经典力学-武汉大学物理科学与技术学院
数学物理方法第八章

(7 ) ⎧ A0 = 0 ⎪ α1′ ⎪ A1a = − Ea + (8) a ⎪ ′ ⎨ A an = αn (9) n ⎪ n a ⎪ ′ βn n (10) ⎪ Bn a = n a ⎩
Wuhan University
习题课
一、正交曲线坐标系中的分离变量
【求解】
∂u I ε ∂ρ
∞
∂u II ρ =a = ∂ρ
2 l nπ 2 l nπ An = ∫ ϕ (α ) sin αdα , Bn = ∫0ψ (α ) sin l αdα 0 l l nπa
Wuhan University
习题课
二、齐次问题
1、求解
解:u ( x, t ) =
∑(A
n =1
⎧utt = a 2u xx , 0 < x < π , t > 0 ⎪ ⎪u ( x,0) = 3 sin x ⎫ ⎨ ⎬,0≤ x ≤π ⎭ ⎪ut ( x,0) = 0 ⎪u (0, t ) = u (π , t ) = 0; ∞ ⎩
n =1
′ ′ + ∑ (α n cos nϕ + β n sin nϕ ) ρ − n u
II
∞
ρ →∞
= − Eρ cos ϕ →
n =1
α 0 = 0, β 0 = 0; α n = 0(n ≠ 1), β n = 0; α1 ρ = − Eρ → α1 = − E
′ ′ u ( ρ , ϕ ) = − Eρ cos ϕ + ∑ (α n cos nϕ + β n sin nϕ )ρ − n
(3)
(2)
ρ =a
( 4)
习题课
一、正交曲线坐标系中的分离变量
武汉工程大学物理练习册答案

大学物理练习 一一.选择题:1.一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=其中a 、b为常量, 则该质点作 A 匀速直线运动. B 变速直线运动. C 抛物线运动. D 一般曲线运动.解:选B j bt i at r 22+=22bty at x ==2.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有A v =v,v =v . C ≠vv,v ≠v .B ≠vv,v =v . D v =v,v ≠v .解:选D .根据瞬时速度与瞬时速率的关系dsr d =所以但s r ∆≠∆ 所以3.质点作半径为R 的变速圆周运动时的加速度大小为 v 表示任一时刻质点的速率A dtdv . BR v 2.C dt dv +R v2. D 21222⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v dt dv .解:选D . 因变速圆周运动的加速度有切向加速度和法向加速度,故22τa a a n += ;4.某物体的运动规律为2kv dt dv -=,式中的k 为大于零的常数;当t=0时,初速为v 0,则速度v 与时间t 的函数关系是 Av = kt+v 0 Bv =-kt + v 0大学物理练习 二一、选择题:1.质量为m 的小球在向心力作用下,在水平面内作半径为R 、速率为v 的匀速圆周运动,如下左图所示;小球自A 点逆时针运动到B 点的半周内,动量的增量应为:A mv 2jB j mv2-C i mv2D imv 2- 解: Bjmv j mv j mv v m v m A B2-=--=-2.如图上右所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为A .2mvB ()()22/2v R mg mv π+C v Rmg /πD 0;解:C ⎰===2/0/2/T v Rmg mgT mgdt I π恒力冲量 v Rt π=vRmgmgt π=3.一质点在力)25(5t m F -= SI 式中m 为质点的质量,t 为时间的作用下,0=t 时从静止开始作直线运动,则当s t 5=时,质点的速率为A s m /50B s m /25 C0 D s m /50-解:CB00=-mv mv如果当s t 1=时m mv mv 200=-4.质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为A ,22mEB mE 23,C mE 25,D ()mE 2122-;解: B 因质点m;mE mv E mv 2,21121=∴= 因质点m 4:mE mE mv E mv 24324,4421222==∴=所以mE mE mE P 23242=+-=5.一个质点同时在几个力作用下的位移为:k j i r654+-=∆ SI 其中一个力为恒力 k j i F953+--= SI,则此力在该位移过程中所作的功为A 67JB 91JC 17JD –67J解: AJk j i k j i r F W 67542512)654()953(=++-=+-•+--=∆•=6.对功的概念有以下几种说法:⑴ 保守力作正功时,系统内相应的势能增加;⑵ 质点运动经一闭合路径,保守力对质点作的功为零;⑶ 作用力和反作用力大小相等、方向相反,所以两者所做功的代数和必为零; 在上述说法中: A ⑴、⑵正确; B ⑵、⑶正确;C 只有⑵正确; D 只有⑶正确;解: C7.机枪每分钟可射出质量为g 20 的子弹900颗,子弹射出的速率为s m /800,则射击时的平均反冲力大小为 A N 267.0 B N 16 C N 240 D N 14400解: C8.一质量为M 的弹簧振子,水平放置且静止在平衡位置,如图所示.一质量为m的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为A 221v m . B )(222m M m +v . C 2222)(v Mm m M +. D 222v M m . B 解:碰撞动量守恒V m M mv )(+=9.一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上,在该质点从坐标原点运动到)2,0(R 位置的过程中,力F对它所做的功为 A 20R F B 202R F C 203R F D 204R F解:10.质量为kg 10.0的质点,由静止开始沿曲线j i t r2353+=SI 运动,则在0=t 到s t 2=的时间内,作用在该质点上的合外力所做的功为A J 45B J 20 CJ 475D J 40i t a m F 1010.0⨯==二、填空题:1.下列物理量:质量、动量、冲量、动能、势能、功,其中与参照系的选取有关的物理量是 ;不考虑相对论效应解:.动量v 、动能v、功()r ∆ 与运动的参考系选取有关; 2.一个物体可否具有动量而机械能等于零 填可、否解:可3.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:1 子弹射入沙土后,速度随时间变化的函数式 ;2 子弹进入沙土的最大深度 ;解:1 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d vv =- ∴ ⎰⎰=-=-vv v vv v 0d d ,d d 0t t m K t m K ∴ mKt /0e -=v v2 求最大深度 解法一: t xd d =vt x mKt d ed /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:x m t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =4.质量m =1kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23+= SI,那么,物体在开始运动的3m 内,合力所作功A = ;且x =3m 时,其速率v = ;解:j x x Fdx W 1833023=+==⎰sm v jmv W /618212=∴==5.有一人造地球卫星,质量为m,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示⑴卫星的动能为 ;⑵卫星的引力势能为 ;解:1R GMm 6 RmvR GMm 3)3(22= R r 3=2R GMm3- dr rGMmE RP⎰∞=326.一质量为M 的质点沿x 轴正向运动,假设质点通过坐标为x 时的速度为2kxk 为正常量,则此时作用于该质点上的力F = ;该质点从x = x 0 点出发到x = x 1 处所经历的时间 ∆t = ;解:t k t t k x x xx x ∆=-=-=-)(1110110107.一个力作用在质量为kg 0.1的质点上,使之沿X 轴运动;已知在此力作用下质点的运动方程为32243t t t X +-= SI;在0到4s的时间间隔内, ⑴ 力F 的冲量大小I= ;⑵ 力F 对质点所作的功A解:3dtdx v -==12s m v /674= s m v /30= 8. 一质量为m的质点在指向圆心的平方反比力F=-k / r 2 的作用下,作半径为r的圆周运动,此质点的速度v = ,若取距圆心无穷远处为势能零点,它的机械能 E = ;解:2mr ka -= ⎰⎰∞∞-=-+=+=+=rr p k r kdr r k r k Fdr mr k m E E E 22)(21229.一物体按规律x =ct 2在媒质中作直线运动,式中c 为常量,t 为时间;设媒质对物体的阻力正比于速度的平方,阻力系数为k ,则物体由x =0运动到x = L时,阻力所作的功为 ;解: 2ct x = ct dt dxv 2==kcx t kc kv f 44222===224kcLkcxdx fdx W LL-=-=-=⎰⎰10.一陨石从距地面高R h 5=R 为地球半径处由静止开始落向地面,忽略空气阻力;则陨石下落过程中,万有引力的功A = ;陨石落地的速度v = ;解: R GMmh R R GMm dr r GMm W RR 65)11(62=+-=-=⎰R GMmmv W 65212==注意:,因为万有引力不是mg ,也不是常数;大学物理练习三一.选择题 1.一力学系统由两个质点组成,它们之间只有引力作用;若两质点所受外力的矢量和为零,则此系统 A 动量、机械能以及对一轴的角动量都守恒;B 动量、机械能守恒,但角动量是否守恒不能断定;C 动量守恒,但机械能和角动量守恒与否不能断定;D 动量和角动量守恒,但机械能是否守恒不能断定;解: C 按守恒条件:∑=0iF 动量守恒,但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒;2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉;则物体 A 动能不变,动量改变;B 动量不变,动能改变;C 角动量不变,动量不变;D 角动量改变,动量改变;E 角动量不变,动能、动量都改变;解: E 因对o 点,合外力矩为0,角动量守恒3.有两个半径相同,质量相等的细圆环A 和B;A 环的质量分布均匀,B 环的质量分布不均匀;它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 A A J >B J B A J < B J C A J =B J D 不能确定A J 、B J 哪个大;解: C 细圆环的转动惯量与质量是否均匀分布无关O R⎰==220mR dmR J4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31m L 2,起初杆静止;桌面上有两个质量均为m 的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示;当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为A Lv 32. B L v 54 C L v 76 D L v 98解: C角动量守恒二.填空题1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s,t = 20s 时角速度ω=ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮所转过的角度θ= ;解:因均匀减速,可用t βωω=-0 ,20/05.0202.0s rad -=-=∴ωβ2.半径为30cm 的飞轮,从静止开始以2/s rad 的匀角加速度转动,则飞轮边缘上一点在飞轮转 2400 时的切向加速度a t = ,法向加速度a n = ;解:2/15.05.03.0s m r a t =⨯==βO v俯视图βθωr r a n 22==3.一轴承光滑的定滑轮,质量为M = kg ,半径为R = m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m = kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度0ω= rad/s ,方向垂直纸面向里.定滑轮的角加速度的大小 ,定滑轮的角速度变化到ω=0时,物体上升的高度 ;解法一:ma T mg =- βJ TR =βR a =解法二:1设在任意时刻定滑轮的角速度为ω,物体的速度大小为v,则有v=R ω.则物体与定滑轮的系统总角动量为:ωωω2mR J mvR J L +=+=根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率: dtdLM =,该系统所受的合外力矩即物体的重力矩:M=mgR 所以:22/7.81srad mR J mgR dt d =+==ωβ 2该系统只有重力矩做功物体的重力,所以机械能守恒;m h h mg J mv 220201012.62121-⨯=∆⇒∆=+ω 4.质量为m 的质点以速度v沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 ;解:mvd5.长为L 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固22/7.81srad mR J mgR =+=β定轴转动,转动惯量为31ML 2,开始时杆竖直下垂,如图所示;有一质量为m 的子弹以水平速度0v射入杆上A 点,并嵌在杆中,OA=2L /3,则子弹射入后瞬间杆的角速度ω= ;解:系统子弹+杆角动量守恒,=ω6.一长为L 、质量为m 的细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴O 轴转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O 轴转 动.系统绕O 轴的转动惯量J = ;释放后, 当杆转到水平位置时,刚体受到的合外力矩M =解:三.计算题:1.质量为m,长度为L 的匀质杆可绕通过其下端的水平光滑固定轴O 在竖直平面内转动,如图;设它从竖直位置由静止倒下,求它倾倒到与水平面成θ角时的角速度ω和角加速度β;解法一:取O 点为重力势能零点,杆在倒下过程中只有重力做功,机械能守恒,有:而 231mL J =所以 Lg )sin 1(3θω-=θωωθθωωβd d dt d d d dt d -===L g LL g L2cos 3)sin -3g(12cos 3)sin -3g(1 θθθθ=⋅-⋅-=解法二: 由刚体转动定律:βJ M = 得L g mL mgL J M 2cos 331cos 212θθβ===再由 θωωθθωωβd d dt d d d dt d -=== 得θβωωd d -=两边积分:⎰⎰-=θπωθθωω2cos 23d L g d 得 )sin 1(23212θω-=Lg则: Lg )sin 1(3θω-=3.长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置;紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m ;若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止;求:1 细杆的质量;2 细杆摆起的最大角度θ ; 解:1单摆下落过程机械能守恒:mglmv =221 gl v 2=⇒碰撞过程角动量守恒:ω231Ml mvl =碰撞过程能量守恒:ωl v =则细杆的质量:m M 3=2细杆摆动过程机械能守恒:)cos 1(21312122θω-⋅=⋅⋅l Mg Ml 即:mgl mv l Mg Ml ==-⋅=⋅⋅22221)cos 1(213121θω 则:31arccos 1cos =⇒=θθ34. 一圆盘的质量为m 2、半径为R 可绕固定的过圆心的水平轴O 转动,原来处于静止状态,现有一质量为m 1,速度为v 的子弹嵌入圆盘的边缘,如图所示;求: (1)子弹嵌入圆盘后,圆盘的角速度ω;(2)由子弹与圆盘组成的系统在此过程中的动能增量; 解:1子弹与圆盘碰撞过程角动量守恒:ω)21(21221R m R m vR m +=2大学物理练习 四一.选择题:1.下列几种说法:1 所有惯性系对物理基本规律都是等价的;2 在真空中,光的速度与光的频率、光源的运动状态无关;3 在任何惯性系中,光在真空中沿任何方向的传播速率都相同;其中那些说法是正确的: A 只有1、2是正确的.B 只有1、3是正确的.C 只有2、3是正确的.D 三种说法都是正确的.解: D2.一火箭的固定长度为L ,相对于地面作匀速直线运动,速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹;在火箭上测得子弹从射出到击中靶的时间间隔是: A21v v L + B 2v L C 12v v L - D 211)/(1c v v L -c 表示真空中光速解: B 在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度除以子弹相对于火箭的速度;3.1对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生2在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中是否同时发生关于这两个问题的正确答案是: A1同时,2不同时; B1不同时,2同时; C1同时,2同时; D 不1同时,2不同时;解: A发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是同时发生;在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中不是同时发生;4.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动;一根刚性尺静止在K '系中,与O ’x ’轴成 30°角;今在K 系中观测得该尺与Ox 轴成 45°角,则K '系相对于K 系的速度是:A 2/3cB 1/3cC 2/31/2cD 1/31/2c解: , , , y y xy tg x y tg ='=''='θθ 221c u x x -'= 22131c u tg tg x x -=='='θθ c u 32=⇒5.一宇航员要到离地球为5光年的星球去旅行;如果宇航员希望把这路程缩短 为3光年,则它所乘的火箭相对于地球的速度应是: A v = 1/2c B v = 3/5c . C v = 4/5c D v = 9/10c.解: C 原长5=∆l 光年2)(153cu -= , 25162591)(2=-=c u , 54=c u6.一宇宙飞船相对地球以c 表示真空中光速的速度飞行;一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 A 90m B 54m C 270m D 150m.解: C另解:7.设某微观粒子的总能量是它的静止能量的K 倍,则其运动速度的大小为c 表示真空中光速 A1-K c B 21K Kc -C12-K KcD)2(1++K K K c解: C8.根据相对论力学,动能为MeV 41的电子,其运动速度约等于A B C D .c 表示真空中光速, 电子的静能m 0c 2=解: C二、填空题:1.有一速度为u 的宇宙飞船沿X 轴正方向飞行,飞船头尾各有一个脉冲光源 在工作,处于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为 ;处于船头的观察者测得船尾光源发出的光脉冲的传播速度大小 ;c ; c . 光速不变原理2.一观察者测得一沿米尺长度方向匀速运动着的米尺的长度为;则此米尺以速度v = m ·s -1接近观察者;解:2315.0122=⇒-=⇒-=βββL L81060.223⨯==∴c v s m /3.静止时边长为50cm 的立方体,当它沿着与它的一个棱边平行的方向相对于地面以匀速度×108m/s 运动时,在地面上测得它的体积是 3cm ;解:3075.0m 运动方向的长度收缩4.一匀质矩形薄板,在它静止时测得其长为a ,宽为b ,质量为m 0;由此可算出其面积密度为m 0 /ab ;假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此时再测算该矩形薄板的面积密度则为 ;5.π+ 介子是不稳定的粒子,在它自己的参照系中测得平均寿命是×10-8 s,如果它相对于实验室以 c c 为真空中光速的速率运动,那么实验室坐标系中测得的 π+ 介子的寿命是____________s;解:s cv 8822103.46.0106.21/--⨯=⨯=-'=ττ 6.一宇宙飞船以c /2c 为真空中的光速的速率相对地面运动;从飞船中以相对飞船为c /2的速率向前方发射一枚火箭;假设发射火箭不影响飞船原有速率,则地面上的观察者测得火箭的速率为__________________;解:c c c cu v u v v x x x 8.025.015.05.012=++='++'= 7.1在速度v= 情况下粒子的动量等于非相对论动量的两倍; 2在速度v= 情况下粒子的动能等于它的静止能量;解:8.设电子静止质量为m e ,将一个电子从静止加速到速率为c 表示真空中光速,需作功 ;解:9.一电子以的速率运动电子静止质量为kg 311011.9-⨯,则电子的总能量是 J,电子的经典力学的动能与相对论动能之比是 ;解:大学物理练习五一、选择题1.温度、压强相同的氦气和氧气,它们分子的平均动能k ε和平均平动动能t ε有如下关系:A k ε和t ε都相等;B k ε相等,而t ε不相等;C t ε相等,而k ε不相等;D k ε和t ε都不相等;解: C 氦气i=3和氧气i=5分子的平均动能 kT sr t k 2++=ε而2.已知氢气与氧气的温度相同,请判断下列说法哪个正确(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强; (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度; (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大; (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大;解: DμRTv 32=氧分子的质量比氢分子大μ12∝vnkT P =温度相同,还要看n;RTP μρ=温度相同,还要看P ;3.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最可几速率分别为V p1和V p2,分子速率分布函数的最大值分别为fV p1和fV p2;若T 1 > T 2,则 A V p1>V p2; fV p1 >fV p2; B V p1>V p2; fV p1 <fV p2; C V p1< V p2; fV p1 >fV p2; D V p1< V p2; fV p1 <fV p2;解: B 若T 1 > T 2,则Vp1>V p2;4.在标准状态下,若氧气视为刚性双原子分子的理想气体和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: A 3 / 10 B 1 / 2C 5 / 6D 5 / 3解:C 212121==V V νν 65352325212121===ννννRT RT E E 5.一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:A Z 减小而λ不变;B Z 减小而λ增大;C Z 增大而λ减小; DZ 不变而λ增大;解:BnRTd n v d Z μππ6.12222==n d nKTd KT Pd kT 2222122πππλ===二、填空题1. 黄绿光的波长是50000A 10A =10-10m ;理想气体在标准状态下,以黄绿光的 波长为边长的立方体内有 个分子;解:理想气体在标准状况下,分子数密度为:以5000A为边长的立方体内应有分子数:637251036.3)105(1069.2⨯=⨯⨯⨯==-nV N 个.2.若某种理想气体分子的方均根速率()4502/12=vm / s,气体压强为P =7×104 Pa,则该气体的密度为 ρ =_______________;324222/04.14501073)(33m kg v P nm m kT v nkTP =⨯⨯==⇒⎪⎪⎭⎪⎪⎬⎫===ρρ3.一容器内储有某种气体,若已知气体的压强为 3×105 Pa ,温度为27℃,密度为 kg/m 3,则可确定此种气体是________气;并可求出此气体分子热运动的最概然速率为__________________m/s ;解:氢气, ρμμRT PRTM PV RT M PV ==⇒=1mol kg P RT /10210324.030031.835-⨯=⨯⨯⨯==ρμ sm PRTv P /158122===ρμ4.有一瓶质量为M 的氢气 视作刚性双原子分子的理想气体,温度为T ,则氢分子的平均平动动能为 ,氢分子的平均动能为______________,该瓶氢气的内能为____________________;解: kT 23 kT 25 MRT 31045⨯5.一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为t ε= ×10-21 J;则氧气分子的平均平动动能 ;方均根速率 ;氧气的温度 ;解: J 211021.6-⨯ = kT 23s m M RT v mol /4.483103230031.83332=⨯⨯⨯==- 6.在容积为32100.3m -⨯的容器中,贮有Kg 2100.2-⨯的气体,其压强为Pa 3107.50⨯,则该气体分子平均速率为 ;解:s m MPV M RTRT M MPV molmol /8.275100.2100.3107.50 223=⨯⨯⨯⨯==⇒=-- s m M RT v mol /2.4408.27588=⨯==ππ7.已知f v 为麦克斯韦速率分布函数,N 为总分子数,则1速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为 ;2速率v > 100 m ·s -1的分子数的表达式为 ;速率v > 100 m ·s -1的哪些分子的平均速率表达式为 ;解: 1⎰∞100)(dv v f ; 2⎰∞100)(dv v f N8.现有两条气体分子速率分布曲线1和2,如图所示;若两条曲线分别表示同一种气体处于不同的温度下的速率 分布,则曲线 表示的温度较高;若两条曲线分别表示同一温度下的氢气和氧气的速率分布,则曲线 表示的是氧气的速率分布;解: 实线的p v 比虚线的p v 小,因同气体μ质量相同,p v 与T 成正比;虚线的温度高,填2;后面的填19.今测得温度为t 1=150C,压强为p 1=汞柱高时,氩分子和氖分子的平均自由程分别为:m Ar 8107.6-⨯=λ和m Ne 8102.13-⨯=λ,求:1 氖分子和氩分子有效直径之比=Ar Ne d d / ; 2 温度为t 2=200C,压强为p 2=汞柱高时,氩分子的平均自由程='Ar λ ;解: ⇒=P d kT 22πλ71.0102.13107.688=⨯⨯==--Ne Ar Ar Ne d d λλ m P T P T Ar Ar 782112105.315.028876.0293107.6--⨯=⨯⨯⨯⨯=='λλ⎰⎰⎰⎰⎰⎰∞∞∞∞∞∞===1001001001001001002)()()()( dv v f dvv vf dv v Nf dv v vNf dN vdNv大学物理练习 六一、选择题:1.理想气体经历如图所示的a b c 平衡过程,则系统对外做功A,从外界吸收的热量Q 和内能的增量E ∆的正负情况如下: (A) 0>∆E ,.0,0<>A Q (B) .0,0,0>>>∆A Q E (C) .0,0,0><>∆A Q E (D) .0,0,0><<∆A Q E解: c b a →→,则A >0,另外c T >a T ,故温度升高内能增加;据热一律E A Q ∆+=,Q >0;选 B2.一定量理想气体经历的循环过程用V -T 曲线表示如图.在此循环过程中,气体从外界吸热的过程是A A →B B B →C C C →AD A →B 和B →C解: A B →C 等容降温过程放热C →A 等温压缩过程放热A →B 等压膨胀过程吸热3.有人设计了一台卡诺热机可逆的.每循环一次可从 400 K 的高温热源吸热1800 J,向 300 K 的低温热源放热 800 J .同时对外做功1000 J,这样的设计是 A 可以的,符合热力学第一定律. B 可以的,符合热力学第二定律. C 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.pO Vab cD 不行的,这个热机的效率超过理论值.解: D 00136.5518001000180080011==-=-=QQη 00.254140030011==-=-=g d T T 卡η4.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功;”对此说法,有如下几种评论,哪种是正确的 (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 不违反热力学第二定律,但违反热力学第一定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律;解:选 C 等温膨胀只是一个过程,不是一个循环;5.理想气体绝热地向真空自由膨胀,体积增大为原来的两倍,则始、末两态的温度T 1与T 2和始、末两态气体分子的平均自由程1λ与2λ的关系为 (A) T 1=T 2 ,1λ=2λ B T 1=T 2 ,1λ=212λ C T 1=2T 2 ,1λ=2λ D T 1=2T 2 ,1λ=212λ解:E A Q∆+=因绝热则0=Q,向真空自由膨胀不作功,0=A ;所以0=∆E ,选 B二、填空题:1.在p--V 图上1系统的某一平衡态用 来表示; 2系统的某一平衡过程用 来表示;3系统的某一平衡循环过程用 来表示;解:1系统的某一平衡态用一个点来表示;2系统的某一平衡过程用一条曲线来表示;3系统的某一平衡循环过程用封闭曲线来表示;2.如图所示,已知图中画不同斜线的两部分的面积分别为S 1和S 2,那么:1如果气体的膨胀过程为a-1-b ,则气体对外作功A= ;2如果气体进行a -2-b -1-a 的循环过程,则它对外做功A= ;解:1S 1 +S 2 2- S 13.2mol 单原子分子理想气体,经过一等容过程后,温度从200K 上升到500K,若该过程为准静态过程,气体吸收的热量为 ;若为不平衡过程,气体吸收的热量为 ;解:等容过程则=A ,j T R iM E Q 74792=∆=∆=μ若为不平衡过程,过程曲线有间断点无法求功;此题正好功为零,j T R iM E Q 74792=∆=∆=μ;4.将1 mol 理想气体等压加热,使其温度升高72 K,传给它的热量等于×103 J,求:1 气体所作的功A= ;2 气体内能的增量E ∆= ; 3 比热容比γ = ;解⇒⎪⎭⎪⎬⎫∆=∆∆=+∆=T C E T C Q W E Q V P P ⎪⎪⎪⎩⎪⎪⎪⎨⎧==∆===-=∆=∆=∆-=6.110001600)3(1000)2(600)()1(E Q C C JW Q E JT R T C C W P V P V P γ5.3 mol 的理想气体开始时处在压强p 1 =6 atm 、温度T 1 =500 K 的平衡态.经过一个等温过程,压强变为p 2 =3 atm .该气体在此等温过程中吸收的热量为 Q =____________________J; 普适气体常量11K m ol J 31.8--⋅⋅=R解31064.8⨯ 21ln PP RT A Q ν==6.一定量理想气体,从同一状态开始把其体积由0V 压缩到021V ,分别经历以下三种过程:1 等压过程;2 等温过程;3 绝热过程.其中:__________过程外界对气体做功最多;__________过程气体内能减少最多;__________过 程气体放热最多;解绝热;等压;等压气体放热2ln 2ln 000V p RT MQ T==μ000422221V p i RT i M T C MQ P P +=+=∆=μμ三、计算题:1.1mol 双原子分子理想气体从状态Ap 1,V 1沿p —V 图所示直线变化到状态Bp 2,V 2,试求:1气体的内能增量;2气体对外界所作的功;3气体吸收的热量;4此过程的摩尔热容;摩尔热容T Q C ∆∆=/,其中Q ∆表示1mol 物质在过程中升高温度T ∆时所吸收的热量;解:1)(25)(25112212V P V P T T R E -=-=∆2)(21))((2111221221V P V P V V P P A -=-+= 3)(3)(2611221122V P V P V P V P E A Q -=-=∆+=4T R V P V P T C T C MQ ∆=-=∆=∆=3)(31122μ所以RC 3=3. 一定量的刚性双原子分子理想气体,开始时处于压强为 p 0 = ×105 Pa,体积为V 0 =4×10-3 m 3,温度为T 0 = 300 K 的初态,后经等压膨胀过程温度上升到T 1 = 450 K,再经绝热过程温度降回到T 2 = 300 K,求气体在整个过程中对外作的功.解:等压过程末态的体积 1001T T VV =等压过程气体对外作功p 1p p 12)1()(01000101-=-=T T V p V V p W =200 J 根据热力学第一定律,绝热过程气体对外作的功为 W 2 =-△E =-νC V T 2-T 1 这里 000RT V p =ν,R C V 25=,则 500)(2512002==--=T T T V p W J 气体在整个过程中对外作的功为 W = W 1+W 2 =700 J4.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . 1 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E ∆ 以及所吸收的热量Q .2 整个循环过程中系统对外所作的总功以及从外界吸收的总热量过程吸热的代数和.解:1 A →B :))((211A B A B V V p p A -+==200 J .ΔE 1=ν C V T B -T A =3p B V B -p A V A /2=750 JQ 1=A 1+ΔE 1=950 J .B →C : A 2 =0 ΔE 2 =ν C V T C -T B =3 p C V C -p B V B /2 =-600 J . Q 2 =A 2+ΔE 2=-600 J . C →A : A 3 = p A V A -V C =-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J . Q 3 =A 3+ΔE 3=-250 J2 A = A 1 +A 2 +A 3=100 J . Q = Q 1 +Q 2 +Q3 =100 J12 312O V (10-3 m 3) 5A BC大学物理练习 七一、选择题:1.关于电场强度定义式0/q F E=,下列说法中哪个是正确的A 场强E的大小与试探电荷q 0的大小成反比.B 对场中某点,试探电荷受力F与q 0的比值不因q 0而变.C 试探电荷受力F 的方向就是场强E的方向.D 若场中某点不放试探电荷q 0,则F =0,从而E=0. B2.四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I;这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a的正方形的四个角顶;每条导线中的电流流向亦如图所示,则在图中正方形中心O 点的磁感应强度的大小为A .20I aB πμ=B .220I a B πμ=C B=0.D B=.0I aπμ C 3. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁 感强度为A RI π40μ. B RIπ20μ. C 0. D RI40μ . DIa二、填空题:1. 有一个球形的橡皮膜气球,电荷q 均匀地分布在表面上,在此气球被吹大的过程中,被气球表面掠过的点该点与球中心距离为 r,其电场强度的大小将由 变为 ;解:变为 0 ;2.如图所示,一长为10 cm 的均匀带正电细杆,其电荷为×108 C,试求在杆的延长线上距杆的端点5 cm 处的P 点的电 场强度 ; 解: 设P 点在杆的右边,选取杆的左端为坐标原点O ,x 轴沿杆的方向,如图,并设杆的长度为L .P 点离杆的端点距离为d .在x 处取一电荷元d q =q /L d x ,它在P 点产生场强()()20204d 4d d x d L L xq x d L q E -+π=-+π=εε P 点处的总场强为()()d L d qx d L x L q E L +π=-+π=⎰00204d 4εε代入题目所给数据,得E =×104 N/CE 的方向沿x 轴正向.3.一长直螺线管是由直径d=的漆包线密绕而成;当它通以I=的电忽略绝缘层厚度三、计算题:1.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电量+Q,沿其下半部分均匀分布有电量-Q,如图所示;试求圆心O 处的电场强度;解:先看上半部分+Q,θλλRd dl dq==θsin dE dE x = ,θcos dE dE y=xO。
武大电动力学课件13介质Maxwell方程

电磁兼容:Maxwell方程是电磁兼容理论的基础,广泛应用于电磁兼容设计、电磁兼容测试等领域。
电磁场理论:Maxwell方程是电磁场理论的核心,广泛应用于电磁场计算、电磁场仿真等领域。
Part Five
Maxwell方程的拓展
电磁场与物质相互作用:Maxwell方程描述了电磁场与物质相互作用的规律,为电磁场在材料科学、生物医学等领域的应用提供了理论支持。
电磁场与能量转换:Maxwell方程描述了电磁场与能量转换的规律,为电磁场在能源、环境等领域的应用提供了理论支持。
添加标题
应用前景
电磁波理论:Maxwell方程是电磁波理论的基础,广泛应用于无线通信、雷达、微波等领域。
创新意义:Maxwell方程为电磁学的发展提供了新的思路和方法,推动了电磁学的创新和发展
教育意义:Maxwell方程是物理教育的重要内容,有助于培养学生的科学素养和创新能力
展望价值
理论价值:Maxwell方程是电磁学的基础,对电磁现象的解释和预测具有重要意义
应用价值:Maxwell方程在电磁波、电磁场、电磁感应等领域有广泛应用,对科技发展具有推动作用
推导出Maxwell方程,为后续电磁场理论研究奠定基础
理解Maxwell方程在电磁场理论中的重要性和地位
掌握电磁场与物质相互作用的基本方程
Part Three
Maxwell方程的表述
表述形式
微分形式:描述电磁场与电荷、电流的关系
微分积分形式:描述电磁场与电荷、电流的关系
积分形式:描述电磁场与电荷、电流的关系
非线性介质:在非线性介质中,Maxwell方程需要考虑介质的电导率和磁导率的非线性关系。
大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
物理书籍整理

科普:《定性与半定量物理学》赵凯华《边缘奇迹:相变和临界现象》于渌《QED: A Strange Theory about Light and Matter》Feynman《大宇之形》丘成桐《Gauge Fields, Knots and Gravity》Baez《趣味力学》别莱利曼《趣味刚体力学》刘延柱(小书,挺有意思)考研习题集用超星图书里的那本清华大学编写的普通物理学考研辅导教材(大约这个名字)数学分析:书目:《数学分析教程》常庚哲《数学分析新讲》张筑生《数学分析》卓里奇《数学分析八讲》辛钦《数学分析讲义》陈天权《数学分析习题课讲义》谢惠民等《数学分析习题集》北大版《特殊函数概论》王竹溪线性代数Linear Algebra内容:行列式、矩阵代数、线性方程组、线性空间、线性变换、欧几里得空间、n元实二次型等。
书目:《高等代数简明教程》蓝以中《Linear Algebra and Its Applications》Gilbert Strang《Linear Algebra and Its Applications》Peter D. Lax《Linear Algebra and Its Applications》David C. Lay力学Mechanics先修课程:高等数学内容:质点运动学、质点动力学、动量定理和动量守恒定律、功和能及碰撞问题、角动量、刚体力学、固体的弹性、振动、波动和声、流体力学、相对论简介。
书目:《力学》赵凯华《力学》舒幼生《经典力学》朗道《An Introduction To Mechanics》Daniel Kleppner、Robert Kolenkow狭义相对论:《狭义相对论》刘辽《The Principle of Relativity》Einstein广义相对论:《Einstein Gravity in a Nutshell》Zee《Spacetime and Geometry》Carroll热学Thermology先修课程:力学、高等数学内容:主要包括三部分,以实验为依据、以热力学第零定律、热力学第一定律、热力学第二定律为基本理论的宏观的热力学理论,研究物质宏观热现象和宏观状态变化规律;以气体分子统计物理学,研究大量分子热运动统计规律和热现象的微观实质;以Van der Waals方程和Clapeyron方程,研究气体状态变化及相变规律;以非平衡态理论的分子动理论,研究输运现象的宏观规律。
物理类学科简介

一、理论物理理论物理(Theoretical Physics)是从理论上探索自然界未知的物质结构、相互作用和物质运动的基本规律的学科。
理论物理的研究领域涉及粒子物理与原子核物理、统计物理、凝聚态物理、宇宙学等,几乎包括物理学所有分支的基本理论问题。
无论如何,理论物理依然是一个未完成的体系,它生机勃勃而又充满了挑战。
理论物理一方面探索基本粒子的运动规律,同时也探索各种复杂条件下物理规律的表现形式。
随着技术的高度发展,理论物理的研究在越来越多的领域继续发挥着致关重要的作用:量子信息理论加深了我们对量子力学基础的理解,同时又在不断挑战量子理论的解释极限;介观物理、纳米技术揭示着宏观和微观过渡区域丰富的物理规律;超低温、强激光等极端环境显示出独特的物理性质;强关联多电子体系则对解析和数值研究都提出了挑战;复杂物理系统、非线性物理系统不断涌现新的问题。
在新的世纪,作为宇宙学的重大发现,我们的宇宙处于加速膨胀的状态,暗物质和暗能量分别构成了宇宙组分的23%和73%,我们熟悉的重子物质不过占区区4%而已!理论和实验的冲突如此尖锐,而理论本身也面临着自洽的逻辑问题,新物理已经不可避免,理论物理再次面临着重大突破的时机。
随着大型强子对撞机LHC的完成,新一代天文探测器的升空,引力波探测实验的推进,以及数个未来的大型实验计划的实施,我们有机会探测到超出标准模型的新粒子,精确测量宇宙极早期大爆炸的余辉,研究遥远宇宙空间的黑洞和其它奇异天体。
当我们拥有越来越多的实验结果时理论物理学家将得到更多的启示,某种新物理将水到渠成地出现并正确地解释上述谜团,我们对自然规律的认识将迈入新的层次。
研究范围理论物理是在实验现象的基础上,以理论的方法和模型研究基本粒子、原子核、原子、分子、等离子体和凝聚态物质运动的基本规律,解决学科本身和高科技探索中提出的基本理论问题。
研究范围包括粒子物理理论、原子核理论、凝聚态理论、统计物理、光子学理论、原子分子理论、等离子体理论、量子场论与量子力学、引力理论、数学物理、理论生物物理、非线性物理、计算物理等。
武汉大学量子力学精品课程

( P, t )d P C ( P, t ) d 3 P
3
2
动量平均值
利用坐标为变量的波函数 (r , t ) 计算动量平均值
ˆ (r , t )d 3 r * P (r , t )P
2 3 3 * P P C ( P, t ) d P C ( P, t ) PC ( P, t )d P
i P r
d r][ (i (r , t ))e
3
i P r
3 d r ]d P
3
11
3.1 表示力学量的算符(续6)
Chapt.3 The Dynamical variable in Quantum Mechanism
i 1 3 P ( r r ) * 3 (r , t ) i (r , t ) e d P d r dr 3 2
Chapt.3 The Dynamical variable in Quantum Mechanism
第 三 章 量子力学中的力学量
The Dynamical variable in Quantum Mechanism
1
引 言
Chapt.3 The Dynamical variable in Quantum Mechanism
3 3 (r , t ) i (r , t ) (r r )d rd r
* r r 3 (r , t ) i (r , t ) d r
*
ˆ (r , t ) P (r , t )dxdydz
用类比法推导爱因斯坦速度叠加公式

可
将
式
(7
( , , , x′ y′ z′ ict )改写成
)′ ≡
(x
′1
,x′2
,x′3
,x′4
)
[ ] x′1 = γv x1 +iβv x4
x
′2
=
x
2
x
′3
=
x
3
(8)
再
将
式
(8
)改
写
成矩阵形[式:
x
′4
=
γ
v
-iβ v x
1
+
x
4
]
x′1 γv
0 0 iγvβv x1
x
′2
x
′3
x′4
=
0
0
-
i
γ
v
β
v
1 0 0
0 1 0
0
x
2
0 γv
x x
3 4
(9)
这个变换能 保 持 两 个 世 界 点 (x1 ,x2 ,x3 ,x4 )、(0,0,
,)之间的间隔平方保持不变,即 0 0
x
2 1
+
x
2 2
+
x
2 3
+
x
2 4
=
;其中式()右侧的变换矩阵: x
′21
+
x
′22
+
x
′23
+
x
′
2 4
9Leabharlann γv0 0 iγvβv
()
非惯性系中动力学问题的讨论讲解

包头师范学院本科毕业论文论文题目:非惯性系中动力学问题的讨论院系:物理科学与技术学院专业:物理学姓名:王文隆学号: 0809320007指导教师:鲁毅二〇一二年三月摘要综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。
介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。
最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。
关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律AbstractAnd under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department.Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply目录引言 (5)1非惯性系概述 (6)1.1非惯性系 (6)1.2 惯性力 (6)2 动力学方程 (7)2.1 质点动力学方程 (7)2.2 拉格朗日方程 (8)3 能量问题 (9)4 应用研究举例 (9)5 研究展望 (10)参考文献 (11)致谢 (12)非惯性系中动力学问题的讨论引言实际工程中有许多系统处于非惯性系内工作 ,如航空航天、天文和外星空探索等领域的许多转子系统。
《经典力学》札记

《经典力学》札记本文写作,有点模仿梅凤翔老先生的《分析力学及理论力学札记》的味道。
他的文章在一些刊物上发表,我不这么做。
这些短小的讨论,又类似周国平的著作。
他的散文有个特点,即都是一些短小的类似格言一样的刊物。
我写这些片段式讨论和总结,尽量做到言之有物。
我希望这些可以作为经典力学教材的补充和总结。
我的主要参考教材是Landau的《力学》和Arnold的《经典力学的数学方法》。
札记指的是读书时摘记的要点和心得,故取名札记,是很合适的。
01经典力学的重要性经典力学是理论力学或者理论物理的第一门课,学好经典力学是学好物理的关键。
理论力学的思想——最小作用量原理等,会用在后续几乎所有的物理课程中。
这门课有一条非常清晰的主线,即这个原理,理清这根脉络,是学好理论力学的根本。
如果学好了,这门课的所有内容可以写在半页纸上。
但是这门课学起来会非常困难,有几个原因:第一,大二学生刚学完微积分和微分方程,但不熟练;第二,大量的近似,让人眼花缭乱;第三,大量的抽象的公式推导,很多公式的物理意义也难以理解(或缺乏明确的图像)。
那么,如何才能学好呢?两个建议。
第一,多证明一些基本的结论,多推导;第二,多用Mathematica 的 NDSolve 和 Plot 等(也可以用其它软件)做数值模拟,碰到不懂的,就先模拟画图看看。
这样可以对这些问题积累第一手的感觉,对提高自己的理解力和直觉能力有很大帮助。
物理图像很重要。
在物理中,每个公式应该都有明确的物理意义和图像。
在讲课的时候,我会尽量注意这些细节。
学生们在学习的时候也要做到这一点。
第一个作业题是数值模拟双摆 (double pendulum) 的运动过程。
学生需要用Mathematica 求解其运动方程,并观察简谐振动和混沌过程。
这个摆是最简单的混沌摆。
在WSU物理系门口,就有这样的一个混沌摆,我以前每次进楼,都会摇一下它并观察其复杂的运动过程。
积累一些生活经验对于理解物理的运动会非常有帮助。
武汉大学近十年量子力学部分考研真题的分类解析

武汉大学近十年量子力学部分考研真题的分类解析摘要:量子力学是大学物理学本科学生的必修课,同时它也是国内许多知名高校的物理学研究生入学考试的必考科目。
本文将武汉大学2002年—2011年的非相对论量子力学考研真题分八大类解析,给出了标准解法。
并在此基础上提炼出解题模型,提高了运用量子力学的理论解决问题的能力。
关键词:量子力学;考研真题;模型目录前言: (1)1 真题的分类解析 (1)1.1 一维散射问题 (1)1.1.1 阶梯势垒的散射 (1)1.1.2 δ势的散射 (3)1.2一维束缚定态问题 (3)1.2.1无限深势阱求解 (4)1.2.2 δ势求解 (4)1.2.3 初值问题求解 (5)1.2.4 傅立叶变换的应用 (7)1.3 三维束缚态问题 (8)1.3.1 无限深球方势阱基态求法 (8)1.3.2 盒子势求解 (9)1.4 两个角动量算符有关题目求解 (10)1.4.1 轨道角动量算符 (10)1.4.2 自旋角动量算符 (12)1.5 不确定关系的应用 (13)1.6 表象理论相关习题求解 (15)1.7 近似理论的应用 (16)1.7.1 非简并定态微扰 (17)1.7.2 简并定态微扰 (18)1.7.3 变分法 (19)1.8 多体问题——全同性原理的应用 (20)2 重要解题模型 (21)2.1 一维无限深势模型 (21)δ势模型 (21)2.2 ()x2.3 盒子势模型 (21)2.4 中心力场模型 (22)2.5 平面转子模型 (22)2.6 空间转子模型 (22)3 总结 (22)致谢: (22)参考文献: (23)前言:量子力学自诞生以来便显示出强大的生命力,它是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础。
基于这点,国内各大高校的研究生入学考试都将其设为必考科目。
武汉大学物理学专业培养方案

物理科学与技术学院物理学专业(物理、应用物理)本科人才培养方案一、专业代码、专业名称专业代码:070201专业名称:物理学 Physics二、专业培养目标坚持正确的人才培养方向,培养学生有为国家富强、民族昌盛而奋斗的志向和责任感,有良好的思想品德、社会公德和职业道德,有健全的心理和健康的体魄。
培养掌握物理学的基本理论与方法,具有较高的理论水平、理论基础、理论知识和实验技能,获得基础研究或应用研究的初步训练,能运用物理知识和方法进行科学研究和技术开发,具有良好的科学素养,具有创新精神,适应高新技术发展的需要,具有较强的知识更新能力和较广泛的科学适应能力,能在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作的高级专门人才。
三、专业特色和培养要求本专业除要求学生具有扎实、宽厚的物理学、数学基础理论知识和必需的化学基础理论知识外,还要求对物理学的新发展、近代物理学在高新技术和生产中的应用,以及与物理学密切相关的交叉学科和新技术的发展有所了解。
本专业对基地班采取滚动式管理、实行导师全程指导制,理论物理课程实行双语或讨论式教学。
毕业生应获得以下几方面的知识和能力:(1)系统地掌握物理学的基本理论、基本知识、基本实验方法和技能,具有基础扎实、适应性强的特点和自学新知识、新技术的能力;具有运用物理学的理论和方法进行科学研究、应用研究、教学和相应管理工作的能力。
(2)掌握系统的数学、计算机等方面的基本原理、基本知识。
(3)较熟练地掌握一门外国语,能够阅读本专业的外文书刊。
(4)了解相近专业以及应用领域的一般原理和知识。
(5)了解物理学的理论前沿、应用前景和最新发展动态以及相关高新技术的发展状况。
(6)掌握资料查询、文献检索及运用现代信息技术获得最新参考文献的基本方法;具有一定的实验设计、归纳、整理分析实验结果、撰写论文、参与学术交流的能力。
(7)了解我国科学技术、知识产权等方面的方针、政策和法规。
大学物理(力学、电磁学)_中国地质大学(武汉)中国大学mooc课后章节答案期末考试题库2023年

大学物理(力学、电磁学)_中国地质大学(武汉)中国大学mooc课后章节答案期末考试题库2023年1.对于抗磁质和顺磁质,以下说法正确的是参考答案:顺磁质的磁化是因为分子的固有磁矩,抗磁质的磁化则是因为分子的感生磁矩2.分子固有磁矩的主要来源有哪些?下面说法错误的是:参考答案:以上都不对3.电容器的电容大小与下列哪些因素无关?参考答案:电容器极板上的带电量4.(题目中各物理量单位均为国际单位)一滑轮的转动惯量为【图片】,滑轮以角速度【图片】绕中心轴转动,若滑轮受阻力矩作用,经过一段时间,滑轮角速度减少为初始角速度的一半,在此过程中,阻力矩做功大小为【图片】。
(保留小数点后1位有效数字)参考答案:7.55.(题目中各物理量单位均为国际单位)t=0时刻半径为1m的圆盘从静止开始以绕中心轴做角加速度大小为【图片】的定轴匀加速转动,则2秒末圆盘边缘上一点的加速度大小为【图片】(保留小数点后1位有效数字)。
参考答案:4.16.有两个大小不相同的金属球,大球直径是小球的2倍,大球带电,小球不带电,两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,大球与小球的带电之比为:参考答案:27.当重物加速下降时,合外力对它做的功为正值。
这种说法参考答案:正确8.分子的正负电荷中心重合的电介质叫做无极分子电介质,这类分子发生的是取向极化。
参考答案:错误9.对于一个物体系来说,外力和非保守内力都不作功时,系统的机械能守恒。
这种说法参考答案:正确10.感应电动势的大小与【图片】的大小、【图片】的大小、二者夹角θ的大小以及它们对时间的变化率有关。
参考答案:正确11.经典电磁理论认为原子中的电子做轨道运动,设轨道运动半径为r,运动速度为v,对应等效圆电流大小为ev/2πr,则电子轨道磁矩ml与电子轨道运动的角动量L的关系。
(电子质量m,电量e)参考答案:,磁矩方向与角动量的方向相反12.一平行板电容器,两板相距d,对它充电后断开,然后用绝缘手柄把两板间距增大到2d,如果电容器内电场边缘效应忽略不计,则电容器两极间的电场强度增大。
武汉大学大三下教材汇总表

978-7-04-0249293
2012
材料
材料结构分析1
理论 必修 2
何治柯
分析化学(下册)第五版
武汉大学主编
高教
2012 2012
材料 材料
材料结构分析实验 理论物理1
实验 必修 2
赵发琼
理论 必修
4
王波/杨柏 峰
仪器分析实验 经典力学(下册)
化学实验中心 许定安、丁棣华、王波
Michael E. Peskin and Daniel V. 世界图书出版公司 参考(不用买) Schroeder,
理论 专选 3 贾俊基
General Relativity
Robert M. Wald
Univture Notes on Generel Relativity
2013—2013(2)教材
年级
专业
2013
弘毅班
2013
弘毅班
课程名称 经典力学I
电磁学
性质 类别 学分 主讲教师
教材
主编
理论 必修 3
石兢
1) University Physics with modern Hugh D.Young,Roger
physics (12 Edition) (上,下册)
清华
7-302-09952-9
清华大学出版社 7302040850
国防工业
978-7-118-046073
2011 2011
电科 电科
2011 2011 2011 2011
电科 电科 电科 电科
数据结构 电子设计自动化
理论 专选 3 理论 专选 2
EDA技术实验
纳米材料简介及纳米材料的测试与表征

纳米材料成份分析种类
光谱分析
主要包括火焰和电热原子吸收光谱AAS, 电感 耦合等离子体原子发射光谱ICP-OES, X-射线 荧光光谱XFS 和X-射线衍射光谱分析法XRD;
质谱分析
主要包括电感耦合等离子体质谱ICP-MS 和飞 行时间二次离子质谱法TOF-SIMS
能谱分析
主要包括X 射线光电子பைடு நூலகம்谱XPS 和俄歇电子能 谱法AES
例:金属纳米粒子暴露在空气中会自燃,无机纳米粒子暴 露在空气中会吸附气体,并与气体进行反应。 通过下图说明纳米粒子表面活性高的原因:
单一立方晶格结构的原子尽可能接近 圆(或球)形进行配置的超微粒模式图
宏观量子隧道效应
微观粒子具有贯穿势垒的能力称为隧道效应。 宏观物理量在量子相干器件中的隧道效应称为宏观量 子隧道效应。 例如微颗粒的磁化强度,具有铁磁性的磁铁,其粒 子尺寸小到一定时,一般是纳米级,会出现由铁磁 性变为顺磁性或软磁性。
一般固体材料颗粒大小可以用颗粒粒度概念来描述。但由 于颗粒形状的复杂性,一般很难直接用一个尺度来描述一 个颗粒大小,因此,在粒度大小的描述过程中广泛采用等 效粒度的概念。
对于不同原理的粒度分析仪器,所依据的测量原理不同, 其颗粒特性也不相同,只能进行等效对比,不能进行横向 直接对比。
体相成分分析方法
• 纳米材料的体相元素组成及其杂质成分的分析方 法包括原子吸收原子发射ICP, 质谱以及X 射线 荧光与衍射分析方法;
• 其中前三种分析方法需要对样品进行溶解后再进 行测定,因此属于破坏性样品分析方法。
• 而X 射线荧光与衍射分析方法可以直接对固体样 品进行测定因此又称为非破坏性元素分析方法。
注:上述四种量子点的平均直径为5.9nm 组成为CdSe0.6Te0.4
武汉大学物理系

一、学院简介武汉大学物理科学与技术学院是在1928年成立的原武汉大学物理系的基础上逐渐发展、演变而来。
其历史可追溯到1893年自强学堂的格致门。
我国老一辈著名物理学家查谦、潘祖武、汪仁寿、桂质廷、吴南熏、马师亮、李国鼎、周如松等先后在这里研究执教多年。
经过近八十年、几代人的努力,现已发展成为涵盖物理学、材料科学与工程、电子科学与技术、生物医学技术四个学科门类,多个有突出特色的学科研究方向,在国际国内有一定影响,我国最有名望的物理院系之一。
物理科学与技术学院现有物理学基地班(基础科学人才培养基地),物理学类(含物理学、应用物理学专业)、材料物理(材料科学与技术试验班)和电子科学与技术(微电子学方向、电路与系统方向、物理电子学方向)四个本科生专业及中法理学、工学本硕连读试验班,共涉及到理论物理学、计算物理学、凝聚态物理学、光学、声学、生物医学物理、材料物理、微电子学、光纤及传感物理学等十个专业方向;有物理学一级学科博士点及理论物理、计算物理、凝聚态物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、无线电物理、光学、声学、微电子与固体电子学、材料物理与化学等十一个二级学科博士点与硕士点。
学院现有物理系、电子科学与技术系、材料科学系、基础物理实验中心、大学物理教学中心、声光材料与器件实验室(教育部重点实验室),核固体物理实验室(湖北省重点实验室)、武汉大学纳米科学与工程研究中心、武汉大学电子显微镜中心挂靠在本院。
其中无线电物理是国家重点学科,凝聚态物理、粒子物理与原子核物理是湖北省重点学科,基础物理实验中心是教育部与世界银行投资的重点示范实验室,“低维功能材料和亚微结构表征”是国家“211”重点学科建设项目。
电子科学与技术系是国家工科基础课程电工电子教学基地。
二、学院师资学院有一支以中青年骨干教师为主体,人员年龄、职称和知识结构合理的师资队伍。
现有教职工144人中专职教师94人,其中教授39人,副教授34人,博士生导师39人,他们中绝大多数都具有博士学位和在国外与境外学习、工作的经历,更是有一批在国内学术界享有较高声誉、在国际上有一定影响力的知名专家,包括国家教学名师1人、长江学者特聘教授2人、国家杰出青年基金获得者3人、新世纪百千万人才2人、教育部跨/新世纪人才12人、享受国务院政府特殊津贴7人、珞珈学者特聘教授6人、珞珈学者讲座教授1人,同时,还拥有“低维功能材料与智能器件” 教育部优秀创新团队。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0700254
2、课程名称
经典力学(上)
Mechanics
3、授课对象
物理学基地班、物理学类
4、学分
3
5、修读期
第二学期
6、课程组负责人
主讲教师:易凡、副教授、硕士
7、课程简介
《力学》是物理学基础课程之一,也是进入物理学科其它学科学习的先导课程。
本课程内容包括、运动学、动力学、振动与波动和相对论简介几个部分。
运动学包括:质点运动学、刚体运动学和相对运动。
动力学内容包括:牛顿运动定律及应用、运动定理及导恒律、质点系的运动定理、刚体动力学。
振动与波动包括、简谐振动、阻尼与受迫振动、简谐波、波的传播、多普勒效应。
相对论简介内容包括:狭义相对论的基本假设、洛仑兹变换、狭义相对论的动力学。
通过对本课程的学习,使学生不仅掌握力学的概念和运动定理,还对运用高等数学的手段来解决物理学中具体问题的方法有所了解,为学习物理学其它课程打下基础。
8、实践环节学时与内容或辅助学习活动
习题课18学时
9、课程考核
平时作业、期中测验、期末考试三者结合综合评定
10、指定教材
《经典力学》(上册)许定安等人编,武汉大学出版社出版
11、参考书目
《力学》赵凯华编著,高等教育出版社出版
力学——《伯克利物理学教程》第一卷,[美] C. 基特尔等编
12、网上资源
0700254
2. 课程名称(中
经典力学(下)
Classical Mechanics
3.课对象
物理学基地班、物理学类
4.学分
3
5.修读期
第三学期
6.课程组负责人
主讲教师:王波教授
7.课程简介
经典力学(下)主要讲授理论力学部分,它是物理学院本科生必修的四大基础理论课程(四大力学)之一。
主要内容包括:刚体定点转动、分析力学、有心力场、经典散射、微振动、变换理论及哈密顿雅可比方程等。
本课程的特色是注重与现代物理的联系及物理概念的升华,融入了时空对称性、守恒定律及不可观测量,不变性原理等内容。
将基本内容讲授与前沿介绍相结合,不但开阔学生视野。
本课程的主要目标是培养学生建立物理模型的能力、提高抽象物理的思维能力、及应用数学分析和处理实际问题的能力。
通过学习此课程,掌握理论物理的学习方法及分析问题的思路,为后继理论物理课程的学习打下坚实基础,并能应用所学知识去分析、解决相关力学问题及物理问题。
要学好经典力学(下),要求学生有好的数学基础(包括高等数学、线性代数、数理方法、矢量运算及分析等),熟练掌握经典力学(上)的内容及普通物理知识。
实践环节学时与内容或辅助学时
CAI(三维动画)演示3学时
8.成级考评
课堂独立练习、平时成绩与期中考试和期末考试相结合
9.指定教材
«经典力学» (下) 武汉大学出版社出版
10.参考书目
Goldstein: «Classical Mechanics»; Deslogue: «Classical Mechanics»;
朗道: «力学»
11.网上资源。