初中一元二次方程课件ppt
合集下载
北师大版数学九年级上册 2.1 第2课时 一元二次方程的解及其估算 课件(共23张PPT)
归纳总结
规律方法 上述求解是利用了“两边夹”的思想
用“两边夹”思想解一元二次方程的步骤: ①在未知数x的取值范围内排除一部分取值; ②根据题意所列的具体情况再次进行排除; ③对列出能反映未知数和方程的值的表格进行再次筛选; ④最终得出未知数的最小取值范围或具体数据.
当堂练习
1.请求出一元二次方程 x2 - 2x - 1=0的正数根(精确到0.1). 解:(1)列表.依次取x=0,1,2,3,…
x
0 0.5 1
1.5
2
2x2 - 13x + 11 11
5
0
-4 -7
(4)你知道地毯花边的宽x(m)是多少吗? 还有其他求 解方法吗?与同伴进行交流.
例3:在上一课中,梯子的底端滑动的距离x满足方程x2 +12 x - 15 = 0.
1m 10m
8m
xm
你能猜出滑动距离
x的大致范围吗?
下面是小亮的求解过程:
B·九年级上册
第二章 一元二次方程
2.1 认识一元二次方程 第2课时 一元二次方程的解及其估算
学习目标
1.理解方程的解的概念. 2.经历对一元二次方程解的探索过程并理解其意义.(重点) 3.会估算一元二次方程的解.(难点)
导入新课
一元二次方程有哪些特点?一元二次方程的一般形式是什么? 一元二次方程的特点: ① 只含有一个未知数; ②未知数的最高次项系数是2; ③整式方程.
a9 4
4.已知关于x的一元二次方程 ax2+bx+c=0 (a≠0)一个根为1, 求a+b+c的值.
解:由题意得 a12b1c0
即 abc0
思考: (1)若 a+b+c=0,你能通过观察,求出方程ax2+bx+c=0 (a≠0) 的一个根吗?
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
解一元二次方程(公式法)(ppt课件)
这时
b
2
4ac 4a 2
>0,
即
b
b2 4ac
x
.
2a
2a
b b2 4ac
x
.
2a
b b2 4ac
b
x1
2a
, x2
b2 4ac .
2a
方程有两个不 相等实数根
探究新知
⑵b2-4ac=0
这时
b2 4ac 0, 4a 2
x1=x2=- b 2a
方程有两个相 等实数根
探究新知
解:方程化为 2x2-5x-9=0.
a=2,b=-5,c=-9.
Δ=(-5)2-4×2×(-9)=97>0.
方程有两个不等的实数根
x=-b±
b2-4ac=5±
2a
4
97,
即
x1=5+4
97,x2=5-4
97 .
随堂练习
3.用公式法解方程:x2-3x+4=0. 解:a=1,b=-3,c=4. Δ=b2-4ac=(-3)2-4×1×4=-7<0. 方程无实数根.
课堂小结
公式法解方程的步骤 1.变形: 化已知方程为一般形式; 2.确定系数:用a,b,c写出各项系数; 3.计算: △=b2-4ac的值; 4.判断:若△=b2-4ac ≥0,则利用求根公式求出;
若△=b2-4ac<0,则方程没有实数根.
当堂测试
1. 关于 x 的一元二次方程 x2 2x m 2 0 有两个不相等的实数根,则 m 的取值范围
,
x2
1.
(2) x2 4x 7 0 ,
a 1, b 4 , c 7 ,
b2 4ac (4)2 417 44 0 ,
初中数学《一元二次方程》教育教学课件
方程解法 之 基本方法 • 开平方法
【之一 开平方法】
(1)形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程可采用直接开平方法解一元二 次方程 。
(2)如果方程化成x2=p(p≥0)的形式,那么可得x=± p 。 (3)如果方程能化成(mx+n)2=p(p≥0)的形式,那么mx+n=± p ,进而得出方程的根。
(x-2)(x+2)=0
即 x+2=0或x-2=0 ∴ x1=-2,x2= 2
方程解法 之 基本方法 • 因式分解法
十字相乘法
十字相乘法是因式分解法解 一元二次方程中一个重要的部分。 一元二次方程左边为二次三项式, 形如x²+(p+q)x+pq=0,可化为 (x+p)(x+q)=0,从而得出:
x1=-p;x2=-q。
方程解法 之 基本方法 • 配方法
配方法的口诀
二次系数化为一, 分开常数未知数; 一次系数一半方, 两边加上最相当。
【例题】
1、解方程 x²+2x-3=0 解:把常数项移项得:x²+2x=3 等式两边同时加1(构成完全平方式)得:
x²+2x+1=4 配方得:(x+1)²=4 ∴ x1=-3 , x2=1
根据题意,得 [100(1+x)-50](1+ x)=63. 整理,得 50x2+125x-13=0. 解得x1=0.1 ,x2=-2.6 . ∵x2=-2.6 不合题意, ∴x= 10%. 答:第一次存款时的年利率为10%。
解应用题 之 精选例题
概念解析 之 四种形式
【一般形式】
ax²+bx+c=0(a≠0)
人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)
的关系进行简单计算。
情感态度与价值观:
1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意
识。
教学重难点
掌握一元二次方程根与系数的关系。
利用一元二次方程根与系数的关系进行简单
计算。
复习引入:
1.一元二次方程的一般式:ax2+bx+c=0(a≠0).
b2-6b+4=0,且
A.
B.
a≠b,则 + 的值是( A )
−
C.
D.
−
解:∵ a2-6a+4=0 和 b2-6b+4=0 两个等式的
形式相同,且 a≠b,∴ a,b 可以看成是方
程 x2-6x+4=0 的两个根,∴ a+b=6,ab=4,
∴
+ =
+
=
+
巩固练习:
1.不解方程,求下列方程两个根的和与积.
(1) x2-3x=15;
(2) 3x2+2=1-4x;
(3) 5x2-1=4x2+x;
(4) 2x2-x+2=3x+1.
解:(1)方程化为 x2-3x-15=0,
x1+x2=-(-3)=3,x1x2=-15.
(2)方程化为 3x2+4x+1=0,
2.判断一元二次方程根的情况.
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.
情感态度与价值观:
1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意
识。
教学重难点
掌握一元二次方程根与系数的关系。
利用一元二次方程根与系数的关系进行简单
计算。
复习引入:
1.一元二次方程的一般式:ax2+bx+c=0(a≠0).
b2-6b+4=0,且
A.
B.
a≠b,则 + 的值是( A )
−
C.
D.
−
解:∵ a2-6a+4=0 和 b2-6b+4=0 两个等式的
形式相同,且 a≠b,∴ a,b 可以看成是方
程 x2-6x+4=0 的两个根,∴ a+b=6,ab=4,
∴
+ =
+
=
+
巩固练习:
1.不解方程,求下列方程两个根的和与积.
(1) x2-3x=15;
(2) 3x2+2=1-4x;
(3) 5x2-1=4x2+x;
(4) 2x2-x+2=3x+1.
解:(1)方程化为 x2-3x-15=0,
x1+x2=-(-3)=3,x1x2=-15.
(2)方程化为 3x2+4x+1=0,
2.判断一元二次方程根的情况.
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.
初三数学中考专题复习 一元二次方程 课件(共22张PPT)
• 8、若9am2-4m+4与5a9是同类项,则m= ___
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
• 9、某商场将进货价为30元的台灯以40元售 出,平均每月能售出600个,调查表明:, 这种台灯的售价每上涨1元,其月销售量就 将减少10个,若销售利润率不得高于100% ,为了实现平均每月10000元的销售利润, 这种台灯的售价应定为多少?这时应进台 灯多少个?
• 5、 若x,y为矩形的边长,且(x+y+4)(x +y+5)=42, 则矩形的周长为___.
• 6、如果正整数a是一元二次方程x2-3x+ m=0的一 个根,-a是一元二次方程
• x2+3x-m=0的一个 根,则a=____.
• 7、一元二次方程ax2+bx+c=0,若x=1是它 的一个根,则 a+b+c= ___,若a-b+c=0, 则方程必有一根为___
运动与方程
如图,在Rt△ACB中,∠C=90°,
AC=6m,BC=8m,点P、Q同时由A、
B速两点出发分别沿AC,BC方向 A
向点C匀运动,它们的速度都是 P 1m/s,几秒后四边形APQB的面积
为Rt△ACB面积的1\3?
C
QB
几何与方程
1.将一块正方形的铁皮四角剪去一个边长为4cm的小正 方形,做成一个无盖的盒子.已知盒子的容积是400cm3, 求原铁皮的边长.
适应于左边能分解为两个一次因式的积右边是00的方程一一元二次方程的定义1判断下面方程是不是一元二次方程14xx2023x2y103ax?bxc04853xx13????122方程m2xm3mx40是关于x的一元二次方程则m3方程m21x2m1x2m10当m时是一元二次方程
第二章 一元二次方程 复习
把握住:一个未知数,最高次数是2,
人教版九年级数学上册《一元二次方程》PPT优秀课件
③
①都是整式方程; ②都只含一个未知数; ③未知数的最高次数都是2.
那么这三个方程与一元一次方程的区别在哪里? 它们有什么共同特点呢?
知识要点
一元二次方程的概念 等号两边都是整式,只含有一个未知数(一元),并且未知
数的最高次数是2(二次)的方程,叫做一元二次方程.
一元二次方程的一般形式是 ax2+bx +c = 0(a,b,c为常数, a≠0)
想一想: 还有其他的方法吗?试说明原因. (20-x)(32-2x)=570
32-2x
32
20-x 20
归纳小结
建立一元二次方程模型的一般步骤
审
审题,弄 清已知量 与未知量 之间的关 系
设 设未知数
找
找出等量 关系
列
根据等量 关系列方 程
随堂演练
1.下列关于x的方程一定是一元二次方程的是( D )
解:当x=-3时,左边=9-(-3)-2=10, 则左边≠右边, 所以-3不是方程x2-x-2=0的解; 下面几个数同理可证. 经检验得-1,2为原方程的根.
获取新知
知识点三:建立一元二次方程模型
问题 在一块宽20m、长32m的矩形空地上,修筑三条宽相等 的小路(两条纵向,一条横向,纵向与横向垂直),把矩形空 地分成大小一样的六块,建成小花坛.如图要使花坛的总面积 为570m2,问小路的宽应为多少?
4.如图,在一块长12 m,宽8 m的矩形空地上,修建同样宽的两条互 相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种 花草,且栽种花草的面积为77 m2.设道路的宽为x m,则根据题意, 可列方程为 (12-x)(8-x)=77.
样的正方形,再将四周突出部分折起,就能制作一个无盖方盒.如果要制作的
一元二次方程的解法ppt课件
的各项系数a、b、c确定的,当 2 -4ac≥0时,它的实数根
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
是
公式法推导过程
这叫做一元二次方程的求根公式,解一元二次方程时,
2
把各项系数的值直接代入这个公式,若 -4ac≥0就可以
求得方程的根,这种解一元二次方程的方法叫做公式法.
尝试与交流
2
2
在一元二次方程 +bx+c=0(a≠0)中,如果 -4ac<0那
解:原方程可变形为(2x-1+x)(2x-1-x)=0
即(3x-1)(x-1)=0
3x-1=0或x-1=0
所以x1=
,x
2=1
观察与思考
2=4(x+2)
(x+2)
解方程
小丽、小明的解法如下:
小丽、小明的解法,哪个正确?
因式分解法练习
1.用因式分解法解下列方程
①x2-3x=0
② 3x2= x
③2( x-1 ) + x ( x-1 ) =0
叫做因式分解法
例题8
解下列方程
① = −
② + − + =
原方程可变形为x2+4x=0
原方程可变形为
x(x+4)=0
(x+3)(1-x)=0
x=0或x+4=0
x+3=0或1-x=0.
所以x1=0,x2=-4
所以x1=-3,x2=1
例题9
解方程
(2x-1)2-x2=0
的矩形割补成一个正方形
数学实验室
一个矩形通过割、拼、补,成为一个正方形的过程配方
的过程
数学实验室
数学实验室
数学实验室
数学实验室
解一元二次方程ppt课件
21.2 解一元二次方程
重
难 ■题型二 利用根的判别式判断三角形的形状
题 型
例 2 已知△ABC 中,a,b,c 分别是∠A,∠B,∠C 的对边,且关于 x
突 的一元二次方程 b(x2-1)-2ax+c(x2+1)=0 有两个相等的实数根.判断
破 △ABC 的形状.
[解析] 根据已知条件得出 Δ=0,将等式变形,利用勾股定理的逆定理
B. 只有一个实数根
读
C. 有两个不相等的实数根
D. 没有实数根
[解题思路]
原方程
x(x-2)=1
化为一般形式
x2-2x-1=0
确定 a,b,c 的值
a=1,b=-2,c=-1
代入判别式 Δ
b2-4ac=8>0
判断根的情况
[答案] C
有两个不相等的实数根
方法点拨 应用根的判别式时要准确确定 a,b,c 的值,代入时要注意不 要丢掉各项系数的符号.
清 单
(1)x2-4x-3=0; (2)2x2-6x=1; (3)(t+3)(t-1)=12.
解
[解题思路] 按照下面的顺序进行求解.
读
[答案] 解:(1)移项,得 x2-4x=3,配方,得 x2-4x+4=3+4,即(x-
2)2=7,开方,得 x-2=±
,所以 x1=2+
,x2=2-
;
(2)二次项系数化为 1,得 x2-3x= ,配方,得 x2-3x+
21.2 解一元二次方程
考
点
21.2.1 配 方 法
清
单 ■考点一 直接开平方法
解
读
原理 根据平方根的意义进行“降次”,转化为一元一次方程求解
一元二次方程ppt课件
一元二次方程ppt课件
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
contents
目录
• 一元二次方程的定义 • 一元二次方程的解法 • 一元二次方程的应用 • 一元二次方程的判别式 • 一元二次方程的根的性质 • 一元二次方程的根与系数的关系
01
一元二次方程的定义
定义与特点
定义
只含有一个未知数,且未知数的 最高次数为2的整式方程叫做一元 二次方程。
根的判别条件
判别式
一元二次方程的判别式Δ=b²-4ac,当 Δ>0时,方程有两个不相等的实根;当 Δ=0时,方程有两个相等的实根;当 Δ<0时,方程没有实根。
VS
根的存在性
一元二次方程一定有两个实根,除非判别 式Δ<0。
根的性质与关系
根与系数的关系
一元二次方程的两个根x1和x2与系数a、b、c之间存在关系,如 x1+x2=-b/a,x1*x2=c/a等。
配方法
步骤 1. 将方程 $ax^2 + bx + c = 0$ 移项,使等号右侧为0。
2. 将二次项系数化为1,即方程两边都除以 $a$。
配方法
01
3. 将一次项系数的一半的平方加 到等式两边,使左侧成为一个完 全平方项。
02
4. 对方程两边同时开平方,得到 $x$ 的解。
公式法
总结词
利用一元二次方程的解的公式直接求解。
根的积
一元二次方程的根的积等于常数项与 二次项系数之比。
根的平方和与积的性质
要点一
根的平方和
一元二次方程的根的平方和等于常数项与二次项系数绝对 值的商。
要点二
根的平方积
一元二次方程的根的平方积等于二次项系数绝对值的商。
感谢您的观看
一元二次方程课件ppt
• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
2 解一元二次方程 公式法PPT课件(人教版)
12.已知关于x的一元二次方程x2+bx+b-1=0有两个相等的实数 根,则b 的值是__2__.
13.关于x 的方程(a+1)x2-4x-1=0有实数根,则a满足的条件是 _a_≥_-__5_____.
14.用公式法解下列方程: (1)x(2x-4)=5-8x;
解:原方程整理为 2x2+4x-5=0,∴b2-4ac=16+4×2×5= 56,∴x=-24×±256,即 x1=-2+2 14,x2=-2-2 14
练习1:对一元二次方程x2-2x=1,b2-4ac=__8__. 2.式子____b_2_-__4_a_c___叫做一元二次方程ax2+bx+c=0根的判别 式,常用Δ表示,Δ>0⇔ax2+bx+c=0(a≠0)有 __有__两__个__不__等__的__实__数__根_______;Δ=0⇔ax2+bx+c=0(a≠0)有 __两__个__相__等__的__实__数__根___;Δ<0⇔ax2+bx+c=0(a≠0)____无__实__数__根__. 练习2:(202X·长沙)若关于x的一元二次方程x2-4x-m=0有两个 不相等的实数根,则实数m的取值范围是_____m_>__-__4____.
8.一元二次方程x2-x-6=0中,b2-4ac=__2_5___,可得x1= __3__,x2=__-__2__.
(91.)x用2-公3x式-法2=解0下;列方解程::x1=3+2 17,x2=3-2 17 (2)8x2-8x+1=0;
解:x1=2+4 2,x2=2-4 2
(3)2x2-2x=5. 解:x1=1+2 11,x2=1-2 11
知识点1:根的判别式 1.(202X·邵阳)一元二次方程2x2-3x+1=0的根的情况是( B ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 2.(202X·丽水)下列一元二次方程没有实数根的是( B ) A.x2+2x+1=0 B.x2+x+2=0 C.x2-1=0 D.x2-2x-1=0
一元二次方程的解法—公式法ppt课件
k≠0
k≠0
归纳 当一元二次方程二次项系数是字母时,一定要注意二次项 系数不为 0,再根据“Δ”求字母的取值范围.
【变式题】删除限制条件“二次”
若关于 x 的方程 kx2 − 2x −1 = 0 有实数根,则 k 的取值范围是
( A)
A. k≥ −1
B. k≥ −1且 k≠0
C. k < 1
D. k < 1 且 k≠0
第二十一章 一元二次方程
21.2 解一元二次方程
21.2.2 公式法
学习目标
1. 了解求根公式的推导过程;(难点) 2. 掌握用公式法解一元二次方程;(重点) 3. 会用判别式判断一元二次方程的根的情况.
知识回顾
用配方法解一元二次方程的步骤有哪些?
一“化”:将方程化为一般形式,且把二次项系数化为1; 二“移”:将常数项移到方程的右边; 三“配”:方程方左程边两配边成同完时全加平上方一的次形项式系;数一半的平方,将
练一练
不解方程,判断下列方程的根的情况.
(1)3x2+x-1=0;
(2)2x2+6=3x;
方法归纳
判断一元二次方程根的情况的方法:
将方程整理 为一般形式 ax2+bx+c=0
Δ= b2 − 4ac > 0 Δ= b2 − 4ac = 0 Δ= b2 − 4ac < 0
有两个不等的实数根 有两个相等的实数根 没有实数根
Δ= b2-4ac = (− )2-4×2×1 = 0. 方程有两个相等的实数根
x1 = x2
(3) 5x2-3x = x + 1; 解:方程化为 5x2-4x-1 = 0.
±-
a = 5,b = -4,c = -1. Δ= b2-4ac = (-4)2-4×5×(-1) = 36>0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当x=1时,y=1 当x=2时,y=4
做一做
在学中做—在做中学
(1)二次函数y=-x2的图象是什么形状? (2)先想一想,然后作出它的图象. (3)它与二次函数y=x2的图象有什么关系?
x
y=-x2
…
…
-3
-9
-2
-4
-1
-1
0
0
1
-1
2
-4
3
-9
…
…
你能根据表格中的数据作出 猜想吗
?
做一做
描点,连线
当x=1时,y= -1 当x= 2时,y= -4
y ax 2
二次函数y=ax2的性质
y ax 2
1.抛物线y=ax2的顶点是原点, 对称轴是y轴.
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外), 它的开口向上,并且向上无限伸展; 当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的 开口向下,并且向下无限伸展.
一元
一次
只含有一个未知数,并且未知数的次数是1次 的整式方程叫一元一次方程。
问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且长 比宽多10米,那么绿地的长和宽各为多少?
解:设长方形绿地的宽为x米, 设未知数 则长为(x+10)米,可得方程: 长×宽=面积 x(x+10)=900, 整理可得:x 2 10 x 900 0 (1) 相等关系
对称轴与抛物 线的交点叫做 抛物线的顶点.
议一议
y
yx
x
2
观察图象,回答问题:
(1)图象是轴对称图形吗? 如果是,它的对称轴是什么? 请你找出几对对称点?
O
(2)图象 与x轴有交点吗?如果有,交点坐标是什么? (3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的? (4)当x<0时,随着x的值增大,y 的值如何变化? 当x>0呢?
特征:方程的左边按x的降幂排列, 右边=0
练习:下列方程中哪些是一元二次方程?试 说明理由。
3x 2 5x 3
不是 是 不是
2
x 4
2
x2 2 x x 1
x 4 ( x 2)
2
不是
2+bx+c=0(a≠0) ax
讨论:为什么二次项系数a不能为0?假如a=0 会出现什么情况?b、c能不能为0?
yx
2
当x<0 (在对称轴的 左侧)时,y随着x的增大而 减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而 增大.
当x=-2时,y=4 当x=-1时,y=1
抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.
问题2、学校图书馆去年年底有图书5万册,预计到明 年年底增加到7.2万册。求这两年的年平均增长率。
解:设这两年的年平均增长率为x, 去年底:5 今年底:5+5x=5(1+x)
注意:每年都是 在上一年的基础 上增长!
明年底:5(1+x)+5(1+x)x =5(1+x)(1+x) =5 (1+x)2 根据题意得方程:5(1+x)2=7.2
x … -3 -2 -1 9 4 1 0 0 1 1 2 4 3 9 …
y=x2 …
…
描点,连线
y
10 8 6 4
y=x2
?
-4 -3 -2 -1
2 0 -2 1 2 3 4 x
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
yx
2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
整理得: x2+10x-900=0 5x2+10x-2.2=0
(1) (2)
特征(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
只含有一个未知数,并且未知 数的最高次数是2的整式方程叫做一元二 次方程。 一元二次方程通常可写成如下的一般形式:
2+bx+c=0(a≠0) ax
(4)x( x 1) 3( x 5) 4 2
友情提示:某一项的系数包括它前 面的符号。
五、拓展练习:
1、 关于x的方程ax2 —2bx+a=2x2, 在什 么条件下此方程为一元二次方程?在什么条 件下此方程为一元一次方程?
解:移项:ax2 —2bx+a- 2x2 =0 合并同类项:(a-2)x2 —2bx+a=0 所以,当a≠2时是一元二次方程; 当a=2,b≠0时是一元一次方程;
-4 -3 -2 -1
y 2 0
-1 -2
-4 -6
1
2
3
4
x
?
-8 -10
2 y=-x
y
y x
当x<0 (在对称轴的 左侧)时,y随着x的增大而 增大.
2
当x>0 (在对称轴 的右侧)时, y随着 x的增大而减小.
当x= -2时,y= -4 当x= -1时,y= -1
抛物线y= -x2在x轴的 下方(除顶点外),顶点 是它的最高点,开口 向下,并且向下无限 伸展;当x=0时,函数y 的值最大,最大值是0.
3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在 对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小. 当a<0时,在对称轴的左侧,y随着x的增大而增大;在 对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.
做一做
(1)抛物线y=2x2的顶点坐标是 在对称轴 值是 y随着x的增大而减小,当x= ,抛物线y=2x2在x轴的
图象和性质
1、二次函数的一般形式是怎样的? y=ax² +bx+c(a,b,c是常数,a≠ 0)
2.下列函数中,哪些是二次函数?① ③yx Nhomakorabea2
2
y xx
1 ② yx x
2
④ yx
2
x 1
1 2 ⑤ y x 2x 4 3
你会用描点法画二次函数y=x2的图象吗? 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
课件内容:一元二次方程的解
及 其 图 像
课 件 制 作 : 杜 勇 江
E-mail:@
一元一次方程 二元一次方程(组) 分式方程 数的开方 二次根式 一元二次方程
二次函数
教学目标:
1、知道一元二次方程的定义,能熟练地把一 元二次方程整理成一般形式(≠0),并能指 出二次项系数、一次项系数和常数项。 2、经历由实际问题抽象出一元二次方程和过 程,进一步体会方程是刻画现实世界数量关 系的一种有效数学模型,增加对一元二次方 程的感性认识。 3、在实际问题转化为数学模型( 一元二次 方程 ) 的过程中,体会学习一元二次方程的 必要性和重要性。
x 3x 0
2
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
( )x x 2 13
2
3x2-1x-2=0 2x2-7x+3=0 1x2-5x+0=0 2x2-5x-11=0
(2)x 3 2 x 2 7
(3)x(2x 1) 3x( x 2) 0
2、已知关于x的一元二次方程 (m-1)x2+3x-5m+4=0有一根为2,求m。
什么叫方程的根? 能够使方程左右两边相等的未知数的值, 叫方程的根。
解:把x=2代入原方程得: (m-1) ×22+3 ×2 -5m+4=0 解这个方程得:m=6
3、已知关于x的方程
(m 1) x
一元二次方程的项和各项系数
二次项 系数
一次项 系数
a≠0
2+bx+c=0 ax
二次项 一次项 常数项
练习 1、指出下列一元二次方程的二次项系数、一 次项系数和常数项:
方程 二次项 系数 一次项 系数 常数项
2x 2 x 3 0
2 3 1
1 0 -3
-3 -5 0
3x 5 0
2
m 1
mx m 1 0
2
是一元二次方程,求m的值。
分析:因为方程是一元二次方程,故未知数x 的最高次数∣m∣+1=2, 解之得,m=1或m=-1, 又因二次项系数m+1≠0, 即m≠-1, 所以m=1。
温馨提示:注意陷井 二次项系数a≠0!
§26.1
2的 二次函数y=ax
1、下列式子哪些是方程?
方程的本质 特征是什么?
2+3=5 没有未知数 3x+2 不是等式 5x+3=18 含有未知数的等式叫方程 x-2y=5 含有未知数的等式叫方程
3 1 2 不是等式 x
2、我们学过哪些方程?
一元一次方程、二元一次方程、分式方程。
3、什么叫一元一次方程?方程的“元”和 “次”是什么意思?
2 2 y x 3
,对称轴是
, 侧,
侧,y随着x的增大而增大;在对称轴 方(除顶点外).
时,函数y的值最小,最小
(2)抛物线
在x轴的
方(除顶点外),在对称
轴的左侧,y随着x的
;在对称轴的右侧,y随着x的 ,