模型参考自适应控制PPT课件

合集下载

第5章 模型参考自适应控制

第5章 模型参考自适应控制

设n1 ( s ) nm ( s ) ( s) nm ( s ) ( s ) n1 ( s )n p ( s ) nm ( s ) ( s)n p ( s) a ( s ) ( s )n p ( s )
d p ( s )d1 ( s ) k p n p ( s )n2 ( s ) d m ( s ) ( s ) d p ( s )d1 ( s ) k p n p ( s )n2 ( s ) d m ( s ) ( s )n p ( s ) d1 ( s ) d m ( s ) ( s ) d p ( s ) k p n2 ( s ) n p (s) q( s)d p ( s) p( s) p( s) d1 ( s ) q ( s )n p ( s ), n2 ( s ) kp
例题
x p a p x p bp u y p cp xp c p bp 1 G p ( s) , Gm s - ap s 1
设 ( s ) s a d m ( s ) ( s ) ( s 1)( s a ) d p (s) s - ap s 1 a a p a a p (1 a a p ) 1 C0 c pbp n1 ( s ) d 2 ( s ) s a d1 ( s ) n p ( s ) q ( s ) s 1 a a p a a p (1 a a p ) n2 ( s ) p ( s ) / k p c pbp
未知或 者缓慢 变化
nm ( s) n p ( s) n( s) d m ( s) d p ( s) d ( s) 求C0
对象参数未知或者部分参数未知 lime(t)=0

《自适应控制》课件

《自适应控制》课件

软件实现
01
02
03
控制算法选择
根据被控对象的特性和控 制要求,选择合适的控制 算法,如PID控制、模糊 控制等。
软件开发环境
选择合适的软件开发环境 ,如MATLAB、Simulink 等,进行控制算法的实现 和仿真。
软件集成与调试
将各个软件模块集成在一 起,进行系统调试,确保 软件能够正常工作并满足 控制要求。
直接优化目标函数的自适应系统是一种通过直接优化系统目标函数,对系统参数 进行调整的自适应控制系统。
详细描述
直接优化目标函数的自适应系统根据系统目标函数和约束条件,通过优化算法寻 找最优的系统参数,以实现系统性能的最优。这种系统广泛应用于控制工程、航 空航天等领域。
自校正调节器
总结词
自校正调节器是一种通过实时校正系统参数,实现系统性能提升的自适应控制系统。
要点二
详细描述
在进行自适应控制系统设计时,首先需要对系统进行建模 ,即通过数学模型来描述系统的动态行为。这个模型可以 是线性或非线性的,取决于系统的复杂性和特性。在建立 模型后,需要对模型参数进行估计,这通常涉及到使用各 种算法和优化技术来不断调整和更新系统参数,以使系统 能够更好地适应外界环境的变化。
详细描述
最小均方误差算法基于最小化预测误差的平方和来调整控制参数,通过不断迭代计算,逐渐减小误差 ,使系统输出逐渐接近目标值。该算法具有较好的跟踪性能和鲁棒性,广泛应用于各种自适应控制系 统。
极点配置算法
总结词
极点配置算法是一种自适应控制算法,通过 调整系统参数使系统的极点配置在期望的位 置上,以达到系统稳定和性能优化的目的。
特点
自适应控制具有适应性、实时性和智 能性等特点,能够自动调整控制参数 和策略,以适应不同环境和条件下的 变化。

模型参考自适应控制建大资料精品PPT课件

模型参考自适应控制建大资料精品PPT课件

p( s )
p( s )
其中: p(s) sn a1sn-1 an-1s an
q(s) b1sn-1 b2sn-2 bn
– Km为常数,根据系统希望的动态响应事先确定 – p(s)、q(s)已知
R
—kpm(—qs()—s)
ym +e
Kc
Kp
-pq-((-ss-))- -
yp
适应律
R
- 麻省理工学院于1958年提出的,因此也叫MIT方法 - 最早提出、最早应用的一种方法 - 理论简单,实施方便,可用模拟元件实现 - 实质是一个可调增益的系统
一. 单个参数的MIT方法
第三章模型参考自适应控制 §2 局部参数最优化设计方法
工作背景
设参考模型为 Kmq( s) ,对象模型为 K p(t)q(s)
一般来说,自适应控制系统在反馈控制的 基本回路上加上自适应机构构成。具有三 方面的功能:
(1)在线辨识。 (2)决策控制。 (3)在线修正。
自适应控制系统主要分为两大类: (1)模型参考自适应控制系统。 (2)自校正自适应控制系统
模型参考自适应控制
(Model Reference Adaptive Control) MRAC
(2.3)
Kc
p( D)
欲消去 q(D) / p(D),
ym Km q( D)
R
p( D)
即:
q( D) p( D)
ym R Km
Байду номын сангаас
代入(2.3)式,
e Kc
-
Kp Km
ym
(2.4)
e
Kp
Kc - Km ym
Kc
-
B2e

模型参考自适应控制ppt课件

模型参考自适应控制ppt课件

kpDp (s)
(1)
kmNm (s)

P( s)
Yp (s) R(s)
a*(s)
(s)
1
Dm (s) kmNm (s)
b* (s)
Dm (s) (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
(2)

kp
N p (s) Dp (s)
kma*(s)
0 (s)Dm (s) kmb*(s)
23
2、假定
被辨识对象:
P(s) Yp (s) kpN p (s) R(s) Dp (s)
参考模型: 参考输入:
M (s) Ym (s) km Nm (s) U (s) Dm (s)
设r(t)是t的分段连续函数,且有界。 辨识的目的:根据可量测的r(t)和yp (t) 决定k p , N p (s), Dp (s)的系数。
设置参数可调的控制器,与模型一起组成参数可调系统
16
前馈可调增益 反馈可调增益
u
t
使ymt
完全跟踪
ypt
p(s)
r(t)
kp
y p (t )
s ap
- e1(t)
a0(t)
前馈
M (s)
+ u(t) km

s am

ym (t )
反馈 b0(t) 可调系统
17
其中:
模型的输入控制u t 为
过程位置互换。
基本思想:同MARC设计思想,即通过自适应控制器
来调整模型使e(t)0,这样的模型就是我
们要辨识的结果。
“对偶性质”设计MRAC的方法用于辨识; 将模型参考辨识方法用于设计MARC。

自适应控制第4章

自适应控制第4章
① ②一定可以找出李雅普诺夫函数; ③以该函数为约束条件或出发点,导出自适
25
(3)一般n阶定常线性系统
数学模型: e=ym-yr满足:
试取
(4.3.20) (4.3.21) (4.3.22) (4.3.23)
26
得自适应律:
(4.3.24)

(4.3.25)
可以看出,得到的自适应律依赖于整个状态向量X(t),即,自适 应控制律不仅与广义误差e(t)有关,而且与e(t)的各阶导数有 关,为自适应律的实现带来极大不便。
选定指标泛函:
(4.2.4)
(4.2.5)
(4.2.6) (4.2.7) (4.2.8)
8
广义误差对输入的开环传函:
对Kc求偏导: 另根据参考模型 比较(12)、(13):
(4.2.9)
(4.2.10) (4.2.11) (4.2.12) (4.2.13) (4.2.14)
(4.2.15)
可调增益Kc的自适应律—MIT自适应规则(1958 年MIT提出)
9
自适应系统的 数学模型
图4.2.3 MIT可调增益自适应系统
开环广义误差方程
参考模型方程 (4.2.16)
参数调节方程(自适应律)方程 10
凡是用可凋增益构成自适应系统,都可套用 上述模型。
缺点:设计过程中未考虑稳定性问题 因此,求得自适应律后,尚需进行稳定性校验,
以确保广义误差e在了司环回路中能收敛于 某一允许的数值。 补充假设: ✓ 参考模型与可调系统的初始偏差较小; ✓ 自适应速度不能太快(即u不能过大)。
综合出只与e(t)有关的自适应律。选择李亚普诺夫函数时增 加一约束条件:
自适应律简化为:
(4.3.26) (4.3.27)

第十七部分模型参考自适应控制教学课件

第十七部分模型参考自适应控制教学课件

再进一步探讨当et 0时,在什么条件下能同时达到参数误差的 渐近稳定,即同时能满足 AtAM,BtBM的问题。由状态广义 误差方程(17-45)可得,当 et 0 时
A M A t x s B M B t r 0
(17-51)
以上恒等式成立说明有三种可能情况:
⑴ x s 和 r 线性相关,并有 A M A t及 B M B t;
KoB12e1tK KM o yMt
(17-11) (17-12) (17-13)
(17-14)

B
2 B1
Ks KM
,则得
K oB e1tyM t
(17-15)
这就是可调整参数K o 的自适应律。于是M.I.T.自适应控制系统的 数学模型可归结为
输出误差: D s e 1 s K M K o K s N s r s 模型输出: D s y M s K M N s r s
数的充要条件是存在正定矩阵 P、Q ,并满足式(17-36)、式(17-37)。
下面来讨论受控对象全部状态可直接获取的情况下,基于李雅普 诺夫稳定性理论进行自适应控制系统设计的方法。
设可调系统数学模型为
给定参考模型为
x s A tx s B tr
x M A M x M B M r
(17-42) (17-43)
线性时不变系统的稳定性定理
线性时不变自治系统xA x在平衡点 x 0 是渐近稳定的,当且仅 当对任意给定的正定对称矩阵Q ,都存在一个正定对称矩阵 P ,并 满足如下李雅普诺夫方程:
ATPPAQ
(17-33)
则标量函数VxxTPx即为该系统的李雅谱诺夫函数。
函数的正实性
凡满足以下两个条件的实有理函数W s ,称为正实函数: ⑴ W s 只能含有s 左半平面的极点及虚轴上的其留数为正的一

自适应第四讲

自适应第四讲
自适应控制
第四讲 模型参考自适应控制系统MRACS
§4.1 基本概念
1.MRACS组成
参考模型
r+
前置控制器
+e _ u 受控过程 y
可调系统
反馈控制器 自适应机构
§4.1 基本概念
①参考模型(R.model) 用一个model体现对控制系统之要求,即model的输出为理想的 响应(对可调系统的工程要求,如超调量、过渡时间、阻尼等可 由R.model直接规定,无需进行性能指标的变换)。 ②可调系统
Monopoli 增广误差信号设计法 Narendra 稳定自适应控制设计法
1.设计思想:
1°引入一个辅助误差信号z,由它与e共同组成增广误差信号ε;
2°利用正实引理综合出一个不含e导数的自适应律,使ε→0, z→0,从而使e→0。
§4.4 增广误差信号设计法(Monopoli,1974)
参考模型
2. 具有可调增益的MIT律的设计
被控对象 Gp(s)KvG(s)
参考模型 G m(s)K m G (s)
§4.2 MRACS局部参数最优化设计方法(MIT律)
MIT方案
r
KmG(s)
Kc
KvG(s)
ym
+ e
_ yp
自适应机构
G(s) N(s) D(s)
K v 未知、漂移(符号已知); K c 可调增益。K m 给定。
只要e不为零,自适应机构就按减少偏差的方向修正或更
新控制u。
实施方案: a. 修正前置/反馈控制器参数,参数自适应方案; b. 直接改变加到输入端的信号,信号综合自适应方案。
§4.1 基本概念
3.模型参考辨识
被辨识过程

模型参考自适应控制—MIT法

模型参考自适应控制—MIT法

一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。

一般模型参考自适应控制系统的结构如图1所示。

图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。

基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。

图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。

而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τMIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而Yp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。

二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。

模型参考自适应PPT文档67页

模型参考自适应PPT文档67页
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联模 Nhomakorabea参考自适应
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡 犬相闻 。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹

自适应控制课件——多模型自适应控制

自适应控制课件——多模型自适应控制
3.5046 0.0148 d 1 1.6729 7 . 7000 0.1543
0.0096 6.8978 B1 0.2652 0.0131 0.0556

0.0193 0.3138 0.1649 18.7269 1.4760
A2 B2 r r
三、多模型自适应飞行控制律重构
假设操纵面故障只影响系统的控制矩阵B,而正常模态和故障模态下的
A, d都相同。事实上,操纵面故障主要影响操纵效率. 当飞机发生故障时采用相应的重构控制律, 是一种典型的多模态切换控制。 采用多模型自适应控制可以自动监测 飞机状态的变化,并选择相应的控制律 飞行高度为3000米、速度0.5马赫 双引擎喷气式飞机线性化模型
1 q M Iy
令 f ( X ) q f q ( X ) 得到扩展线性化方程:
f ( X ) A f q ( X ) f ( X ) f ( X ) U q B f q ( X ) f q ( X ) q U
三、多模型自适应飞行控制律重构
对线性化系统采用线性反馈
u u K ( x x ) G(w w)
通过选择合适的K使系统具有与平衡点无关的常值稳定闭环极点, 通过选择合适的G可以使系统跟踪期望指令w
三、多模型自适应飞行控制律重构
纵向运动的控制
纵向短周期运动的状态变量 简化的速度方程: V
X [ q]T
u u1
重构控制器1
。 。 。
固定模型N
。 。 。
yN
eN
固定模型1
y1 y
e1
飞机

模型参考自适应控制

模型参考自适应控制
调整策略
针对不同的被控对象和工况,需要设计相应的调整策略,以快速响应系统变化并保持控制性能。这需 要对被控系统的特性和动态行为有深入了解。
模型参考自适应控制在复杂系统中的应用拓展
复杂系统控制
模型参考自适应控制适用于具有非线性、时变和不确定性的复杂系统。通过设计合适的 自适应律和控制器,可以实现对复杂系统的有效控制。
2
在模型参考自适应控制中,滑模控制可以用于设 计自适应控制器,使得被控系统的状态跟踪误差 收敛到零。
3
滑模控制具有鲁棒性强、对系统参数变化不敏感 等优点,因此在模型参考自适应控制中具有广泛 的应用前景。
基于模糊逻辑的模型参考自适应控制
模糊逻辑是一种处理不确定性和模糊信息的智能控制方法,通过将模糊集合和模糊推理规则应用于控 制系统,可以实现模型参考自适应控制。
系统稳定性
系统稳定性是确保控制过程平稳、可靠的关键因素。在模型参考自适应控制中,需要权衡控制精度和系统稳定在线优化
模型参考自适应控制需要在线优化控制参数,以适应系统状态的变化和外部扰动。优化算法的选择和 应用对于提高控制性能和系统适应性至关重要。
化工过程控制
在化工生产过程中,模型参考自适应控制用于实现反应过程的优化 和稳定控制,提高生产效率和产品质量。
智能制造系统
在智能制造领域,模型参考自适应控制用于自动化流水线和智能机 器人的精确控制,提高生产效率和降低能耗。
机器人领域的应用
移动机器人导航
模型参考自适应控制用于移动机器人的路径规划和避障,提高机 器人在复杂环境下的自主导航能力。
应用领域
模型参考自适应控制的应用领域广泛,包括航空航天、机器人、电力系统和化工过程等。 随着技术的不断发展,其在智能制造、新能源和生物医学等领域的应用前景也日益广阔。

第八章模型参考自适应控制(ModelReferenceAdaptiveControl)简称MRAC

第八章模型参考自适应控制(ModelReferenceAdaptiveControl)简称MRAC

第九章模型参考自适应控制(Model Reference AdaptiveControl )简称MRAC介绍另一类比较成功的自适应控制系统,已有较完整的设计理论和丰富的应用成果(驾驶仪、航天、电传动、核反应堆等等) 。

§ 9—1 MRAC的基本概念系统包含一个参考模型,模型动态表征了对系统动态性能的理想要求,MRAC力求使被控系统的动态响应与模型的响应相一致。

与STR不同之处是MRAC没有明显的辨识部分,而是通过与参考模型的比较,察觉被控对象特性的变化,具有跟踪迅速的突出优点。

设参考模型的方程为*X m~ A m X m Br式(9-1-1)y m = CX m 式(9-1-2)被控系统的方程为■X s A s B s r式(9-1-3)y s - CX s 式(9-1-4) 两者动态响应的比较结果称为广义误差,定义输出广义误差为e = y m -y s 式(9-1-5);状态广义误差为:=X m — s 式(9-1-6)。

自适应控制的目标是使得某个与广义误差有关的自适应控制性能指标J达到最小。

J可有不同的定义,例如单输出系统的J —;e2( )d式(9-1-7)或多输出系统的t TJ 二e T( )e( )d式(9-1-8) MRAC的设计方法目的是得出自适应控制率,即沟通广义误差与被控系统可调参数间关系的算式。

有两类设计方法:一类是“局部参数最优化设计方法”,目标是使得性能指标J达到最优化;另一类是使得自适应控制系统能够确保稳定工作,称之为“稳定性理论的设计方法。

§ 9 —2局部参数最优化的设计方法一、利用梯度法的局部参数最优化的设计方法这里要用到非线性规划最优化算法中的一种最简单的方法梯度法(Gradient Method )。

1. 梯度法考虑一元函数f(x),当:汀(x)/= 0,且f2 (x) / ;x2> 0时f(x)存在极小值。

问题是怎样调整x使得f (x)能达到极小值?x有两个调整方向:当rf(x)/::x > 0时应减小x ;当rf(x)/::x < 0时应增加x。

模型参考自适应控制.ppt

模型参考自适应控制.ppt

e -
y
图 1 增益可调的参考模型自适应 控制系统
即e(t)所满足的微分方程为:P(D)e (Km KcK p )Q(D)r
微分算子:D
d dt
,
D
2
d2 dt 2
....
两边对Kc求导: P(D) e Kc
K pQ(D)r
ym
KmQ(s) P(s)
r
P(D) ym KmQ(D)r
比较可得:e Kc
• 由图4,参考模型和参数可调被控系统的s域表达式分别为
Ym (s)
KmN (s) D(s)
r(s)
(1)
Y (s) KcKpN (s) r(s)
(2)
D(s)
其中D(s)和N(s)分别为如下已知的n阶的稳定首一多项式和n-1阶
多项式
n-1
D(s) sn aisi
n-1
N (s) bisi
iT -eP ri ,i 1,2,, m
则 V -eTQe为负定,从而广义误差系统为渐近稳定。
这种方法要求所有状态可测,这对许多实际对象往往不 现实,为此可采用按对象输入输出来直接设计自适应控制系 统。其中一种为直接法,它根据对象的输入输出来设计自适 应控制器,从而来调节可调参数,使可调系统与给定参考模 型匹配,另一种为间接法,利用对象的输入输出设计一个自 适应观测器,实时地给出对象未知参数和状态的估计,然后 利用这些估计值再来设计自适应控制器,使对象输出能跟踪 模型输出,或使其某一性能指标最优。
a2 s 2
Kp a1s
1
参考模型:Gm
(s)
a2 s 2
Km a1s
1
这时闭环自适应控制系统为:
P(D)e (Km Kc K p )Q(D)r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被控对象
组成
常规反馈控制器
自适应控制回路
控制要求:以参考模型的方式给出,表明被控对象的
理想输出应如反对输入信号作出响应。
自适应调整过程:直到et ym y 0为止。
r(t) +

(xm ) 参考模型
干扰
控制器 u 被控对象

内环
ym (t)
+ e(t)ymy
- y p (t)
(xp)
使J下降的方向为它的度负方梯向。

kc
B
'
J kc
B'
t
0 2 e1
e1 kc
d
B
t
0 e1
e1 kc
d
k c
Be
1
e1 kc
而开环传函:
e(s)
(k m
kck p )
z(s) R (s)
e1(s ) r(s)
对应的微分方程为:
R ( p )e1 (k m k ck p ) z ( p )r
对象:ps
Yps
R s
s
kp ap
y pt a p y pt k p r t
1
模 型 :M
s
Yms
U s
s
km am
y m t a m y m t k m u t
2
控制目的:辨识对象的参数
a

p
k
p
,

使
ymt与 y pt相 一 致 。
设置参数可调的控制器,与模型一起组成参数可调系统
自适应律 外环
MRAC结构图
3.1.2 MRAC的设计问题
一、模型完全匹配的条件
设 模 型 状 态 方 程 为 : xm Am xm Bmu ym C xm
对 象 的 状 态 方 程 为 : x A t xp Bp tu
u t a0 t r t b0 t y p t
3
可调系统状态方程为
ymt am ymt km a0 t r t kmb0 t y p t 4
为 使 ymt与 y pt完 全 一 致 ,



k
am ma
0
kmb
t
0 t
kp
ap
设 计 自 适 应 律 , 调 整 a 0 t , b0 t ,使 上 式 满 足 ,
并 当 t 时 , et 0.
二、 自适应律的推导
令:e1(t) ym (t) yp (t) 两边对时间求导:
e1(t) ym (t) y p (t) 代入(1)、(4)得:
e1(t) ame1(t) kmT (t)w(t)(5)

yp
自适应控制
e
基本思路:根据系统的等效误差运动方程 ,找出 (构造)一个适当的Lyapunov函数,确定 自适应律,以保证
V dvt,x0
dt
优点:可保证全局稳定,自适应速度快。 缺点:难以同时保证动态特性,V(x,t)难构造,常
用试探法寻找。
第二节 模型参考自适应辨识
3.2.1 3.2.2 3.2.3 3.2.4
(5)
自适应律(5)式的实现:
z(s)
r
km R(s)
z(s)
kc
k p R(s)
ym
ym

e1
y-p
ym e1
B'
MIT自适应控制系统 优点: 信号易获取,自适应律易实现 ; 缺点: 不能保证稳定性,需进行稳定性分析和
校验。
2、基于Lyapunov稳定性理论的设计方法
r
参考模型
ym

u 过程process
两边对 k c 求导: 又参考模型输出:
R( p)
e1 kc
k pz( p)r
ym r
km
z( p) R(p)
比较 (2)(3) 式得:
e1 kc
kp km
ym
将 ( 4 ) 式代入
(1 ) 式,得:
k c
Be
1
kp km
ymB e1 y m Nhomakorabea即得自适应律
(1)
(2) (3) (4)
第三章 模型参考自适应控制系统
■ 第一节 概述 ■ 第二节 模型参考自适应辨识 ■ 第三节 一阶系统的模型参考自适应控制 ■ 第四节 高阶系统的模型参考自适应控制
第一节 概述
3.1.1 模型参考自适应控制系统的结构 3.1.2 MRAC的设计问题
3.1.1 模型参考自适应控制系统的结构
参考模型
yp Cxp
模 型 匹 配 的 条 件 自 适应律 li m e t 0 t
或 J e2 t dt m in
状 态 误 差 向 量 : e t xm t xp t




态 出
广 广
义 义
误 误
差 差
: :
e e
性能指标 J :t e2(t)dt 0
控制器参数调整 使J规律 mi, n
例如1:958提出的“ MIT”方案
问题:为克k服p的未知漂移,如何调 k使整
J
t 0
e2
(t)dt
min,其中: e(t)
ym
yp
假设系统参数的改变 全完 由自适应作用。
自适应律推导:
设性能指标为J :t e2()d 0
“对偶性 设质 计 M” RA 的C方法用于辨识 将模型参考辨于 识设 方 M 计 法 AR 。 用C
*MRAC的结构具有对偶特点,它们既可用于自适应 模型跟随控制,也能用于自适应状态观测与辨识。
3.2.2 一阶系统的模型参考自适应 辨识
一、问题的提出
假设需要辨识的对象和参考模型分别由以下传递
函数和一阶微分方程来描述:
概述 一阶系统的模型参考自适应辨识 一般高阶系统的模型参考自适应辨识 线性误差方程及其参数辨识算法
u
3.2.1 概 述
被辨识过程
yp
-e

可调模型 y m
自适应辨识器
结构特点:MRAC的对偶系统,即将参考模型与可调 过程位置互换。
基本思想:同MARC设计思想,即通过自适应控制器 来调整模型使e(t)0,这样的模型就是我 们要辨识的结果。
反 前 馈 馈 可 可 调 调 增 增 益 益 u t 使 y m t 完 全 跟 踪 y p t
p(s)
r (t )
kp
y p (t )
s ap
- e1(t )
a0(t)
前馈
M (s)
+ u(t) k m

s am

ym (t )
反馈 b0(t) 可调系统
其中:
模 型 的 输 入 控 制 u t为
xm ym
xp yp
二、MRAC的几类设计方法
1、基于局部参数最优化理论的设计方法
u
参考模型
+ ym (t)
e(t)

kp
对象
y p (t)
自适应机构
rr
z(s)
km R(s)
z(s)
kc
k p R(s)
ym
+ e1

自适应律
yp
“MIT”方案
基本思想:采用 数局 优部 化参
优化方法:梯度 速法 下, 降最 法,拉 牛普 顿森法
相关文档
最新文档