概率统计重难点和例题汇总
概率统计总复习(含答案)
概率统计总复习一填空选择题考点1 掌握事件的关系与运算,会写样本空间1.试验E 为抛一枚硬币,观察正面H ,反面T 出现的情况,则E 的样本空间S = .2.设,,A B C 为随机事件,则,,A B C 中至少有一个发生可表示为 ,,A B C 同时发生可表示为考点2古典概型的计算;1.同时抛掷3枚均匀的硬币,则恰好有2枚正面朝上的概率是2.袋中有5个球,其中3个新球,2个旧球,每次取一个,无放回地取两次,则两次取到的均为新球的概率为 .3.一袋中装有6个球,其中3个白球,3个红球,依次从中取出2个球(不放回),则两次取到的均为白球的概率为 15。
4.从1,2,3,4,5五个数中任意取两个数,则这两个数中含偶数的概率是 考点3 概率的计算A 概率的性质和事件的独立性综合计算1.已知(),()0.2,()0.96P A a P B P A B ==⋃=,若事件AB 相互独立,则 a =1/20 2 设()0.4,()0.3P A P B ==,,A B 独立,则()P AB = ()____P A B -=. 3.设事件A 与B 相互独立,已知()0.5,()0.8P A P A B == , ()P AB = . B 条件概率相关计算1.设事件A 与B 独立,且()0.4P A =,(|)0.5P B A =,则()P AB = 2.设()0.3P AB =,(|)0.4P B A =,则()P A = .3.已知()0.5,()0.6,()0.4P A P B P B A ===,那么()P AB = __0.2_____,()P AB =_0.4____, ()P A B ⋃=_______0.7_____.C 正态分布概率相关计算1.设随机变量~(1,1)X N ,则{02}P X <<= .((1)0.8413Φ=)2.已知2~(1,)X N σ,{12}0.3P X <<=,则{0}P X <=____0.2_____.3 设随机变量(1,4)X N ,则(13)P X -<<= ;若()0.5,P X a >= 则a = .0.6826,14.随机变量),2(~2σN X ,(04)0.3,<<=P X 则(0)<=P X 。
概率统计与随机事件例题和知识点总结
概率统计与随机事件例题和知识点总结在我们的日常生活和各种科学领域中,概率统计都有着广泛而重要的应用。
从预测天气变化到评估投资风险,从研究生物种群的数量变动到分析市场销售的趋势,概率统计都发挥着关键的作用。
而随机事件作为概率统计的基础概念之一,更是理解和解决许多概率问题的关键。
接下来,让我们通过一些具体的例题来深入理解概率统计中的随机事件,并对相关知识点进行总结。
一、随机事件的定义在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件称为随机事件。
比如,抛掷一枚硬币,正面朝上就是一个随机事件。
二、概率的基本概念概率是用来衡量随机事件发生可能性大小的数值。
概率的取值范围在 0 到 1 之间。
如果一个事件发生的概率为 0,则表示该事件不可能发生;如果概率为 1,则表示该事件必然发生。
例如,抛掷一枚均匀的硬币,正面朝上的概率为 05,反面朝上的概率也为 05。
三、例题解析例 1:一个袋子里装有 5 个红球和 3 个白球,从袋子中随机取出一个球,求取出红球的概率。
解:袋子中一共有 8 个球,其中红球有 5 个,所以取出红球的概率为 5÷8 = 0625。
例 2:同时抛掷两枚均匀的骰子,求点数之和为 7 的概率。
解:两枚骰子的点数组合共有 6×6 = 36 种。
点数之和为 7 的组合有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。
所以点数之和为 7 的概率为 6÷36 = 1/6。
例 3:某班级有 40 名学生,其中男生 25 名,女生 15 名。
随机抽取一名学生,求抽到女生的概率。
解:抽到女生的概率为 15÷40 = 0375。
四、随机事件的运算1、事件的并(和)如果事件 A 或者事件 B 至少有一个发生,称这个事件为事件 A 与事件 B 的并事件,记作 A∪B。
2、事件的交(积)如果事件 A 和事件 B 同时发生,称这个事件为事件 A 与事件 B 的交事件,记作A∩B。
概率与统计实际问题经典题总结
概率与统计实际问题经典题总结在我们的日常生活中,概率与统计的知识无处不在。
从预测天气变化到评估投资风险,从医学研究到质量控制,概率与统计为我们提供了理解和解决各种问题的有力工具。
接下来,让我们一起探讨一些经典的概率与统计实际问题。
一、抽奖问题假设在一个抽奖活动中,总共有 1000 张奖券,其中只有 10 张是一等奖。
小明随机抽取了一张奖券,那么他抽中一等奖的概率是多少?这是一个简单的古典概型问题。
古典概型的概率计算公式是:P(A) =事件 A 包含的基本事件数÷基本事件总数。
在这个例子中,事件 A 就是抽中一等奖,包含的基本事件数是 10,基本事件总数是 1000。
所以小明抽中一等奖的概率是 10÷1000 = 001,即 1%。
再复杂一点,如果抽奖规则变为先抽一次,如果没中,再放回奖池重新抽,连续抽 5 次,每次都没抽中的概率是多少?因为每次抽奖都是独立事件,每次没抽中的概率都是 990÷1000 = 099。
所以连续 5 次都没抽中的概率就是099×099×099×099×099 ≈ 095。
二、产品质量检测问题一家工厂生产了 10000 个零件,已知其中有 500 个是次品。
现在从这批零件中随机抽取 100 个进行检测,求抽到次品的概率。
这里可以用频率来估计概率。
抽到次品的频率约为 500÷10000 =005。
当抽取的样本数量足够大时,频率会趋近于概率。
所以抽取 100 个零件时,抽到次品的概率大约也是 005。
如果要控制这批零件的次品率不超过 2%,至少需要再检测多少个零件,并且没有检测到次品?设还需要检测 x 个零件,根据次品率的计算公式,可列出不等式:(500÷(10000 + x))≤ 002,解得x ≥ 15000。
也就是说,至少需要再检测 15000 个零件且没有检测到次品,才能将次品率控制在 2%以内。
文科高考数学重难点05 概率与统计(解析版)
重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
高中数学概率统计难题集
高中数学概率统计难题集
1. 排列组合
1. 某班有10个男生和8个女生,从中选择5位同学参加一次数学竞赛,其中必须至少有2名男生和3名女生参赛。
求参赛人员的组合数。
2. 概率计算
2. 在一副有52张牌的扑克牌中,从中随机抽出5张牌,求抽到四张皇后的概率。
3. 离散型随机变量
3. 一批零件的质量服从正态分布,均值为80,标准差为5。
从中随机抽取一个零件,求质量小于75的概率。
4. 连续型随机变量
4. 一家餐厅餐桌到达的时间符合指数分布,平均每10分钟有一桌。
求在20分钟内没有餐桌到达的概率。
5. 相关性分析
5. 一对骰子同时抛掷,求两个骰子的和为7的概率。
这些难题涵盖了高中数学概率统计的不同概念和技巧,希望能
够提供给学生们一些有趣而具有挑战性的练题。
尝试解答这些问题,不断提升自己的数学思维能力和解题技巧。
> 注意:以上问题解析仅供参考,具体解答可能与题目提供的
信息有关。
在实际解题过程中,请根据题目给出的条件和公式进行
思考和推导,以获得正确的答案。
以上就是一份高中数学概率统计难题集的文档,希望对你有所
帮助!。
概率论与数理统计重点总结及例题解析
概率论与数理统计重点总结及例题解析(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--概率论与数理统计重点总结及例题解析一:全概率公式和贝叶斯公式例:某厂由甲、乙、丙三个车间生产同一种产品,它们的产量之比为3:2:1,各车间产品的不合格率依次为8%,9%, 12% 。
现从该厂产品中任意抽取一件,求:(1)取到不合格产品的概率;(2)若取到的是不合格品,求它是由甲车间生产的概率。
(同步45页三、1)解:设A1,A2,A3分别表示产品由甲、乙、丙车间生产,B表示产品不合格,则A1,A2,A3为一个完备事件组。
P(A1)=1/2, P(A2)=1/3, P(A3)=1/6,P(B| A1)=,P(B| A2)=,P(B| A3)=。
由全概率公式P(B) = P(A1)P(B| A1)+ P(A2)P(B| A2)+ P(A3)P(B| A3) = 由贝叶斯公式:P(A1| B)=P(A1B)/P(B) = 4/9练习:市场上出售的某种商品由三个厂家同时供货,其供应量第一厂家为第二厂家的2倍,第二、三两厂家相等,而且第一、二、三厂家的次品率依次为2%,2%,4%。
若在市场上随机购买一件商品为次品,问该件商品是第一厂家生产的概率是多少(同步49页三、1)【】练习:设两箱内装有同种零件,第一箱装50件,有10件一等品,第二箱装30件,有18件一等品,先从两箱中任挑一箱,再从此箱中前后不放回地任取2个零件,求:(同步29页三、5)(1)取出的零件是一等品的概率;(2)在先取的是一等品的条件下,后取的仍是一等品的条件概率。
解:设事件i A ={从第i 箱取的零件},i B ={第i 次取的零件是一等品}(1)P(1B )=P(1A )P(1B |1A )+P(2A )P(1B |2A )=52301821501021=+ (2)P(1B 2B )=194.02121230218250210=+C C C C ,则P(2B |1B )=)()(121B P B B P = 二、连续型随机变量的综合题例:设随机变量X 的概率密度函数为⎩⎨⎧<<=othersx x x f 020)(λ求:(1)常数λ;(2)EX ;(3)P{1<X<3};(4)X 的分布函数F(x)(同步47页三、2)解:(1)由⎰⎰==∞+∞-201)(xdx dx x f λ得到λ=1/2 (2)3421)(22===⎰⎰∞+∞-dx x dx x xf EX (3)⎰⎰===<<31214321)(}31{xdx dx x f x P(4)当x<0时,⎰∞-==xdt x F 00)( 当0≤x<2时,⎰⎰⎰∞-∞-=+==xxx tdt dx dt t f x F 00241210)()( 当x ≥2时,F (x )=1故201()02412x F x x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩练习:已知随机变量X 的密度函数为⎩⎨⎧≤≤+=others x b ax x f 010)( 且E(X)=7/12。
概率统计常见题型及方法总结
概率统计常见题型及⽅法总结常见⼤题:1. 全概率公式与贝叶斯公式问题B 瞧做“结果",有多个“原因或者条件”可以导致B 这个“结果"发⽣,考虑结果B 发⽣得概率,或者求在B 发⽣得条件下,源于某个原因得概率问题全概率公式: 贝叶斯公式:⼀(12分)今有四个⼝袋,它们就是甲、⼄、丙、丁,每个⼝袋中都装有只红球与只⽩球。
先从甲⼝袋中任取⼀只球放⼊⼄⼝袋,再从⼄⼝袋中任取⼀只球放⼊丙⼝袋,然后再从丙⼝袋中任取⼀只球放⼊丁⼝袋,最后从丁⼝袋中任取⼀球,问取到红球得概率为多少?解表⽰从第个⼝袋放⼊第个⼝袋红球,表⽰从第个⼝袋中任取⼀个球为红球, 2分则, 2分2分依次类推 2分⼆(10分)袋中装有只正品硬币,只次品硬币(次品硬币得两⾯均印有国徽),在袋中任取⼀只,将它投掷次,已知每次都出现国徽,问这只硬币就是次品得概率为多少?、解记={取到次品},={取到正品},={将硬币投掷次每次都出现国徽}则,,―—5分()()1()212()()()()12r r r nP B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)⼀批产品共100件,其中有4件次品,其余皆为正品。
现在每次从中任取⼀件产品进⾏检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。
在检验时,⼀件正品被误判为次品得概率为0、05,⽽⼀件次品被误判为正品得概率为0.01。
(1)求任取⼀件产品被检验为正品得概率;(2)求这批产品被检验为合格品得概率。
解设表⽰“任取⼀件产品被检验为正品”,表⽰“任取⼀件产品就是正品”,则,,,(1)由全概率公式得(2)这批产品被检验为合格品得概率为四、在电报通讯中不断发出信号‘0’与‘1',统计资料表明,发出‘0'与‘1’得概率分别为0.6与0。
4,由于存在⼲扰,发出‘0’时,分别以概率0。
概率统计经典考题难题
概率统计经典考题难题本文将探讨概率统计中的经典考题难题,旨在提供解题思路和方法。
以下是一些难题的介绍和解答方式。
难题一:事件的独立性问题描述已知事件A和事件B独立发生的概率分别为P(A)和P(B)。
现已发生了事件A,请计算在已知事件A发生的情况下,事件B发生的条件概率P(B|A)。
解答方式根据事件的独立性定义,事件A和事件B的独立发生意味着P(B|A)等于P(B)。
因此,在已知事件A发生的情况下,事件B发生的条件概率为P(B)。
难题二:条件概率问题描述某工厂生产两种型号的产品,A型和B型,其中A型产品的次品率为3%,B型产品的次品率为5%。
已知一个随机抽取的产品是次品,请计算这个产品是A型产品的概率。
解答方式根据条件概率公式,设事件A为取到A型产品,事件B为取到次品,要求的是P(A|B)。
根据题意,P(B|A)为A型产品为次品的概率,即3%;P(B)为随机抽取的产品为次品的概率,即(3%+5%)。
代入条件概率公式可得:P(A|B) = P(B|A) * P(A) / P(B)代入数值计算,得到这个产品是A型产品的概率。
难题三:二项分布问题描述甲乙两个运动员进行射击比赛,已知甲乙两个运动员的命中率分别为p和q。
比赛规则是,先由甲射击一次,再由乙射击一次,如此交替直至有一人命中。
如果甲乙两人的命中率相等,求乙获胜的概率。
解答方式设甲乙两人的命中率均为p=q,且p+q=1。
定义事件A为乙获胜,事件B为甲获胜。
由于比赛规则是交替射击,乙获胜的条件为第1次甲不中,第2次乙中,第3次甲不中,第4次乙中...以此类推。
根据二项分布的概率计算公式,乙获胜的概率为:P(A) = (1-p) * p + (1-p) * (1-p) * p + (1-p) * (1-p) * (1-p) * p + ...使用数学归纳法可以证明此数列的和收敛于p/(2-p)。
根据以上推导,当甲乙两人的命中率相等时,乙获胜的概率为p/(2-p)。
2023年新高考重难点汇编重难点:概率与统计(解析版)
新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数。
重难点04概率与统计新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
概率论与数理统计例题和知识点总结
概率论与数理统计例题和知识点总结概率论与数理统计是一门研究随机现象统计规律的学科,它在自然科学、工程技术、经济管理、社会科学等众多领域都有着广泛的应用。
下面将通过一些例题来帮助大家理解和掌握这门学科的重要知识点。
一、随机事件与概率随机事件是指在一定条件下,可能出现也可能不出现的事件。
概率则是衡量随机事件发生可能性大小的数值。
例 1:抛掷一枚均匀的硬币,求正面朝上的概率。
解:因为硬币只有正反两面,且质地均匀,所以正面朝上的概率为1/2。
知识点:古典概型中,事件 A 的概率 P(A) = A 包含的基本事件数/基本事件总数。
例 2:一个袋子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。
解:袋子里一共有 8 个球,其中 5 个是红球,所以取出红球的概率为 5/8。
知识点:概率的性质:0 ≤ P(A) ≤ 1;P(Ω) = 1,P(∅)= 0。
二、条件概率与乘法公式条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
例 3:已知在某疾病的检测中,阳性结果中真正患病的概率为 09,而总体人群中患病的概率为 001。
如果一个人的检测结果为阳性,求他真正患病的概率。
解:设 A 表示患病,B 表示检测结果为阳性。
则 P(A) = 001,P(B|A) = 09,P(B|A')= 1 P(B|A) = 01。
根据全概率公式:P(B) =P(A)×P(B|A) + P(A')×P(B|A')= 001×09 +099×01 ≈ 0108。
再根据贝叶斯公式:P(A|B) = P(A)×P(B|A) / P(B) = 001×09 /0108 ≈ 0083。
知识点:条件概率公式:P(B|A) = P(AB) / P(A);乘法公式:P(AB) = P(A)×P(B|A)。
三、独立性如果两个事件的发生与否互不影响,那么称它们是相互独立的事件。
考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析
考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析概率论与数理统计是考研数学一大纲中的重要部分,也是考生们在备考过程中常常遇到的难点之一。
本文将重点解析概率论与数理统计的典型题型,帮助考生更好地掌握这一部分知识。
一、概率论1. 概率与事件概率论的基础是概率与事件的概念。
在此部分,考生需要掌握事件的基本概念、事件的运算、概率的定义、概率的性质等内容。
典型题型包括事件的互斥与独立性、事件的运算法则等。
考生在解答此类题目时应注意运用概率的基本性质,并进行合理的计算。
2. 随机变量及其分布律随机变量是概率论与数理统计的重要概念之一。
考生需要掌握随机变量的定义、离散随机变量与连续随机变量的概念、分布律的性质等知识点。
典型题型包括计算随机变量的期望、方差等。
考生在解答此类题目时应注意根据定义和性质进行计算,并合理运用公式。
3. 数理期望与方差数理期望与方差是随机变量的重要特征之一。
考生需要掌握数理期望与方差的概念、性质、计算方法等知识点。
典型题型包括利用数理期望与方差计算随机变量的相关性和条件概率等。
考生在解答此类题目时应注意计算过程的合理性,并运用数理期望与方差的性质进行推理。
4. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要理论。
考生需要掌握大数定律与中心极限定理的概念、条件以及应用方法。
典型题型包括利用大数定律和中心极限定理求解随机变量的极限分布等。
考生在解答此类题目时应注意运用大数定律和中心极限定理的条件,并进行合理的推导。
二、数理统计1. 参数估计参数估计是数理统计的重要内容之一。
考生需要掌握点估计和区间估计的概念、性质、计算方法等知识点。
典型题型包括利用最大似然估计和矩估计求解参数的估计量等。
考生在解答此类题目时应注意理解估计的概念和方法,并进行合理的计算与推导。
2. 假设检验假设检验是数理统计中的重要内容之一。
考生需要掌握假设检验的基本原理、步骤、常见假设检验方法等知识点。
概率难题汇编及答案
【详解】
解:∵一次函数y=(﹣m+1)x+11﹣m经过一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合条件的有:2,5,7,8,
把分式方程 =3x+ 去分母,整理得:3x2﹣16x﹣mx=0,
【详解】
A.购买一张彩票中奖,属于随机事件,不合题意;
B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;
C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;
D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.
【答案】A
【解析】
【分析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为 ,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)(Biblioteka ,A)B(A,B)
专题05 概率初步章末重难点题型(举一反三)(人教版)(解析版)
专题05概率初步章末重难点题型【举一反三】【人教版】【考点1可能性的大小】【方法点拨】可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.【例1】(2019春•金坛区期中)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【答案】解:A、指针落在标有5的区域内的概率是;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.【变式1-1】(2019春•市北区期末)我国南方地区冬至的传统习俗是吃汤圆,其寓意团团圆圆冬至这一天,小红家煮了30个汤圆,其中有12个黑芝麻馅的,14个枣泥馅的,4个豆沙馅的,煮完之后的汤圆看起来都一样,小红盛了1个汤圆,下列各种描述正确的是()A.她吃到黑芝麻馅汤圆和枣泥馅汤圆可能性一样大B.她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多C.她不可能吃到豆沙馅汤圆D.她一定能吃到枣泥馅汤圆【分析】通过计算盛了1个汤圆,盛到各种馅的概率,比较概率的大小得出结论.【答案】解:盛了1个汤圆盛到黑芝麻的概率为,盛到枣泥的概率为,盛到豆沙的概率为,∴她吃到枣泥馅汤圆比豆沙馅汤圆的可能性大很多,故选:B.【点睛】考查随机事件发生可能性的求法,体会概率是描述随机事件发生可能性的大小统计量.【变式1-2】(2019•资阳)在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上【分析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【答案】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.【变式1-3】(2019•张店区一模)从淄博汽车站到银泰城有甲,乙,丙三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从淄博汽车站到银泰城的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/公交车用时的频数/公交车用时30≤t≤3535≤t≤4040≤t≤4545≤t≤50合计甲59151166124500乙5050122278500丙4526516723500早高峰期间,乘坐线路上的公交车,从淄博汽车站到银泰城“用时不超过45分钟”的可能性最大.()A.甲B.乙C.丙D.无法确定【分析】分别计算出用时不超过45分钟的可能性大小,再进行比较即可得出答案.【答案】解:∵甲线路公交车用时不超过45分钟的可能性为=0.752,乙线路公交车用时不超过45分钟的可能性为=0.444,丙线路公交车用时不超过45分钟的可能性为=0.954,∵0.954>0.752>0.444,∴应选择线路丙;故选:C.【点睛】本题主要考查了树状图法求概率以及可能性大小,解题的关键是掌握频数估计概率思想的运用.【考点2确定与不确定事件】【方法点拨】必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【例2】(2018秋•十堰期末)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6【分析】直接利用随机事件的定义分别分析得出答案.【答案】解:A、抛掷一枚硬币,硬币落地时正面朝上是随机事件,正确,不合题意;B、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,正确,不合题意;C、任意打开九年级下册数学教科书,正好是第38页是随机事件,故此选项错误,符合题意;D、一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6,正确,不合题意.故选:C.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.【变式2-1】(2019春•常熟市期末)下列事件中,属于必然事件的是()A.如果a,b都是实数,那么,a+b=b+aB.同时抛掷两枚质地均匀的骰子,向上一面的点数之和为13C.抛枚质地均匀的硬币20次,有10次正面向上D.用长为4cm,4cm,9cm的三条线段围成一个等腰三角形【分析】根据随机事件、必然事件和不可能事件的定义即可得到答案.【答案】解:A.如果a,b都是实数,那么a+b=b+a,属于必然事件;B.同时抛掷两枚质地均匀的骰子,向上一面的点数之和为13,属于不可能事件;C.抛枚质地均匀的硬币20次,有10次正面向上,属于随机事件;D.用长为4cm,4cm,9cm的三条线段围成一个等腰三角形,属于不可能事件;故选:A.【点睛】本题考查了随机事件:随机事件指在一定条件下可能发生也可能不发生的事件.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【变式2-2】(2019春•滨湖区期末)下列事件中,属于随机事件的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.一组对边平行另一组对边相等的四边形是平行四边形C.矩形的两条对角线相等D.菱形的每一条对角线平分一组对角【分析】根据事件发生的可能性大小判断相应事件的类型.【答案】解:A、一组对边平行且一组对角相等的四边形是平行四边形是必然事件;B、一组对边平行另一组对边相等的四边形是平行四边形是随机事件;C、矩形的两条对角线相等是必然事件;D、菱形的每一条对角线平分一组对角是必然事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【变式2-3】(2019•襄城区模拟)下列事件中是不可能事件的是()A.任意画一个四边形,它的内角和是360°B.若a=b,则a2=b2C.掷一枚质地均匀的硬币,落地时正面朝上D.一只袋子里共装有3个小球,它们的标号分别为1,2,3,从中摸出一个小球,标号为5【分析】直接利用随机事件以及不可能事件的定义分别分析得出答案.【答案】解:A、任意画一个四边形,它的内角和是360°,是必然事件,不合题意;B、若a=b,则a2=b2,是必然事件,不合题意;C、掷一枚质地均匀的硬币,落地时正面朝上,是随机事件,不合题意;D、一只袋子里共装有3个小球,它们的标号分别为1,2,3,从中摸出一个小球,标号为5,是不可能事件,符合题意.故选:D.【点睛】此题主要考查了随机事件,正确把握相关定义是解题关键.【考点3概率与方程】【方法点拨】随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.【例3】(2019•齐齐哈尔)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为()A.27B.23C.22D.18【分析】袋中黑球的个数为x,利用概率公式得到=,然后利用比例性质求出x即可.【答案】解:设袋中黑球的个数为x,根据题意得=,解得x=22,即袋中黑球的个数为22个.故选:C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.【变式3-1】(2019•南安市模拟)不透明袋子中装有若干个红球和6个蓝球,这些球除了颜色外,没有其他差别,从袋子中随机摸出一个球,摸出蓝球的概率是0.6,则袋子中有红球()A.4个B.6个C.8个D.10个【分析】设袋子中有红球x个,利用概率公式得到=0.6,然后解方程即可.【答案】解:设袋子中有红球x个,根据题意得=0.6,解得x=4.经检验x=4是原方程的解.答:袋子中有红球有4个.故选:A.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.【变式3-2】(2019•大洼区三模)在一个不透明的袋中有4个白球和n个黄球,它们除颜色外其余均相同.若从中随机摸出一个球,摸到黄球的概率为,则n=()A.10B.8C.6D.4【分析】根据黄球的概率公式列出方程=求解即可.【答案】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,根据古典型概率公式知:P(黄球)==,解得n=6.故选:C.【点睛】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.【变式3-3】(2019•厦门一模)一个不透明盒子里装有a只白球、b只黑球、c只红球,这些球仅颜色不同.从中随机摸出一只球,若P(摸出白球)=,则下列结论正确的是()A.a=1B.a=3C.a=b=c D.a=(b+c)【分析】根据概率公式得出=,整理可得.【答案】解:由题意知=,则3a=a+b+c,∴2a=b+c,∴a=(b+c),故选:D.【点睛】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.【考点4几何概型】【方法点拨】如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
《概率统计》知识点归纳总结(含答案)
《概率统计》知识点归纳总结1.加法公式结合独立性)()()()()(B P A P B P A P B A P -+=+例如:7.0)(,6.0)(==B P A P88.07.0*6.07.06.0)()()()()(=-+=-+=+B P A P B P A P B A P2. 分布函数的性质P39(其中分布函数)(x F 不是连续函数,非严格意义的单调递增性)3.方差的性质,二项分布)(p n B X ,~,泊松分布)(λπ~Y 的方差2,3.0,4===λp n44.312*97.0*3.0*4*16916)3()4()34(D =+=+=+=-DY DX Y D X D Y X4. ),(~2nN X σμ),N(~X 2σμ正态总体,b]U[a,~X 均匀总体),N(~X 2σμ正态总体,n X D X E 2)(,)(σμ==b]U[a,~X 均匀总体,n a b X D b a X E 12)()(,2)(2-=+=5总体均值()E X 的无偏估计量(系数相加等于1);P178:12(1)2121X 21X + ;5432151515151X 51X X X X ++++ 6加法公式结合独立性)()()()()(B P A P B P A P B A P -+=⋃减法公式结合独立性)()()()()()(B P A P A P AB P A P B A P -=-=-7.已知随机变量X 的分布律为记X 的分布函数为,则3F = 1 .8.平均值就是数学期望,P59:24; P117:11 9.置信区间10.假设检验中,犯第一类错误的概率就是显著性水平α犯第一类错误的概率,显著性水平α为 0.03,则在原假设 H 0成立的条件下,拒绝H 0的概率为___0.03________接受H 0的概率为______0.97_________ 11.A 和B 互斥(互不相容),A 和B 对立事件,P9,性质v12.概率等于0的事件,不一定是不可能的事件13.离散型随机变量,联合分布能唯一确定边缘分布,反之不成立14随机变量P143:(3.8),),1(~t 2n F15.显著性水平α是犯第I 类错误(弃真错误的概率)计算题: 16. 已知概率密度函数,利用概率密度函数求待定系数,分布函数,计算概率概率密度函数为⎩⎨⎧<≥=-0)(3x x Ae x f x 求{}01P X <<17.联合分布求边缘分布,判断独立性,判断是否相关,P7518.已知概率密度求方差(用方差的性质先化简),概率密度用P58:21(2),计算)13(XD19已知离散型随机变量的分布律求参数的最大似然估计值;P176:4(1),答案P6620全概率公式,贝叶斯公式的应用3. 已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03.求(1)任意抽查一个产品,它被判为合格品的概率(2)一个经检查被判为合格的产品确实是合格品的概率.2、设A 表示合格品,A 表示次品,B 表示被检合格,则()0.95,()0.05,()1()0.98,()0.03P A P A P B A P B A P B A ===-== (1) 由全概率公式,得()=()()()()=0.950.98+0.050.03=0.9325P B P A P B A P A P B A +⨯⨯(2)由贝叶斯公式,得()()()()()()()P A P B A P A B P A P B A P A P B A =+=0.950.980.99840.950.980.050.03⨯=⨯+⨯3、某公司有甲、乙、丙三位秘书,让他们把公司文件的45%,40%,15% 进行归档,根据以往的经验,他们工作中出现错误的概率分别为0.01,0.02,0.05.现发现有一份文件归错档,试问该错误最有可能是谁犯的?解:设事件i A 表示“文件由第i 位秘书归档”()1,2,3i =,B 表示“文件归错档”. 依题意,()10.45P A =, ()20.4P A =, ()30.15P A =,()10.01P B A =, ()20.02P B A =,()30.05P B A =由全概率公式可知()()()()()()()112233P B P B A P A P B A P A P B A P A =++0.010.450.020.40.050.15=⨯+⨯+⨯0.02=()()()()1110.010.450.2250.02P B A P A P A B P B ⨯===()()()()2220.020.40.40.02P B A P A P A B P B ⨯===()()()()3330.050.150.3750.02P B A P A P A B P B ⨯===由此可见,这份文件由乙归错档的可能性最大.21. 正态分布计算概率;P59:28 答案P27。
概率统计与随机事件例题和知识点总结
概率统计与随机事件例题和知识点总结在我们的日常生活和各种科学领域中,概率统计与随机事件都扮演着十分重要的角色。
通过对概率统计的研究,我们能够更好地理解和预测不确定性现象,为决策提供有力的依据。
接下来,让我们一起深入探讨概率统计与随机事件的相关知识,并通过一些具体的例题来加深理解。
一、概率的基本概念概率是用来衡量某个事件发生可能性大小的数值。
通常,概率的值介于 0 到 1 之间。
如果一个事件发生的概率为 0,则表示该事件不可能发生;如果概率为 1,则表示该事件必然发生。
例如,掷一枚均匀的硬币,正面朝上的概率为 05,因为硬币只有正反两面,且出现正面和反面的可能性是相等的。
二、随机事件随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如,从装有 5 个红球和 3 个白球的袋子中随机摸出一个球,摸出红球就是一个随机事件。
三、概率的计算方法1、古典概型如果一个试验具有以下特征:(1)试验的样本空间只包含有限个基本事件;(2)每个基本事件发生的可能性相等。
那么,事件 A 发生的概率可以通过 P(A) = A 包含的基本事件个数/样本空间的基本事件总数来计算。
例如,从一副扑克牌(除去大小王)中随机抽取一张,抽到红桃的概率为 13 / 52 = 1 / 4 。
2、几何概型如果每个事件发生的概率只与构成该事件区域的长度、面积或体积成比例,则称这样的概率模型为几何概型。
比如,在一个时间段内等待公交车,假设公交车在这段时间内到达的时间是均匀分布的,那么在某一特定时间段内等到公交车的概率就可以用几何概型来计算。
四、例题解析例 1:一个袋子里装有 3 个红球和 2 个黑球,从中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10 种。
取出 2 个红球的组合数为 C(3, 2) = 3 种。
所以取出的 2 个球都是红球的概率为 3 / 10 。
《概率》知识点总结+典型例题+练习(含答案)
概率考纲要求1.了解随机现象和概率的统计定义,理解必然事件和不可能事件的意义.2.知道概率的性质,理解古典概率模型的含义,掌握求古典概型的方法,并会求古典概型的概率.3.知道互斥事件,会用概率加法公式求互斥事件的概率.4.认识n 次独立重复实验模型,并记住n 次独立重复实验中恰好发生k 次的概率公式,并会简单应用.5.了解随机变量、离散型随机变量及其概率分布;能写出简单的离散型随机变量的概率分布.6.了解二项分布,能写出简单的二项分布. 知识点一:随机事件的概率 1.随机事件的相关概念随机现象:在相同条件下具有多种可能结果,而事先又无法确定会出现哪种结果的现象称为随机现象.随机试验:研究随机现象所进行的观察和试验称为随机试验.随机事件:随机试验的结果称为随机事件,简称事件,常用大写字母A ,B ,C 等来表示. 必然事件:在一定条件下,必然发生的事件称为必然事件,用Ω来表示. 不可能事件:在一定条件下,不可能发生的事件称为不可能事件,用∅来表示. 基本事件:在随机试验中不能再分的最简单的随机事件称为基本事件. 复合事件:可以用基本事件来描述的随机事件称为复合事件. 2.频率与概率频数:设在n 次重复试验中,事件发A 生了m 次(0 ≤m ≤n ),m 称为事件A 的频数. 频率:事件A 的频数在试验的总次数中所占的比例mn,称为事件A 发生的频率. 事件A 发生的概率:当试验次数充分大时,如果事件发A 生的频率mn总稳定在某个常数附近,那么就把这个常数叫做事件A 发生的概率,记作)(A P . 事件A 发生的概率的性质:(1)对于必然事件Ω,()1=P Ω; (2)对于不可能事件∅,0)(=∅P ; (3)0≤P (A )≤1. 知识点2: 古典概型 1. 古典概型:(1)定义:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性都相等,那么称这个随机试验属于古典概型.特征:试验的所有可能结果的个数是有限的;每个结果出现的机会均等.(2)在古典概型中,若试验共包含有n 个基本事件,并且每一个事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件A 发生的概率()m P A n =2.互斥事件:(1)定义:在随机试验中,不可能同时发生的两个事件称为互斥事件或互不相容事件 (2)和事件:在随机试验中,若事件C 发生意味着事件A 与事件B 中至少有一个发生,则把事件C 称为事件A 与事件B 的和事件,记作C AB =(3)互斥事件的概率加法公式:互斥的事件A 和事件B 中至少有一个发生的概率()()()P A B P A P B =+知识点3:离散型随机变量及其分布 1.随机变量的概念如果随机试验的结果可以用一个变量的取值来表示,这个变量的取值带有随机性,并且取这些值的概率是确定的,那么这个变量叫做随机变量,通常用小写希腊字母ξ、η等表示,或用大写英文字母,,,X Y Z 等表示. 2.离散型随机变量的概念如果随机变量的所有可能取值可以一一列出,则这种随机变量称为离散型随机变量. 3.离散型随机变量的概率分布(1)离散型随机变量的概率分布的定义离散型随机变量ξ的所有可能取值1x ,2x ,3x …,i x …与其对应的概率(x )i i P p ξ==(i =1,2,3,…)所有组成的表叫做随机变量ξ的概率分布(分布列). 离散型随机变量概率分布的性质. ① 0(1,2,3,)i p i =≥;②1231i p p p p +++⋅⋅⋅++⋅⋅⋅=.(2)计算离散型随机变量的概率分布的主要步骤为 ①写出随机变量的所有取值;②计算出各个取值对应的随机事件的概率; ③列出表格.注意验证0(1,2,3,)i p i =≥以及121i p p p ++⋅⋅⋅++⋅⋅⋅=.知识点4:二项分布 1.n 次独立重复实验定义:在相同条件下,重复进行n 次试验,如果每次试验的结果与其他各次试验的结果无关,那么这n 次重复试验叫做n 次独立重复试验. 2.n 次伯努利实验定义:在n 次独立重复试验中,如果每次试验的可能结果只有两个,且它们相互对立,即只考虑两个事件A 和A ,并且在每次试验中事件A 发生的概率都相同,这样的n 次独立重复试验叫做n 次伯努利试验. 3.伯努利公式如果在每次试验中事件A 发生的概率()P A p =,事件A 不发生的概率()1P A p =-,那么在n 次伯努利试验中,事件A 恰好发生k 次的概率为k n k k n n p p k P --=)1(C )((其中0,1,2,,k n =⋅⋅⋅).4.二项分布如果在一次试验中某事件A 发生的概率的p ,随机变量ξ为n 次独立试验中事件发A 生的次数,那么随机变量ξ的概率分布为其中n k p ,,2,1,0,10 =<<我们将这种形式的随机变量ξ的概率分布叫做二项分布.称随机变量ξ服从参数为n 、p 的二项分布,记为(,)B n p ξ.二项分布是以伯努利试验为背景的重要分布. 题型一 基本概念例1 一口袋中有10个小球,其中有8个白球、2个黑球,从中任取3个小球,有以下事件:①3个都是白球. ②至少有一个是黑球. ③3个都是黑球. ④至少有一个白球.其中随机事件是 ;必然事件是 ;不可能事件是 . 分析:本题考察定义的理解及“至少”的含义. 随机事件有①②; 必然事件有④; 不可能事件有③. 解答:①②,④,③ 题型二 古典概型例2 同时抛掷两颗骰子,则所得点数之和为7的概率为 .分析:本题考查古典概型,试验发生包含的事件是抛掷两颗骰子,共有6⨯6=36种结果,满足条件的事件是点数之和为7,可以列举出所有的事件:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共有6种结果,根据古典概型概率公式得到61=P . 解答:61. 题型三 互斥事件例3 某地区年降水量在50~100mm 范围内的概率为0.21,在100~150mm 范围内的概率为0.22,则年降水量在50~155mm ,范围内的概率为多少? 分析:应用互斥事件的概率加法公式 解答:0.43题型四 独立重复试验及概率例4 一枚硬币连续抛掷3次,恰好有两次正面向上的概率为( ).A.18B.38C.12 D.23分析:设事件A ={正面向上},则()P A =12,抛掷3次相当于做3次独立重复试验,恰好有两次正面向上的概率为2123113(2)228P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭. 解答:B .题型五 离散型随机变量的概率分布例5 从含有8个正品、2个次品的产品中,不放回地抽取3次,每次抽取一个,用ξ表示抽到次品的次数,求: (1) ξ的概率分布.(2) 至多有一次抽到次品的概率.解答:(1)随机变量ξ的所有可能取值为0,1,2,且383107(0)15C P C ξ===, 1228310715C C P C ξ=(=1)=, 21283101(2)15C C P C ξ===. 所以ξ的概率分布为(2)至多有一次抽到次品的概率为715+715=1415. 题型六 二项分布例6 在人寿保险中,设一个投保人能活到65岁的概率为0.6,求三个投保人中活到65岁的人数ξ的概率分布.解答:记A ={一个投保人能活到65岁},则A ={一个投保人活不到65岁}.于是()0.6,()10.60.4P A P A ==-=.且随机变量(3,0.6)B ξ.因此0333(0)0.6(10.6)0.064P C =⋅⋅-=, 11233(1)0.6(10.6)0.288P C =⋅⋅-=,22133(2)0.6(10.6)0.432P C =⋅⋅-=,33033(3)0.6(10.6)0.216P C =⋅⋅-=.所以,三个投保人中能活到65岁的人数ξ的概率分布为一、选择题1.在10张奖券中,有1张一等奖,2张二等奖,从中任意抽取1张,则中一等奖的概率为( ). A.310 B.15 C.110 D.132.甲乙两人进行一次射击,甲击中目标的概率为0.7,乙击中的概率为0.2,那么甲乙两人都没击中的概率为( ).A. 0.24 B .0.56 C. 0.06 D. 0.863.某人从一副不含大小王扑克牌中(52张)任意取一张出来,他抽到黑桃或是红桃的概率为( ).A. 0B.152 C. 1352 D. 124.书包里有中文书5本,英文书3本,从中任集抽取2本,则都抽到中文书的概率是( ). A.15 B.25 C.12 D.5145.一个口袋中有5个红球,7个白球,每次取出一个,有放回取三次,观察球的颜色属于( ).A.重复试验B.古典概型C. 3次独立重复试验概率模型D.以上都不是 6.同时抛掷三枚硬币,三枚出现相同一面的概率为( ).A12 B 14 C 16 D 187.某品牌种子的发芽率是0.8,在试验的5粒种子中恰有4粒发芽的概率是( ). A.410.8(10.8)- B.140.8(10.8)-C.41450.8(10.8)C -D.44150.8(10.8)C -8.下列变量中不是随机变量的是( ). A. 射手射击一次的环数 B. 在一个标准大气压下100时会沸腾 C. 城市夏季出现的暴雨次数 D. 某班期末考试数学及格人数9.若从标有3,4,5,6,7的5张卡片中任取3张,取得奇数的个数为ξ,则随机变量ξ的可能取值的个数是( ).A .0 B. 1 C. 2 D .3 10.已知离散型随机变量ξ的概率分布为则n 的值为( ).A .0.31 B. 0.25 C. 0.26 D. 0.2 二、判断题:1. 某人参加射击比赛,一次射击命中的环数为(奇数环)是随机事件( )2. 在重复进行同一试验时,随着试验总次数的增加,事件A 发生的频率一般会越来越接近概率. ( )3. 任一事件A ,其发生的概率为()P A ,则有0≤P (A )≤1 . ( )4. 必然事件的概率为0.( )5. 袋子里有3颗红球6颗白球,从中任取一颗是白球的概率是13.( ) 6. 盒内装有大小相同的3个白球1个黑球,从中摸出2个球,则两个球全是白球的概率是12. ( )7. 同时抛掷3枚硬币,三枚出现相同一面的概率是18. ( )8. 同宿舍8人抓阄决定谁负责周一值日是随机试验.( )9. 运动员进行射击训练,考察一次射击命中的环数,命中2环的概率是110. ()10. 甲、乙两台机床,它们因故障停机的概率分别为0.01和0.02,则这两台机床同时因故障停机的概率为0.03. ( )三、填空题1.在10件产品中有3件次品,若从中任取2件,被抽到的次品数用ξ表示,则2ξ=表示的随机事件为.2.盒中有3个白色的球和5个红色的球,任取出一个球,取出的是红色的概率为.3.10件产品中有2件次品,任取3件,设取出的3件产品中所含正品数为随机变量ξ,则ξ的可能取值为.4.从甲、乙、丙3人中,任选2人参加社会实践,甲被选中的概率为.5.某气象站天气预报的准确率为0.8,一周中播报准确的次数为ξ,则2ξ=的概率为.(用式子表示)四、解答1.口袋里装有3个黑球与2个白球,任取3个球,求取到的白球的个数ξ的概率分布.2.口袋里装有4个黑球与1个白球,每次任取1个球,有放回地取3次,求所取过的3个球中恰有两个黑球的概率.高考链接1.(2014年) 已知离散型随机变量ξ的概率分布为则(1)Pξ==( ).A .0.24 B. 0.28 C.0.48 D.0.522.(2019年) 一口袋里装有4个白球和4个红球现在从中任取3个球,则取到既有白球又有红球的概率 .3.(2018年) 若将一枚硬币抛3次,则至少出现一次正面的概率为 .4.(2016年) 从1,2,3,4,5中任选3个数字组成一个无重复数字的三位数,则这个三位数是偶数的概率为 .5.(2017年) 取一个正方形及其外接圆,在圆内随机取一点,该点取自正方形内的概率为.积石成山1.某单选题要求从A 、B 、C 、D 四个选项中,选择一个正确答案,假设考生不会,随机地选择了一个答案,则他答对此题的概率是().A.1B.12C.13D.142. 某乐队有11名乐师,其中男乐师7人,现该乐队要选出一名指挥,则选出的指挥为女乐师的概率为().A.711B14C.47D.4113. 已知A 、B 是互斥事件,若1()5P A=,1()2P A B+=,则()P B的值是().A .45B.710C.310D.1104. 袋中装有3个黑球和2个白球一次取出两个球,恰好是黑白球各一个的概率().A. 15B.310C.25D.355. 5人站成一排照相,其中甲乙二人相邻的概率为().A. 25B.35C.15D.146. 一个箱子中有6个除了颜色之外完全一样的球,其中2个是红色的,4个是黑色的,那么在里面随机拿出一个是红色的概率是多少?().A. 12B.13C.14D.167. 掷一枚质地均匀且六面上分别有1,2,3,4,5,6点的骰子,则向上一面点数大于4的概率为().A. 12B.13C.23D.148. 抛掷一枚质地均匀的骰子,则向上一面出现偶数点概率是().A.12B.13C.16D.19.把一枚均匀的硬币连抛5次,得到5次国徽向上的概率为().A. 132B.532C.316D.313210.一副扑克牌去掉大小王,任意抽出一张不是黑桃的概率为().A. 14B .13C.12D.34概率答案一、选择题二、判断题三、填空题1.{任抽2件,有2件次品}.2. 58解析:151858CpC==.3. 1,2,3.4. 23解析:枚举法:选派方法有(甲,乙),(甲,丙),(乙,丙)共3种,其中甲被选中有2种,故所求概率为 23P =.5. 22570.8(10.8)C ⨯⨯-解析:设A ={播报一次,准确},则()0.8P A =,所以2257(2)0.8(10.8)P C ξ==⨯⨯-四、解答题1. 分析:任取3球属于古典概型,服从的分布为离散型随机变量的概率分布. 解:随机变量ξ的所有可能取值为0,1,2,则3032351(0)10C C P C ξ===, 2132353(1)5C C P C ξ===, 1232353(2)10C C P C ξ===. 所以概率分布为2. 分析:本题为有放回的抽取,是伯努利试验,服从二项分布. 解:设所取过的3个球中含有黑球的个数为随机变量ξ,则43,5B ξ⎛⎫⎪⎝⎭,于是 21234148(2)55125P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭ .高考链接1.B2.67解析:古典概率模型,则从中任意取3个球,取到既有白球又有红球的概率为122144443867C C C C C +=.3.78解析:试验发生包含的事件是将一枚硬币抛掷三次,共有328=(种)结果,满足条件的事件的对立事件是三枚硬币都是反面,有1种结果,则至少一次正面向上的概率是17188-=.4.25解析:从1,2,3,4,5这5个数字中任取3个数字组成没有重复的三位数,基本事件总数3560n P ==,这个三位数是偶数包含的基本事件个数122424m C P ==,∴这个三位数是偶数的概率为242605mPn===.5. 2π解析:设正方形的边长为11S=正方形,∴222Sππ⎛=⨯=⎝⎭外接圆∴该点取自正方形内部的概率为122Pππ==.积石成山。
概率论中的计数原理例题和知识点总结
概率论中的计数原理例题和知识点总结在概率论中,计数原理是非常重要的基础知识,它帮助我们在解决各种概率问题时确定可能的结果数量。
下面我们将通过一些具体的例题来深入理解计数原理,并对相关知识点进行总结。
一、知识点梳理1、加法原理如果完成一件事情有 n 类办法,在第 1 类办法中有 m1 种不同的方法,在第 2 类办法中有 m2 种不同的方法,……,在第 n 类办法中有mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn 种不同的方法。
2、乘法原理如果完成一件事情需要 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有 N =m1 × m2 × … × mn 种不同的方法。
3、排列从 n 个不同元素中取出 m(m ≤ n)个元素的排列数,记作 Anm ,Anm = n(n 1)(n 2)…(n m + 1) 。
4、组合从 n 个不同元素中取出 m(m ≤ n)个元素的组合数,记作 Cnm ,Cnm = n! / m!(n m)!。
二、例题解析例 1:从 0 到 9 这 10 个数字中,任取 3 个数字组成一个没有重复数字的三位数,共有多少种取法?解法:首先确定百位数字,因为百位不能为 0,所以有 9 种选择;十位数字可以从剩下的 9 个数字中任选一个,有 9 种选择;个位数字可以从剩下的 8 个数字中任选一个,有 8 种选择。
根据乘法原理,共有 9×9×8 = 648 种取法。
例 2:一个小组有 10 名同学,从中选 3 名同学分别担任组长、副组长和学习委员,共有多少种不同的选法?解法:这是一个排列问题。
从 10 名同学中选 3 名同学进行排列,即 A103 = 10×9×8 = 720 种不同的选法。
例 3:从 5 名男生和 3 名女生中选 3 名同学参加数学竞赛,要求至少有一名女生,共有多少种选法?解法:用总的选法减去全是男生的选法。
概率统计与随机事件例题和知识点总结
概率统计与随机事件例题和知识点总结在我们的日常生活和各种科学领域中,概率统计都有着广泛的应用。
而随机事件作为概率统计中的重要概念,理解和掌握相关知识对于解决实际问题至关重要。
接下来,让我们通过一些具体的例题来深入探讨概率统计与随机事件的知识点。
一、随机事件的定义和基本概念随机事件是指在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。
比如,掷一枚骰子,出现的点数就是一个随机事件。
概率是用来衡量随机事件发生可能性大小的数值。
必然事件的概率为 1,不可能事件的概率为 0,而随机事件的概率介于 0 和 1 之间。
二、事件的关系和运算1、包含关系:如果事件 A 发生必然导致事件 B 发生,那么称事件B 包含事件 A,记作 A ⊆ B 。
2、相等关系:如果 A ⊆ B 且 B ⊆ A ,则称事件 A 与事件 B 相等,记作 A = B 。
3、和事件:事件 A 或事件 B 至少有一个发生的事件称为事件 A与事件 B 的和事件,记作 A ∪ B 。
4、积事件:事件 A 和事件 B 同时发生的事件称为事件 A 与事件 B 的积事件,记作A ∩ B 。
5、互斥事件:如果事件 A 与事件 B 不能同时发生,即A ∩ B =∅,则称事件 A 与事件 B 互斥。
6、对立事件:如果事件 A 和事件 B 满足 A ∪ B =Ω (必然事件)且A ∩ B =∅,则称事件 A 与事件 B 互为对立事件,事件 B 称为事件 A 的对立事件,记作 B =A。
三、概率的基本性质1、0 ≤ P(A) ≤ 1 ,其中 P(A) 表示事件 A 的概率。
2、P(Ω) = 1 ,P(∅)= 0 。
3、若事件 A 与事件 B 互斥,则 P(A ∪ B) = P(A) + P(B) 。
4、若事件 A 与事件 B 互为对立事件,则 P(B) = 1 P(A) 。
四、例题分析例 1:袋中有 5 个红球,3 个白球,2 个黑球,从中任取 1 个球,求取出红球的概率。
概率与统计掌握难点与常见题型
概率与统计掌握难点与常见题型概率与统计是数学中的一个重要分支,广泛应用于各个领域中。
然而,对于很多学生来说,概率与统计常常是一个难以掌握的主题。
本文将介绍概率与统计的难点所在,并针对常见的题型给出解题思路和方法。
一、概率与统计的难点概率与统计的难点主要体现在以下几个方面:1. 抽样方法的选择:在统计中,抽样是一项关键步骤,直接影响到数据的可靠性和准确性。
然而,学生常常对于不同的抽样方法选择不当,导致结果失真。
2. 概率的运算:概率的运算是概率与统计中的重点内容,但对于很多学生来说,概率的运算常常是一个困难的问题。
特别是在涉及到复杂事件的概率计算时,学生容易犯错或陷入死胡同。
3. 解读统计图表:在概率与统计中,统计图表是一种常见的数据展示方式。
然而,学生往往在解读统计图表时存在困难,无法准确理解数据的含义,影响到问题的解答。
4. 条件概率的计算:条件概率是概率与统计中的重要内容之一,涉及到事件在给定条件下发生的概率。
然而,学生常常对条件概率的计算方法不熟悉,无法准确应用。
二、常见题型及解题思路1. 概率计算题:概率计算题是概率与统计中的基础题型,通常涉及到单个事件的概率计算。
解题时,可以根据事件的定义和概率的性质进行计算。
例如,计算掷骰子出现奇数的概率,可以将奇数的可能性个数除以总的可能性个数。
2. 条件概率题:条件概率题是概率与统计中的常见题型,要求计算给定条件下事件的概率。
解题时,可以利用条件概率的定义和公式进行计算。
例如,计算在已知某人患病的情况下,某检测结果为阳性的概率,可以将阳性结果所对应的概率除以患病的概率。
3. 抽样与估计题:抽样与估计题是统计中的常见题型,要求通过对样本的观察和分析来对总体进行推断。
解题时,可以利用经验和统计方法进行估计和推断。
例如,通过抽样调查得到的数据,推断全体学生中女生的比例。
4. 统计图表题:统计图表题要求对给定的图表进行分析和解读。
解题时,需要仔细观察图表,理解图表所呈现的数据,并用正确的数据分析方法进行解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考教材概率论与数理统计第四版
(浙江大学主编)
重要定理、性质、公式、结论
经典例题、重要例题及不需要做的题目
第一章概率论的基本概念(考小题)
第一节随机试验(了解)
第二节样本空间,随机事件(了解)
第三节频率与概率(频率可以不用看,了解)
第四节等可能概率(古典概论)(难点非重点,做一些基本题即可)第五节条件概率(重要,考小题为主,考大题有时会用到)
第六节独立性(重要,考小题为主,大题经常会用到)
第二章随机变量及其分布(至少考小题,考大题一定会用到)
第一节随机变量(了解)
第二节离散型随机变量及其分布律(重要,经常考)
第三节随机变量的分布函数(重要,每年必考)
第四节连续型随机变量及其概率密度(重要,每年必考)
第五节随机变量的函数分布(重要,大题的命题点)
第三章多维随机变量及其分布(考大题可能性极大)
第一节二维随机变量(了解)
第二节边缘分布(理解)
第三节条件分布(理解)
第四节概率独立的随机变量(重要,基本每年必考)
第五节两个随机变量函数的分布(重要,大题的经典命题点)
第四章随机变量的数字特征(重要)
第一节数学期望(重要,每年必考)
第二节方差(重要,每年必考)
第三节协方差与相关系数(重要,经常考)
第四节矩,协方差矩阵(矩,了解,协方差矩阵不用看).
第五章大数定律及中心极限定理(了解)
第一节大数定律(了解,关注定律的前提条件与结论)
第二节中心极限定理(了解,关注定理的前提条件与结论)
第六章样本及抽样分布(考小题为主)
第一随机样本(了解,其中有重要概念,简单随机样本)
第二直方图和箱线图(重要,考小题)
第三抽样分布(重要,考小题)
第七章参数估计(重要,考大题经典章节)
第一节点估计(极其重要,矩估计:重点非难点,最大似然估计(重点且难点))第二节基于截尾样本的最大似然估计(不用看)
第三节估计量的评选标准(数一重要,数三不用看)
区间估计(数一理解,考的比较少)
第五正态总体均值与方差的区间估计(数一理解,考的比较少)
第六(0-1)分布参数的区间估计(不用看)
第七单侧置信区间(理解,一般不考)
(第四-第七,只有数一考,数三均不用看)
第八章假设检验(理解,一般不考,只有数一有要求,数三不考)
第一假设检验(理解)
第二正态总体均值的假设检验(理解)
第三正态总体方差的假设检验(理解)
第四,第五,第六,第七,第八(均不用看).
考研数学概率统计的重点难点必考点及重要例题和习题不用做的例题和习题
第一章概率论的基本概念
P3最后4行的小写字体不用看
P5例3不用做(一)频率不用看
P6-7 例1与例2均不用做,P7概率重点看
P9 等可能概率一般都不单独考,考大题经常会用到,P13例6不用做,P14例8不用做P14 条件概率重点看,P15例2不用做,P16例3不用做,P17例4重点做
P17 (三)全概率公式和贝叶斯公式为难点
P19 例5不用做,P20独立性为考研数学的绝对重点,P22例2与例3均不用做
P23 例4重点做
P24-29 不用做的习题是1、5、6、10、12、15、16、18、19、20、21、23、25、26、29、32、34、35、38、39、40
第二章随机变量及其分布
P30 例1不用看
P37 泊松定理只需要记住结论,证明可以不用看
P38 随机变量的分布函数为考研必考概念
P42 连续性随机变量概率密度为考研必考点
P50 随机变量的函数的分布是考大题的重要命题点
P53 例5不用做
P55-59 不用做的习题1、5、6、7、9、10、11、13、15、16、19、22、27、28、30、31、38、39
第三章多位随机变量及其分布
P63 性质4的解释不用看
P65 例1不用做,P66例3重点做一下(提升计算能力)
P68 例1不用做,P72相互独立的随机变量为重点章节
P76 两个随机变量的函数的分布为考大题的重要备考章节
P78 例3不用做,P81例5不用做
P84-89 不用做的习题是3、6、7、10、11、12、13、28、31
第四章随机变量的数字特征
P91 例1不用做,P92例3与例4不用做,P93例5不用做
P95 中间的证明不用看,P96例8与例10不用做
P97 例11不用做,P100例13不用做,P105不用做
的两条重要性质的推导及含义不用看
P107
XY
P108 只需要看前四行即只需要记住定理4证明可以不用看
P109 例2重点做(提升计算能力)
P110 矩为一般考点,协方差矩阵不用看
P113-118不用做的习题是1.4.5.12.13.15.16.18.19.22.23.24.35.36.37.38
第五章大数定律及中心极限定理(难点非重点)
P124 例1不用做
P126-127 不用做的习题是2、4、5、10、11、13
第六章样本及抽样分布(一般考点考小题)
P130 第四行简单随机样本为重要概念
P130 第二节直方图和箱线图不用看
P135 第三节抽样分布(考小题),P136统计量定义及几个常见统计量要重点看而且要牢记其表达式
P137 经验分布函数只有数三同学稍微了解
P138-141 数理统计所有的三大分布的典型模式要牢记但三种分布的概率密度表达式可以不用记
P145-147 定理2的证明与推广均不用看
P147-148 不用做的习题是1、5、6、10、11
第七章参数估计(数一数三的绝对的重点和难点)
P149 点估计数一数三的绝对重点
矩估计重点非难点,最大似然估计重点且难点
P163-155 例4例5例6重点做
P156-158第二节基于截尾样本的最大似然估计不用看
P158 估计量的评选标准数一重点看,数三大纲上虽然没有但建议数三看一下最好
P161-168 区间估计,正态总体均值与方差的区间估计,只有数一看,为一般考点
P168 0-1分布参数的区间估计数一数三均不用看
P169 单侧置信区间,只有数一看,为一般考点
P193-177 数三不用做的习题为4(3)、6、7、8、9、10、11-27均不用做
数一不用做的习题为4(3)、6、7、8、9、15、17、20、21、22、23、26、27
第八章假设检验(数一特有的考点,难点非重点)
数一只需要看前四节P178-193
从第五节以后均不需要看
P218-223习题只需要做1、2、3、4其余的题目可以不用做。