国国家标准《钢结构焊接规范》简介

美国国家标准《钢结构焊接规范》简介
刘榴;范铮
【期刊名称】《焊接》
【年(卷),期】2000(000)011
【摘要】@@ANSI/AWS D1.1《钢结构焊接规范》是由美国焊接学会编撰、出
版的一部美国国家标准。

规范广泛适用于碳钢和低合金钢制作的静荷载和周期荷载的板材和管材的焊接钢结构。

规范严格按照美国国家标准(ANSI)的程序规则制定,是保证钢结构制作质量的最低要求。

【总页数】2页(P36-37)
【作者】刘榴;范铮
【作者单位】上海振华港口机械有限公司200031;上海锅炉厂200245
【正文语种】中文
【中图分类】TG457.11
【相关文献】
1.美国钢结构焊接规范塞焊和槽焊技术要求解析 [J], 吴崇志
2.美国国家标准《钢结构焊接规范》的理解与应用 [J], 刘榴;范铮
3.AWSD1.1/D1.1M:2010《AWS钢结构焊接规范》(唯一AWS授权中文翻译本) [J],
4.倡议书认真贯彻GB50661—2011《钢结构焊接规范》坚持不懈地开展创建全
国优秀焊接工程活动 [J],
5.新立项国家标准《钢结构焊接规范》简介 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美 国 [ 円 「0 钢 结 构 规 范 介 绍 ⑴
刘 玉 姝 (编译^
( 同济大学)
摘 要 本 文 介 绍 美 国 标 准 : 匕只?0 的 建 筑 钢 结 构 规 范 第 一 章 至 第 四 章 的 主 要 内 容 ^
结构的稳定及受拉构件的设计以后将陆续介绍其余部分
规 范 总 则 、设 计 要 求 、框架
宽厚比
办/,
允许宽厚比 又“ 紧 凑 )
6 5 / ^ 7 10
工字型组合或焊接梁的翼缘
设 力口 组 装 的 受 压 构 件 的 外 伸 翼 缘 劲 连续接触的成对角钢的外伸肢 肋 受轴压的工字型构件及槽钢的翼缘 的 梁或受压构件的外伸角钢和板 构 单角钢支柱的肢; 件 带有膈板的双角钢支柱的肢;
未 设 加 劲 肋 的 构 件 ,即 仅 沿 一 边 支 承
当连接的约束作用被忽略. 通常称作“ 简支框 架” ,它假定在传递竖向荷载时梁端的连接只需按 抗剪设计。梁端可自由转动。对“ 简支框架” 有下列 要求:
0 15点及连接构件作为“ 简支梁” 应足够抵 抗设计竖向荷载。
幻节点及连接构件应足够祗抗设计侧向荷 载。
3^ 节点应有足够的塑性转动能力以避免在 设计翌向荷载和设计侧向荷载的组合作 用下紧固件或焊缝超载。
对板件,宽 度 卜是从自由边到第一排紧固 件或焊缝之间的距离: 山 对 于 7' 型截面的腹板,4 为完全名义高度。 对于设加劲肋且在沿平行于压力方向沿两边皆 有支撑的构件,宽度应按如下规定采用: … 对于轧制或加工的截面的腹板,卜是翼缘之 间除去每个翼缘处的圆角半径后的净距. 、 是从形心到受压翼缘的内表面除去圆角半 径后的距离的两倍; ⑴对于拼装截面的腹板,卜是相邻两排紧固件 之间的距离. 或者如果是焊接连接的话,办 为翼缘间的净距。力I 是从形心到受压翼缘的 内表面的距离的两倍; 对于拼装截面的翼缘或膈板,宽 度 力 是 相 邻紧固件或焊缝之间的距离; 山 对 于 矩 形 ,箱形中空结构截面的翼缘,宽 度 6 为腹板之间除去每边的内角半径的净 距。如果内角半径未知,此宽度可取为总 截面宽度减去三倍的厚度。 对于轧制截面的楔形翼缘,厚度为自由边处及 腹板边相应处的厚度值之和的一半的名义值。 对于具有不相等的翼缘并且腹板承受组合弯曲 和轴压的构件, 对于腹板局部屈曲极限状态的;^
关 键 词 美国标准;
总 则 ;设 计 要 求 ;框 架 结 构 ;受拉构件
1 总则
1.1 范围
《建 筑 钢 结 构 荷 载 抗 力 分 项 系 数 设 计 规 范 》
〔1 0 过4 311(1 ^6818(31106
0 亡4 名0 -1 尺?^0 ,
8^001004111011811*1101111*111 8(001 ⑶丨丨山0炉)适用于建
对于某一部分沿对角线或之字线方向有一系列 孔洞横贯排列吋,该部分的净宽度应是从总宽度里 减掉所有孔洞的直径或如10.3.2中给出的槽的尺寸 之和,对于一排中每个线距,再 加 上 数 值 5-74?。 其 中 5 为任何两个连续孔洞纵向中对中间距(栓 距I 名为在紧固件规线之间横向中对中间距(线 距I
丁型的腹板
均一厚度的受弯或受压的方形及矩形箱 形及中空结构戴面的翼缘; 在紧固件或焊缝之间的盖板及膈板翼缘
钻了一系列孔洞的盖板的无支承宽度巾]
设加幼肋的构件
弯 曲 受 压 的 腹 板 【3】
6 5 /^7
无 无
无 无

640/7^7 10
162 95/ 斤
127/ 238/ 巧 970/^/77 丨81
⑷ 对 于 塑 性 设 计 , 使 用 1,300/厂 ;
1^1厂 - 翼 缘 中 的 残 余 压 应 力
^10^
(对 于 轧 制 类 型 )
:1匕51^ (对 于 焊 接 类 型 )
但 不 小 于 0.35^;乂 〈 0.76
பைடு நூலகம்
对 于 不 相 等 翼 缘 的 构 件 , 见 2.5.1。 厂 是 使 用 该 种 类 型 纲 材 的 指 定 最 小 屈 服 点
受压穹作用的腹板
/[//“
^233~
253
所有其它的均布受压的加劲构件, 即沿两边支承 受 7玉 圆 形 中 空 戴 面 受弯圆形十空截面
6/1
队,
0 /1

无的 2’070乂
3】 对 组 合 梁 . 使 用 翼 缘 的 屈 服 点 /^ 而 不 是 厂 ;
… 假定在板最宽的孔洞处的净截面面枳;
假定非弹性转动为戈对于高地震区的结构也许要求更大的转动能力:
如 2 .5 .1 中所定义的,紧凑截面的梁,并且满 足 1.2.4中无支撑长度的要求〈包 括 组 合 构 件 当 连续跨越支承点或与柱刚接吋,如果最大正弯矩增 加了 1 /1 0 的平均负弯矩,在支承处产生的弯矩可 按比例减小为由于竖向荷载产生的负弯矩的9/10。 对组合梁,八5 1 4 钢制的构件或由荷载作用在悬臂 上产生的弯矩都不许折减。如果员弯矩是由刚接到 梁上的柱承担,并 且 轴 力 不 超 过 仏 乘 以 0.15/1/ ; 的话.对于组合轴力和弯矩引起的柱上的内力可按 比 例 减 少 1/10。式中,火为毛截面面积(丨^2) :厂 为 指定最小屈服应力0 ^ 0 ; 为受压抗力系数。
屋面活荷载 …:风荷载 5 :雪荷载 已:根 据 六 1 5 0 钢结构抗震规定第一部分确定
的地震荷載 尺: 初始的雨水或冰引起的荷载,不含积水 应对下列荷载效应组合逬行验算:
1.40
( 卜‘】)
或 5 或尺)
(卜4-2】
1’2 ^ 1 抓 或 5 或幻十似5乙 或 0.8^0 ( ^ - ^ )
1.20+1.31^+0.51+0.54,^5 或尺) ( ^ - ^ )
压截面。
11111-0^11011011 10 匕0301 31101 06515131106 尸3 0 0 「065!9门 513601(1031100 10厂 81「110111「3丨34661 81111(^98(0
表 2 . 5 . 1 受压构件的允许宽厚比
构件的描述 工字型轧制梁及受弯槽钢的翼缘
2 5 3 /7 ^
3300/尸、 8.970/广
对于未设加劲肋且在平行于压力的方向仅沿一 边设支撑的截面,宽度应按如下规定采用:
4 对 于工字 型及 丁型截面的翼缘,宽 度 办 是
全翼缘宽度的一半 ⑴对角钢、槽 钢 及 1 型截面的肢,宽 度 6 是
完全名义尺寸;
美 国 [ 円卜:) 钢结构规范介绍⑴
I ^ 受荷方向的连接长度,丨0。 当经试验或其它合理的原则验证后,V 可采用 较大的数值。
当拉力仅由螺铨或铆钉传递吋 八二疋构件的净截面面积,
⑴当拉力仅通过纵向焊缝传到其它构件上而
不是板上或通过纵向及横向焊缝同传递: 片二/1 ^ 构件的毛截面面积,丨02
2.2 净截面面积
构件的净截面面积是按如下方法计算的每个板 件的净宽度与厚度乘枳之和。在计算受拉和受剪的 净截面面积吋,螺栓孔的宽度应比孔洞的名义尺寸 大 1/1610。
1 ± 1刀丑+0.51+0.25
((^ )
0 .9 0 1 (1 .3 撕 或 1.0 幻 注 意 :对于汽车库、用作公共集会的场所,以 及 所 有 活 荷 大 于 1000丨的场所,在 组 合 1-4-3、14 - 4 ^ 卜4 *5 中乙的荷载系数应等于1.0。
1 . 4 . 2 冲击作用
对于承受引起冲击作用的活荷载的结构,应在 组合丨-4 -2 和 1-4-3中提高标准活荷载以考虑冲击
2 设计要求
2.1 毛截面面积
一 个 构 件 在 任 一 点 的 毛 截 面 面 积 \等 于 垂 直 于构件轴线的每个板件的总宽度与厚度乘枳之和, 对于角钢.总宽度是角钢各肢除去厚度后的宽度之 和。
^^ V^
如下面所定义的面积; 折减系数
乙)幺0.9
或 如 2.3.3或 2.3.4中所定义; X ^ 连接偏心,III;
属于八1 5 0 建筑钢结构抗震规程中定义的高风 险地震性能类的建筑物的抗震设计,应与该规程相 — 致。^ 1 5 0 钢结构建筑抗震规定中没有覆盖的抗 震设计应与本规范相一致。
1 . 4 . 1 荷载、荷载分项系数及荷载组合
常用的荷载及荷载组合有: 0 :结构构件和结构上的永久部件的重量引起
的恒荷载 乙:使用及移动设备引起的活荷载
计 算 强 度 是 由 1 .4 中规定的每一种适用的荷载
组合来确定的。
标准强度圪和抗力分项系数炉在第4 到 第 11
音由6 屮 单甲刀山。
丽 \^ 0 ^ 0 义0「9
1 . 5 . 4 适用性设计及其它 整个结构,单 个 构 件 .节 点 及 连 接 件 都 应 检 査 其是否满足适用性要求,对于适用性的设计的规定 见 第 12章。
对于角钢来说,相对的邻接肢的螺栓孔的线距 应为从角钢背面起除去肢厚的线距的总和。
在确定横截面有塞焊或槽焊缝的净截面面积 吋,焊接金属不应考虑加到净截面面积之中。
2.3 对于受拉构件的有效净截面面积
受拉构件的有效净截面面枳应按如下确定: 0 当拉力荷载通过紧固件或焊缝直接传到
每一个横截面吋,有效净截面面积忠等 于净截面面积久。 2〉 当拉力荷载通过紧固件或焊缝直接传到 构件的一些但不是全部的横截面吋,有 效净截面面枳次应按下式计算:
型构造需要结构钢部件能够产生一些非弹 性但自我约束的变形。
1.3 材料
结构钢、铸钢和锻钢,螺栓、垫圈和螺田,锚 栓和螺纹钢筋、焊接用的填料金属及焊剂均应符合 八5丁\ 1 规定。螺桂剪切连接件应符合钢结抅焊接规 范 八 从 5 01.1。
1.4 荷载及荷载组合
标准荷载应该按相应的荷载规范规定的最小设 计用荷载取值。无相应荷载规范吋.荷载和荷载组 合 由 《美国工程师协会标准建筑及其它结构最小设 计用荷载》八5(267确定。
相关文档
最新文档