matlab回归分析方法
使用Matlab技术进行回归分析的基本步骤
![使用Matlab技术进行回归分析的基本步骤](https://img.taocdn.com/s3/m/c2c4b6fc9fc3d5bbfd0a79563c1ec5da50e2d6aa.png)
使用Matlab技术进行回归分析的基本步骤回归分析是统计学中一种用于研究变量间关系的方法,可以用来预测和解释变量之间的相关性。
在实际应用中,使用计算工具进行回归分析可以提高分析效率和准确性。
本文将介绍使用Matlab技术进行回归分析的基本步骤,并探讨其中的一些关键概念和技巧。
一、数据准备在进行回归分析之前,首先需要收集和整理相关的数据。
这些数据通常包括自变量和因变量。
自变量是用来解释或预测因变量的变量,而因变量是需要解释或预测的变量。
在Matlab中,可以将数据保存为数据矩阵,其中每一列代表一个变量。
二、模型建立在回归分析中,需要建立一个数学模型来描述自变量和因变量之间的关系。
最简单的线性回归模型可以表示为:Y = βX + ε,其中Y是因变量,X是自变量,β是回归系数,ε是误差项。
在Matlab中,可以使用regress函数来进行线性回归分析。
三、模型拟合模型拟合是回归分析的核心步骤,它的目标是找到最佳的回归系数,使得预测值与实际观测值之间的差异最小。
在Matlab中,可以使用OLS(Ordinary Least Squares)方法来进行最小二乘法回归分析。
该方法通过最小化残差平方和来估计回归系数。
四、模型诊断模型诊断是回归分析中非常重要的一步,它可以帮助我们评估模型的合理性和有效性。
在Matlab中,可以使用多种诊断方法来检验回归模型是否满足统计假设,例如残差分析、方差分析和假设检验等。
这些诊断方法可以帮助我们检测模型是否存在多重共线性、异方差性和离群值等问题。
五、模型应用完成模型拟合和诊断之后,我们可以使用回归模型进行一些实际应用。
例如,可以使用模型进行因变量的预测,或者对自变量的影响进行解释和分析。
在Matlab中,可以使用该模型计算新的观测值和预测值,并进行相关性分析。
六、模型改进回归分析并不是一次性的过程,我们经常需要不断改进模型以提高预测的准确性和解释的可靠性。
在Matlab中,可以使用变量选择算法和模型改进技术来优化回归模型。
MATLAB回归分析工具箱使用方法
![MATLAB回归分析工具箱使用方法](https://img.taocdn.com/s3/m/bc65739a185f312b3169a45177232f60ddcce797.png)
MATLAB回归分析工具箱使用方法1.数据准备在使用回归分析工具箱进行分析之前,首先需要准备好要使用的数据集。
数据集通常包含自变量和因变量,自变量是预测因变量的变量。
将数据集导入MATLAB中,并确保数据格式正确,可以使用MATLAB内置的导入工具或手动输入数据。
2.回归模型的选择在进行回归分析之前,需要选择适当的回归模型。
回归模型决定了如何拟合数据和生成预测。
常见的回归模型包括线性回归、多项式回归、逻辑回归等。
根据数据的特征和目的选择合适的回归模型。
3.拟合数据选择适当的回归模型后,可以使用回归分析工具箱中的函数来拟合数据。
常用的函数包括“fitlm”(线性回归)、“fitpoly”(多项式回归)、“fitglm”(逻辑回归)等。
将自变量和因变量传入对应的函数中,并得到拟合的模型。
例如,对于线性回归可以使用以下代码进行拟合:```mdl = fitlm(X,Y,'linear');```其中,X为自变量数据,Y为因变量数据,'linear'表示选择线性回归模型。
4.模型评估在拟合数据后,需要对模型进行评估以确定其拟合程度和预测性能。
可以使用回归分析工具箱中的函数来评估模型,如“plotResiduals”(绘制残差图)、“predict”(预测值)、“coefTest”(参数显著性检验)等。
通过观察残差图、计算R²值、进行参数显著性检验等方法,评估模型的拟合效果。
5.预测拟合好模型后,可以使用该模型进行预测未来的趋势。
使用“predict”函数可以生成预测值,并与实际值进行比较以评估模型的预测能力。
例如```Ypred = predict(mdl,Xnew);```其中,Xnew为新的自变量数据,Ypred为预测的因变量值。
6.结果可视化最后,可以使用MATLAB中的绘图工具来可视化回归分析的结果。
可以绘制拟合曲线、残差图、预测结果等,以便更直观地理解数据和模型。
在MATLAB中进行分类和回归分析
![在MATLAB中进行分类和回归分析](https://img.taocdn.com/s3/m/cc92630c11661ed9ad51f01dc281e53a580251a7.png)
在MATLAB中进行分类和回归分析在科学和工程领域,分类和回归分析是常见的数据分析方法。
而MATLAB作为一种功能强大的数据分析软件,提供了丰富的工具和函数,使得分类和回归分析变得更加简单和高效。
本文将介绍在MATLAB中进行分类和回归分析的方法和技巧,帮助读者更好地理解和应用这些技术。
一、背景介绍分类和回归分析是基于已知数据的模式进行预测和分类的统计方法。
分类分析用于将数据分为不同的类别,而回归分析则试图通过已知数据的模式预测未知数据的数值。
这些方法在各个领域都有广泛的应用,如金融、医疗、市场营销等。
二、数据准备在进行分类和回归分析之前,需要准备好相应的数据。
一般来说,数据应当包含自变量(也称为特征或输入)和因变量(也称为标签或输出)。
自变量是用来作为预测或分类的输入变量,而因变量是要预测或分类的目标变量。
通常情况下,数据应当是数值型的,如果包含分类变量,需要进行相应的编码或处理。
三、分类分析在MATLAB中进行分类分析,有多种方法和技术可供选择。
其中最常见的方法包括K最近邻算法(K-nearest neighbors)和支持向量机(Support Vector Machines)等。
这些方法都有相应的函数,可以用于在MATLAB中实现分类分析。
K最近邻算法基于训练样本和测试样本之间的距离,将测试样本分类为与其最近的K个训练样本所属的类别。
而支持向量机则试图找到一个超平面,将不同类别的样本分开,并使得分类误差最小化。
在MATLAB中,我们可以使用fitcknn和fitcsvm函数来实现K最近邻算法和支持向量机。
除了上述方法,还有其他的分类算法可以在MATLAB中使用,如决策树、随机森林等。
根据数据的具体情况和需求,选择适合的分类算法非常重要。
四、回归分析在进行回归分析时,我们需要首先选择适当的回归模型。
常用的回归模型包括线性回归、多项式回归、岭回归等。
根据数据的分布和特点,选择合适的回归模型能够提高分析的准确性。
matlAB第11讲回归分析
![matlAB第11讲回归分析](https://img.taocdn.com/s3/m/01f5fd7b3868011ca300a6c30c2259010302f35f.png)
Part
03
多元线性回归
多元线性回归模型
多元线性回归模型是用来预测一 个因变量(目标变量)基于多个 自变量(特征)的线性关系。
模型的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βpXp + ε, 其中Y是因变量,X1, X2, ..., Xp 是自变量,β0, β1, β2, ..., βp是
回归模型的评估与选择
评估指标
为了评估回归模型的预测性能, 可以使用各种评估指标,如均方
误差(MSE)、均方根误差 (RMSE)、决定系数(R方)
等。
模型选择
根据评估指标,可以选择最佳的 回归模型。通常选择具有较高决 定系数和较低均方误差的模型。
交叉验证
为了更准确地评估模型的泛化能 力,可以使用交叉验证技术将数 据集分成训练集和测试集,并分
通过交叉验证、调整模型参数等方法可以对多元线性回归模型进行优化,提高预测精度。
Part
04
逻辑回归
逻辑回归模型
逻辑回归是一种用于解决二分类问题 的回归分析方法。它通过将线性回归 模型的输出转换为概率形式,来预测 一个事件发生的概率。
在逻辑回归中,自变量(特征)和因 变量(目标变量)之间的关系是非线 性的,通过sigmoid函数实现从线性 到非线性的转换。
示例代码:`X = [ones(n,1) x]; % 构造设计矩阵,包括常数项` `Y = y; % 因变量矩阵` `B = fitlm(X,Y); % 拟合多元线性回归模型` `Yfit = predict(B,X); % 进行预测`
多元线性回归的评估与优化
评估多元线性回归模型的性能可以使用各种统计指标,如均方误差(MSE)、均方根误 差(RMSE)、决定系数(R^2)等。
利用Matlab进行线性回归分析
![利用Matlab进行线性回归分析](https://img.taocdn.com/s3/m/e054bda1d5d8d15abe23482fb4daa58da0111c26.png)
利用Matlab进行线性回归分析回归分析是处理两个及两个以上变量间线性依存关系的统计方法;可以通过软件Matlab实现;1.利用Matlab软件实现在Matlab中,可以直接调用命令实现回归分析,1b,bint,r,rint,stats=regressy,x,其中b是回归方程中的参数估计值,bint是b的置信区间,r和rint分别表示残差及残差对应的置信区间;stats 包含三个数字,分别是相关系数,F统计量及对应的概率p值;2recplotr,rint作残差分析图;3rstoolx,y一种交互式方式的句柄命令;以下通过具体的例子来说明;例现有多个样本的因变量和自变量的数据,下面我们利用Matlab,通过回归分析建立两者之间的回归方程;% 一元回归分析x=1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311 2003 2435 2625 2948 3, 55 3372;%自变量序列数据y=698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825;%因变量序列数据X=onessizex',x',pauseb,bint,r,rint,stats=regressy',X,,pause%调用一元回归分析函数rcoplotr,rint%画出在置信度区间下误差分布;% 多元回归分析% 输入各种自变量数据x1= 8 3 3 8 9 4 5 6 5 8 6 4 7';x2=31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 7040 50 62 59'; x3=10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9';x4=8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11';%输入因变量数据y= 160 155 195';X=onessizex1,x1,x2,x3,x4;b,bint,r,rint,stats=regressy,X%回归分析Q=r'rsigma=Q/18rcoplotr,rint;%逐步回归X1=x1,x2,x3,x4;stepwiseX1,y,1,2,3%逐步回归% X2=onessizex1,x2,x3;% X3=onessizex1,x1,x2,x3;% X4=onessizex1,x2,x3,x4;% b1,b1int,r1,r1int,stats1=regressy,X2% b2,b2int,r2,r2int,stats2=regressy,X3;% b3,b3int,r3,r3int,stats3=regressy,X4;。
MATLAB回归分析
![MATLAB回归分析](https://img.taocdn.com/s3/m/8cedf0869fc3d5bbfd0a79563c1ec5da51e2d679.png)
MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。
在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。
简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。
在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。
该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。
例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。
函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。
返回的`p(1)`和`p(2)`分别是回归系数和截距。
返回的`p`可以通过`polyval`函数进行预测。
例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。
在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。
例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。
通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。
返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。
Matlab中的样本分类和回归分析技巧
![Matlab中的样本分类和回归分析技巧](https://img.taocdn.com/s3/m/4eb0806aac02de80d4d8d15abe23482fb5da0265.png)
Matlab中的样本分类和回归分析技巧引言:在现代科学和工程领域中,对于数据的分类和回归分析是非常重要的技能。
Matlab作为一种功能强大的数值计算和编程环境,提供了丰富的工具和函数来处理这些任务。
本文将介绍Matlab中常用的样本分类和回归分析技巧,帮助读者更好地应用这些方法。
一、数据预处理与可视化在进行样本分类和回归分析之前,首先需要对数据进行预处理和可视化。
Matlab中提供了一些实用的函数和工具箱来处理这些任务。
例如,可以使用importdata函数导入各种格式的数据文件,并使用preprocessing工具箱进行数据清洗,例如去除异常值或缺失数据。
此外,Matlab还提供了强大的绘图功能,可以使用plot和scatter函数绘制数据的散点图、箱线图和直方图,以便更好地理解数据的分布和特征。
二、特征选择与提取在样本分类和回归分析中,选择合适的特征对于模型的性能至关重要。
在Matlab中,可以使用特征选择算法来从原始数据中选择最相关的特征。
Matlab提供了一些功能强大的特征选择工具箱,例如ReliefF、Lasso和稀疏正则化算法等。
此外,Matlab还提供了一些特征提取算法,例如主成分分析(PCA)和独立成分分析(ICA),可以从原始数据中提取出最重要的特征。
三、样本分类算法Matlab中提供了许多常用的样本分类算法,包括支持向量机(SVM)、K最近邻(K-Nearest Neighbors,KNN)和决策树等。
这些算法在Matlab中都有相应的函数和工具箱,可以方便地进行模型训练和测试。
例如,使用fitcsvm函数可以训练支持向量机模型,并使用predict函数对新样本进行分类。
在选择分类算法时,需要根据数据的属性和目标来选择合适的算法,并使用交叉验证等方法评估模型的性能。
四、回归分析算法与样本分类类似,Matlab中也提供了多种用于回归分析的算法,例如线性回归、岭回归和支持向量回归等。
Matlab中的回归分析与时间序列预测
![Matlab中的回归分析与时间序列预测](https://img.taocdn.com/s3/m/b6545014443610661ed9ad51f01dc281e53a56e1.png)
Matlab中的回归分析与时间序列预测引言:在现代数据分析中,回归分析和时间序列预测是两个重要且广泛应用的领域。
Matlab作为一款功能强大的数学软件,在回归分析和时间序列预测方面提供了丰富的工具和函数,使得实现这些分析变得更加简单和高效。
本文将介绍Matlab中回归分析和时间序列预测的相关知识和方法,并结合实例进行说明。
一、回归分析回归分析是通过寻找自变量与因变量之间的关系,来推测未来观测值的一种分析方法。
在Matlab中,可以通过使用regress函数进行回归分析。
该函数可以拟合线性回归模型,并返回各个回归系数的估计值以及回归模型的统计信息。
下面我们以一个简单的例子来说明如何使用Matlab进行回归分析。
实例1:房价预测假设我们有一组数据,其中包含了房屋的面积和对应的售价。
我们希望通过房屋的面积来预测未来房价。
首先,我们需要导入数据并进行预处理。
```matlabdata = load('house_data.csv'); % 导入数据X = data(:, 1); % 提取面积作为自变量y = data(:, 2); % 提取房价作为因变量```接下来,我们可以使用regress函数进行回归分析,并得到回归系数的估计值。
```matlab[B, BINT, R, RINT, STATS] = regress(y, [ones(size(X)) X]); % 回归分析```其中,B为回归系数的估计值,BINT为回归系数的置信区间,R为残差,RINT为残差的置信区间,STATS为回归模型的统计信息。
我们可以打印出回归系数的估计值,以及回归模型的统计信息。
```matlabdisp('回归系数的估计值:');disp(B);disp('回归模型的统计信息:');disp(STATS);```运行以上代码,我们可以得到回归模型的结果。
通过回归系数的估计值,我们可以得到回归方程为y = B(1) + B(2) * X,其中B(1)为截距,B(2)为斜率。
Matlab技术回归分析方法
![Matlab技术回归分析方法](https://img.taocdn.com/s3/m/c3973c4c8f9951e79b89680203d8ce2f0166654f.png)
Matlab技术回归分析方法简介:回归分析是一种常用的数据分析方法,用于建立变量之间的关系模型。
Matlab是一种功能强大的数值计算软件,提供了丰富的函数和工具包,用于实现回归分析。
本文将介绍几种常见的Matlab技术回归分析方法,并探讨其应用场景和优缺点。
一、线性回归分析:线性回归分析是回归分析的经典方法之一,用于研究变量之间的线性关系。
在Matlab中,可以使用`fitlm`函数来实现线性回归分析。
该函数通过最小二乘法拟合出最优的线性模型,并提供了各种统计指标和图形展示功能。
线性回归分析的应用场景广泛,例如预测销售额、研究市场需求等。
然而,线性回归假设自变量和因变量之间存在线性关系,当数据呈现非线性关系时,线性回归会失效。
为了解决非线性关系的问题,Matlab提供了多种非线性回归分析方法,如多项式回归、指数回归等。
二、多项式回归分析:多项式回归分析是一种常见的非线性回归方法,用于建立多项式模型来描述变量之间的关系。
在Matlab中,可以使用`fitlm`函数中的`polyfit`选项来实现多项式回归分析。
多项式回归在处理非线性关系时具有很好的灵活性。
通过选择不同的多项式次数,可以适应不同程度的非线性关系。
然而,多项式回归容易过拟合,导致模型过于复杂,对新数据的拟合效果不佳。
为了解决过拟合问题,Matlab提供了正则化技术,如岭回归和Lasso回归,可以有效控制模型复杂度。
三、岭回归分析:岭回归是一种正则化技术,通过添加L2正则项来控制模型的复杂度。
在Matlab中,可以使用`fitlm`函数的`Regularization`选项来实现岭回归分析。
岭回归通过限制系数的大小,减少模型的方差,并改善模型的拟合效果。
然而,岭回归不能自动选择最优的正则化参数,需要通过交叉验证等方法进行调优。
四、Lasso回归分析:Lasso回归是另一种常用的正则化技术,通过添加L1正则项来控制模型的复杂度。
在Matlab中,可以使用`fitlm`函数的`Regularization`选项来实现Lasso回归分析。
Matlab中的回归分析技术实践
![Matlab中的回归分析技术实践](https://img.taocdn.com/s3/m/5973852d54270722192e453610661ed9ad5155e1.png)
Matlab中的回归分析技术实践引言回归分析是统计学中常用的一种分析方法,用于研究因变量和一个或多个自变量之间的关系。
Matlab是一种强大的数值计算软件,具有丰富的统计分析工具和函数。
通过Matlab中的回归分析技术,我们可以深入理解数据背后的规律,并预测未来的趋势。
本文将介绍Matlab中常用的回归分析方法和技巧,并通过实例演示其实践应用。
一、简单线性回归分析简单线性回归是回归分析的最基本形式,用于研究一个自变量和一个因变量之间的线性关系。
在Matlab中,可以使用`fitlm`函数进行简单线性回归分析。
以下是一个示例代码:```Matlabx = [1, 2, 3, 4, 5]';y = [2, 4, 6, 8, 10]';lm = fitlm(x, y);```这段代码中,我们定义了两个向量x和y作为自变量和因变量的观测值。
使用`fitlm`函数可以得到一个线性回归模型lm。
通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。
二、多元线性回归分析多元线性回归分析允许我们研究多个自变量与一个因变量的关系。
在Matlab中,可以使用`fitlm`函数进行多元线性回归分析。
以下是一个示例代码:```Matlabx1 = [1, 2, 3, 4, 5]';x2 = [0, 1, 0, 1, 0]';y = [2, 4, 6, 8, 10]';X = [ones(size(x1)), x1, x2];lm = fitlm(X, y);```这段代码中,我们定义了两个自变量x1和x2,以及一个因变量y的观测值。
通过将常数项和自变量组合成一个设计矩阵X,使用`fitlm`函数可以得到一个多元线性回归模型lm。
通过这个模型,我们可以获取回归系数、拟合优度、显著性检验等信息。
三、非线性回归分析在实际问题中,很多情况下变量之间的关系并不是线性的。
非线性回归分析可以更准确地建模非线性关系。
如何在MATLAB中进行统计回归分析
![如何在MATLAB中进行统计回归分析](https://img.taocdn.com/s3/m/31c4abefb8f3f90f76c66137ee06eff9aef849af.png)
如何在MATLAB中进行统计回归分析统计回归分析是一种被广泛应用于数据科学和统计学领域的技术。
它被用来分析变量之间的关系,并预测一个或多个自变量对因变量的影响。
在MATLAB中,有许多强大的工具和函数可以帮助我们进行统计回归分析。
本文将讨论如何在MATLAB中使用这些功能进行统计回归分析。
1. 数据导入与预处理在进行回归分析之前,首先需要将数据导入到MATLAB中。
MATLAB支持多种数据格式,如CSV、Excel、文本文件等。
可以使用readmatrix或readtable等函数读取数据,根据数据的特点选择合适的函数。
在导入数据之后,通常需要对数据进行预处理。
这包括处理缺失值、异常值以及数据的标准化。
MATLAB提供了一系列函数来处理这些问题,如isnan、isoutlier和zscore等。
2. 单变量回归分析单变量回归分析是最基本的回归分析方法。
它用于分析一个自变量对一个因变量的影响。
在MATLAB中,可以使用fitlm函数进行单变量回归分析。
fitlm函数需要输入自变量和因变量的数据,然后可以对回归模型进行拟合,并得到回归系数、残差等统计信息。
使用plot函数可以绘制回归模型的拟合曲线,以及残差的散点图。
通过观察残差的分布,可以评估拟合模型的合理性。
3. 多变量回归分析多变量回归分析是在一个或多个自变量对一个因变量的影响进行分析。
在MATLAB中,可以使用fitlm函数或者fitlmulti函数实现多变量回归分析。
fitlm函数可以处理多个自变量,但是需要手动选择自变量,并提供自变量和因变量的数据。
fitlmulti函数则可以自动选择最佳的自变量组合,并进行回归拟合。
它需要提供自变量和因变量的数据矩阵。
多变量回归分析的结果可以通过查看回归系数和残差来解释。
还可以使用plot函数绘制回归模型的拟合曲面或曲线,以便更好地理解自变量对因变量的影响。
4. 方差分析方差分析是一种常用的统计方法,用于比较两个或多个因素对因变量的影响。
MATLAB回归分析工具箱使用方法
![MATLAB回归分析工具箱使用方法](https://img.taocdn.com/s3/m/4eff1ae1b1717fd5360cba1aa8114431b90d8e10.png)
MATLAB回归分析工具箱使用方法下面将详细介绍如何使用MATLAB中的回归分析工具箱进行回归分析。
1.数据准备回归分析需要一组自变量和一个因变量。
首先,你需要将数据准备好,并确保自变量和因变量是数值型数据。
你可以将数据存储在MATLAB工作区中的变量中,也可以从外部文件中读取数据。
2.导入回归分析工具箱在MATLAB命令窗口中输入"regstats"命令来导入回归分析工具箱。
这将使得回归分析工具箱中的函数和工具可用于你的分析。
3.线性回归分析线性回归分析是回归分析的最基本形式。
你可以使用"regstats"函数进行线性回归分析。
以下是一个简单的例子:```matlabdata = load('data.mat'); % 从外部文件加载数据X = data.X; % 自变量y = data.y; % 因变量stats = regstats(y, X); % 执行线性回归分析beta = stats.beta; % 提取回归系数rsquare = stats.rsquare; % 提取判定系数R^2```在上面的例子中,"regstats"函数将自变量X和因变量y作为参数,并返回一个包含回归系数beta和判定系数R^2的结构体stats。
4.非线性回归分析如果你的数据不适合线性回归模型,你可以尝试非线性回归分析。
回归分析工具箱提供了用于非线性回归分析的函数,如"nonlinearmodel.fit"。
以下是一个非线性回归分析的例子:```matlabx=[0.10.20.5125]';%自变量y=[0.92.22.83.66.58.9]';%因变量f = fittype('a*exp(b*x)'); % 定义非线性模型model = fit(x, y, f); % 执行非线性回归分析coeffs = model.coefficients; % 提取模型系数```在上面的例子中,"fittype"函数定义了一个指数型的非线性模型,并且"fit"函数将自变量x和因变量y与该模型拟合,返回包含模型系数的结构体model。
如何使用Matlab进行线性回归与非线性回归
![如何使用Matlab进行线性回归与非线性回归](https://img.taocdn.com/s3/m/c8df4a347dd184254b35eefdc8d376eeafaa1753.png)
如何使用Matlab进行线性回归与非线性回归使用Matlab进行线性回归与非线性回归简介:线性回归和非线性回归是统计分析中常用的两种回归模型。
线性回归假设自变量与因变量之间存在线性关系,而非线性回归则假设二者之间存在非线性关系。
本文将介绍如何使用Matlab进行线性回归和非线性回归分析,并分析其应用领域和优缺点。
一、线性回归分析线性回归是一种最基本的回归分析方法,广泛应用于统计学、经济学、金融学等领域。
在Matlab中,可以使用fitlm函数进行线性回归分析。
回归模型的基本形式如下所示:Y = β0 + β1X1 + β2X2 + ... + ε其中Y是因变量,X1,X2等是自变量,β0,β1,β2等是回归系数,ε是误差项。
线性回归模型的参数估计可以采用最小二乘法。
在Matlab中,可以使用fitlm 函数进行参数估计和显著性检验。
显著性检验可以帮助我们确定回归系数的是否显著不等于零,从而判断自变量对因变量的影响是否显著。
二、非线性回归分析在某些情况下,变量之间的关系不是线性的,而是呈现出曲线的形式。
这时,我们需要使用非线性回归模型进行分析。
在Matlab中,可以使用cftool函数进行非线性回归分析。
cftool是一个交互式的拟合工具箱,通过界面操作可以方便地进行曲线拟合。
用户可以选择不同的拟合模型,并根据数据点进行拟合。
cftool提供了各种常见的非线性回归模型,如指数模型、幂函数模型、对数模型等。
用户可以根据实际需求选择合适的模型进行分析。
非线性回归模型的参数估计可以使用最小二乘法、最大似然估计等方法。
在Matlab的cftool中,可以直接进行参数估计,并生成相应的拟合曲线。
三、线性回归与非线性回归的应用领域线性回归和非线性回归分析在各个领域都有广泛的应用。
线性回归常用于预测、趋势分析、经济建模等方面。
非线性回归则更适用于描述非线性关系的数据,常用于生物医学、环境科学、物理学等领域。
以医学领域为例,线性回归可以用于预测患者的生存时间、评估药物的剂量-效应关系等。
MATLAB回归分析工具箱使用方法
![MATLAB回归分析工具箱使用方法](https://img.taocdn.com/s3/m/460c0a48f68a6529647d27284b73f242326c316b.png)
MATLAB回归分析工具箱使用方法回归分析是一种用于探索变量之间关系的统计方法。
它可以通过分析一个或多个自变量(也称为预测变量或解释变量)与一个因变量(也称为响应变量或预测变量)之间的关系来进行预测和解释。
在MATLAB中,进行回归分析需要使用统计和机器学习工具箱。
下面是使用MATLAB回归分析工具箱的一般步骤:1.准备数据:首先,你需要准备你要进行回归分析的数据。
数据应包括自变量和因变量。
你可以将数据存储在MATLAB的工作空间中。
2. 导入数据:如果你的数据存储在外部文件中,如Excel文件或CSV文件,你可以使用MATLAB的导入工具将数据导入到MATLAB中。
3.拟合模型:在回归分析中,你需要选择适当的模型来拟合你的数据。
MATLAB提供了多种回归模型,如线性回归、多项式回归、广义线性模型等。
你可以根据你的数据类型和需求选择适当的模型。
4. 拟合模型参数:一旦你选择了合适的模型,你需要拟合模型参数。
在MATLAB中,你可以使用"fitlm"函数来拟合线性模型,使用"fitrgp"函数来拟合高斯过程回归模型。
这些函数将返回一个拟合模型的对象。
5.模型评估:拟合模型后,你可以对模型进行评估。
MATLAB提供了一些工具来评估模型的好坏,如决定系数(R²)、均方根误差(RMSE)等。
你可以使用这些指标来判断你的模型是否满足你的需求。
6. 预测:一旦你拟合了你的模型并评估了模型的好坏,你可以使用模型来进行预测。
你可以使用"predict"函数来预测新的自变量对应的因变量。
除了上述步骤外,MATLAB还提供了一些其他的回归分析工具箱的功能,如特征选择、模型比较、交叉验证等。
你可以根据你的需求来选择适当的功能和方法。
总结起来,使用MATLAB回归分析工具箱进行回归分析的一般步骤包括数据准备、数据导入、选择模型、拟合模型参数、模型评估和预测。
(完整word版)matlab回归分析方法
![(完整word版)matlab回归分析方法](https://img.taocdn.com/s3/m/9588fdca0722192e4436f688.png)
第八章回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型.如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。
本章讨论其中用途非常广泛的一类模型——统计回归模型。
回归模型常用来解决预测、控制、生产工艺优化等问题。
变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。
另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来.例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。
回归分析就是处理变量之间的相关关系的一种数学方法。
其解决问题的大致方法、步骤如下:(1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型;(4)判断得到的模型是否适合于这组数据;(5)利用模型对因变量作出预测或解释。
应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上.运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能.MATLAB等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。
MATLAB统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。
运用MATLAB统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。
本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。
Matlab中的回归分析与多元统计分析
![Matlab中的回归分析与多元统计分析](https://img.taocdn.com/s3/m/bf06fa3de97101f69e3143323968011ca300f72c.png)
Matlab中的回归分析与多元统计分析Matlab是一种功能强大的数值计算和科学编程软件,广泛应用于各个领域中数据处理和分析的任务。
在统计学中,回归分析和多元统计分析是常见的方法,它们能够帮助我们揭示数据之间的隐藏关系和趋势。
本文将探讨在Matlab环境下如何进行回归分析和多元统计分析。
一、回归分析回归分析是一种用于研究变量之间关系的统计方法。
它可以分析自变量(或称预测变量)与因变量之间的相关性,并通过建立数学模型来预测未知的观测值。
在Matlab中,我们可以使用regress函数进行简单回归分析。
假设我们有两个变量X和Y,我们想要探索它们之间是否存在线性关系。
首先,我们需要导入数据,并绘制散点图以观察数据分布的趋势:```matlabdata = [X, Y]; % 导入数据scatter(X, Y); % 绘制散点图```接下来,我们可以使用regress函数进行回归分析:```matlabmdl = regress(Y, [ones(size(X)), X]); % 进行简单线性回归```regress函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl(1:end-1); % 提取回归系数residuals = mdl(end); % 提取残差```此外,我们还可以使用mdl对象进行预测:```matlaby_pred = [ones(size(X)), X] * coef; % 根据模型预测Y的值```二、多元统计分析多元统计分析是指研究多个变量之间关系的统计方法。
与简单回归分析不同,多元统计分析考虑了多个自变量对因变量的影响。
在Matlab中,我们可以使用fitlm函数进行多元线性回归分析。
假设我们有三个自变量X1、X2和X3,一个因变量Y,我们想要研究它们之间的关系。
首先,我们同样需要导入数据,并绘制散点图以观察数据分布:```matlabdata = [X1, X2, X3, Y]; % 导入数据scatter3(X1, X2, X3, Y); % 绘制散点图```接下来,我们可以使用fitlm函数进行多元线性回归分析:```matlabmdl = fitlm([X1, X2, X3], Y); % 进行多元线性回归```fitlm函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl.Coefficients.Estimate; % 提取回归系数residuals = mdl.Residuals.Raw; % 提取残差```同样,我们可以使用mdl对象进行预测:```matlaby_pred = predict(mdl, [X1, X2, X3]); % 根据模型预测Y的值```除了多元线性回归,Matlab还提供了其他多元统计分析的方法,如主成分分析(PCA)和因子分析。
如何使用MATLAB进行数据拟合与回归分析
![如何使用MATLAB进行数据拟合与回归分析](https://img.taocdn.com/s3/m/244383b7a1116c175f0e7cd184254b35eefd1a82.png)
如何使用MATLAB进行数据拟合与回归分析使用 MATLAB 进行数据拟合与回归分析近年来,数据分析在科学研究、工程设计和商业决策中发挥着越来越重要的作用。
而 MATLAB 作为一种功能强大的数据分析工具,被广泛应用于各个领域。
本文将介绍如何使用 MATLAB 进行数据拟合和回归分析,并探讨其中的一些技巧和注意事项。
一、数据导入与预处理在进行数据拟合和回归分析之前,首先需要将数据导入 MATLAB 环境中,并进行预处理。
可以使用 MATLAB 中的 readtable() 函数将数据从文件中读取到一个表格中,然后通过对表格的操作来对数据进行预处理,例如删除缺失值、处理异常值等。
二、数据拟合数据拟合是指根据已知的数据集合,通过一个数学模型来描述真实数据的曲线走势。
在MATLAB 中,有多种方法可以进行数据拟合,如多项式拟合、曲线拟合、样条拟合等。
1. 多项式拟合多项式拟合是最简单的数据拟合方法之一。
在 MATLAB 中,可以使用 polyfit() 函数进行多项式拟合。
该函数可以将一组数据拟合成一个指定阶数的多项式曲线,并返回多项式的系数。
2. 曲线拟合曲线拟合是指将一条已知函数的曲线拟合到一组离散的数据点上。
在MATLAB 中,可以使用 fit() 函数进行曲线拟合。
该函数支持多种预定义的曲线模型,也可以自定义曲线模型,根据数据点对模型进行拟合,并返回最优拟合参数。
3. 样条拟合样条拟合是指将一条平滑的曲线拟合到一组离散的数据点上,并满足一定的平滑性要求。
在 MATLAB 中,可以使用 spline() 函数进行样条拟合。
该函数可以根据给定的数据点,生成一条平滑的曲线,并返回样条曲线的系数。
三、回归分析回归分析是通过一个或多个自变量来预测因变量之间的关系。
在MATLAB 中,可以使用 regress() 函数进行线性回归分析。
该函数可以根据给定的自变量和因变量数据,拟合出一个线性模型,并返回模型的系数和统计指标。
如何使用MATLAB进行数据拟合与回归分析
![如何使用MATLAB进行数据拟合与回归分析](https://img.taocdn.com/s3/m/794e4ccca1116c175f0e7cd184254b35eefd1a87.png)
如何使用MATLAB进行数据拟合与回归分析MATLAB是一种功能强大的数值计算和数据分析工具,可以用于数据拟合和回归分析。
下面将介绍如何使用MATLAB进行数据拟合和回归分析的步骤。
1. 导入数据:首先,将需要进行数据拟合和回归分析的数据导入到MATLAB中。
可以通过读取Excel文件、文本文件或直接将数据输入到MATLAB的工作空间中。
2. 数据预处理:在进行数据拟合和回归分析之前,通常需要对数据进行预处理。
这包括数据清洗、去除异常点、处理缺失值等。
MATLAB提供了许多数据预处理函数,如清除NaN值的函数“cleanData”和删除异常值的函数“outliers”。
3. 数据可视化:在进行数据拟合和回归分析之前,可以先对数据进行可视化,以便更好地了解数据的特征和分布。
MATLAB提供了丰富的绘图函数,可以绘制散点图、直方图、箱线图等。
例如,可以使用“scatter”函数绘制散点图,使用“histogram”函数绘制直方图。
4. 数据拟合:数据拟合是根据已有数据点,拟合出一个数学模型与函数,以揭示数据的内在规律。
在MATLAB中,可以使用“polyfit”函数进行多项式拟合,使用“fit”函数进行曲线拟合,也可以使用自定义函数进行拟合。
拟合过程可以使用最小二乘法等方法进行。
5. 回归分析:回归分析是通过对自变量和因变量之间的关系进行建模,预测因变量的值。
在MATLAB中,可以使用线性回归模型、多项式回归模型、逻辑回归模型等进行回归分析。
可以使用“fitlm”函数进行线性回归分析,使用“polyfit”函数进行多项式回归分析,使用“fitglm”函数进行逻辑回归分析。
6. 模型评估:在进行数据拟合和回归分析之后,需要对模型进行评估,以判断模型的合理性和预测能力。
在MATLAB中,可以使用均方误差(MSE)、决定系数(R-squared)、残差分析等方法对模型进行评价。
可以使用“mse”函数计算MSE,使用“rsquared”函数计算R-squared。
MATLAB回归分析
![MATLAB回归分析](https://img.taocdn.com/s3/m/31ea3864a4e9856a561252d380eb6294dc882249.png)
MATLAB回归分析回归分析是一种通过建立数学模型来研究变量之间的关系的统计方法。
在MATLAB中,我们可以使用回归分析工具箱来进行回归分析。
回归分析的目标是找到一个能够最好地描述自变量和因变量之间关系的数学模型。
在这篇文章中,我们将介绍回归分析的基本原理、MATLAB中的回归分析工具箱的使用以及如何解释回归分析的结果。
回归分析的基本原理回归分析建立在线性回归的基础上。
线性回归假设因变量与自变量之间存在一个线性关系。
回归分析通过找到最佳拟合线来描述这种关系。
最常用的回归方程是一元线性回归方程,它可以表示为:y=β0+β1x+ε,其中y是因变量,x是自变量,β0和β1是回归系数,ε是误差项。
- regress函数:用于计算多元线性回归模型,并返回回归系数、截距和残差。
例如,[B, BINT, R]=regress(y, X)用于计算因变量y和自变量矩阵X之间的回归模型。
- fitlm函数:用于拟合线性回归模型并返回拟合对象。
例如,mdl= fitlm(X, y)用于拟合因变量y和自变量矩阵X之间的线性回归模型,并返回mdl拟合对象。
- plot函数:用于绘制回归分析的结果。
例如,plot(mdl)用于绘制fitlm函数返回的拟合对象mdl的结果。
- coefCI函数:用于计算回归系数的置信区间。
例如,CI =coefCI(mdl)用于计算拟合对象mdl中回归系数的置信区间。
解释回归分析的结果回归分析的结果通常包括拟合曲线、回归系数以及模型的可靠性指标。
拟合曲线描述了自变量和因变量之间的关系。
回归系数可以用来解释自变量对因变量的影响。
模型的可靠性指标包括截距、回归系数的显著性检验以及相关系数等。
拟合曲线可以通过调用plot函数来绘制。
回归系数可以通过调用coef函数来获取。
对回归系数的显著性检验可以利用置信区间来判断,如果置信区间包含0,则说明回归系数不显著。
相关系数可以通过调用corrcoef函数来计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 回归分析方法当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。
如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。
本章讨论其中用途非常广泛的一类模型——统计回归模型。
回归模型常用来解决预测、控制、生产工艺优化等问题。
变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。
另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。
例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。
回归分析就是处理变量之间的相关关系的一种数学方法。
其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据;(2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数;(3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。
应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。
运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。
MA TLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。
MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。
运用MA TLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。
本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。
在此基础上再介绍在建模过程中如何有效地使用MA TLAB 软件。
没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。
包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。
8.1 一元线性回归分析回归模型可分为线性回归模型和非线性回归模型。
非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。
某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。
本节主要考察线性回归模型。
8.1.1 一元线性回归模型的建立及其MATLAB 实现01y x ββε=++ 2~(0,)N εσ其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。
假设对于x 的n 个值i x ,得到y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使22010111(,)[()]n ni i i i i Q y x ββεββ====-+∑∑取最小值。
利用极值必要条件令010,0Q Q ββ∂∂==∂∂,求01ββ,的估计值01ˆˆββ,,从而得到回归直线01ˆˆy x ββ=+。
只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。
(1)参数的区间估计由于我们所计算出的01ˆˆββ,仍然是随机变量,因此要对01ˆˆββ,取值的区间进行估计,如果区间估计值是一个较短的区间表示模型精度较高。
(2)对误差方差的估计设ˆi y为回归函数的值,i y 为测量值,残差平方和 21ˆ()ni i i Q y y==-∑ 剩余方差22Qs n =- (3)线性相关性的检验由于我们采用的是一元线性回归,因此,如果模型可用的话,应该具有较好的线性关系。
反映模型是否具有良好线性关系可通过相关系数R 的值及F 值观察(后面的例子说明)。
(4)一元线性回归的MATLAB 实现MATLAB 工具箱中用命令regress 实现,其用法是: b=regress(y,x)[b ,bint , r ,rint , s]=regress(y , x , alpha) 输入y (因变量,列向量)、x (1与自变量组成的矩阵,见下例),alpha 是显著性水平(缺省时默认0.05)。
输出01ˆˆ(,)b ββ=,注意:b 中元素顺序与拟合命令polyfit 的输出不同,bint 是01ββ,的置信区间,r 是残差(列向量),rint 是残差的置信区间,s 包含4个统计量:决定系数2R (相关系数为R );F 值;F(1,n-2)分布大于F 值的概率p ;剩余方差2s 的值(MATLAB7.0以后版本)。
2s 也可由程序sum(r.^2)/(n-2)计算。
其意义和用法如下:2R 的值越接近1,变量的线性相关性越强,说明模型有效;如果满足1(1,2)F n F α--<,则认为变量y 与x 显著地有线性关系,其中1(1,2)F n α--的值可查F 分布表,或直接用MA TLAB 命令finv(1-α,1, n-2)计算得到;如果p α<表示线性模型可用。
这三个值可以相互印证。
2s 的值主要用来比较模型是否有改进,其值越小说明模型精度越高。
8.1.2身高与腿长例1 测得16名成年女子身高y 与腿长x 所得数据如下:首先利用命令plot(x,y,'r*')画出散点图,从图形可以看出,这些点大致分布在一条直线的左右,因此,可以考虑一元线性回归。
可编制程序如下:y=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]; x=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]; n=16;X=[ones(n,1),x'];[b,bint,r,rint,s]=regress(y',X,0.05); b,bint,s,rcoplot(r,rint) 运行后得到b = 31.7713 1.2903 bint = 12.3196 51.2229 1.0846 1.4960s = 0.9282 180.9531 0.0000 3.12772R =0.9282,由finv(0.95,1,14)= 4.6001,即1(1,2)F n α--= 4.6001<F=180.9531,p<0.0001,可以通过残差图发现,第二个数据为奇异数据,去掉该数据后运行后得到 b = 17.6549 1.4363 bint = -0.5986 35.9083 1.2445 1.6281s = 0.9527 261.6389 0.0000 1.93132R =0.9527,由finv(0.95,1,13)= 4.6672,即1(1,2)F n α--= 4.6672<F=261.6389,p<0.0001,说明模型有效且有改进,因此我们得到身高与腿长的关系17.6549 1.4363y x =+。
当然,也可以利用直线拟合得到同一方程。
只不过不能得到参数置信区间和对模型进行检验。
拟合程序如下:y=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]; x=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102];a=polyfit(x,y,1) temp=polyval(a,x); plot(x,y,'r*',x,temp)注意:函数相同,但输出一次函数参数顺序与回归分析(升幂排列)中不同。
另一个差别是拟合不能发现奇异数据。
8.2 多元线性回归分析8.2.1 多元线性回归模型的建模步骤及其MATLAB 实现如果根据经验和有关知识认为与因变量有关联的自变量不止一个,那么就应该考虑用最小二乘准则建立多元线性回归模型。
设影响因变量y 的主要因素(自变量)有m 个,记1(,,)m x x x =,假设它们有如下的线性关系式:011m m y x x βββε=++++ , 2~(0,)N εσ如果对变量y 与自变量12,,,m x x x 同时作n 次观察(n>m )得n 组观察值,采用最小二乘估计求得回归方程011ˆˆˆˆk my x x βββ=+++.建立回归模型是一个相当复杂的过程,概括起来主要有以下几个方面工作(1)根据研究目的收集数据和预分析;(2)根据散点图是否具有线性关系建立基本回归模型;(3)模型的精细分析;(4)模型的确认与应用等。
收集数据的一个经验准则是收集的数据量(样本容量)至少应为可能的自变量数目的6~10倍。
在建模过程中首先要根据所研究问题的目的设置因变量,然后再选取与该因变量有统计关系的一些变量作为自变量。
我们当然希望选择与问题关系密切的变量,同时这些变量之间相关性不太强,这可以在得到初步的模型后利用MATLAB 软件进行相关性检验。
下面通过一个案例探讨MA TLAB 软件在回归分析建模各个环节中如何应用。
多元线性回归的MATLAB 实现仍然用命令regress(y , X),只是要注意矩阵X 的形式,将通过如下例子说明其用法。
8.2.2 某类研究学者的年薪 1. 问题例2 工薪阶层关心年薪与哪些因素有关,以此可制定出它们自己的奋斗目标。
某科学基金会希望估计从事某研究的学者的年薪Y 与他们的研究成果(论文、著作等)的质量指标X 1、从事研究工作的时间X 2、能成功获得资助的指标X 3之间的关系,为此按一定的实验设计方法调查了24位研究学者,得到如下数据(i 为学者序号):表8-2 从事某种研究的学者的相关指标数据i1 2 3 4 5 6 7 8 9 10 11 12 1i x 3.5 5.3 5.1 5.8 4.2 6.0 6.8 5.5 3.1 7.2 4.5 4.9 2i x92018333113253054725113i x 6.1 6.4 7.4 6.7 7.5 5.9 6.0 4.0 5.8 8.3 5.0 6.4i y33.2 40.3 38.7 46.8 41.4 37.5 39.0 40.7 30.1 52.9 38.2 31.8 i13 14 15 16 17 18 19 20 21 22 23 24 1i x 8.0 6.5 6.6 3.7 6.2 7.0 4.0 4.5 5.9 5.6 4.8 3.9 2i x 23 35 39 21 7 40 35 23 33 27 34 15 3i x 7.67.05.04.45.57.06.03.54.94.38.05.8i y43.3 44.1 42.5 33.6 34.2 48.0 38.0 35.9 40.4 36.8 45.2 35.1试建立Y 与123,,X X X 之间关系的数学模型,并得出有关结论和作统计分析。