浪涌抗扰度(Surge)测试
浪涌抗扰度(Surge)测试
浪涌(冲击)抗扰度(Surge)1. 浪涌(冲击)抗扰度试验l.i概述浪涌抗扰度试验所依据的国际标准出IEC61000-4-5:2005,对应国家标准是GB/T17626.2:200X《电戲兼容试验和测虽技术浪涌(冲击)抗扰度试验》<.浪涌(冲击)抗扰度试验就足模拟带来的十扰影响,但需要指出的足,考核设备电磁兼容性能的浪涌抗扰度试验不同于考核设备岛斥绝缘能力的耐压试验.前者仅仅足模拟间接宙击的彫响(直接的雷击设备通帘都无法承受)。
1.2浪涌(冲击)抗扰度试验目的本标准的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
本标准规定了一个一致的试验方法,以评定设备或系统对规定现象的抗扰度。
1.3浪涌(冲击)抗扰度试验应用场合本标准适用于电子电气设备,但并不针对特定的设备或系统.貝冇减础EMC电磁兼容出版物的地位. 2. 术语和定义2.1浪涌(冲击)沿线路传送的电流电压或功率的瞬态波,其特性足先快速上升后缓慢下降。
2.2组合波信号发生器能产生1.2/50ps开路电压波形、8/20ps短路电流波形或10/700ps开路电压波形、5/320ps短路电流波形的信号发生器。
2.3耦介网络将能戢从一个电路传送到另一个电路的电路.2.4去耦网络用『防止施加到上的浪涌冲击影响其他不作试验的装遊设备或系统的电路。
2.5 (浪涌发生器的)等效输出阻抗开路电压蜂值与短路电流峰值的比值.2.6对称线垫模到共模转换损耗大于20dB的平衡对线。
3. 试检筹级及选择优先选择的试验等级范甬如表所示. 表试验等级1.试验等级应根据安装情况,安装类别如卜•:0类:保护良好的电气环境,常常在一间专用房间内。
所冇引入电缆都冇过电圧保护(第一级和第二级)・各电子设备职元山设计良好的接地系统相互连接. 并且该接地系统根木不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:冇部分保护的电气环境所有引入宅内的电缆都有过电乐保护(第一级).各设备由地线网络相垃良好连接.并J1该地线网络不会受电力设备或雷电的影响。
surge测试标准
surge测试标准
SURGE测试标准主要考察电气和电子设备对由开关和雷电瞬变
过电压引起的单极性浪涌(冲击)抗扰度。
这个测试的目的是建立一个共同的基准,用来评价电气和电子设备在遭受到浪涌(冲击)时的性能。
在进行SURGE测试时,需要遵循一定的步骤和准备事项。
首先,要进行作业前准备,包括使用手提示波器等测试设备。
其次,要设置测试模式,包括Trigger(触发模式)的设置和测定模式设定(Pk-Pk),通常选择峰到峰的测定模式,并进行最大值的测量。
在SURGE点检环节,需要确认设备接地是否连接,以及电源插座接地和设备接地之间的阻值是否在合适范围内。
然后进行SURGE
测定值的确认,需要确认设备在运转一个周期内的SURGE值。
通常,如果测试值超过5V,则判定为漏电现象,低于5V则为合格状态。
浪涌抗扰度(Surge)测试
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间内。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室内的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室内能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
互连电缆象户外电缆一样走线甚至连到高压设备上。
这种环境下的一种特殊情况是电子设备接到人口稠密区的通信网上。
浪涌surge 共模、差模测试方法
浪涌surge 共模、差模测试方法
浪涌(surge)和过电压(transient)是电器产品测试中的两个关键概念。
其中,浪涌指短时间内电压快速变化,如雷电等因素引起的瞬间电压过高,而过电压指由于电源或其他原因导致的瞬间电压过高。
共模和差模都是针对信号的概念。
在信号传输过程中,会伴随着共模信号和差模信号,它们的测试是针对不同类型的干扰进行的。
共模信号是指信号相对于地面的电位差,也就是信号与地面之间的电压。
共模干扰是指由于接地、接口或信号线本身的不对称性等因素导致的电路中出现的电压干扰,是很常见的一种干扰。
差模信号是指两个信号之间的电压差,也就是信号间的差异。
差模干扰是指两个信号之间的电压差在电路中产生的干扰。
针对浪涌和过电压的共模和差模测试方法如下:
共模浪涌测试方法:将两个电极同时连接到电源的两个输出端口上,并将两个电极短接在一起,产生一个共模电压。
通过对产生的共模电压进行测量,检查是否出现了过高的浪涌电压。
差模浪涌测试方法:将两个电极分别连接到电源的两个输出端口上,通过两个电极之间的差分电压来检测浪涌电压。
共模过电压测试方法:在电路中产生一个共模电压,通过对共模电压进行测量,检查是否出现了过高的过电压。
差模过电压测试方法:在电路中产生两个差分电压,通过对差分电压进行测量,检查是否出现了过高的过电压。
总的来说,共模和差模测试是针对信号传输过程中出现的不同类型干扰进行的,而浪涌和过电压测试则是针对电路工作过程中出现的瞬间电压过高问题进行的。
浪涌抗扰度(Surge)测试
表4波形参数的定义10/700μs—5/320μs
定义
根据ITU-T K系列和GB/T 16927.1
根据IEC 60469-1
波前时间
μs
半峰值时间
μs
上升时间
(10% ~ 90%)
μs
持续压
U—高压源;Rc—充电电阻;Cc—储能电阻;Rs—脉冲持续时间形成电阻;
Rm—阻抗匹配电阻;Lr—上升时间形成电感
图1组合波信号发生器的电路原理图(1.2/50μs—8/20μs)
为方便起见,定义浪涌信号发生器的等效输出阻抗为开路输出电压峰值与短路输出电流峰值之比。信号发生器的等效输出阻抗为2Ω。
信号发生器的特征与性能
等效输出阻抗:2Ω ± 10%;
短路电流峰值和开路电压峰值的关系见表3。
应该使用输出端浮地的信号发生器。
表2波形参数的定义1.2/50μs—8/20μs
定义
根据GB/T 16927.1
根据IEC 60469-1
波前时间
μs
半峰值时间
μs
上升时间
(10% ~ 90%)
μs
持续时间
(50% ~ 50%)
浪涌
1.浪涌(冲击)抗扰度试验
1.1概述
浪涌抗扰度试验所依据的国际标准是IEC61000-4-5:2005,对应国家标准是GB/T17626.2:200X《电磁兼容试验和测量技术浪涌(冲击)抗扰度试验》。
浪涌(冲击)抗扰度试验就是模拟
带来的干扰影响,但需要指出的是,考核设备电磁兼容性能的浪涌抗扰度试验不同于考核设备高压绝缘能力的耐压试验,前者仅仅是模拟间接雷击的影响(直接的雷击设备通常都无法承受)。
surge测试介绍
浪涌的抗干扰(SURGE)测试介绍1 浪涌的起因(1)雷击(主要模拟间接雷):例如,雷电击中户外线路,有大量电流流入外部线路或接地电阻,因而产生的干扰电压;又如,间接雷击(如云层间或云层内的雷击)在线路上感应出的电压或电流;再如,雷电击中了邻近物体,在其周围建立了电磁场,当户外线路穿过电磁场时,在线路上感应出了电压和电流;还如,雷电击中了附近的地面,地电流通过公共接地系统时所引入的干扰。
(2)切换瞬变:例如,主电源系统切换时(例如补偿电容组的切换)产生的干扰;又如,同一电网中,在靠近设备附近有一些较大型的开关在跳动时所形成的干扰;再如,切换有谐振线路的晶闸管设备;还如,各种系统性的故障,例如设备接地网络或接地系统间产生的短路或飞弧故障。
2 试验的目的通过模拟试验的方法来建立一个评价电气和电子设备抗浪涌干扰能力的共同标准。
3 浪涌的模拟按照IEC61000-4-5(GB/T17626.5)标准的要求,要能分别模拟在电源线上和通信线路上的浪涌试验。
由于线路的阻抗不一样,浪涌在这两种线路上的波形也不一样,要分别模拟。
图1 综合波发生器简图注:U—高压电源, RS—脉冲持续期形成电阻, RC—充电电阻, Rm—阻抗匹配电阻, CC—储能电容, Lr—上升时间形成电感图2 综合试验波 波形规定)(a)1.2/50μs开路电压波形(按IEC601波前时间:T1=1.67×T=1.2μs±30%半峰值时间:T2=50μs±20%(b)8/20μs短路电流波形(按IEC601波形规定)波前时间:T1=1.25×T=8μs±30%半峰值时间:T2=20μs±20%(1)主要用于电源线路试验的1.2/50μs(电压波)和8/20μs(电流波)的综合波发生器ALK安规与电磁兼容网图6是综合波发生器的简图。
发生器的波形则见图7所示。
对试验发生器的基本性能要求是:开路电压波:1.2/50μs;短路电流波:8/20μs。
浪涌测试规范2
浪涌抗扰度测试规范The specification of surge immunity test目 次前言77测试要求...........................................................66性能判据...........................................................35 浪涌试验原理......................................................24测试条件...........................................................23术语及符号.........................................................12 引用标准..........................................................11 范围..............................................................前言本标准根据国际标准IEC61000-4-5“Electromagnetic compatibility(EMC) Part 4:Testing and measurement techniques Section 5:Sruge immunity test”、ETS300 386标准、GB/T 17626.5--1999 “浪涌(冲击)抗扰度试验”编制而成。
本规范主要介绍浪涌抗扰性试验的试验电平、性能判据、试验设备、试验方法等内容。
浪涌抗扰度测试规范1范围本标准规定了浪涌抗扰度测试 的术语、试验方法。
本标准适用于于公司所有产品的电源端:直流端、交流端;以及各类信号端:用户线端口、E1端口、串口等的浪涌抗扰度测试。
浪涌测试单词
浪涌测试单词单词:surge test(浪涌测试)1. 定义与释义1.1词性:名词1.2中文释义:一种测试电气或电子设备在遭受瞬间高能量脉冲(浪涌)时的性能的测试。
1.3英文释义:A test for the performance of electrical or electronic devices when subjected to instantaneous high - energy pulses (surges).1.4相关词汇:surge(名词、动词,浪涌、汹涌;使汹涌)、test(动词、名词,测试、试验)、surge protector(浪涌保护器,近义词)。
2. 起源与背景2.1词源:“surge”源于拉丁语“surgere”,表示“升起、涌起”,后来用于描述电学中的电压、电流等突然升高的现象。
“test”源自古法语“tester”,表示“检查、考验”。
组合起来的“surge test”就是对浪涌情况的检测。
2.2趣闻:在早期电子设备发展阶段,很多设备莫名其妙地损坏,工程师们经过大量研究才发现是浪涌现象导致的,于是浪涌测试开始成为电子设备安全性检测的重要部分。
3. 常用搭配与短语3.1短语:(1) surge test equipment:浪涌测试设备。
例句:The factory bought new surge test equipment to ensure product quality.翻译:工厂购买了新的浪涌测试设备以确保产品质量。
(2) surge test standard:浪涌测试标准。
例句:Our products must meet the international surge test standard.翻译:我们的产品必须符合国际浪涌测试标准。
(3) perform a surge test:进行浪涌测试。
例句:We need to perform a surge test on this newly - developed circuit board.翻译:我们需要对这个新开发的电路板进行浪涌测试。
电磁兼容EMC测试:浪涌SURGE(surge test)共模、差模测试方法
电磁兼容EMC测试:浪涌SURGE(surge test)共模、差模测试方法浪涌是现实世界中的日常事件,可能对电子设备产生重大负面影响,这些影响包括数据损坏,设备永久性损坏以及在某些情况下甚至火灾。
可能由于各种原因而发生浪涌,但常见的电涌原因是:1.电器的电气开关,如冰箱,加热器和空调2.接线错误和短路3.雷击市场上有许多组件和设备旨在保护设备免受沿电源线或信号线发生的电涌。
这些设备统称为浪涌保护设备(或浪涌抑制器/放电器),旨在通过阻断或短路接地任何高于安全阈值的不需要的电压来限制提供给电气设备的电压。
这被称为钳位电压,但在为您的产品选择电涌保护器件时,这不是唯一要考虑的特性。
钳位/触发电压这指定了什么尖峰电压将导致电涌保护器内的保护元件从受保护的线路转移不需要的能量。
较低的钳位电压可以提供保护,但有时可以缩短器件的预期寿命。
大连续工作电压(MCOV)这是可以在电涌保护器的端子之间连续施加的大RMS电压。
大额定电压顾名思义,这是指浪涌保护装置在完全发生故障之前可以承受的绝对大电压尖峰,许多不同的电涌保护装置在上述特征方面不同,因此更适合于某些应用。
以下是一些较常见的电涌保护装置的简要说明。
瞬态电压抑制二极管(TVS)或Trans orb瞬态电压抑制二极管也是已知的硅雪崩二极管(SAD)。
它们是一种可以限制电压尖峰的齐纳二极管。
TVS二极管具有快速限制作用但具有相对低的能量吸收能力,因此更常用于高速但低功率电路(例如数据通信)。
如果脉冲保持在器件的额定值范围内,则瞬态抑制二极管的预期寿命非常长。
金属氧化物压敏电阻(MOV)金属氧化物变阻器本质上是可变电阻器。
当MOV高于其额定电压(通常是正常电路电压的3到4倍)时,MOV可以传导大电流。
MOV具有有限的预期寿命,并且在暴露出大的瞬态或许多较小的瞬态时会降低。
当发生退化时,金属氧化物变阻器的触发电压继续下降。
MOV通常与热熔丝串联连接,以便在发生灾难性故障之前熔断器断开。
浪涌抗扰度(Surge)测试资料
浪涌抗扰度(S u r g e)测试1) “´”可以是高于、低于或在其它等级之间的等级。
该等级可以在产品标准中规定。
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间内。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室内的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室内能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
浪涌测试方法
浪涌测试(Surge Test)是一种用于评估电气设备和系统的抗浪涌能力的测试方法。
浪涌测试主要针对设备在电源系统中突发的瞬态电压波动或电流冲击进行测试,以验证设备是否能够正常运行并保持稳定。
以下是常见的浪涌测试方法:
1. 模拟浪涌测试:使用专门的浪涌测试仪器(如浪涌发生器)产生瞬态电压或电流,并将其施加到被测试设备的电源或信号线上,观察设备的反应和性能。
这种方法主要用于评估设备的耐压和耐冲击能力。
2. 真实环境浪涌测试:在实际工作环境中模拟电源系统中可能出现的浪涌情况,例如突然断电、电源开关操作等,观察设备的响应和稳定性。
这种方法更接近真实工作条件,可以更准确地评估设备的可靠性。
3. 标准浪涌测试:根据国际或行业标准制定的浪涌测试规范,如IEC 61000-4-5,对设备进行标准化的浪涌测试。
这种方法可以提供一致性的测试结果,并与其他设备进行比较。
在进行浪涌测试时,需要注意以下几点:
- 测试设备必须符合安全规范,测试前需确保设备和人员的安全。
- 根据被测试设备的特性和应用环境,选择适当的浪涌测试方法和参数。
- 在测试过程中,记录并分析设备的响应和性能数据,如电压波形、电流波形等。
- 进行多次测试以获得可靠的结果,并与规范或标准进行比较。
浪涌测试是一项重要的电气测试,可以帮助确保设备和系统在面对电源突发情况时的稳定性和可靠性。
具体的测试方法和步骤应根据被测试设备的要求和标准来确定。
浪涌抗扰度(Surge)测试
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
互连电缆象户外电缆一样走线甚至连到高压设备上。
这种环境下的一种特殊情况是电子设备接到人口稠密区的通信网上。
这时在电子设备以外,没有系统性结构的接地网,接地系统仅由管道、电缆等组成。
浪涌抗扰度(Surge)测试.doc
浪涌抗扰度(Surge)测试.浪涌(冲击)抗扰度(Surge)1.浪涌(冲击)抗扰度试验1.1概述浪涌抗扰度试验所依据的国际标准是IEC61000-4-5:2005,对应国家标准是GB/T17626.2:200X《电磁兼容试验和测量技术浪涌(冲击)抗扰度试验》。
浪涌(冲击)抗扰度试验就是模拟带来的干扰影响,但需要指出的是,考核设备电磁兼容性能的浪涌抗扰度试验不同于考核设备高压绝缘能力的耐压试验,前者仅仅是模拟间接雷击的影响(直接的雷击设备通常都无法承受)。
1.2浪涌(冲击)抗扰度试验目的本标准的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
本标准规定了一个一致的试验方法,以评定设备或系统对规定现象的抗扰度。
1.3浪涌(冲击)抗扰度试验应用场合本标准适用于电子电气设备,但并不针对特定的设备或系统,具有基础EMC电磁兼容出版物的地位。
2.术语和定义2.1 浪涌(冲击)沿线路传送的电流电压或功率的瞬态波,其特性是先快速上升后缓慢下降。
2.2 组合波信号发生器能产生 1.2/50μs开路电压波形、8/20μs 短路电流波形或10/700μs开路电压波形、5/320μs短路电流波形的信号发生器。
2.3 耦合网络将能量从一个电路传送到另一个电路的电路。
2.4 去耦网络用于防止施加到上的浪涌冲击影响其他不作试验的装置设备或系统的电路。
2.5(浪涌发生器的)等效输出阻抗开路电压峰值与短路电流峰值的比值。
2.6 对称线差模到共模转换损耗大于20dB的平衡对线。
3.试验等级及选择优先选择的试验等级范围如表1所示。
表1试验等级等级开路试验电压(±10%)kV10.521.032.044.0´1)特殊1)“´”可以是高于、低于或在其它等级之间的等级。
该等级可以在产品标准中规定。
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间内。
浪涌抗扰度操作规范
由实验室相关工程师负责执行操作.
5.0测试条件
5.1环境温度:15℃-35℃;
5.2相对湿度:10%-75%
5.3大气压力:86Kpa-106Kpa
6.0测试设备
TRANSIENT2000电磁抗扰度测试设备,容性耦合夹
7.0仪器设备操作
7.1检查仪器设备是否在校准的有效期内
7.2检查设备有无良好接地
浪涌抗扰度操作规范
拟制:
审核:
批准:
广州广电计量测试技术有限公司
1.0目的
1.1为了正确地操作该设备,以使其操作标准化,系统化并达到实验的定义
3.1 Surge :浪涌
3.2AE : Ancillaryequipment辅助设备
3.3EUT : Equipment Under Test被测设备
8.0待测物地布置
8.1EUT电源试验的配置
8.1.1如果没有其他规定,EUT和耦合/去耦网络之间的电源线长度为2m
9.0测试结果可参考本项测试的实验等级
.
9.1把测试过程中观察到的现象记录在原始记录表上并完成报告
10.0参考文献
浪涌(冲击)抗扰度试验
GB/T 17626.5-1999
IEC 61000-4-5:2005
7.3仪器设备连接好电源并打开开关进入面板操作画面作相应的参数选择或编辑
进入EFT- Main 1主画面,作相应的电压,脉冲次数,极性;波形;相位角,重复次数的选择或编辑,相位角优先选择0,90,180,270度,每个相位需施加5个正和5个负脉冲,信号线不需要进行相位角选择
7.4在显示界面上完成耦合方式(如L1-N、L1-PE、N-PE等)脉冲耦合部位的设定
浪涌冲击的市电相位
浪涌冲击,也被称为雷击浪涌冲击抗扰度测试(Surge immunity test),是一种专门设计用来吸收、分解或抑制电力系统中突发的电压浪涌和电流浪涌的装置。
这种装置的基本作用在于保护电子设备免受来自电网的不稳定电力波动
所带来的危害。
浪涌冲击主要来源于雷电以及电力系统内部操作,如电动机启动等。
在电力系统中,浪涌冲击可能会导致设备损坏、数据丢失甚至系统崩溃等严重后果。
市电相位,指的是交流电的正弦波形在一个周期内的相对位置,通常用角度或时间来表示。
市电相位的变化会影响电力设备的运行和性能。
浪涌冲击与市电相位之间存在一定的关系。
首先,浪涌冲击的发生可能会受到市电相位的影响。
例如,在雷电天气下,雷电击中电力系统时可能会产生浪涌冲击,而这个冲击发生的时间与市电相位有关。
其次,浪涌冲击的防护措施也需要考虑市电相位。
例如,在电力系统中安装浪涌保护器时,需要根据市电相位的变化来合理布置保护器,以确保其能够有效地吸收和抑制浪涌冲击。
然而,需要注意的是,浪涌冲击与市电相位之间的关系并不是简单的线性关系。
在实际应用中,还需要考虑其他因素,如电力系统的结构、设备的特性以及运行环境等。
总之,浪涌冲击与市电相位之间存在一定的关系,这种关系在电力系统的稳定运行和设备保护中具有重要意义。
在
实际应用中,需要综合考虑多种因素来有效地应对浪涌冲击的影响。
浪涌抗扰度试验作业指导书
5.5、根据EMC试验要求设置完相关的参数后,按红色“Run”键相关试验开始进行;若出现异常情况,按“Pause on”对应键暂停或按红色“Stop”键停止试验。
大气压力:86~106 Kpa
②供电电源:220V±10V/ 50Hz
③引用标准:GB/T 17625.5 -1999(IEC 61000- 4- 5:1995)
4、试验要求(USA产品试验除外)
①试验电压:
差模模式(L- N):±0.5 KV~±2 KV,以0.5 KV递增。
共模模式(L- PE,N- PE):±3 KV~±4 KV,以1 KV递增。
②浪涌电压相角:0°~270°.
③浪涌周期:60 S
④试验次数:
差模:ห้องสมุดไป่ตู้0次.
共模:15次.
⑤试验顺序:施加浪涌顺序应按(L-N)和(L-PE、N-PE)方式向线路施加浪涌。
⑥试验模式:正常工作和待机状态均须试验。
⑦客户有其它要求时,以客户要求为准。
5、试验程序
试验项目
浪涌抗扰度试验
产品名称
彩色电视机、视盘机
试验电压KV
浪涌周期
电压相角
试验次数
判定标准
创维
L - N
±0.5~±2
60 S
0°~270°
10次
B
L - PE N - PE
±3~±4
15次
C
PHILIPS
L - N
±0.5~±2
60 S
IEC_61000-4-5_SURGE 介绍
Ending
Happy New Year
Thank You
(2)操作过电压
当电流通过导体时在其周围建立一个磁场,将能量储存起来,当电流 断开或接通时(包括切合感性负载、开断容性负载、开关动作、负载 变化、线路出现短路断路和电弧故障时),磁场的能量将急速释放, 形成浪涌。 信号发生器的特性应尽可能的模拟以上现象
二、标准内容介绍
本标准规定了设备对由开关和雷电瞬变过电压引起的单极性浪涌(冲 击)的抗扰度要求、试验方法和推荐的试验等级范围。本标准提出的 要求适用于电气和电子设备。 本标准的目的是建立一个共同的基准以评定设备在遭受来自电力线和 互连线上高能量骚扰时的性能。本标准不对绝缘物耐高压的能力进行 测试。本标准不考虑直接雷击。
2、浪涌产生的原因 浪涌产生的原因通常有雨云层之间或者云层与大地间强烈瞬 间的放电现象。当雷电发生时,产生强大的雷击电流、炽热的高温、 猛烈的冲击波、瞬变的电磁场和强烈的电磁辐射等综合物理效应,是 一种严重的气象自然灾害。当潮湿水气上升到高空,遇冷产生凝结形 成小水滴。由于上升气流的不稳定,水滴在运动过程中相互摩擦、碰 撞、分裂形成大小不等的水珠,大水珠带正电荷,小水珠带负电荷, 小水珠容易被上升气流带到上层云层,大水珠则留在下层或降落到地 面,这样便形成了电荷的分离过程。当带电荷云层逐步积累到足够的 电荷量时,便相互放电产生闪电现象,形成雷电。
試驗)為18μF ;線-地(共模試驗)為9μF+10Ω。
5.试验设置
-
极性 输出波形
相位改变
正极性 和 负极性(正负各5个脉冲) CWG(1.2/50μs)
0 90 180 270
-
脉冲时间间隔 开路电压输出 输出阻抗
1min or less 从0.5kv开始直到所要求的测试位准 2ohm
浪涌测试标准
浪涌抗扰度测试规范The specification of surge immunity test目 次前言77测试要求...........................................................66性能判据...........................................................35 浪涌试验原理......................................................24测试条件...........................................................23术语及符号.........................................................12 引用标准..........................................................11 范围..............................................................前言本标准根据国际标准IEC61000-4-5“Electromagnetic compatibility(EMC) Part 4:Testing and measurement techniques Section 5:Sruge immunity test”、ETS300 386标准、GB/T 17626.5--1999 “浪涌(冲击)抗扰度试验”编制而成。
本规范主要介绍浪涌抗扰性试验的试验电平、性能判据、试验设备、试验方法等内容。
浪涌抗扰度测试规范1 范围本标准规定了浪涌抗扰度测试 的术语、试验方法。
本标准适用于于公司所有产品的电源端:直流端、交流端;以及各类信号端:用户线端口、E1端口、串口等的浪涌抗扰度测试。
eft和surge测试工程标准
根据您提供的主题“eft和surge测试工程标准”,我将按照深度和广度的要求进行全面评估,并据此撰写一篇有价值的文章。
1. EFT和Surge测试工程标准概述在现代工程领域中,电子产品的安全性和稳定性测试至关重要。
EFT (电涌冲击测试)和Surge(浪涌测试)是两种常见的电气性能测试方法,用于评估电子设备对于电源线传输中的暂态电涌和浪涌的抵抗能力。
这两种测试工程标准可以帮助设计工程师和制造商确保他们的产品在电气环境干扰下依然能够正常工作,并且在一定程度上对于设备的寿命和安全性都具有关键性的影响。
2. EFT和Surge测试工程标准的实施原理EFT测试是通过在电源线上注入短脉冲来评估设备对于电源线瞬态电涌干扰的抗干扰能力。
而Surge测试则是通过在电源线上注入长脉冲来模拟雷击或开关操作等情况下的电源线浪涌,以评估设备对于浪涌干扰的抗干扰能力。
3. EFT和Surge测试的标准要求按照国际性质的标准规范,EFT和Surge测试工程标准包括IEC 61000-4-4和IEC 61000-4-5。
IEC 61000-4-4规定了EFT测试的实施条件、测试设备和测试程序,并强调了测试设备需要具备的特性和要求。
IEC 61000-4-5也规定了Surge测试的实施条件、测试设备和测试程序,以及测试设备的相关要求。
4. EFT和Surge测试工程标准的重要性EFT和Surge测试工程标准是非常重要的,因为这些测试可以帮助制造商评估他们的产品在电气环境干扰下的功能稳定性和安全性。
在电子设备被投入市场之前,通过执行EFT和Surge测试,可以帮助设计工程师和制造商发现潜在的问题,并及时进行修正和改进。
5. 个人观点和理解作为一名经验丰富的工程师,我认为EFT和Surge测试工程标准的实施对于电子产品的安全性和可靠性具有极大的帮助。
这些测试可以帮助制造商验证他们的产品在面临电气环境干扰时的实际表现,确保产品可以在客户的使用环境下正常工作并且具有良好的用户体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.试验等级应根据安装情况,安装类别如下:0类:保护良好的电气环境,常常在一间专用房间内。
所有引入电缆都有过电压保护(第一级和第二级)。
各电子设备单元由设计良好的接地系统相互连接,并且该接地系统根本不会受到电力设备或雷电的影响电子设备有专用电源(见表A1)浪涌电压不能超过25V。
1类:有部分保护的电气环境所有引入室内的电缆都有过电压保护(第一级)。
各设备由地线网络相互良好连接,并且该地线网络不会受电力设备或雷电的影响。
电子设备有与其他设备完全隔离的电源。
开关操作在室内能产生干扰电压。
浪涌电压不能超过500V。
2类:电缆隔离良好,甚至短走线也隔离良好的电气环境。
设备组通过单独的地线接至电力设备的接地系统上,该接地系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
电子设备的电源主要靠专门的变压器来与其他线路隔离。
本类设备组中存在无保护线路,但这些线路隔离良好,且数量受到限制。
浪涌电压不能超过1kV。
3类:电源电缆和信号电缆平行敷设的电气环境。
设备组通过电力设备的公共接地系统接地该接地。
系统几乎都会遇到由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷击而引起的电流会在接地系统中产生幅值较高的干扰电压。
受保护的电子设备和灵敏度较差的电气设备被接到同一电源网络。
互连电缆可以有一部分在户外但紧靠接地网。
设备组中有未被抑制的感性负载,并且通常对不同的现场电缆没有采取隔离。
浪涌电压不能超过2kV。
4类:互连线作为户外电缆沿电源电缆敷设并且这些电缆被作为电子和电气线路的电气环境设备组接到电力设备的接地系统,该接地系统容易遭受由设备组本身或雷电产生的干扰电压。
在电力设施内,由接地故障、开关操作和雷电产生的几千安级电流在接地系统中会产生幅值较高的干扰电压。
电子设备和电气设备可能使用同一电源网络。
互连电缆象户外电缆一样走线甚至连到高压设备上。
这种环境下的一种特殊情况是电子设备接到人口稠密区的通信网上。
这时在电子设备以外,没有系统性结构的接地网,接地系统仅由管道、电缆等组成。
浪涌电压不能超过4kV。
5类:在非人口稠密区电子设备与通信电缆和架空电力线路连接的电气环境。
所有这些电缆和线路都有过电压(第一级)保护。
在电子设备以外,没有大范围的接地系统(暴露的装置)。
由接地故障(电流达10Ka)和雷电(电流达100Ka)引起的干扰电压是非常高的。
试验等级4包括了这一类的要求。
X类:在产品技术要求中规定的特殊环境。
浪涌(信号发生器)与安装类别的关系如下:1~4类:1.2/50μs(80/20μs)第5类:对电源线端口和短距离信号电路/线路端口:1.2/50μs(80/20μs)1~5类:对对称通信线路:10/700μs(5/320μs)源阻抗应与各有关试验配置中标注的一样。
4.试验设备U—高压源;Rc—充电电阻;Cc—储能电阻;Rs—脉冲持续时间形成电阻;U—高压源;Rc—充电电阻;Cc—储能电容;Rs—脉冲持续时间形成电阻;Rm—阻抗匹配电阻;Cs—上升时间形成电容;S1—使用外部匹配电阻时,开关闭合图4组合波信号发生器的电路原理图(10/700µs-5/320µs)(根据ITU K系列标准)信号发生器的特征与性能极性:正/负;重复率:每分钟至少一次;开路输出电压峰值:至少在0.5kV~4.0kV范围内能输出浪涌电压波形:见图5和表4;开路输出电压容差:见表5;短路输出电流峰值:与电压峰值相关(见表4和表5);短路输出电流容差:见表5;等效输出阻抗:40Ω ± 10%(仅对信号发生器的输出端)。
注:等效输出阻抗通常包括内部电阻Rm1(15Ω)和Rm2(25Ω)。
电阻Rm2可以被旁路、并联或短路,当用于多路耦合时,可被外部耦合电阻代替,见图14。
波前时间:T1=1.25×T=5μs±20%表5开路电压峰值和短路电流峰值的关系图8 交/直流线上电容耦合的试验配置实例;线-地耦合(见7.2)图9 交流线(三相)上电容耦合的试验配置实例;线L3-线L1耦合(见7.2)图10 交流线(三相)上电容耦合的试验配置实例;线L3-地耦合(见7.2)1开关) S1:线-地,置于“0”;线-线,置于“1”~“4”。
2)开关S2:试验时置于“1”~“4”,但与S1不在相同的位置。
3) L=20mH,RL为L的电阻部分。
图11 非屏蔽不对称的互连线配置实例;线-线/线-地耦合(见7.3),用电容耦合4)开关S1:线-地,置于“0”;线-线,置于“1”~“4”。
5)开关S2:试验时置于“1”~“4”但与S1不在相同的位置。
6) L=20mH,RL为L的电阻部分。
图12 非屏蔽不对称的互连线配置实例;线-线/线-地耦合(见7.3),用气体放电管耦合7)开关S1:线-地,置于“0”;线-线,置于“1”~“4”。
8) 开关S2:试验时置于“1”~“4”但与S1不在相同的位置。
9) L=20mH ,RL 为L 的电阻部分。
图13 非屏蔽不对称的互连线配置实例;线-线/线-地耦合(见7.3),用耦合电路耦合使用XWG(1.2/50μs信号发生器)时Rm2的计算;例如:n=4 Rm2=4x40Ω=160Ω,最大250Ω。
使用XWG(10/700μs信号发生器)时Rm2的计算;内部阻抗Rm2(25Ω)由外部阻抗Rm2= nx25Ω代替(对于n个导体,n等于或大于2)例如:n=4 Rm2=4x25Ω=100Ω,Rm2不应超过250Ω。
L=20mH,图中所示的4个扼流线圈可能全部或仅仅两个有效。
RL的值取决于传输信号允许的衰减。
图14 非屏蔽对称工作互连线(通信线)试验配置示列,线-地耦合(见7.4),用气体放电管耦合注1 L2是4匝的电流抑制线圈,防止给模拟电路供电时产生饱和。
并且,L2应该有较低的阻抗;例如:<<1Ω,并接到L2的阻抗也许降低整个阻抗。
注2 RA和RB 的阻抗应尽可能低,以防止形成共振或冲击。
注3 RC和RD是80Ω的绝缘隔离电阻。
注4 由于电感很容易饱和,对于10/700µs的波形建议不使用本耦合去耦网络图15 使用1.2/50µs浪涌波的对称高速通信线的耦合去耦网络的配置实例在交流或直流电源线上,去耦网络提供较高的阻抗以阻止浪涌波形,同时允许交流和直流电供给EUT。
这个阻抗允许电压波形施加到耦合/去耦网络的输出端,并防止浪涌电流返回到交流或直流电源。
采用适当大小的高压电容作为耦合元件,可以使全部持续时间的浪涌耦合到EUT。
用于交流或直流电源线的耦合/去耦网络,应使开路电压波形和短路电流波形满足表6和表7的容差要求。
表6耦合/去耦网络EUT端口的电压波形规格表7耦合/去耦网络EUT端口的电流波形规格对于I/O线和通信线,去耦网络的串联阻抗会限制数据传输的有用带宽。
当使用耦合/去耦网络使试验无法进行时,应使用6.3.3条规定的程序。
当线路能够容忍容性负载的影响,可以使用电容作为耦合元件(6.3.2.1),或者用气体放电管(6.3.2.2和6.3.2.3)。
当耦合到互连线时,使用6.3.2规定的耦合装置,可能会造成波形失真。
每个耦合/去耦网络都应满足6.3.1到6.3.3的要求。
应根据下面的流程图选用耦合/去耦网络。
4.3.1 用于交/直流电源线的耦合/去耦网络电压和电流的波前时间和半峰值时间应分别在开路情况下和短路情况下,在耦合/去耦网络的EUT端口校验。
30%的下冲仅适用于发生器的输出端。
对于耦合/去耦网络的输出端,无下冲或过冲的限制。
信号发生器的输出或其耦合网络应与有足够带宽和电压量程的测量系统连接,以便监视开路电压波形对于线-线耦合,浪涌应通过18μF电容耦合,如图7和图9所示。
对于线-地耦合,浪涌应通过9μF电容串联10Ω电容耦合,如图8和图10所示。
去耦电感的大小由设备制造商选择,使耦合/去耦网络EUT连接器处的电源电压下降低于额定值的10%,但不超过1.5mH。
对于额定电流>25A的耦合/去耦网络,为了防止其造成过多的电压下降,去耦元件的值通常须减小。
在这种情况下,开路电压波形的半峰值时间也可能减小,见表6和表7。
注:对于额定输入电流大于100A的EUT,浪涌不通过耦合/去耦网络直接施加到未加电的EUT上,是唯一可行的试验方法。
本标准第9条的性能判据只适用于EUT通电的情况,如果EUT在不通电的情况下进行试验,应在试验结束后开机,用第9条的性能判据d进行判定。
如果EUT(如独立的控制单元)由于电源电流要求大于100A而不可能对整个系统进行试验,那么局部的试验也是可以接受的。
当EUT没有连接时,在去耦网络电源输入端上的残余浪涌电压不应超过所施加试验电压的15%或耦合/去耦网络额定电压峰值的两倍,两者中取较大者。
当EUT没有连接且耦合/去耦网络输入端开路时, 在未施加浪涌线路上的残余浪涌电压不应超过最大可施加电压的15%。
上述单相(相线、中线、保护接地)系统的特性对三相系统(三根相线、中线和保护接地)同样有效。
4.3.2 用于互连线的耦合/去耦网络耦合方法应根据电路的功能以及运行状态来进行选择。
产品技术要求中应该对此作出规定。
利用电容耦合所进行的测试可能不会产生和放电管耦合相同的结论。
如果要优先选用一种特殊的耦合方式,则应该在产品标准中作出规定。
在任何情况下,所采用的耦合方式都应该在测试报告中注明。
如果信号线对称,则电流补偿电感器就能够在去耦网络中应用。
4.3.2.1 采用电容器的耦合/去耦网络在能够维持线路正确运行的情况下,对于非屏蔽不对称的I/O电路,推荐用电容耦合方式。
如图11所示为一个耦合网络的例子。
耦合/去耦网络的推荐参数为:耦合元件 R = 40Ω,C = 0.5 µF;去耦电感 L = 20 mH。
4.3.2.2 采用钳位装置的耦合/去耦网络本方法可以用在因功能问题而不能使用电容耦合的场合。
该功能问题是由电容接至EUT而引起的(见图11)。
一些钳位装置有一个比较低的寄生电容并且允许与许多型号的I/O连线相连接。
当如图11所示的电容与一套钳位装置耦合时,该电容可以用如图13所示的一套单独的钳位装置或电路来代替。
该装置的钳位电压应该选择的尽可能小,但是要高于被测线路的最大工作电压。
耦合/去耦网络的推荐参数为:耦合电阻 R = 40Ω再加上所选钳位装置的阻抗;去耦电感 L = 20 mH.钳位装置的EUT输出端的脉冲波形由脉冲幅度和钳位装置本身的特性决定;因此,不可能规定波形的量值和容差。
4.3.2.3 采用雪崩装置的耦合/去耦网络本方法可以用在因功能问题而不能使用电容耦合的场合。
该功能问题是由电容接至EUT而引起的(见图11)。
硅雪崩装置或气体放电管都有一个较低的寄生电容并且允许与更多型号的I/O连线相连接。