(完整版)一元一次不等式单元测试卷(含答案)(可编辑修改word版)

合集下载

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷 附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x (mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B 产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m 当m=80时,w始终等于8000,取值与a无关.1、读书破万卷,下笔如有神。

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级下册数学第11章《一元一次不等式》单元测试卷-附答案

苏科版七年级数学下册第11章《一元一次不等式》单元测试卷(满分120分)班级__________姓名__________学号__________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.下列各式中,是一元一次不等式的是()A.5+4>8B.2x﹣1C.2x≤5D.﹣3x≥03.不等式组的解集在数轴上表示正确的是()A.B.C.D.4.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A.a>b B.ab>0C.a+b>0D.a+b<05.下列不等式组是一元一次不等式组的是()A.B.C.D.6.以下说法中正确的是()A.若a>|b|,则a2>b2B.若a>b,则<C.若a>b,则ac2>bc2D.若a>b,c>d,则a﹣c>b﹣d7.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300B.5×100+5x≥300C.100+5x>300D.100+5x≥3008.把一些书分给几名同学,若每人分11本,则有剩余,若(),依题意,设有x名同学,可列不等式7(x+4)>11x.A.每人分7本,则剩余4本B.每人分7本,则剩余的书可多分给4个人C.每人分4本,则剩余7本D.其中一个人分7本,则其他同学每人可分4本9.在方程组中,若未知数x,y满足x+y>0,则m的取值范围在数轴上的表示应是如图所示的()A.B.C.D.10.某企业决定购买A,B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?为解决这个问题,设购买A型污水处理设备x台,所列不等式组正确的是()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为mg.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x应满足的不等式为.14.有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数;乙:其中一个不等式的解集为x≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向.请试着写出符合上述条件的一个不等式组.15.若关于x的不等式组有2个整数解,则a的取值范围是.16.如图所示的是一个运算程序:若需要经过两次运算才能输出结果,则输入的x的取值范围是.三.解答题(共7小题,满分66分)17.(8分)解不等式方程组:.18.(9分)已知不等式组(1)用在数轴上画图的方式说明这个不等式组无解;(2)在不等式组的括号里填一个数,使不等式组有解,直接写出它的解集和整数解.19.(9分)已知关于x的不等式组(1)若a=2,求这个不等式组的解集;(2)若这个不等式组的整数解有3个,求a的取值范围.20.(8分)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2.又∵x>1,∴y+2>1.即y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围.21.(10分)某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B 种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)22.(10分)定义:对于任何数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2.(1)[﹣]=;(2)如果[a]=3,那么a的取值范围是;(3)如果[]=﹣3,求满足条件的所有整数x.23.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.(1)求甲、乙型号手机每部进价为多少元?(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:A、不含有未知数,错误;B、不是不等式,错误;C、符合一元一次不等式的定义,正确;D、分母含有未知数,是分式,错误.故选:C.3.解:不等式组的解集在数轴上表示为:,故选:D.4.解:如图可知,A、a<0,b>0,∴b>a,错误;B、a<0,b>0,∴ab<0,错误;C、a<﹣1,0<b<1,∴a+b<0,错误;D、正确.故选:D.5.解:A、不是一元一次不等式组,故本选项不符合题意;B、是一元一次不等式组,故本选项符合题意;C、不是一元一次不等式组,故本选项不符合题意;D、不是一元一次不等式组,故本选项不符合题意;故选:B.6.解:A、若a>|b|,则a2>b2,正确;B、若a>b,当a=1,b=﹣2,时则>,错误;C、若a>b,当c2=0时则ac2=bc2,错误;D、若a>b,c>d,如果a=1,b=﹣1,c=﹣2,d=﹣4,则a﹣c=b﹣d,错误;故选:A.7.解:依题意有100+5x≥300.故选:D.8.解:由不等式7(x+4)>11x,可得,把一些书分给几名同学,若每人分7本,则可多分4个人;若每人分11本,则有剩余;故选:B.9.解:,①+②得,3(x+y)=3﹣m,解得x+y=1﹣,∵x+y>0,∴1﹣>0,解得m<3,在数轴上表示为:.故选:B.10.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg≤x≤30.12.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.解:由题意,列出不等关系x(6﹣1﹣2)+60≥300,化简得3x≥300﹣60.14.解:∵一元一次不等式组的解集为非负数,∴其中一个不等式的解集必为x≥0,∵一个不等式在解的过程中需要改变不等号的方向,∴其中一个不等式中x的系数为负数,∴符合条件的一元一次不等式组可以为:(答案不唯一).故答案为:(答案不唯一).15.解:解不等式得:x≤2,解不等式得:x>a,∵不等式组有2个整数解,∴不等式组的解集为:a<x≤2,且两个整数解为:2,1,∴0≤a<1,即a的取值范围为:0≤a<1.故答案为:0≤a<1.16.解:根据题意得:,解得:1≤x<7.故答案为1≤x<7.三.解答题(共7小题,满分66分)17.解:由①得2x+x<3+6,3x<9x<3;由②得14x﹣5x≤﹣89x≤﹣8x≤﹣.由以上可得x≤﹣.18.解:(1)∵解不等式①得:x≥2,解不等式②得:x<﹣1,在数轴上表示不等式的解集为:从数轴可以看出:两不等式的解集没有公共部分,∴不等式组无解;(2)不等式组为:,不等式组的解集为2≤x≤4,不等式组的整数解为2,3,4.19.解:(1)解不等式①,得x≤6﹣a,解不等式②,得x>﹣2,当a=2时,不等式组的解集是﹣2<x≤4.(2)因为该不等式组的整数解有3个,所以这三个整数解应是﹣1,0,1,所以1≤6﹣a<2,所以a的取值范围是4<a≤5.20.解:∵x﹣y=3,∴x=y+3.又∵x>2,∴y+3>2.即y>﹣1.又∵y<1,∴﹣1<y<1.…①同理得:2<x<4.…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5.21.解:(1)由题意.(2)解第一个不等式得:x≤320,解第二个不等式得:x≥318,∴318≤x≤320,∵x为正整数,∴x=318、319、320,500﹣318=182,500﹣319=181,500﹣320=180,∴符合的生产方案为①生产A产品318件,B产品182件;②生产A产品319件,B产品181件;③生产A产品320件,B产品180件;(3)第一种定价方案下:①的利润为318×1.15+182×1.25=593.2(万元),②的利润为:319×1.15+181×1.25=593.1(万元)③的利润为320×1.15+180×1.25=593(万元)第二种定价方案下:①②③的利润均为500×1.2=600(万元),综上所述,第二种定价方案的利润比较多.22.解:(1)[﹣]=﹣4,故答案为:﹣4;(2)如果[a]=3,那么a的取值范围是3≤x<4,故答案为:3≤x<4;(3)由题意得﹣3≤<﹣2,解得:﹣3≤x<﹣,∴满足条件的所有整数x的值为﹣3、﹣2.23.解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,解得,答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,17400≤1000a+800(20﹣a)≤18000,解得7≤a≤10,共有四种方案,方案一:购进甲手机7部、乙手机13部;方案二:购进甲手机8部、乙手机12部;方案三:购进甲手机9部、乙手机11部;方案四:购进甲手机10部、乙手机10部.(3)甲种型号手机每部利润为1000×40%=400,w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m当m=80时,w始终等于8000,取值与a无关.精品word 完整版-行业资料分享1、读书破万卷,下笔如有神。

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)1、选择题1、选B。

解集为2<x<3的不等式组是x<3且x>2.2、选B。

根据题意可列出不等式组:a<1+a,1+a<-a,-a<a,解得a<0.3、选D。

将不等式组化简可得x≤1或x>2,所以解集在数轴上表示为(-∞,1]∪(2,+∞)。

4、选C。

将不等式组化简可得2<x<5/3,所以整数解的个数是3个。

5、选C。

根据题意可列出不等式组:2x-6>0,x-5<0,解得-5<x<3.6、选D。

将每个不等式化简,得到①x>1,②x>4,③x <2,④x<3,所以选项D符合条件。

7、选B。

根据题意可得2-b<a<2-a,即b-2<x<a-2.8、选A。

将方程组化简可得x=(3m-2)/7,y=(8x-m)/3,代入x>y中得到4m<25,即m>9/4,所以m的取值范围是m>xxxxxxx。

二、填空题9、解得y<1或y>3,所以取值范围为y<1或y>3.10、将不等式组化简可得x<2或x≥3,所以解集是(-∞,2)∪[3,+∞)。

11、将不等式组化简可得x≤-0.25或x≥0.8333,所以解集是(-∞,-0.25]∪[0.8333,+∞)。

12、将不等式组化简可得m≤0.5或m≥1.5,所以取值范围是m≤0.5或m≥1.5.13、解得x≥2,所以解集为[2,+∞)∩(-∞,5)=[2,5)。

14、将不等式组化简可得x>a且x>2,所以解得a<2.15、将不等式组化简可得x<2b-1且x>(x+3)/2,所以解得b>3/2且a<1/2,所以(a+1)(b-1)=ab+a-b+1=(3/2)a+1/2.16、将不等式组化简可得x<4a-1且x>x-2b-3,所以解得a<(x+1)/4且b<(x-3)/2,所以(a+1)(b-1)<(x+1)/4·(x-3)/2=(x²-2x-3)/8.1)解不等式组begin{cases}3x-2<8\\2x-1>2end{cases}化简得begin{cases}x<10/3\\x>3/2end{cases}因此解集为$(3/2,10/3)$。

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

浙教版2020-2021学年八年级数学上册第三章:一元一次不等式单元检测题(含答案)

第三章:一元一次不等式单元测试卷一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.下列说法中错误的是( )A. 如果b a <,那么c b c a -<-B. 如果a >b ,c >0,那么ac >bcC. 如果m <n ,p <0,那么p n p m >D. 如果x >y ,z <0,那么xz >yz 2.关于x 的不等式组⎩⎨⎧>+-<012x a x 只有4个整数解,则a 的取值范围是( )A. 5≤a ≤6B. 5≤a <6C. 5<a ≤6D. 5<a <63.不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532所有整数解的和是( )A .﹣1B .0C .1D .2 4.方程组⎩⎨⎧=+=+1553y x m y x 有正数解,则m 的取值范围( ) A .3<m <5B .m >3C .m <5D .m <3或m >5 5.已知关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,则a 的取值范围是( ) A .910-≥a B .910->a C .0910<≤-a D .0910<<-a 6.如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对 (a 、b )共有( )A. 17个 B .64个 C .72个 D .81个7.不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 的解集在数轴上表示正确的是( )8.若不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >29.为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在 准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只A .55B .72C .83D .8910.若a 使关于x 的不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 有两个整数解,且使关于x 的方程2132-=+x a x 有负 数解,则符合题意的整数a 的个数有( )A .1个B .2个C .3个D .4个二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.不等式2x +3<-1的解集为________12.不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 的解为___________________ 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值为 ________ 14.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x 人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的不等式组为___________________________15.已知关于x 的不等式组⎩⎨⎧>->-0230x a x 的整数解共有5个,则a 的取值范围是_____________ 16.若关于x 的不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解,且关于x 的方程()()2322+--=x x kx 有非负整数解,则符合条件的所有整数k 的和为______________三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)解不等式(组)(1)1643312--≤-x x (2)()⎪⎩⎪⎨⎧->++≤--1223134122x x x x x18.(本题8分)若式子645+x 的值不小于3187x --的值,求满足条件的x 的最小整数值.19(本题8分)若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0,c 是不等式组 ⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 的最大整数解,求△ABC 的周长.20(本题10分).现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂在A 、B 两种不同规格的货车厢共40节,使用A 型车厢每节费用为6000元,使用B 型车厢每节费用为8000元.(1)设运送这批货物的总费用为y 万元,这列货车挂A 型车厢x 节,试定出用车厢节数x 表示总费用y 的公式.(2)如果每节A 型车厢最多可装甲种货物35吨和乙种货物15吨,每节B 型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A 、B 两种车厢的节数,那么共有哪几种安排车厢的方案?21(本题10分)已知关于y x ,的方程组⎩⎨⎧+=---=+137m y x m y x 的解满足0≤x ,0<y . (1)用含m 的代数式分别表示x 和y ;(2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式122+<+m x mx 的解为1>x ?22(本题12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客 车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.23(本题12分).(1)若三角形的三边长分别是2、x 、8,且x 是不等式32122x x -->+的正整数解,试求第三边x 的长. (2)若不等式组⎩⎨⎧>-+<+-053202b a x b a x ,的解集为61<<-x ,求b a ,的值. (3)已知不等式689312+≤-x x ,该不等式的所有负整数解的和是关于y 的方程2y -3a =6的解,求a 的值.答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵b a <,∴c b c a -<-,故A 选项正确;∵a >b ,c >0,∴ac >bc ,故B 选项正确;∵m <n ,p <0,∴pn p m >,故C 选项正确; ∵x >y ,z <0,∴yz xz <,故D 选项错误,故选择D2.答案:C解析:解不等式组⎩⎨⎧>+-<012x a x 得:21-<<-a x∵只有4个整数解,4223≤-<,∴65≤<a ,故选择C3.答案:B 解析:解不等式组()()⎪⎩⎪⎨⎧-≤++≤-x x x x 421312532得:11≤≤-x ,∴所有整数解是:1-,0,1,∴和为0,故选择B4.答案:A解析:解这个关于x ,y 的方程组得⎪⎪⎩⎪⎪⎨⎧-=-=23152155my m x ∴得到不等式组⎪⎪⎩⎪⎪⎨⎧>->-0231502155m m 解得3<m <5, 故选:A .5.答案:C解析:关于x 的不等式12572->-a a x ,解得25419->a x , ∵关于x 的不等式7<a x 的解也是不等式12572->-a a x 的解,故a <0, ∴不等式7<ax 的解集是x >7a . ∴254197-≥a a , 解得,910-≥a , ∵a <0, ∴0910<≤-a ,故选择C6.答案:C解析:由原不等式组可得:89b x a <≤. 在数轴上画出这个不等式组解集的可能区间,如下图根据数轴可得:190≤<a ,483<≤b . 由90≤<a ,∴a=1,2,3…9,共9个.由3224<≤b ,∴b=24,.25,26,27,…,31.共8个.∴有序数对(a 、b )共有9×8=72(个)故选:C .7.答案:C 解析:解不等式组()⎪⎩⎪⎨⎧<--≤-7230131x x 得:32≤<-x ,故选择C8.答案:A解析:解不等式组⎪⎩⎪⎨⎧<-<+mx x x 41231得:m x 48<<,∵不等式组无解,∴4m ≤8,解得m ≤2,故选:A .9.答案:C解析:设该村共有x 户,则母羊共有(5x +17)只,由题意知,()()⎩⎨⎧<--+>--+31175017175x x x x , 解得:221<x <12, ∵x 为整数,∴x =11,则这批种羊共有11+5×11+17=83(只),故选:C .10.答案:B 解析:解方程2132-=+x a x 得:12--=a x , ∵方程2132-=+x a x 有负数解,21->a 解不等式组()⎪⎩⎪⎨⎧≥++<+233213x a x x 得:⎪⎪⎩⎪⎪⎨⎧-≥-<232321x a x ∵不等式组()⎪⎩⎪⎨⎧≥++>+233213x a x x 有两个整数解,∴123210≤-<a ∴53≤<a ,∴⎪⎩⎪⎨⎧≤<->5321a a ,∴满足条件的a 值为4,5两个,故选择B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:2-<x解析:解不等式2x +3<-1得:2-<x12.答案:292<≤x 解析:解不等式组⎪⎩⎪⎨⎧+<-+≥-361112x x x x 得:292<≤x13.答案:2-解析 :解不等式组⎩⎨⎧+<-≥-122b a x b a x 得:212++<≤+b a x b a ∵ 该不等式组的解集为 :3≤x<5 , ∴⎪⎩⎪⎨⎧=++=+52123b a b a , 解得 :3-=a ,6=b ,∴236-=-=a b 故答案为 :-2.14.答案:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 解析:(x ﹣1)位同学植树棵树为9×(x ﹣1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵, ∴可列方程组为:()⎩⎨⎧-≥+-+<+)1(99719897x x x x 15.答案:﹣4≤a <﹣3解析:解不等式x ﹣a >0,得:x >a ,解不等式3﹣2x >0,得:x <1.5,∵不等式组的整数解有5个,∴﹣4≤a <﹣3.16.答案:9- 解析:解不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 得:1+4k ≤x ≤6+5k , ∵不等式组⎪⎩⎪⎨⎧+≤-≥-64221k k x k x 有解∴5-≥k解关于x 的方程()()2322+--=x x kx 得,16+-=k x , ∵关于x 的方程()()2322+--=x x kx 有非负整数解,当k=﹣4时,x=2,当k=﹣3时,x=3,当k=﹣2时,x=6,∴﹣4﹣3﹣2=﹣9;三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(1)解析:去分母得:()643122--≤-x x去括号得:10324-≤-x x ,移项合并得:8-≤x(2)()2142313221x x x x x -+⎧-≤⎪⎨⎪+>-⎩①②解不等式①得:54≥x 解不等式②得:3<x ∴不等式组的解为:354<≤x18.解析:∵式子645+x 的值不小于3187x --的值, ∴3187645x x --≥+,解得:41-≥x ∴满足条件的x 的最小整数值为019.解析:∵a 、b 满足关系式|a ﹣3|+(b ﹣4)2=0, ∴a=3,b=4, 解不等式⎪⎪⎩⎪⎪⎨⎧+<+->-21632433x x x x 得:2925<<x , 最大整数解为4,故△ABC 的周长=3+4+4=11.即△ABC 的周长为1120.解析:(1)6000元=0.6万元,8000元=0.8万元,设用A 型车厢x 节,则用B 型车厢(40−x)节,总运费为y 万元,依题意,得y=0.6x+0.8(40−x)=−0.2x+32(2)解:依题意,得()()⎩⎨⎧≥-+≥-+8804035151240402535x x x x , 解得:⎩⎨⎧≤≥2624x x ,∴2624≤≤x ,∵x 取整数,故A 型车厢可用24节或25节或26节,相应有三种装车方案: ①24节A 型车厢和16节B 型车厢;②25节A 型车厢和15节B 型车厢; ③26节A 型车厢和14节B 型车厢.21.解析:(1)解方程组方程组⎩⎨⎧+=---=+137m y x m y x 得⎩⎨⎧--=-=423m y m x (2)∵0≤x , 0<y∴⎩⎨⎧<--≤-04203m m 解得:32≤<-m(3)不等式 122+<+m x mx∵原不等式的解集是1>x∴012<+m∴ 21-<m 又∵32≤<-m ,∴212-≤<-m ∵ m 为整数∴1-=m22.解析:(1)设辆甲种客车与1辆乙种客车的载客量分别为x 人,y 人,⎩⎨⎧=+=+105218032y x y x ,解得:⎩⎨⎧==3045y x , 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:()⎩⎨⎧<≥-+624063045x x x 解得:64<≤x ,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.23.解析:(1)原不等式可化为3(x+2)>-2(1-2x ),解得x <8,∵x 是它的正整数解,∴x 可取1,2,3,5,6,7,再根据三角形第三边的取值范围,得6<x <10,∴x=7(2)不等式组可化为⎪⎩⎪⎨⎧+->-<.2532b a x b a x , 因为它的解集为61<<-x , 所以⎪⎩⎪⎨⎧-=+-=-,,125362b a b a 解得⎩⎨⎧==.24b a , (3)解不等式689312+≤-x x 得:x ≥-2; ∵x ≥-2,∴不等式的所有负整数解为-2,-1,y =-2+(-1)=-3,把y =-3代入2y -3a =6得-6-3a =6,解得a =-4.1、人生如逆旅,我亦是行人。

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案

浙教版八年级数学上册《第三章一元一次不等式》单元测试卷及答案一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.y 与2的差不大于0,用不等式表示为( )A. y −2>0B. y −2<0C. y −2≥0D. y −2≤02.不等式0≤x <2的解( )A. 为0,1,2B. 为0,1C. 为1,2D. 有无数个3.已知a <b ,则下列不等式一定成立的是( )A. a +5>b +5B. 1−2a >1−2bC. 32a >32bD. 4a −4b >0 4.在−1,0,1,12中,能使不等式2x −1<x 成立的数有( )A. 1个B. 2个C. 3个D. 4个5.若不等式组{x −1<1,▫的解集为x <2,则▫表示的不等式可以是( ) A. x <1 B. x >1 C. x <3 D. x >36.下列不等式与x >1的解表示在数轴上无公共部分的是( )A. x ≥1B. x ≤−1C. x ≤2D. x >−27.某校班级篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某班预计在全部12场比赛中至少要得到16分,才有希望进入总决赛.假设这个班在将要举行的联赛中胜x 场,如果该班要进入总决赛,那么x 应满足的不等式是( )A. 2x+(12−x)≥16B. 2x−(12−x)≥16C. 2x+(12−x)≤16D. 2x≥168.某运行程序如图所示,规定:从“输入一个值x”到“结果是否大于21”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x的和为( )A. 45B. 50C. 56D. 639.已知△ABC的边长分别为2x+1,3x,5,则△ABC的周长l的取值范围是( )A. 6<l<36B. 10<l≤11C. 11≤l<36D. 10<l<3610.P,Q,R,S四人去公园玩跷跷板,由下面的示意图,对P,Q,R,S四人的轻重判断正确的是( )A. R>S>P>QB. S>P>Q>RC. R>Q>S>PD. S>P>R>Q二、填空题:本题共6小题,每小题3分,共18分。

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案

湘教版八年级数学上册《第四章一元一次不等式(组)》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1已知3>2,两边都乘x ,则正确的是() A .3x>2x B .3x ≥2xC .3x ≤2xD .以上都不正确2下列不等式组求解正确的是()A .不等式组{x >3,x >5的解集是x>3B .不等式组{x ≥3,x <5的解集是3≤x<5C . 不等式组{x <3,x <5的解集是x<5D . 不等式组{x >3,x <5无解3不等式-2x<1的两边都除以-2得 .4代数式3x -4的值不小于代数式5-x 的值,列不等式为 .5若不等式(3m -2)x<7的解集为x<12,则m= .6x 同时满足不等式2(x+2)<x+5和不等式3(x -2)+8<2x ,则x 的取值范围是 . 7不等式-3≤2x -13<5的解集是 .8解不等式:3x+2(2-4x )<19.9求不等式组{2(x +8)≤10−4(x -3),x+12-6x+73<1的整数解.10若不等式5(x -2)+8<6(x -1)+7的最小整数解为方程3x -ax=4的解,求a 的值.【能力巩固】11已知a>0 ,且b 是有理数,那么一定有()A .-b 2<aB .-a 2<bC .a -b>0D .a -b 2<012一元一次不等式组{x >a,x <b,且a ≠b ,若它无解,则a 与b 的关系为 () A .a>b B .a<b C .a>b>0 D .a<b<013某商店以每件9元的进价购进一批商品,希望每件获毛利(毛利=销售价-进货价)不少于1元,但上级规定毛利不超过销售价的20%,设这件商品的销售价为x 元,根据题意列不等式组是()A .{x -9≥1,x -9≤20%xB . {x -9≤1,x -9≤20%xC . {x -9≥1,x -9≤20%D . {x -9≤1,x -9≥20%x14若不等式组{x >2m +1,x >7−m的解集为x>7-m ,则m 2 . 15求同时满足不等式x -3<4(x+3)和5(2x -1)≤3x -4的最大整数和最小整数.16已知|3x-2|+(6x-y+4k)2=0,若y>2k-1,求k的取值范围.【素养拓展】17.2024年4月18日,以“上春山寻好茶干净黔茶全球共享”为主题的2024中国好绿茶大会暨第16届贵州茶产业博览会在遵义湄潭中国茶城广场开幕,全国各地客商齐聚于此.一采购商看中了湄潭翠芽和都匀毛尖这两种优质茶叶,并得到信息如下:湄潭翠芽都匀毛尖总价/元251800质量/千克311270(1)求每千克湄潭翠芽和都匀毛尖的进价.(2)若湄潭翠芽和都匀毛尖这两种茶叶的销售单价分别是450元/千克和260元/千克,该采购商准备购进这两种茶叶共30千克,进价总支出不超过1万元,全部售完后,总利润不低于2660元,该采购商共有几种进货方案?(均购进整千克数)(利润=售价-进价)参考答案基础达标作业1.【答案】D2.【答案】B3.【答案】x>-124.【答案】3x-4≥5-x5.【答案】1636.【答案】x<-27.【答案】-4≤x<88.【答案】解:去括号,得3x+4-8x<19移项,得-5x<15∴x>-3.9.【答案】解:不等式组化简得{x≤1, x>−179,∴不等式组的解集为-179<x≤1∴不等式组的整数解为-1,0,1.10.【答案】解:解不等式得x>-3,∴最小整数解为x=-2.∴3×(-2)-(-2)a=4,∴a=5.能力巩固作业11.【答案】A12.【答案】A13.【答案】A14.【答案】≤15.【答案】解:由题意得{x-3<4(x+3), 5(2x-1)≤3x-4,解得{x>−5, x≤17,∴不等式组的解集为-5<x≤17∴符合题意的最大整数是0,最小整数是-4.16.【答案】解:由题意得{3x-2=0,6x-y+4k=0,解得{x=23,y=4k+4.又∴y>2k -1,∴4k+4>2k -1,∴k>-52素养拓展作业17.【答案】解:(1)设每千克湄潭翠芽的进价是x 元,每千克都匀毛尖的进价是y 元根据题意得{2x +5y =1800,3x +y =1270,解得{x =350,y =220. 答:每千克湄潭翠芽的进价是350元,每千克都匀毛尖的进价是220元.(2)设购进m 千克湄潭翠芽,则购进(30-m )千克都匀毛尖根据题意得{350m +220(30−m)≤10000,(450-350)m +(260−220)(30−m)≥2660,解得733≤m ≤34013.∴m 为正整数,∴m 可以为25,26.答:该采购商共有2种进货方案.。

(完整版)一元一次不等式单元测试卷(含答案),推荐文档

(完整版)一元一次不等式单元测试卷(含答案),推荐文档

x
x
x
a
D. 1 x2 x x
b0 图1
x 3 3 x 1,
2.(本题 8 分)解不等式组 2
并求出所有整数解的和.
1 3(x 1) ≤ 8 x
5.一个不等式的解集为 1 x ≤ 2 ,那么在数轴上表示正确的是( )
3.(本题 8 分)有 10 名菜农,每人可种甲种蔬菜 3 亩或乙种蔬菜 2 亩,已知甲种蔬菜每亩可收入 0.5 万元,乙 种蔬菜每亩可收入 0.8 万元,若要使总收入不低于 15.6 万元,则应该如何安排人员?
建议收藏下载本文,以便随时学习! A.a 1 b 1 B. a b 33
C. a b D. ac bc
2.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温 t (℃)
的变化范围是( )
A. t 33 B. t ≤ 24 C. 24 t 33 D. 24 ≤≤t 33
1 0
2
1 0
2
1 0
2
1 0
2
A
B
6.不等式 3x 5 < 3 x 的正整数解有(
C )A. 1 个 B. 2 个
D C. 3 个
D. 4 个
7.已知三角形的一边长是(x+3)cm,该边上的高是 5 cm,它的面积不大于 20 cm2,则 ( )
A.x>5
B.-3<x≤5
C.x≥-3
D.x≤5
5x 1 0 (1) 2x 3 0
5x 1 0 (2) 2x 3 0
解不等式组(1),得 1 x 3 ,解不等式组(2),得无解, 5
故分式不等式 5x 1 0 的解集为 1 x 3 .

第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)

第3章 一元一次不等式 浙教版数学八年级上册单元测试卷(含答案)

一元一次不等式单元测试一、选择题1.下列命题是真命题的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若a >b ,则ac >bcD .若a >b ,则―5a <―5b2.若x <y 成立,则下列不等式成立的是( )A .x 2>y 2B .x ―2>y ―2C .―2x >―2yD .x ―y >03.将不等式组x <1x ≥2的解集表示在数轴上,下列正确的是( )A .B .C .D .4. 若一个三角形的三条边长分别为3,2a-1,6,则整数a 的值可能是( )A .2,3B .3,4C .2,3,4D .3,4,55.下列各式:①x 2+2>5;②a +b ;③x3≥2x ―15;④x ―1;⑤x +2≤3.其中是一元一次不等式的有( )A .2个B .3个C .4个D .5个6. 若关于x 的不等式组2x +3>12x ―a <0恰有3个整数解,则实数a 的取值范围是( )A .7<a <8B .7≤a <8C .7<a ≤8D .7≤a ≤87.已知0≤a ﹣b ≤1且1≤a +b ≤4,则a 的取值范围是( )A .1≤a ≤2B .2≤a ≤3C .12⩽a⩽52D .32⩽a⩽528.若x <y ,且ax >ay ,当x ≥―1时,关于x 的代数式ax ―2恰好能取到两个非负整数值,则a 的取值范围是( )A .―4<a ≤―3B .―4≤a <―3C .―4<a <0D .a ≤―39.若整数m使得关于x的方程mx―1=21―x+3的解为非负整数,且关于y的不等式组4y―1<3(y+3)y―m⩾0至少有3个整数解,则所有符合条件的整数m的和为( )A.7 B.5 C.0 D.-210.对于任意实数p、q,定义一种运算:p@q=p-q+pq,例如2@3=2-3+2×3.请根据上述定义解决问题:若关于x的不等式组2@x<4x@2≥m有3个整数解,则m的取值范围为是( )A.-8≤m<-5B.-8<m≤-5C.-8≤m≤-5D.-8<m<-5二、填空题11.关于x的不等式3⩾k―x的解集在数轴上表示如图,则k的值为 .12.小明用200元钱去购买笔记本和钢笔共30件,已知每本笔记本4元,每支钢笔10元,则小明至少能买笔记本 本.13.在数轴上存在点M=3x、N=2―8x,且M、N不重合,M―N<0,则x的取值范围是 .14.关于x的不等式组x>m―1x<m+2的整数解只有0和1,则m= .15.关于x的不等式组a―x>3,2x+8>4a无解,则a的取值范围是 .16.若数a既使得关于x、y的二元一次方程组x+y=63x―2y=a+3有正整数解,又使得关于x x+a―3的解集为x≥15,那么所有满足条件的a的值之和为 .三、计算题17.(1)解一元一次不等式组:x+3(x―2)⩽6 x―1<2x+13.(2)解不等式组:3(x+1)≥x―1x+152>3x,并写出它的所有正整数解.四、解答题18.先化简:a2―1a2―2a+1÷a+1a―1―aa―1;再在不等式组3―(a+1)>02a+2⩾0的整数解中选取一个合适的解作为a的取值,代入求值.19.解不等式组2―3x≤4―x,①1―2x―12>x4.②下面是某同学的部分解答过程,请认真阅读并完成任务:解:解不等式①,得―3x+x≤4―2第1步合并同类项,得―2x≤2第2步两边都除以―2,得x≤―1第3步任务一:该同学的解答过程中第▲步出现了错误,这一步的依据是▲,不等式①的正确解是▲.任务二:解不等式②,并写出该不等式组的解集.20.由于受到手机更新换代的影响,某手机店经销的甲种型号手机二月份售价比一份月每台降价500元.如果卖出相同数量的甲种型号手机,那么一月销售额为9万元,二月销售额只有8万元.(1)一月甲种型号手机每台售价为多少元?(2)为了提高利润,该店计划三月购进乙种型号手机销售,已知甲种型号每台进价为3500元,乙种型号每台进价为4000元,预计用不多于7.6万元且不少于7.5万元的资金购进这两种手机共20台,请问有几种进货方案?21.新定义:若某一元一次方程的解在某一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程x―1=3的解为x=4,而不等式组x―1>2x+2<7的解集为3<x<5,不难发现x=4在3<x<5的范围内,所以方程x―1=3是不等式组x―1>2x+2<7的“关联方程”.(1)在方程①3(x+1)―x=9;②4x―8=0;③x―12+1=x中,关于x的不等式组2x―2>x―13(x―2)―x≤4的“关联方程”是;(填序号)(2)若关于x的方程2x+k=61≤2x2≤x―12的“关联方程”,求k的取值范围;22.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②“容纳”,其中不等式(组)①与不等式(组)②均有解.例如:不等式x>1被不等式x>0“容纳”;(1)下列不等式(组)中,能被不等式x<―3“容纳”的是________;A.3x―2<0B.―2x+2<0C.―19<2x<―6D.3x<―84―x<3(2)若关于x的不等式3x―m>5x―4m被x≤3“容纳”,求m的取值范围;(3)若关于x的不等式a―2<x<―2a―3被x>2a+3“容纳”,若M=5a+4b+2c 且a+b+c=3,3a+b―c=5,求M的最小值.答案解析部分1.【答案】D2.【答案】C3.【答案】B4.【答案】B5.【答案】A6.【答案】C7.【答案】C8.【答案】A9.【答案】A10.【答案】B11.【答案】212.【答案】1713.【答案】x<21114.【答案】015.【答案】a≥116.【答案】―1517.【答案】解:解不等式x+3(x﹣2)≤6,x+3x-6≤6,4x≤12,x≤3,∴不等式x+3(x﹣2)≤6的解为:x≤3,,解不等式x﹣1 <2x+133(x-1)<2x+1,3x-3<2x+1,x<4,的解为:x<4,∴不等式x﹣1 <2x+13∴不等式组的解集为x≤3.(2)【答案】解:3(x+1)≥x―1①x+152>3x②,由①得,x≥―2,由②得,x<3,∴不等式组的解集为―2≤x<3,所有正整数解有:1、2.18.【答案】解:解不等式3-(a+1)>0,得:a<2,解不等式2a+2≥0,得:a≥-1,则不等式组的解集为-1≤a<2,其整数解有-1、0、1,∵a≠±1,∴a=0,则原式=1.19.【答案】解:任务一:该同学的解答过程中第3步出现了错误,这一步的依据是不等式的基本性质3,不等式①的正确解是故答案为:3,不等式的基本性质3,x≥―1任务二:解不等式②,得x<65,∴不等式组的解为―1≤x<65.20.【答案】(1)解:设一份月甲种型号手机每台售价为x元.由题意得90000x=80000 x―500解得x=4500经检验x=4500是方程的解.答:一份月甲种型号手机每台售价为4500元.(2)解:设甲种型号进a台,则乙种型号进(20―a)台.由题意得75000≤3500a+4000(20―a)≤76000解得8≤a≤10￿a为整数,￿a为8,9,10￿有三种进货方案:甲型号8台,乙型号12台;甲型号9台,乙型号11台;甲型号10台,乙型号10台.21.【答案】(1)①②(2)k≥8 22.【答案】(1)C (2)m≤2(3)19。

一元一次不等式单元自测卷(含答案)

一元一次不等式单元自测卷(含答案)

一元一次不等式 单元自测卷印江天堂中学 严天发一、选择题(每题3分,共30分)1.根据“x 的2倍与3的差不大于8”列出的不等式是 ( )A .2x -3≤8B .2x -3≥8C .2x -3<8D .2x -3>82.(2014.绍兴)不等式3x +2>-1的解集是 ( )A .x>-13B .x<-13C .x>-1D .x<-1 3.不等式2x +9>-3x -5的解集为 ( ) A .x<-4 B .x ≤-4 C .x>-4 D .x ≥-44.(2014.宁夏)已知不等式组3010x x ->⎧⎨+≥⎩其解集在数轴上表示正确的是 ( )5.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式,下列两个不等式属于同解不等式的是 ( )A .-4x<48与x>-12B .3x ≤9与x ≥3C .2x -7<6x 与-7≤4xD .-12x +3<0与13x>-2 6.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 ( ) A .a ≥1 B .a>1 C .a ≤-1 D .a<-17.若方程组3133x y k x y +=+⎧⎨+=⎩的解为x a y b =⎧⎨=⎩且a +b>0,则k 的取值范围是 ( ) A .k>4B .k>-4C .k<4D .k<-48.某种商晶的进价为900元,出售时标价为1650元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则最多可打 ( )A .6折B .7折C .8折D .9折9.不等式86+x >83+x 的解集为( )A .x >21B .x <0C .x >0D .x <21 10.不等式2+x <6的正整数解有( )A .1个B .2个C .3 个D .4个二、填空题(每题2分,共20分)11.“x 的一半与2的差不大于1-”所对应的不等式是 .12.不等式x 27->1,的正整数解是 .13.不等式03 +-x 的最大整数解是 .14.已知三角形的两边为3和4,则第三边a 的取值范围是________.15.写出一个解为x ≥1的一元一次不等式:_______.16.已知x =3是方程2x a -=x -1的解,那么不等式1253a y ⎛⎫-< ⎪⎝⎭的解集是_______. 17.已知(x -2)2+23x y m --=0,y 为正数,则m 的取值范围是_______.18.已知不等式组212x m x m <+⎧⎨<-⎩的解集是x<m -2.则m 的取值范围是_______. 19.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围是_______. 20.某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分.某个学生有1题未答,他想自己的分数不低于70分,他至少要 对 题?三、解答题(共50分)21.(10分)解下面的不等式(组):(1) 2192136x x-+-≤(2)()1122331xx x⎧+≤⎪⎨⎪-<+⎩22.(6分)解不等式组331213(1)8xxx x-⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解23.(7分)已知关于x的方程255134m x++=的解为负数,求m的取值范围.24.(8分)有一个两位数,其十位上的数字比个位上的数字大2,这个两位数在50和70之间,求这个两位数.25.(9分)某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?26.10分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?。

第八章 一元一次不等式单元测试(含答案)

第八章 一元一次不等式单元测试(含答案)

第八章 一元一次不等式 单元测试一、选择题:1. (2011上海)如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D)a b c c> . 2. (2011湖南湘潭市)不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为3. (2011江苏淮安)不等式322x x +<的解集是( ) A.x <-2 B. x <-1 C. x <0 D. x >24. (2011山东临沂)不等式组⎪⎪⎩⎪⎪⎨⎧≥+01-3x 3-x 12x的解集是( )A .x≥8B .3<x≤8C .0<x≤2D .无解5 (2011山东烟台)不等式4-3x ≥2x -6的非负整数解有( ) A.1 个 B. 2 个 C. 3个 D. 4个6. (2011山东日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 7. (2011山东威海)如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( ) A .m =2B .m >2C .m <2D .m ≥28. (2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 二、填空题:B21 0 C2 1 0 D21 0 A2 1 09、“x 的2倍与5的差小于0”用不等式表示为 . 10. (2011江苏泰州)不等式2x+1>﹣5的解集是 .11、幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余 59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.12. (2011湖北黄冈)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.13. (2011四川眉山)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是____ 三、解答题:14. (2011浙江省舟山)解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.15. (2011江苏扬州)解不等式组 )2( 132121)1( 313⎪⎩⎪⎨⎧++≤+-<+xx x x ,并写出它的所有整数解。

七年级数学下册第四章《一元一次不等式(组)》单元测试卷-京改版(含答案)

七年级数学下册第四章《一元一次不等式(组)》单元测试卷-京改版(含答案)

七年级数学下册第四章《一元一次不等式(组)》单元测试卷-京改版(含答案)一 、单选题(本大题共8小题,共24分)1.(3分)下列数学表达式中:①−2<0,②2x +3y >0,③x =2,④x 2+2xy +y 2,⑤x ≠3,⑥x +1>2中,不等式有()A. 1个B. 2个C. 3个D. 4个2.(3分)(2020-2021黄陂区期末)若a >b ,则下列式子不一定成立的是( )A. a +1>b +1B. 2a −c >2b −cC. −a 3<;−b 3D. 1a >;1b 3.(3分)如果2a −3x 2+a >1是关于x 的一元一次不等式,则该不等式的解集是()A. x <−1B. x >−1C. x <−23D. x >−13 4.(3分)下列数值是不等式x <2的解的是()A. 1B. 2C. 3D. 45.(3分)不等式3x −5>5x +3的解集是()A. x >−8B. x >−4C. x <−8D. x <−46.(3分)不等式4−2x >0的最大正整数解是().A. 4B. 3C. 2D. 17.(3分)若(m −1)x |m|−3>0是关于x 的一元一次不等式,则m 的值为()A. 0B. 1C. −1D. ±18.(3分)下面列出的不等式中,正确的是()A. a 不是负数,可表示成a >0B. x 与2的和是非负数,可表示成x +2>0C. m 与4的差是负数,可表示成m −4<0D. x 不大于3,可表示成x <3二 、填空题(本大题共7小题,共21分)9.(3分)若不等式2x+13+1>ax−13的解集是x <53,则a 的值为 ______. 10.(3分)用不等式表示“x 的2倍与3的差大于4”:______.11.(3分)不等式2x +5<10的正整数解是 ______.12.(3分)关于x 的不等式组{−(x −a)<31+2x 3⩾x −1恰有2个整数解,则a 的取值范围是 ______ . 13.(3分)不等式组{x−82<x −2x +1⩾3(x −1)的所有整数解的和为 ______. 14.(3分)(2020-2021江汉区期末)把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,则这些书有_______________本.15.(3分)某种服装的进价为240元,出售时标价360元,由于换季,商店准备打折销售,但要保证利润不低于20%,则最多能打 ______折.三 、解答题(本大题共8小题,共55分)16.(6.5分)以下是圆圆解不等式组{2(1+x )>−2①−(1−x )>3②的解答过程: 解:由①,得2+x >−2,所以x >−4.由②,得1−x >−3,所以−x >−2,所以x >2.所以原不等式组的解是x >2.圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程.17.(6.5分)关于x 的不等式组{5x +2>3(x −1)12x ⩽8−32x +2a 有四个整数解,求实数a 的取值范围. 18.(7分)在一元一次不等式的定义中,为什么要有“系数不等于0”这一限制条件?可举例说明.19.(7分)解不等式组{2x −7<3(x −1)43x +3>1−23x . 20.(7分)(1)解不等式3(x −1)<5x +2,并在数轴上表示解集.(2)解不等式组{x +1⩾2x −31+5x 3>x +1,并写出该不等式组的所有整数解的和. 21.(7分)(1)解不等式组{x+12>17x −8<9x,并把它的解集在数轴上表示出来.(2)解不等式组{2−x ⩽2(x +4)x <x−13+1,并写出该不等式组的最大整数解. 22.(7分)(2021•青山)某工程队计划在10天内修路6km.施工前2天修完1.2km 后,计划发生变化,准备至少提前2天完成任务,以后几天内平均每天至少要修路多少km?23.(7分)某农场的一个家电商场为了响应国家家电下乡的号召,准备用不超过105400元购进40台电脑,其中A 型电脑每台进价2500元,B 型电脑每台进价2800元,A 型每台售价3000元,B 型每台售价3200元,预计销售额不低于123200元.设A 型电脑购进x 台、商场的总利润为y(元).(1)请你设计出所有的进货方案;(2)在上述的进货方案中,哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中的最大利润的一部分再次购进A 型和B 型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.在钱用尽三样都购买的前提下请直接写出购买A 型电脑、B 型电脑和帐篷的方案.参考答案1.【答案】D;【解析】解:不等式是指不等号来连接不等关系的式子,如<,>,⩽,⩾,≠,则不等式有:①②⑤⑥.故选D根据不等式的定义,不等号有<,>,⩽,⩾,≠,选出即可.本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.2.【答案】D;【解析】略3.【答案】A;【解析】解:2+a=1,a=−1,∴2a−3x2+a>1变为:−2−3x>1,解得:x<−1.故选:A.根据一元一次不等式的定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式,可得x的指数等于1,可求得a的值,进而代入求得相应解集即可.此题主要考查了一元一次不等式的定义以及一元一次不等式的解法,关键要注意不等式的两边都除以一个负数,不等号的方向改变.4.【答案】A;【解析】解:不等式x<2的整数解有1、0、−1、−2、…故选:A.根据x<2进行判断即可.此题主要考查不等式的解集,理解不等式x<2的解集的意义是正确判断的关键.5.【答案】D;【解析】解:∵3x−5>5x+3,∴3x−5x>3+5,∴−2x>8,则x<−4,故选:D.根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.此题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.【答案】D;【解析】【分析】本题考查一元一次不等式的解法,一元一次不等式的特殊解,解答此题要先求出不等式的解集,再确定正整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.先求出不等式的解集,在取值范围内可以找到最大正整数解.【解答】解:移项,得:−2x>−4,系数化为1,得:x<2,∴不等式4−2x>0的最大正整数解是1,故选D.7.【答案】C;【解析】解:根据题意得:{|m|=1m−1≠0,解得:m=−1.故选:C.根据一元一次不等式的未知数x的次数等于1,系数不等于0即可得出答案.此题主要考查了一元一次不等式的定义,掌握一元一次不等式的未知数x的次数等于1,系数不等于0是解答该题的关键.8.【答案】C;【解析】解:A、x不是负数,可以表示为x⩾0,不符合题意;B、x与2的和是非负数,可以表示为x+2⩾0,不符合题意;C、m与4的差是负数,可表示成m−4<0,符合题意;D、x不大于3,可表示成x⩽3,不符合题意;故选:C.直接根据题意分别得出不等式,进而判断得出答案.此题主要考查了由实际问题抽象出一元一次不等式,不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.9.【答案】5;【解析】解:∵2x+13+1>ax−13,∴2x+1+3>ax−1,2x−ax>−5,x(2−a)>−5,∵不等式2x+13+1>ax−13的解集是x<53,∴2−a<0,且x<−52−a,∴−52−a =53,解得:a=5;故答案为:5.本题不等式2x+13+1>ax−13的解集是x<53,用含a的代数式表示x的解集,再根据解集即可求得a的值.此题考查了解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集列式解决问题.10.【答案】2x-3>4;【解析】解:根据题意可得:2x−3>4.故答案为:2x−3>4.直接利用x的2倍即2x,再减3大于4得出不等式即可.此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.11.【答案】1或2;【解析】解:∵2x+5<10,∴2x<10−5,∴2x<5,解得x<2.5,∴不等式2x+5<10的正整数解是1或2.故答案为:1或2.根据一元一次不等式的求解方法,求出不等式2x+5<10的解,判断出不等式2x+ 5<10的正整数解即可.此题主要考查了一元一次不等式的整数解,要熟练掌握,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.12.【答案】5≤a<6;【解析】解:解不等式−(x+a)<3,得:x>a−3,解不等式1+2x3⩾x−1,得:x⩽4,∵不等式组有2个整数解,∴2<a−3⩽3,解得5⩽a<6.故答案为:5⩽a<6.求出每个不等式的解集,根据不等式组整数解的个数得出关于a的不等式,解之可得答案.本题主要考查一元一次不等式组的整数解,解题的关键是根据不等式组中x的取值范围及整数解的个数得出关于a的不等式组.13.【答案】-3;<x−2,得:x>−4,【解析】解:解不等式x−82解不等式x+1⩾3(x−1),得:x⩽2,则不等式组的解集为−4<x⩽2,∴不等式组的整数解的和为−3−2−1+0+1+2=−3,故答案为:−3.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,继而得出答案.本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.【答案】26;【解析】解:设把这些书分给x名同学,依题意,得0<3x+8-5(x-1)<3,解之得5<x<6.5,∵x为整数,∴x=6.∴书数为3×6+8=26(本).15.【答案】八;【解析】解:设该服装打x折销售,−240⩾240×20%,依题意得:360×x10解得:x⩾8,∴该服装最多打八折.故答案为:八.设该服装打x折销售,利用利润=售价−进价,结合利润率不低于20%,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最小值即可得出结论.本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.【答案】解:以上解答过程有错误,正确解答如下:由①,得:2+2x>-2,∴x>-2,由②,得:-1+x>3,∴x>4,所以原不等式组的解集为x>4.;【解析】17.【答案】解:解不等式5x+2>3(x−1),得:x>−2.5,解不等式12x⩽8−32x+2a,得:x⩽a+4,∵不等式组有四个整数解,∴四个整数解为−2、−1、0、1,则1⩽a+4<2,解得:−3⩽a<−2.;【解析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a的范围.本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.18.【答案】解:∵当系数等于0时,不等式中x无论取何值,不等式的解集均为全体实数或无解,∴此不等式无意义.例如:若不等式为:ax>3,当x的系数a=0时,此时ax=0,不等式变为0>3,无论x 取何值,此不等式均不成立.;【解析】根据一元一次不等式的定义举例说明即可.本题考查的是一元一次不等式应具备系数不为0条件,因为系数为0时,不等式无意义.19.【答案】解:{2x−7<3(x−1)①43x+3>1−23x②,由①得,x>-4,由②得,x>-1,故不等式组的解集为:x>-1.;【解析】分别求出各不等式的解集,再求出其公共解集即可.该题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答该题的关键.20.【答案】解:(1)去括号得:3x-3<5x+2,移项得:3x-5x<2+3,合并得:-2x<5,解得:x>-52,(2){x +1≥2x −3①1+5x 3>x +1②, 解不等式①得x≤4,解不等式②得x >1,所以原不等式组的解集为1<x≤4,则原不等式组的所有整数解为2,3,4.所以原不等式组的所有整数解的和为9.;【解析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.此题考查了一元一次不等式组的整数解,解一元一次不等式,以及解一元一次不等式组,熟练掌握各自的解法是解本题的关键.21.【答案】解:(1){x+12>1①7x −8<9x②, 解不等式①,得x >1,解不等式②,得x >-4,故原不等式组的解集为x >1,在数轴上表示出来为:(2){2−x ≤2(x +4)①x <x−13+1②, 解不等式①得,x≥-2,解不等式②得,x <1,故不等式组的解集为-2≤x <1.故不等式组的最大整数解为:x=0.;【解析】(1)分别求出不等式组中两不等式的解集,找出解集的公共部分,再把它的解集在数轴上表示出来即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分,再写出该不等式组的最大整数解即可.本题考查了解一元一次不等式组和在数轴上表示不等式的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.22.【答案】解:设以后几天内平均每天修路x km ,则有:1.2+6x ≥10−2−2,解得x ≥0.8.答:以后几天内平均每天至少要修路0.8km ,才能提前2天完成任务.;【解析】略23.【答案】解:(1)设A 型电脑购进x 台,则B 型电脑购进(40-x )台.根据题意得:{2500x +2800(40−x)≤1054003000x +3200(40−x)≥123200, 解得:22≤x≤24.∵x 为整数,∴x=22,23,24∴有3种购买方案:方案1:购A 型电脑22台,B 型电脑18台;方案2:购A 型电脑23台,B 型电脑17台;方案3:购A 型电脑24台,B 型电脑16台;(2)由题意,得y=(3000-2500)x+(3200-2800)(40-x ),=500x+16000-400x ,=100x+16000.∵k=100>0,∴y 随x 的增大而增大,∴x=24时,y 最大=18400元.(3)设再次购买A 型电脑a 台,B 型电脑b 台,帐篷c 顶,由题意,得2500a+2800b+500c=18400,c=184−25a −28b 5.∵a≥2,b≥2,c≥1,且a 、b 、c 为整数,∴184-25a-28b >0,且是5的倍数.且c 随a 、b 的增大而减小.当a=2,b=2时,184-25a-28b=78,舍去;当a=2,b=3时,184-25a-28b=50,故c=10;当a=3,b=2时,184-25a-28b=53,舍去;当a=3,b=3时,184-25a-28b=25,故c=5;当a=3,b=4时,184-25a-28b=-2,舍去,当a=4,b=3时,184-25a-28b=0,舍去.∴有2种购买方案:方案1:购A 型电脑2台,B 型电脑3台,帐篷10顶,方案2:购A 型电脑3台,B 型电脑3台,帐篷5顶.;【解析】(1)设A型电脑购进x台,则B型电脑购进(40−x)台,根据总进价不超过105400元和销售额不低于123200元建立不等式组,求出其解即可;(2)根据利润等于售价−进价的数量关系分别表示出购买A型电脑的利润和B型电脑的利润就求其和就可以得出结论;(3)设再次购买A型电脑a台,B型电脑b台,帐篷c顶,a⩾2,b⩾2,c⩾1,且a、b、c为整数,根据条件建立方程运用讨论法求出其解即可.该题考查了列不等式组解实际问题的运用,一次函数的解析式的性质的运用,方案设计的运用,不定方程的解法的运用,分类讨论思想的运用,解答时求出解析式是解答本题的关键,巧解一元三次不定方程是解答本题的难点.。

第3章 一元一次不等式单元测试卷(含解析)

第3章 一元一次不等式单元测试卷(含解析)

绝密★启用前第三章一元一次不等式单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.有下列数学表达式:①3>0;②4x+5>0;③x=3;④x2+x;⑤x≠﹣4;⑥x+2<x+1.其中是不等式的有()A.2个B.3个C.4个D.5个2.若a<b,则下列不等式正确的是()A.B.ac2<bc2 C.﹣b<﹣a D.b﹣a<03.不等式的解集在数轴上表示为()A.B.C.D.4.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>05.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<16.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>17.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤78.已知不等式≤<,其解集在数轴上表示正确的是()A.B.C.D.9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.用适当的不等式表示下列关系:(1)a是非负数;(2)x与2差不足15.12.若x>y,且(a﹣3)x<(a﹣3)y,则a的取值范围为.13.写出一个解集为x>1的一元一次不等式组:.14.不等式组的非负整数解有个.15.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.16.若无解,则a的取值范围是.17.若不等式|x+1|+|x﹣2|>a对任意实数x恒成立,则a的取值范围是.18.为迎接G20杭州峰会的召开,某校八年级(1)(2)班准备集体购买一种T恤衫参加一项社会活动.了解到某商店正好有这种T恤衫的促销,当购买10件时每件140元,购买数量每增加1件单价减少1元;当购买数量为60件(含60件)以上时,一律每件80元.如果八(1)(2)班共购买了100件T恤衫,由于某种原因需分两批购买,且第一批购买数量多于30件且少于60件.已知购买两批T恤衫一共花了9200元,则第一批T恤衫的购买件.评卷人得分三.解答题(共6小题,共46分)19.(6分)解下列不等式,并把它的解集在数轴上表示出来.(1)2(x+1)﹣3(x+2)<0(2)<﹣2.20.(6分)解不等式组,并求不等式组的所有整数解.21.(8分)若关于x的不等式组的正整数解只有2个,求a的取值范围.22.(8分)三月份学校开展了“朗读月”系列活动,活动结束后,为了表彰优秀,学校准备购买一些钢笔和笔记本作为奖品进行奖励,如果购买3支钢笔和4本笔记本需要93元;如果买2支钢笔和5本笔记本需要90元.(1)试求出每支钢笔和每本笔记本的价格是多少元?(2)学校计划用不超过500元购买两种奖品共40份,问:最多可以买几支钢笔?23.(8分)某车间加工A型和B型两种零件,平均一个工人每小时能加工7个A型零件和3个B型零件,而且3个A型与2个B型配套,就可以包装进库房,剩余不能配套的只能暂时存放起来,如果B型零件单独存放,对环境的要求远高于A型零件,已知该车间原有工人69名.(1)怎样分配工人进行工作才能保证生产出的产品及时包装运进库房;(2)后来因为工作调动,有4名工人调离了该车间,那么你认为现在应该怎样分配工人工作最合适呢?请通过计算说明你的依据.24.(10分)宁波某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共10台,具体情况如下表:A型B型价格(万元/台)1512月污水处理能力(吨/月)250200经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.(1)该企业有哪几种购买方案?(2)哪种方案更省钱?并说明理由.参考答案与试题解析1.解:根据不等式的定义,只要有不等符号的式子就是不等式,⑥x+2<x+1应该是x+2>>x+1,所以不是不等式,所以①3>0;②4x+5>0;⑤x≠﹣4共有3个.故选:B.2.解:A、当b<0时,由a<b得出>1,故本选项错误;B、当c=0时,ac2=bc2,故本选项错误;C、∵a<b,∴两边都乘以﹣1得:﹣a>﹣b,故本选项正确;D、∵a<b,∴b﹣a>0,故本选项错误;故选:C.3.解:不等式两边同乘12得:8x﹣3(x﹣5)>10,去括号,移项,合并同类项得:5x>﹣5,x系数化为1,得:x>﹣1故选:C.4.解:5x>8+2x,解得:x>,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.5.解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.6.解:∵不等式组的解集是x>2,解不等式①得x>2,解不等式②得x>m+1,不等式组的解集是x>2,∴不等式,①解集是不等式组的解集,∴m+1≤2,m≤1,故选:C.7.解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.8.解:根据题意得:,由①得:x≥2,由②得:x<5,∴2≤x<5,表示在数轴上,如图所示,故选:A.9.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选:C.10.解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.11.解:(1)a是非负数则:a≥0;(2)x与2差不足15:x﹣2<15.故答案为:x﹣2<15.12.解:由不等号的方向改变,得a﹣3<0,解得a<3,故答案为:a<3.13.解:2x﹣2>0的解集为x>1,x+1>0的解集为x>﹣1.所以解集为x>1的不等式组可为.故答案为.14.解:解不等式2x+7>3(x+1),得:x<4,解不等式x﹣≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为:4.15.解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.方法2:由题意可得每添加一个球,水面上升2cm,设至少放入x个小球时有水溢出,则2x+30>49,解得x>9.5,即至少放入10个小球时有水溢出.16.解:上面表示﹣1≤x≤2,不等式无解,即x<a与上面的不等式没有公共部分,因而a≤﹣1a的取值范围是a≤﹣1.故答案为:a≤﹣1.17.解:∵|x+1|+|x﹣2|表示数轴上的x对应点到﹣1、2对应点的距离之和,∴它的最小值为3,∵不等式|x+1|+|x﹣2|>a对任意的实数x恒成立,∴a<3,故答案为:a<3.18.解:设第一批购买x件,则第二批购买(100﹣x)件.①,解得x1=30(舍去),x2=40;②无实数解;所以:第一批购买数量为40件.故答案是:40.19.解:(1)去括号得2x+2﹣3x﹣6<0,移项得2x﹣3x<6﹣2,合并得﹣x<4,系数化为1得x>﹣4;如图,(2)去分母得4(x﹣1)<3(x+1)﹣24,去括号得4x﹣4<3x+3﹣24,移项得4x﹣3x<3﹣24+4,合并得x<﹣17.如图,20.解:原不等式组为,解不等式①,得x>﹣2,解不等式②,得x≤1,∴原不等式组的解集为﹣2<x≤1,所以不等式组的所有整数解为﹣1,0,1.21.解:解不等式(1)得:x<21,解不等式(2)得:x<﹣3a﹣2,∵不等式组只有两个正整数解,∴2<﹣3a﹣2≤3.解得:﹣≤a<﹣.22.解:(1)设一支钢笔需x元,一本笔记本需y元,由题意得:,解得:,答:一支钢笔需15元,一本笔记本需12元.(2)设购买钢笔的数量为x,则笔记本的数量为(40﹣x)本,由题意得:15x+12(40﹣x)≤500,解得:x≤6,答:学校最多可以购买6支钢笔.23.解:(1)设分配加工A型零件工人为x人,加工B型零件工人为(69﹣x)人,由题意得x=,解得:x=27.答:分配加工A型零件工人为27人,加工B型零件工人为42人.(2)若调走4名工人,设分配生产A型零件工人为x人,则生产B型为(65﹣x)人,由题意得x≥,解得:x≥25,∵x为整数,∴x=26,65﹣x=39.答:分配加工A型零件工人为26人,加工B型零件工人为39人.24.解:(1)设购买A型号的污水处理设备x台,则购买B型号的污水处理设备(10﹣x)台,根据题意得:,解得:3≤x≤.∵x是整数,∴x=3或4或5.当x=3时,10﹣x=7;当x=4时,10﹣x=6;当x=5时,10﹣x=5.答:有3种购买方案:第一种是购买3台A型污水处理设备,7台B型污水处理设备;第二种是购买4台A型污水处理设备,6台B型污水处理设备;第三种是购买5台A型污水处理设备,5台B型污水处理设备.(2)当x=3时,购买资金为15×3+12×7=129(万元),当x=4时,购买资金为15×4+12×6=132(万元),当x=5时,购买资金为15×5+12×5=135(万元).∵135>132>129,∴为了节约资金,应购污水处理设备A型号3台,B型号7台.答:购买3台A型污水处理设备,7台B型污水处理设备更省钱.21世纪教育网–中小学教育资源及组卷应用平台21世纪教育网。

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)

华东师大版七年级数学下册第8单元《一元一次不等式》单元检测试题(含答案)一.选择题1.a、b都是实数,且a<b,则下列不等式正确的是()A.a+x>b+x B.1﹣a<1﹣b C.5a<5b D.>2.若a>b,则下列各式中一定成立的是()A.b>a B.a﹣c>b﹣c C.ac>bc D.3.不等式x﹣2<3x﹣5的解是()A.x<B.x>C.x<D.x>4.不等式组的解集在数轴上表示正确的是()A.B.C.D.5.给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.2个6.已知关于x的不等式组,的整数解共有3个,则m的取值范围是()A.3<m<4B.3≤m<4C.3≤m≤4D.3<m≤47.某社区超市以4元瓶从厂家购进一批饮料,以6元瓶销售近期计划进行打折销售,若这批饮料的销售利润不低于20%,则最多可打()A.六折B.七折C.七五折D.八折8.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3200元,且购买篮球的数量不少于足球数量的一半,若每个篮球80元,每个足球50元.求共有几种购买方案?设购买篮球x个,可列不等式组()A.B.C.D.二.填空题9.今年3月某天的最高气温为12℃,最低气温为﹣1℃,则这天气温t(℃)的变化范围是.10.当k=时,不等式(k﹣2)x|k|﹣2+2>0是一元一次不等式.11.如果a>b,那么2﹣a2﹣b(填“=”、“>”或“<”).12.满足不等式4x﹣9<0的正整数解为.13.若不等式(1﹣a)x>1﹣a的解集是x<1,则a的取值范围是.14.某商家需要更换店面的瓷砖,商家打算用1500元购买彩色和单色两种地砖进行搭配,并且把1500元全部花完.已知每块彩色地砖25元,每块单色地砖15元,根据需要,购买的单色地砖数要超过彩色地砖数的2倍,并且单色地砖数要少于彩色地砖数的3倍,那么符合要求的一种购买方案是.三.解答题15.解不等式(组):(1)3x+2<9﹣4x;(2).16.解下列不等式(组),并把它们的解集分别表示在数轴上;(1)解不等式:﹣<4;(2)解不等式组:.17.求下列不等式组的整数解.18.为了丰富学生的大课间活动,振海中学到体育用品商店购买篮球和足球,若购买2个篮球和3个足球共需600元,购买3个篮球和1个足球其需550元.(1)求篮球和足球的单价分别是多少元?(2)振海中学决定购买篮球和足球共20个,经商议,体育用品商店决定篮球单价打八折,足球单价不变,若总费用不超过2200元,那么该校最多可以购买多少个篮球?19.如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组的关联方程是;(填序号)(2)若不等式组的一个关联方程的解是整数,则这个关联方程可以是;(写出一个即可)(3)若方程1﹣x=﹣7+3x,6(x﹣)=10﹣x都是关于x的不等式组的关联方程,直接写出m的取值范围.20.西大附中为打造“书香校园”,计划在校内组建中、小型两类图书角共30个,已知组建一个中型图书角需科技类书籍80本,人文类书籍50本,组建一个小型图书角需科技类书籍30本,人文类书籍60本.目前学校用于组建图书角的科技类书籍不超过1900本,人文类书籍不超过1620本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?21.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[﹣2.1]=﹣3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,﹣2.1=[﹣2.1]+0.9.请你解决下列问题:(1)[4.8]=,[﹣6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x﹣2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.参考答案一.选择题1.解:A、不等式两边同时加上一个数,不等号方向不变,故A错误;B、不等式两边同时乘以负数,不等号方向改变,故B错误;C、不等式两边同时乘以正数,不等号方向不变,故C正确;D、不等式两边同时除以正数,不等号方向不变,故D错误;故选:C.2.解:根据a>b,不能得b>a,故A不成立;根据不等式两边减同一个数,不等号的方向不变,故B成立;根据不等式两边乘同一个负数,不等号的方向改变,不等式两边乘同一个正数,不等号的方向不变,故C不一定成立;根据不等式两边除以同一个负数,不等号的方向改变,不等式两边除以同一个正数,不等号的方向不变,故D不一定成立;故选:B.3.解:∵x﹣2<3x﹣5∴移项得,﹣2+5<3x﹣x,合并同类项得,2x>3,即x>.故选:B.4.解:解不等式x+1>0,得:x>﹣1,解不等式2x﹣6≥0,得:x≥3,所以不等式组的解集为x≥3,故选:A.5.解:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤,共3个.故选:C.6.解:,由①解得:x≤m,由②解得:x≥1,故不等式组的解集为1≤x≤m,由不等式组的整数解有3个,得到整数解为1,2,3,则m的范围为3≤m<4.故选:B.7.解:设可以打a折,6×﹣4≥4×20%,解得,a≥8,即最多可打八折,故选:D.8.解:设购买篮球x个,则购买足球(50﹣x)个,由题意,得.故选:C.二.填空题9.解:因为最低气温是﹣1℃,所以﹣1≤t,最高气温是12℃,t≤12,则今天气温t(℃)的范围是﹣1≤t≤12.故答案为:﹣1≤t≤12.10.解:∵不等式(k﹣2)x|k|﹣2+2>0是一元一次不等式,∴,解得:k=±3,故答案为:±3.11.解:∵a>b,∴﹣a<﹣b,∴2﹣a<2﹣b,故答案为:<.12.解:4x﹣9<0,4x<9,解得,x<,∴不等式的正整数解是1,2;故答案为:1,2.13.解:∵不等式(1﹣a)x>1﹣a的解集是x<1,∴1﹣a<0,解得:a>1.故答案为:a>1.14.解:设购买x块彩色地砖,则购买块单色地砖,依题意得:,解得:<x<,又∵x,均为正整数,∴x可以取24,27.∴当x=24时,=60;当x=27时,=55.故答案为:购买24块彩色地砖、60块单色地砖(或购买27块彩色地砖、55块单色地砖).三.解答题15.解:(1)移项得:3x+4x<9﹣2,合并同类项得:7x<7,把x的系数化为1得:x<1;(2)由①得x<1,由②得x≤﹣,∴不等式组的解集为x≤﹣.16.解:(1)原不等式变化为﹣(2x﹣2)<12,∴2x﹣2>﹣12,∴x>﹣5,在数轴上表示为:;(2)原不等式组转化为,化简为,∴不等式组的解集为:﹣1<x≤5.在数轴上表示为:.17.解:由①得:x>1,由②得:x≤4,∴不等式组的解集为1<x≤4.∴不等式组的整数解是:2,3,4.18.解:(1)设每个篮球的售价为x元,每个足球的售价为y元,依题意,得:,解得:.答:每个篮球的售价为150元,每个足球的售价为100元.(2)设振海中学购买m个篮球,则购买(20﹣m)个足球,根据题意,得150×80%m+100×(20﹣m)≤2200,解得:m≤10,答:该校最多可以购买10个篮球.19.解:(1)解方程3x﹣1=0得:x=,解方程x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组的关联方程是③,故答案为:③;(2)解不等式(x﹣2)<2x+1,得:x>﹣1,解不等式<,得:x<,∴不等式组的解集为﹣1<x<,则不等式组的整数解为x=0,∴此不等式组的关联方程可以为3x﹣3=﹣3,故答案为:3x﹣3=﹣3(答案不唯一);(3)解方程1﹣x=﹣7+3x,得:x=2,解方程6(x﹣)=10﹣x,得:x=3,解不等式3x﹣m≥x+3m,得:x≥2m,解不等式x﹣m<﹣x+3,得:x<m+3,则不等式组的解集为2m≤x<m+3,根据题意知2m≤2且m+3>3,解得0<m≤1,故答案为:0<m≤1.20.解:(1)设组建中型图书角x个,则组建小型图书角(30﹣x)个,依题意得:,解得:18≤x≤20,又∵x为整数,∴x可以取18,19,20,∴共有3种组建方案,方案1:组建中型图书角18个,小型图书角12个;方案2:组建中型图书角19个,小型图书角11个;方案3:组建中型图书角20个,小型图书角10个.(2)选择方案1的费用为860×18+570×12=22320(元);选择方案2的费用为860×19+570×11=22610(元);选择方案3的费用为860×20+570×10=22900(元).∵22320<22610<22900,∴方案1费用最低,最低费用是22320元.21.解:(1)[4.8]=4,[﹣6.5]=﹣7.故答案为:4,﹣7.(2)如果[x]=3.那么x的取值范围是3≤x<4.故答案为:3≤x<4.(3)如果[5x﹣2]=3x+1,那么3x+1≤5x﹣2<3x+2.解得:≤x<2.∵3x+1是整数.∴x=.故答案为:.(4)∵x=[x]+a,其中0≤a<1,∴[x]=x﹣a,∵4a=[x]+1,∴a=∵0≤a<1,∴0≤<1,∴﹣1≤[x]<3,∴[x]=﹣1,0,1,2.当[x]=﹣1时,a=0,x=﹣1,当[x]=0时,a=,x=,当[x]=1时,a=,x=1,当[x]=2时,a=,x=2,∴x=﹣1或或1或2。

苏教版七年级数学下册第11章一元一次不等式单元测试卷(含答案)

苏教版七年级数学下册第11章一元一次不等式单元测试卷(含答案)

第七章一元一次不等式单元测试卷满分:100分时间:60分钟得分:__________ 一、选择题(每题3分,共24分)1.下列式子:①2x-7≥-3;②12x->;③7<9;④x2+3x>1;⑤()2112aa-+≤;⑥m-n>3,其中是一元一次不等式的有( )A.1个B.2个C.3个D.4个2.下列不等式一定成立的是( )A.5a>4a B.x+2<x+3 C.-a>-2a D.42 a a >3.不等式组2130xx≤⎧⎨+≥⎩,的解集在数轴上可以表示为( )4.关于x的方程5x-2m=-4-x的解满足2<x<10,则m的取值范围是( ) A.m>8 B.m<32 C.8<m<32 D.m<8或m>32 5.已知三角形的一边长是(x+3)cm,该边上的高是5 cm,它的面积不大于20 cm2,则( ) A.x>5 B.-3<x≤5 C.x≥-3 D.x≤56.要使函数y= (2m-3)x+(3n+1)的图象经过x、y轴的正半轴,则m与n的取值范围应为( )A.32m>,13n>-B.m>3,n>-3C.32m<,13n<-D.32m<,13n>-7.八年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是( ) A.7x+9-9(x-1)>0 B.7x+9-9(x-1)<8C.()()7991079918x xx x+-->⎧⎪⎨+--<⎪⎩,D.()()7991079918x xx x+--≥⎧⎪⎨+--≤⎪⎩,8.关于x的不等式组210x ax<-⎧⎨+>⎩,只有4个整数解,则a的取值范围是( )A .5≤a ≤6B .5≤a<6C .5<a ≤6D .5<a<6 二、填空题(每题3分,共18分)9.不等式3(x+2)≥4+2x 的负整数解为__________10.若点P(x -2,3+x)在第二象限,则x 的取值范围是__________.11.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟 从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上 弟弟,那么哥哥的速度至少是__________.12.函数y=kx+b 的图象如图所示,则方程kx+b=0的解为________,不等式 kx+b>0的解集为_________,不等式kx+b -3>0的解集为________. 13.若不等式(m -2)x>2的解集是22x m <-,则m 的取值范围是________. 14.如果关于x 的不等式组5191x x x m +>+⎧⎨>+⎩,的解集是x>2,那么m 的取值范围是________.三、解答题(共58分)15.(每题6分,共12分)解下面的不等式(组),并把解集在数轴上表示出来:(1)2152146x x -+-≥-; (2)()33514622.33x x x x +>-⎧⎪⎨--≥⎪⎩,16.(8分)若不等式组()231132x x x +<⎧⎪⎨>-⎪⎩,的整数解是关于x 的方程2x -4=ax 的根,求a 的值.17.(10分)已知关于x 、y 的二元一次方程组225234x y m x y m +=-⎧⎨-=-⎩,的解x 为正数,y 为负数,求m 的取值范围.18.(8分)一群猴子结伴去偷桃,在分桃时;如果每只猴子分3个,那么还剩59个;如果每只猴子分5个,那么有一只猴子分得的桃不足5个,你能求出有多少只猴子,多少个桃吗?19.(10分)如图是一艘轮船和一艘快艇沿相同路线从甲港出发行驶到乙港的过程中路程y随时间x变化的图象.根据图象解答下列问题:(1)在轮船和快艇中,哪一艘的速度较快?(2)当时间x在什么范围内时,快艇在轮船的后面?当时间x在什么范围内时,快艇在轮船的前面?(3)快艇出发多长时间后赶上轮船?20.(10分)某批发商计划将一批海产品由A地运往B地.汽车货运公司和铁路货运公司均开办海产品运输业务.已知运输路程为120千米,汽车和火车的速度分别为60千米运输工具运输费单价/(元/吨·千米)冷藏费单价/(元/吨·小时)过路费/元装卸及管理费/元汽车 2 5 200 0火车 1.8 5 0 1600注:“元/吨·千米”表示每吨货物每千米的运费;“元/吨·小时”表示每吨货物每小时的冷藏费.(1)设该批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1、y2与x之间的函数关系式.(2)若该批发商待运的海产品不少于30吨,为节省运费,他应选择哪个货运公司承担运输业务?参考答案一、1.B 2.B 3.C 4.C 5.B 6.D 7.C 8.C二、9.x=-2,-1 10.-3<x<2 11.16千米/时12.x=1 x<1 x<0 13.m<2 14.m<1三、15.(1)54x 数轴略(2)2≤x<4 数轴略16.a=4 17.m<-1 18.30只猴,149个桃;31只猴,152个桃19.(1)快艇(2)4小时内轮船在前;4小时后快艇在前(3)2小时20.(1)y1=250x+200、y2=222x+1 600 (2)50吨以下选汽车,50吨以上选火车,50吨时费用相同。

浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)

浙教版八年级上册数学第3章 一元一次不等式单元测试卷(含答案)

浙教版八年级上册数学第3章一元一次不等式单元测试卷(含答案)一、单选题(共11题;共22分)1.若a<b,则下列结论不一定成立的是()。

A.a-1<b-1B.2a<2bC.D.2.九年级某班的部分同学去植树,若每人平均植树7棵,则还剩9棵;若每人平均植树9棵,则有1名同学植树的棵数不到8棵.若设同学人数为x人,则下列能准确求出同学人数与植树总棵数的是()A.7x+9-9(x-1)>0B.7x+9-9(x-1)<8C.D.3.x与的差的一半是正数,用不等式表示为()A.(x﹣)>0B.x﹣<0C.x﹣>0D.(x﹣)<04.若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()A.3种B.4种C.5种D.6种5.关于x的不等式组只有4个整数解,则a的取值范围是()A.5≤a≤6B.5≤a<6C.5<a≤6D.5<a<66.若不等式组无解,则a的取值范围是()A.a≥﹣3B.a>﹣3C.a≤﹣3D.a<﹣37.已知关于x的不等式组仅有三个整数解,则a的取值范围是()。

A.≤a<1B.≤a≤1C.<a≤1D.a<18.不等式组的解集为()A.x>B.x>1C.<x<1D.空集9.下列说法中错误的是()A.如果a<b,那么a﹣c<b﹣cB.如果a>b,c>0,那么ac>bcC.如果m<n,p<0,那么>D.如果x>y,z<0,那么xz>yz10.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.11.不等式组的解集在数轴上表示正确的是()A. B.C. D.二、填空题(共8题;共8分)12.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为________cm.13.不等式x+1≥0的解集是________.14.不等式组的最小整数解是________.15.不等式组的整数解是x=________.16.已知,,若,则实数的值为________.17.不等式组的解集为________.18.(2017•黑龙江)不等式组的解集是x>﹣1,则a的取值范围是________.19.关于x的不等式组只有4个整数解,则a的取值范围是________.三、解答题(共7题;共49分)20.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了多少道题?21.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



a
1
⎩ ⎩ ⎨x +1
一元一次不等式章节测试卷
命题人:朱玉涛审阅人:陈华使用时间:2015.03.09
⎧x -a > 2
8. 若不等式组
⎩b - 2x > 0
的解集是-1 <x <1,则(a +b)2009=.
一、相信你的选择:(每小题3 分,共24 分)
1.若a <b ,则下列各式中一定成立的是()
三、挑战你的技能:(本大题44 分)
1.(本题8 分)x 取什么值时,代数式5x–12 不大于2(4x-3)?并将解集表示在数轴上.
A.a -1<b -1B.
a
>
b
C.
3 3
-a <-b D.ac <bc
2.据佛ft日报报道,2009年6月1日佛ft市最高气温是33℃,最低气温是24℃,则当天佛ft市气温t (℃)
的变化范围是( )
A.t > 33
B.t ≤24 C.24 <t < 33 D.24 ≤t ≤33
⎧x - 3
+ 3 >x +1,
3.实数a,b 在数轴上的对应点如图1 所示,则下列不等式中错误的是()2.(本题8 分)解不等式组⎪2并求出所有整数解的和.
A.ab > 0
B. a +b < 0
C.<1
b
D. a -b < 0 b 0
⎪⎩1- 3(x -1) ≤8 -x
4. 若0 <x < 1 则x,,x2
x
图 1
的大小关系是()
A.
1
<x <x2
x
B.x <
1
<x2
x
C.x2<x <
1
x
D.
1
<x2<x
x
5.一个不等式的解集为-1 <x ≤2 ,那么在数轴上表示正确的是()
3.(本题8 分)有10 名菜农,每人可种甲种蔬菜3 亩或乙种蔬菜2 亩,已知甲种蔬菜每亩可收入0.5 万元,
乙种蔬菜每亩可收入0.8 万元,若要使总收入不低于15.6 万元,则应该如何安排人员?
A B C D
6.不等式3x - 5 <3 +x 的正整数解有( )A. 1 个B. 2 个C. 3 个D. 4 个
7.已知三角形的一边长是(x+3)cm,该边上的高是5 cm,它的面积不大于20 cm2,则( )
A.x>5 B.-3<x≤5 C.x≥-3 D.x≤5
8.小刚准备用自己节省的零花钱购买一台MP4 来学习英语,他已存有50 元,并计划从本月起每月节省30
元,直到他至少有280 元.设x 个月后小刚至少有280 元,则可列计算月数的不等式为()
A.30x + 50 > 280 B.30x - 50 ≥280 C.30x - 50 ≤280 D.30x + 50 ≥280
二、试试你的身手:(每小题4 分,共32 分)
1.如果x-y<0,那么x 与y 的大小关系是x y .(填<或>符号)
2.“m 与10 的和不小于m 的一半”用不等式表示为.
3.不等式2x > 3 -x 的解集为.4.不等式3(x+2)≥4+2x 的负整数解为
⎧2x - 5 < 0
4.(本题10 分)先阅读理解下面的例题,再按要求解答:
例题:解一元二次不等式x2- 9 > 0 .
解:∵ x2- 9 = (x + 3)(x - 3) ,
∴ (x + 3)(x - 3) > 0 .
⎧x + 3 > 0
由有理数的乘法法则“两数相乘,同号得正”,有(1)⎨
x - 3 > 0
解不等式组(1),得x > 3 ,解不等式组(2),得x <-3 ,
⎧x + 3 < 0
(2)⎨
x - 3 < 0 5.不等式组

≥1 所有整数解的和是.
故(x + 3)(x - 3) > 0 的解集为x > 3 或x <-3 ,
⎩⎪ 2
6.用不等式表示“3 与-1 的差不小于x 与2 的和的4 倍.
7.某次环保知识竞赛试卷有20 道题。

评分办法是答对一题记5 分,答错一题扣2 分,不答记0 分。

小明
有3 道题没答,但成绩超过了60 分。

小明最少答对了道题。

即一元二次不等式x2- 9 > 0 的解集为x > 3 或x <-3 .
问题:求分式不等式5x + 1
< 0 的解集. 2x - 3


参考答案
一、选择
1. A
2. D
3. C
4. C
5. A
6. C
7. D
8. D 二、填空
1
1. < ;
2. m +10≥ m ;
3. x >1;
4. -2,-1;
5.3;
6. 3+1≥4(x+2) ;
7. 14 ;
2
8. -1 三、解答
1. 解 :5x –12≤8x -6.
-3x ≤6. x ≥-2 .
解集在数轴上表示为:
2. 解:解不等式(1)得 x < 1
解不等式(2)得 x ≥ -2
所以不等式组的解集为-2 ≤ x < 1.
满足不等式解集的所有整数有-2,-1,0,
所有整数解的和是:(-2)+(-1)+0=-3. 3. 解:由有理数的除法法则“两数相除,同号得正”,有
⎧5x + 1 > 0 (1) ⎨
2x - 3 < 0 ⎧5x + 1 < 0
(2) ⎨
2x - 3 > 0
解不等式组(1),得- 1
< x < 3 ,解不等式组(2),得无解,
5
故分式不等式 5x + 1 < 0 的解集为- 1
< x < 3 .
2x - 3 5。

相关文档
最新文档