平抛运动规律的综合应用含详解答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动规律的综合应用
时间:45分钟满分:100分
一、选择题(共5小题,每小题6分,共30分,每小题给出的四个选项中只有一项符合题意)
1.(2016·江西模拟)在全国田径锦标赛上高兴龙获得男子跳远冠军,在一次试跳中,他(可看做质点)水平距离达8 m,高达1 m.设他离开地面时的速度方向与水平面的夹角为α,若不计空气阻力,则tanα等于( )
D.1
、B两质点以相同的水平速度v0抛出,A在竖直平面内运动,落地点为P1,B沿光滑斜面运动,落地点为P2,不计阻力,如图所示,比较P1、P2在x轴上远近关系是( )
A.P1较远B.P2较远
C.P1、P2等远D.A、B两项都有可能
3.物体以一定的初速度水平抛出,不计空气阻力.经过t1时间,其速度方向与水平方向夹角为37°,再经过t2时间,其速度方向与水平方向夹角为53°,则t1∶ t2为( ) A.9 ∶ 7 B.7 ∶ 9
C.16 ∶ 9 D.9 ∶ 16
4.如图所示,在同一平台上的O点水平抛出的三个物体,分别落到a、b、c三点,则三个物体运动的初速度v a、v b、v c的关系和运动的时间t a,t b,t c的关系分别是( )
A.v a>v b>v c t a>t b>t c
B.v a<v b<v c t a=t b=t c
C.v a<v b<v c t a>t b>t c
D.v a>v b>v c t a<t b<t c
5.(2016·南京模拟)如图所示,小球以大小不同的初速度水平向右,先后从P点抛出,两次都碰撞到竖直墙壁.下列说法中正确的是( )
A.小球两次碰到墙壁前的瞬时速度相同
B.小球两次碰撞墙壁的点为同一位置
C.小球初速度大时,在空中运行的时间较长
D.小球初速度大时,碰撞墙壁的点在上方
二、多选题(共3小题,每小题6分,共18分,每小题给出的四个选项中有多个选项符合题目要求,全部选对的得6分,有漏选的得3分,有错选或不选的得0分)
6.对平抛运动的物体,若g 已知,要确定其初速度大小需要给出下列条件中的( ) A .水平位移 B .下落高度
C .落地时速度的大小和方向
D .落地时位移的大小和方向
7.两个相同直角斜面,已知底边长度是竖直边长度的2倍,如图固定水平面上,小球从左边斜面的顶点以不同的初速度水平向右抛出小球,最后落在斜面上,不计空气阻力.其中有三次的落点分别是M 、N 、P .由此下列推断三小球的情况正确的是( )
A .落在P 的小球飞行时间最长
B .落在P 的小球飞行过程速度变化最小
C .落在P 的小球飞行过程速度变化最快
D .小球落到两个斜面上的瞬时速度都不可能与斜面垂直
8.乒乓球在我国有广泛的群众基础,并有“国球”的美誉,现讨论乒乓球发球问题,已知球台长L ,网高h ,若球在球台边缘O 点正上方某高度处,以一定的垂直球网的水平速度发出,如图所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g )( )
A .球的初速度大小
B .发球时的高度
C .球从发出到第一次落在球台上的时间
D .球从发出到被对方运动员接住的时间
详解答案
1.C 运动员的运动可以看作斜抛运动,画出轨迹图如下:
将A 到B 的运动看作平抛运动的逆过程,速度夹角为α,位移夹角为β,根据平抛运
动规律可知,tan α=2tan β=2×h x 2
=1
2,C 选项正确.
2.B A 质点做平抛运动,设抛出点距地面的高度为h ,由平抛运动的规律有xP 1=v 0t 1,
h =12
gt 21,联立得xP 1=v 0
2h
g
,B 质点在斜面上做类平抛运动,沿斜面向下做初速度为零
的匀加速直线运动,由牛顿第二定律有mg sin θ=ma ,由运动学规律有h sin θ=12
at 2
2,xP 2=
v 0t 2,则xP 2=v 0·
2h
g
·
1
sin θ
,所以xP 2>xP 1,故选项B 正确. 3.A 速度夹角正切tan θ=v y v x =gt v 0,解得t 1=v 0tan37°g ,t 1+t 2=v 0tan53°g ,t 1
t 2
=tan37°tan53°-tan37°=9
7
,A 选项正确.
4.C 平抛运动时间由竖直高度决定,h =12
gt 2
,解得t =
2h
g
,t a >t b >t c ;水平位移x
=vt ,a 的水平位移最短,时间最长,则速度最小;c 的水平位移最长,时间最短,则速度最大,v a 5.D 小球两次碰到墙壁前的瞬时速度方向不同,A 选项错误;初速度越大,运动的时间越短,下降高度h =12gt 2 越小,碰撞墙壁的点在上 方,B 、C 选项错误,D 选项正确. 6.CD 平抛运动的物体水平方向为匀速直线运动,竖直方向为自由落体运动.已知落地时速度的大小和方向,则初速度为落地速度的水平分速度.选项C 正确;由h =12gt 2 ,x =v 0t ,若已知落地时的位移大小和方向,则可求得h ,x ,继而可求得v 0,选项D 正确. 7.BD 由题图可知落在P 点的小球下落高度最小,所以落在P 点的小球飞行时间最短,选项A 错误;小球在平抛运动中仅受重力作用,其加速度为重力加速度,所以落在P 点的小球速度变化最小,三个小球速度变化快慢相同,故选项B 正确,选项C 错误;设斜面倾角为 θ,由题意可知,落在M 点的小球速度若与斜面垂直,则速度有水平向左的分速度,故落在M 点的小球不可能与斜面垂直,落在N 、P 点的小球若瞬时速度与斜面垂直,则有tan θ= v 0 gt =1 2,由此可知小球水平方向的平均速度和竖直方向的平均速度相等,则小球落到N 点或P 点时,水平位移和竖直位移相等,而小球的水平位移为2h 1+2h 2,竖直位移为h 1-h 2,如图所示,故选项D 正确. 8.ABC 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h ;从发球到运动到P 1点的水平位移等于1 4L ,所以可以求出球的初速度大小,也 可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A 、B 、C. 三、填空题(共2小题,每小题6分,共12分) 9.如图所示,在高为h 的平台边缘以初速度v 0水平抛出小球A ,同时在水平地面上距台面边缘水平距离为s 处竖直上抛小球B ,两球运动轨迹在同一竖直平面内,不计空气阻力,