高中数学 第三章 空间向量及其运算复习 新人教版选修2-1
(人教版)高中数学选修2-1课件:第3章空间向量与立体几何3.1.1
①(A→B+B→C)+C→C1=A→C+C→C1=A→C1; ②(A→A1+A→1D1)+D→1C1=A→D1+D→1C1=A→C1; ③(A→B+B→B1)+B→1C1=A→B1+B→1C1=A→C1; ④(A→A1+A→1B1)+B→1C1=A→B1+B→1C1=A→C1. 所以 4 个式子的运算结果都是A→C1. 答案: 4
• (3)注意零向量的书写,必须是0这种情势. • (4)两个向量不能比较大小.
空间向量的加减法与运算律
空间向 量的加 减法
类似平面向量,定义空间向量的加、减法运算 (如图):
O→B =O→A +A→B =_a_+__b___; C→A =O→A -O→C =_a_-__b___
加法运 (1)交换律:a+b=b+a;
◎在长方体 ABCD-A1B1C1D1 中,化简D→A-D→B+B→1C-
B→1B+A→1B1-A→1B. 【错解】 D→A-D→B+B→1C-B→1B+A→1B1-A→1B
=A→B+C→B+B→1B=D→C+D→A+B→1B=D→B+D→1D=D→1B.
【错因】 对向量减法的三角形法则理解、记忆错误,
中,老师从学校大门口回到住地方产生的总位 移就是三个位移的合成(如右图所示),它们是
不在同一平面内的位移,如何刻画这样的位移 呢?
• [问题1] • [提示1] • [问题2] 吗?
• [提示2]
老师的位移是空间向量吗? 是. 空间向量的加法与平面向量类似
类似.
空间向量
定义
长度 几何表 示法
在空间,把具有大___小__和_方__向__的量叫做空间向量 向量的_大__小__叫做向量的长度或_模__
6分
(3)在线段 CC1 上取中点 M,则有C→M=12C→C1, 则有:A→B+A→D+12C→C1=A→B+B→C+C→M=A→M. 9 分 (4)由(2)知13(A→B+A→D+A→A1)=13A→C1,在线段 AC1 上取点 G,使得 AG=13AC1,即:13(A→B+A→D+A→A1)=A→G. 12 分
高中数学选修2-1第3章3-1空间向量及其运算课件
上一节课,我们把平面向量的有关概念及加减运算扩展
到了空间.
加法 减法 运算
运 算 律
平面向量 加法:三角形法则或 平行四边形法则 减法:三角形法则 加法交换律
ab ba 加法结合律:
(a b) c a (b c)
空间向量
加法:三角形法则或 平行四边形法则 减法:三角形法则
加法交换律 a b b a 加法结合律
OG kOC,OH kOD. 由于四形ABCD是平行四形,所以 AC AB AD . 因此
EG OG OE kOC kOA=k AC
k( AB AD) k(OB OA OD OA)
OF OE OH OE EF EH 由向量共面的充要件知E ,F,G ,H 四共面.
(3)在正方体 ABCD - A中1B,1C1必D1有
. AC = A1C1
(4)若空间向量 m,n满,p足
,m = n,n = p
则 m . p
(5)空间中任意两个单位向量必相等.
其中不正确命题的个数是( C)
A.1 B.2 C.3 D.4
数学 选修2-1
2.给出以下几种说法:
①若| a |=| b |,则a , b 的长度相同,方
a+b=b+a (2)加法结合律
(a + b) + c = a + (b + c)
数学 选修2-1
证明加法交换律:
C
a
B
o
a
A
因为 OA = CB = a, AB = OC = b,
所以 a + b = b + a.
数学 选修2-1
证明加法结合律: O
a
A
C
高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1
高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。
人教版高中数学选修2-1第三章3.1.2空间向量的数乘运算
导入新课复习上一节课,我们借助“类比思想”把平面向量的有关概念及加减运算扩展到了空间.(1) 加法法则及减法法则平行四边形法则或三角形法则. (2) 运算律加法交换律及结合律.两个空间向量的加、减法与两个平面向量的加、减法实质是一样的.因为:空间任意两个向量都可平移到同一个平面内,成为同一平面内的向量.因此凡是涉及空间任意两个向量的问题,平面向量中有关结论仍适用于它们.我们知道平面向量还有数乘运算及相应的运算律.借助类比思想,同样可以定义空间向量的数乘运算及相应的运算律.教学目标知识目标正确理解共线、方向向量等基本概念;初步掌握数乘运算,理解运算律;熟练掌握共线向量基本定理、推论及应用.能力目标经历知识形成探索过程,体验“类比”思想,并逐步学会“分析、归纳、抽象、概括等思维方法.情感目标1. 通过自主探究与合作交流,不断体验“成功”,激发学习热情和求知欲,充分体现学生的主体地位;2. 通过类比思想和方法的应用,感受和体会数学思想的魅力,培养学“做数学”的习惯和热情.教学重难点重点共线向量概念、基本定理及推论.难点共线概念的正确理解及较复杂的三点共线判定.知识要点1. 空间向量数乘运算的定义与平面向量一样,实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘(multiplication of vetor by salar)运算.(1)结果仍然是一个向量;(2)方向:当λ>0时,λa与a方向相同;当λ<0时,λa与a方向相反;当λ=0时,λa是零向量0; (3)大小: λa的长度是a长度的|λ|倍.aλa(λ<0)a λa(λ>0)2.数乘运算的运算律显然,空间向量的数乘运算满足分配律及结合律()λ(a +b )=λa +λbλ+μa =λa +μaλ(μa )=(λμ)a 即:知识要点(1) λa与a 之间是什么关系?(2) λa 与a 所在直线之间的关系?对于空间向量的数乘运算的运算律的证明,方法与证明平面向量数乘运算的运算律类似.知识要点3.共线向量(或平行向量)的定义表示空间向量的有向线段所在直线互相平行或重合,则称这些向量叫共线向量(colliner vectors)或平行向量(parallel vectors)记作a//b(1)向量平行与直线平行的比较;(2)关注零向量; (3)对空间任意两个向量a 与b ,如果 ,那么a 与b 有什么相等关系?反过来呢?b //a 零向量与任何向量平行(1)当我们说a,b共线时,表示a,b的两条有向线段所在直线既可能是同一直线,也可能是平行线;(2)当我们说a // b时,也具有同样的意义.知识要点4.共线向量基本定理对于空间任意两个向量a ,b(b≠0),a // b的充要条件是存在实数λ,使a = λb(1)b≠0的理解.若b=0,则a任意,λ不唯一;(2)若a // b,b // c,则a一定平行于c吗?(不一定,考虑中间向量为零向量)5.共线向量基本定理的推论如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对于空间任意一点像O ,点P 在直线l 上的充要条件是存在实数t ,使 OP = OA + ta. (1) AaOP B其中向量a叫做直线l的方向向量(direction vector)在l上取AB=a,则(1)式可化为OP = (1- t)OA + t OB.(2)说明: (1),(2)都叫做空间直线的向量参数表示式.由此可知,空间任意直线由空间一点及直线的方向向量唯一确定.知识要点6.共面向量定义平行于同一平面的向量,叫做共面向量(coplanar vectors).空间任意两个向量总是共面的,但空间任意三个向量既可能是共面的,也可能是不共面的.7.共面向量的定理如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在唯一的有序实数对(x、y),使p = x a + y b8.共面向量的定理的推论空间一点P位于平面MAB内的充分必要条件是存在有序实数对x、y,使MP = xMA + yMB或对空间任一定点O,有OP = OM + xMA + yMB.Ma AbB A' p P对空间任意一点O 和不共线的三点A 、B 、C ,试问满足向量关系式(其中x+y+z=1)的四点P 、A 、B 、 C 是否共面?OP =xOA+yOB +zOC解答原式可以变形为OP=(1-y-z)OA+yOB+zOC,OP-OA=y(OB-OA)+z(OC-OA), AP=y AB+z AC,所以,点P与点A,B,C共面.例题如下图,已知平行四边形ABCD,过平面AC外一点O作射线OA、OB、OC、OD,在四条射线上分别取点E、F、G、H,并且使OE OF OG OH====kOA OB OC OD求证:四点E、F、G、H共面.D'A'B'C'DA B CO分析:欲证E,F,G,H四点共面,只需证明EH,EF,EG共面.下面我们利用AD,AB,AC共面来证明.证明:因为 所以 OE=kOA ,OF=kOB , OG=kOC ,OH=kOD. 由于四边形ABCD 是平行四边形,所以AC=AB+AD. 解答OE OFOGOH====kOA OB OC OD继续因此EG=OG-OE=kOC-kOA=k AC=k(AB+AD)=k(OB-OA+OD-OA)=OF-OE+OH-OE=EF+EH.由向量共面的充要条件知E,F,G,H四点共面.课堂小结1.空间向量的数乘运算.2.空间向量的数乘运算的运算律.满足分配律及结合律.3.共线向量与共面向量共线向量 共面向量 定义 向量所在直线互相平行或重合. 平行于同一平面的向量,叫做共面向量. 定理 推论 运用 判断三点共线,或两直线平行 判断四点共线,或直线平行于平面)0a (b //a ≠b λa =p b a b y αx p +=ABt OA OP +=AC y AB x OA OP ++=共面1)y (x OBy OA x OP =++=1)z y (x 0OC z OB y OA x OP =++=++=高考链接1.(2006年福建卷)已知|OA|=1,|OB|= ,OA·OB=0,点C 在∠AOB 内,且∠AOC=30°,设OC=mOA+nOB (m 、n ∈R),则 等于_______. 3nm 3D. 33 C. 3B. 31 A. BOA =1,OB =3,OA.OB =0,解析: 点C 在AB 上,且∠AOC=30°设A 点坐标为(1,0),B 点的坐标为(0, )C 点的坐标为(x ,y)=( , ) OC =mOA+nOB(m,n R)∈33434则∴ 3n m ,41,n 43m ===课堂练习1.选择(1)若对任一点O 和不共线的三A,B,C,且有 则x+y+z=1是四点P 、A 、B 、C 共面的() A. 必要不充分条件 B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 R),z y,(x,OC z OB y OA x OP ∈++= C(2)对于空间任意一点O ,下列命题正确的是(). A.若 ,则P 、A 、B 共线 B.若 ,则P 是AB 的中点C.若 ,则P 、A 、B 不共线D.若 ,则P 、A 、B 共线 OP =OA+t AB3OP =OA+AB OP=OA -t AB OP=-OA+AB A(3)下列命题正确的是()CA.若a与b共线,b与c共线,则a与c共线B.向量a,b,c共面就是它们所在的直线共面C.零向量没有确定的方向D.若a // b,则存在唯一的实数λ使得a = λb解答A.中向量b为零向量时要注意,B.中向量的共线、共面与直线的共线、共面不一样,D.中需保证b不为零向量.答案C.点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处.像零向量与任何向量共线等性质,要兼顾 .2.解答题已知:且m,n,p不共面.若a∥b,求x,y的值.,p2yn8m1)(xb0,p4n2m3a+++=≠--=空间向量在运算时,注意到如何利用空间向量共线定理.解答 ∵a // b,且a ≠0, ∴b= λ a ,即 又∵m ,n ,p 不共面,∴.p 4λn 2λm 3λp 2y n 8m 1)(x --=+++8.y 13,x ,42y 2831x =-=∴-=-=+习题答案1. (1)AD; (2)AG;(3)MG2. (2)x=1; (2)x=y=1/2; (3) x=y=1/2;3.CA QBRPSO。
选修2-1-第三章-空间向量及其运算知识点
空间向量及其运算知识点1.空间向量的有关概念⑴空间向量:在空间中,具有大小和方向的量叫做空间向量.(2)单位向量:模为1的向量称为单位向量(3)相等向量:方向相同且模相等的向量.(4)共线向量:表示空间向量的有向线段所在的直线互相平行或重合的向量.(5)共面向量:平行于同一个平面的向量.2•空间向量的加法、减法与数乘运算向量的加减法满足平行四边形法则和三角形法则向量加法的多边形法则:首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量uuu uuu uuuu uuuu uuuuuOAn=OA+A| A2+ A2A g+ + An—i A n•运算律:①加法交换律: a + b= b + a ②加法结合律:(a+ b) + c= a + (b + c)③数乘分配律:入(+ b)=入a入b.3.共线向量、共面向量定理和空间向量基本定理(1)共线向量定理对空间任意两个向量 a, b(b丰0) a II b的充要条件是存在实数人使得a =^b推论:|点P在直线 AB上的充要条件是:uuu um存在实数人使得AP AB ①uuu uir uur或对空间任意一点O,有OP OA AB ②um uur urn或对空间任意一点O, 有OP xOA yOB其中x+ y= 1 ③urn uur um uir uuu uur uur uur【推论③推导过程: OP OA AB OA (AO OB) (1 )OA OB】(2)共面向量定理如果两个向量a, b不共线,那么p与a, b共面的充要条件是存在唯一有序实数对(x,y)使p = xa+ yb推论:|空间一点P位于平面 ABC内的充要条件|是uur uur uur存在唯一有序实数对(x,y)使AP xAB yAC ,uin uir uur uuu或对空间任意一点O, 有OP OA xAB yACurn uur uur uuu或对空间任意一点O, 有OP xOA yOB zOC,其中x+ y+ z= 1uur uur uuu uuu uur uur uuu【推论③推导过程呈:OP OA xAB yAC (1 x y)OA xOB yOC】(3)空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在有序实数组{x, y, z},使得p = xa+ yb+ zc基底:把{a, b, c}叫做空间的一个基底,空间任何三个不共面的向量都可以构成空间的一个基底.4.空间向量的数量积及运算律(1)数量积及相关概念①两向量的夹角:已知两个非零向量 a , b,在空间任取一点 0,作OA= a, Ofe= b,则/ AOB叫做向量a与b的夹角,记作〈a, b >,其范围是0w〈 a, b >三爭若〈a, b〉=寸,则称a与b互相垂直,记作a丄b.②两向量的数量积:已知空间两个非零向量a, b,向量a, b的数量积记作a b,且a b= | a||b |cos〈 a, b >.(2)空间向量数量积的运算律:①结合律:(扫)b=?(ab);②交换律:a b = b a;③分配律:a ( b+ c)= a b + a c.5.空间向量的坐标表示及应用(1)数量积的坐标运算:a(2) 共线与垂直的坐标表示:b = a 1b 1 + a 2b 2+ a 3b 3.a / b? a= ?b? a 1 =入 b, a 2=入 2, a 3=入 3 (入€ R),a 丄b? a b= 0? a 1b 1+ a 2b 2+ a 3b 3= 0(a, b 均为非零向量). (3)模、夹角和距离公式: | a| = .'a a = 'a ! + a 2 + a 3,a b a 1b 1 + a 2b 2+ a 3b 3C0S a,b |a||b|.'a 2+ a 2+ a 3 • b 1 + b 2 +.设 A(a 1, b 1, C 1), B(a 2, b 2,⑵,贝U d AB = | AB| = : a 2 — a 1 2+b 2— b 1 2+Q —C 1 26. 用空间向量解决几何问题的一般步骤:(1) 适当的选取基底{a, b, c}; (2) 用a ,b ,c 表示相关向量; (3) 通过运算完成证明或计算问题.题型一 空间向量的线性运算 用已知向量来表示未知向量,应结合图形,将已知向量和未知向量转化至三角形或平行四边形中,表示为其他向量 的和与差的形式,进而寻找这些向量与基向量的关系.例1:三棱锥 O —ABC 中,M, N 分别是OA, BC 的中点,G 是厶ABC 的重心,用基向量 OA, OB, OC 表示MG , OG解析:M G = M A + AG= 2O A+ 3AN= ^OA+ |(O N —O A)=苏+f[2(OB+ OC)—OA]= — |O A+ 3<5B + ^OCC )G = O M + M G = ?OA- 6<5A +|<5B +1(5C = £O A+ |OB + 扌OC〉1 T T —urn uu n uuu uuu例 2:如图所示,ABCD — A 1B 1C 1D 1 中,ABCD 是平行四边形.若 AE= |EC A*= 2FD,且 EF =x AB+y AD+zAA ,题型二共线定理应用 向量共线问题: 充分利用空间向量运算法则,用空间中的向量表示 a 与b 共线.点共线问题:证明点共线问题可转化为证明向量共线问题,如证明 例3:如图所示,四边形 ABCD, ABEF 都是平行四边形且不共面,1 1•/ E A = — 3心-3( AB+ AD) 1 1 2 uuu A F = AD+ DF= AD — F D= A D — A 1D= A D —; (A 1A+ AD)= — AD 3331 uuu 1 uuu AA EF= EA+ AF= AD3 3 1 uuu AA 31 uuu AB 3a 与b ,化简得出a = b ,从而得出a// b,即A 、B 、C 三点共线,即证明 AB 与AC 共线.M , N 分别是AC, BF 的中点,判断CE 与 MN 是否连接 AF, EF= EA+ A F.ABCD- A 1B 1C 1D 1 中,E 在 A 1D 1 上,且 A 1E= 2EDi,AA 1= c.2 2 2 2 2 2 2 A 1 F= §FC= 5A 1 C=5(AC — AA 1) = 5(AB + AD — AA 1) =5a + £b — £c42 2 2 TTTT2 215b — §c= 5 a — 3b — c , EB= EA + A 1A+ AB= — 3b — c+ a= a — 3b — c,T T2•- EF= 5EB •所以E, F, B 三点共线.题型三共面定理应用yPC,或对空间任一点 O,有 OP= OA+ xPB+ yPC 或 OP= xOA+ yOB+ zOC(x+ y+ z= 1)即可uur CE uir CBuur BE uuu MNuuu MC uir CB uuu BN 1 uuu — AC 2TMN , uir i uu uur 1 uuu uu CB (BA BE) (AC BA)uir CB 1 uur 1 uir2BE"CB1 uur BE 2••• CE= 2MN ,••• CE// 即CE 与MN 共线.例5 :已知A 、B 、2C 三点不共线,对于平面 ABC 外一点O,若OP= 5ITT1 2OA+ 5OB+ 5OC,则点P 是否与A 、B 、C定共面试说明理由. 2 UUU 解析:••• OP 5 1TULT OA 2T1 uu u — OB 52 uuu -OC3 2 uuu uir -(OP + PA) 5 1 uuu uir —(OP + PB) 5 2 uu u uuu uiu 2 uir 1 uir 2 uu —(OP + PC)=OP + —PA+— PB + — PC 3 5 5 3• AP=;AB+;AC,故 A 、B 、C P 四点共面•F 在对角线A 1C 上,且心託点共面问题:证明点共面问题可转化为证明向量共面问题,如要证明P 、A 、B 、C 四点共面,只要能证明 PA= xPB+例4:如图所示,在正方体2 T例6:如图所示,已知P 是平行四边形 ABCD 所在平面外一点, 连结PA 、PB PC PD,点E 、F 、G 、H 分别为△ PAB△ PBC △ PCD △ PDA 的重心,应用向量共面定理证明:E 、F 、G 、H 四点共面.证明:分别延长PE 、 ••• E、F 、G 、H 分别是所在三角形的重心,•f f f例7:正方体ABCD- A 1B 1C 1D 1中,E, F 分别是BBi 和A 1D 1的中点,求证向量 A 1B, BQ, EF 是共面向量.Dy Ci157i1 11 1证明:如图所示,EF= EB+ BA i + A 1F = 2B i B-A i B+ 尹1。
高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案
描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。
高二数学(新人教A版选修2-1)第三章知识点总结《3.1.1 空间向量及其线性运算》(学生版) Word版无答案
空间向量及其线性运算
.空间向量的概念及表示
()与平面向量一样,我们把空间中具有和的量叫做空间向量,向量的叫做向量的长度或模.
()与平面向量一样,空间向量也用表示.起点是,终点是的向量也可以记作.其模记作.
()的向量叫做零向量,记为;模为的向量叫做单位向量.
()的向量称为相等向量.与向量
的向量称为的相反向量,记为.
.空间向量的线性运算
空间向量的加法、减法、数乘向量的定义与平面向量的运算一样.
()加法满足平行四边形法则,加法和减法满足三角形法则,加法的交换律、结合律都成立.
()实数λ与向量的乘积λ是一个向量,λ时,λ与方向相同,λ时,λ与方向相反,λ时,λ=,其方向是任意的,λ=.
设λ、μ是实数,则有
①分配律:λ(+)=
②结合律:λ(μ)=.。
人教版高中数学选修2-1第三章间向量与立体几何总结复习优质
知 识 体 系 网 络
专 题 探 究 精 讲
第3章 空间向量与立体几何
空间向量与空间角
题型特点:空间角包括:异面直线所成的角 ( 线线 角 ) ;直线与平面所成的角 ( 线面角 ) ;二面角 ( 面面 角 ) ,用向量法求空间角,就是把复杂的作角、证 明、求角问题代数化,降低了思维难度,是近年来 高考的一个方向. 知识方法:(1)求异面直线所成的角 设两异面直线的方向向量分别为n1、n2,那么这两 条异面直线所成的角为 θ =〈 n1 , n2 〉或 θ = π - 〈n1,n2〉, ∴cosθ=|cos〈n1,n2〉|.
ACEF 所在平面互相垂直,AB= 2,AF=1.试在 线段 AC 上确定一点 P,使得 PF 与 CD 所成的角 为 60° .
知 识 体 系 网 络
专 题 探 究 精 讲
返回
第3章 空间向量与立体几何
【解】 如图所示建立空间直角坐标系 Cxyz, → 则 F( 2, 2,1),CD=( 2,0,0). 设 P(t,t,0)(0≤t≤ 2), → 则PF=( 2-t, 2-t,1). ∵PF 与 CD 所成的角是 60° , | 2· 2-t | ∴cos60° = , 2 2 2· 2-t + 2-t +1 2 3 2 解得 t= 或 t= (舍去). 2 2 ∴当 P 为 AC 中点时,满足题设条件.
知 识 体 系 网 络
专 题 探 究 精 讲
返回
第3章 空间向量与立体几何
→ → 由 DE⊥平面 BCC1B1 知 DE⊥BC,DE· BC=0, 求得 b=1, → → ∴AC=(0,1,0),又AB=(1,0,0), → → ∴|AB|=|AC|,所以 AB=AC. → (2)设平面 BCD 的法向量AN=(x,y,z), → → → → 则AN· BC=0,AN· BD=0. -x+y=0 → → 又BC=(-1,1,0),BD=(-1,0,c),故 . -x+cz=0 1 → 1 令 x=1,则 y=1,z= ,AN=(1,1, ). c c
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案
→
→
∣→∣ ∣ ∣ →
∣→∣ ∣ ∣
→
→
④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )
→
→ →
→
→
中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2
数学:3.1.3《空间向量及其运算--数量积》课件(新人教a版-选修2-1)
3.如图:已知空间四边形 ABCD的每条边和对角线长都 等于1,点E、F 分别是AB、AD的中点。 计算: ( 1 ) EF BA (2) EF BD (3) EF DC (4) EF AC
A E B C
F
D
三
、典型例题
例1:已知m,n是平面内的两条相交直线,直线l与的交点为B,且 l⊥m,l⊥n,求证:l⊥ 分析:由定义可知,只需证l与平面内 任意直线g垂直。
O
A
a
例3 如图,已知线段 AB 在平面 内,线段 AC
DBD 30 ,如 ,线段 BD AB ,线段 DD ,
果 AB a , AC BD b ,求 C 、 D 之间的距离。
解:由 AC ,可知 AC AB .
C D b b a D'
B
e
A1 B1
l
A
注意: AB 是轴l上的正射影A1B1是一个可正可负的实数, 它的符号代表向量 AB 与l的方向的相对关系,大小代表 在l上射影的长度。
4)空间向量的数量积性质
对于非零向量 a , b ,有:
1) a e a cos a, e 2) a b a b 0 3) a a a
(a b) c a (b c)
二、 课堂练习
2 1.已知 a 2 2 , b , a b 2 2 则a , b所夹的角为________ .
2.判断真假: 1 ) 若a b 0, 则a 0, b 0 2) (a b) c a (b c) 3) p 2 q 2 ( p q) 2 4) p q p q p 2 q 2 ( ) ( ) ( ) ( )
人教版数学高中二年级选修2-1第三章第一节空间向量及其运算复习课件(共24张PPT)
为 60°.
MN = AN - AM =1( AC + AD)-1 AB=1(q+r-p),
2பைடு நூலகம்
22
∴ MN ·AB=1(q+r-p)·p 2
=1(q·p+r·p-p2) 2
=1(a2cos 60°+a2cos 60°-a2)=0. 2
∴ MN ⊥ AB.即 MN⊥AB.
(2)求 MN 的长; 解由(1)可知 MN =1(q+r-p),
(2)解 AC→′=-a+c,C→E=b+1c, 2
∴|AC→′|= 2|a|,|C→E|= 5|a|. 2
AC→′·C→E=(-a+c)·(b+1c)=1c2=1|a|2, 2 22
∴cos〈A→C′,C→E〉=
1|a|2 2
= 10.
2· 5|a|2 10
2
即异面直线 CE 与 AC′所成角的余弦值为 10. 10
A.2,1 2
B.-1,1 32
C.-3,2
D.2,2
3、已知 P(-2,0,2),Q(-1,1,2),R(-3,0,4),设 a= PQ ,b= PR ,c= QR ,
若实数 k 使得 ka+b 与 c 垂直,则 k 的值为___2_____.
(1)证明 设C→A=a,C→B=b,CC→′=c,
根据题意,|a|=|b|=|c|且 a·b=b·c=c·a=0,
∴C→E=b+1c,A→′D=-c+1b-1a,
2
22
∴C→E·A→′D=-1c2+1b2=0. 22
∴C→E⊥A→′D,即 CE⊥A′D.
空间向量的数量积及其应用
【训练 3】 如图,在直三棱柱 ABCA′B′C′中,AC=BC=AA′, ∠ACB=90°,D,E 分别为 AB,BB′的中点. (1)求证:CE⊥A′D;(2)求异面直线 CE 与 AC′所成角的余弦值.
(人教)高中数学选修2-1【精品课件】3-1空间向量及其运算3
3.1.3空间向量的数量积运算KEQIAN YUXI DAOXUEKETANG HEZUO TANJIU预习引导学习目标重点难点1 •空间向量的夹角已知两个非零向量",在空间任取一点。
作OA=a^B=bJ\\ _________ 叫做向量“0的夹角,记作 ___ ,向量夹角的取值范围是如果<a0>=号,那么向量互相垂直,记作 ......................(1) 在正四面体ABCD中,<AB, AC>= _______ ,<BC, CD> =(2) <a ,b> = <b,a>吗>与 <有什么关系?交流1,<AD,BC>=2 •空间向量的数量积(1) __________________________________ 定义:已知两个非零向量则 ____________________ 叫做 记作a b.W )・b= __ \ab-_(交换律);a (b+c )= ___ (分配律). (3) 数量积的运算性质:① ________________________ 若a.b 是非零向量,则〃丄〃u> __________________ .② ___________________ 若"与b 同向,则a b=_________________________ 若"与〃反向,则a b- ・(2):a.b 的数量积,特别地皿(I-___ 或\(i I =7a■ a.③若e为"的夹角,则cos*歸④_______ IWIW...... 交流2向量的数量积满足结合律吗?问题导学当堂检测一、空间向量数量积的计算=]活动与探究问题:对于两个向量的数量积应注意什么?课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 问题导学当堂检测D__彳列1如图,已知空间四边形ABCD的每条边和对角线长都等于1,点EF分别是ABAD的中点,计算:(1)EF •丽;(2)丽•而;(3)EF・反.解:⑴丽^J A =^BD•丽乙I ■ - > --- > --- > - > =^\BD\\BA\cos<BD f BA> 乙1 1=-xlxlxcos 60°=-2 4所以丽•丽=;4- »■ > 1 ----------------------------------- > ,》(2)EF • BD = -BD • BD\BD\\BD\cos<BD f BD> 1 1=-xlxlxcos 0°=-乙L A问题导学当堂检测所以丽•丽=+・乙课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU—> > 1 > > (3)EF • DC =^BD • DC乙|BDIIDCI COS<M^C>乙1 1 =-xlxlxcos 120°=--,2 4问题导学当堂检测所以EF •课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU问题导学当堂检测吧迁移与应用1•下列式子中正确的是(2K.a^\a\—(TC.(ab)c=a(bc)课堂合作探究KETANG HEZUOTANJIU课前预习导学KEQIAN YUXI DAOXUE).B.(a-b)~=a~-b 2D ・l” •方I Wl“l ・l 方I课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU问题导学当堂检测2•如图,在长方体4BCCM15CQ1中AB=AA i=2AD=4,E为侧面4B]的中心,F为4Q]的中点.QC\ ________ :D----------------- A计算:(1)BC •阪;(2)BF・血;(3)EF ・ FQ.问题导学当堂检测 ---- > -------- > 1 1KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU (3)EF • FC] = [-(c-a) +-b]- =^(-a+b+c)KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU •(扣 + a) =扣卩+抑卩=2・KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU乙X1KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 2b + a课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 问题导学当堂检测-------------- 名師❽障----------------1•在几何体中进行向量的数量积运算时,要充分利用几何体的性质把待求向量用已知夹角和模的向量表示后再进行运算•在解题过程中要注意两向量的夹角,正确运用两向量夹角的定义.2.有关数量积的运算应注意的问题:(1)与数乘运算区分开,数乘运算的结果仍是向量,数量积的结果为数量;课前预习导学KEQIAN YUXI DAOXUE 课堂合作探究KETANG HEZUOTANJIU问题导学当堂检测(2)书写规范:不能写成axb,也不能写成ab.二、向量夹角的计算S3活动与探究问题1:如何理解空间向量的夹角?课前预习导学KEQIAN YUXI DAOXUE课堂合作探究KETANG HEZUOTANJIU问题2:利用向量数量积求夹角的方法是什么?当堂检测课前预习导学课堂合作探究KEQIAN YUXI DAOXUE KETANG HEZUO TANJIU 问题导学当堂检测___ k列2如图,在正方体ABCD-A X B X C X D X中,求向量亦与农的夹角的大小.课前预习导学KEQIAN YUXI DAOXUE 课堂合作探究KETANG HEZUOTANJIU问题导学当堂检测解:方法一:连接AD^CD^因为测=応, 所以ZDjAC即为向量丽与盘的夹角.又因为△D P4C为正三角形,所以ZD{AC=60\ 即v AC>=60°.所以向量亦与走的夹角为60°.问题导学 当堂检测方法二:设正方体的棱长为1,则砧• AC=(BC + CQ) • (XB + BC) =(AD + AAi) •(AB + AD) AD ^AB + AD 2+ 亦• AB + 亦• AD5CIBqi=V2JXCI=V2,・■» 1>所以 cos<BQ ;AC> =BCL1AC\BC^\\AC\ 因为 vPZ :农〉e[O°,l 80°],所以vBQ,XC>=60°,所以向量師与农的夹角为60°.1 _V2xV2 _问题导学当堂检测S3迁移与应用1 •如图,在正方体ABCD-A.B.C.D,中,异面直线4/与4C所成的角问题导学当堂检测解析:设正方体的棱长为1,贝Ul乔1=1而1=1亦1 = 1,AC • A]B=(AB + AD) • (AB -亦)=\AB\2+AB •AD-AA^^AB-AA^• AD=1又I石§ I = iZ? I = VX「cos v石瓦AC >乙问题导学当堂检测••屏面直线40与AC成60。
高中数学第三章空间向量与立体几何章末复习课件新人教B版选修2_1
α⊥β⇔μ⊥v⇔_μ_·_v_=__0_
l,m的夹角为θ
0≤θ≤π2,cos
|a·b| θ=_|_a_||_b_| _
l,α的夹角为θ
0≤θ≤π2, sin
|a·μ| θ=_|_a_||_μ_| _
|μ·v| α,β的夹角为θ 0≤θ≤π2, cos θ=__|μ__||v_|__
2.用坐标法解决立体几何问题 步骤如下: (1)建立适当的空间直角坐标系; (2)写出相关点的坐标及向量的坐标; (3)进行相关坐标的运算; (4)写出几何意义下的结论.
题型二 利用空间向量解决位置关系问题
例2 在四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中 点,求证: (1)PC∥平面EBD;
(2)平面PBC⊥平面PCD.
反思感悟 (1)证明两条直线平行,只需证明这两条直线的方向向量是共线 向量. (2)证明线面平行的方法 ①证明直线的方向向量与平面的法向量垂直. ②能够在平面内找到一个向量与已知直线的方向向量共线. ③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量 是共面向量.
线线平行 线面平行 面面平行 线线垂直 线面垂直
l∥m⇔a∥b⇔a=kb,k∈R l∥α⇔_a_⊥__μ_⇔_a_·_μ_=__0_
α∥β⇔μ∥v⇔_μ_=__k_v_,__k_∈__R_ l⊥m⇔_a_⊥__b__⇔_a_·_b_=__0_
l⊥α⇔a∥μ⇔a=kμ,k∈R
面面垂直 线线夹角 线面夹角 面面夹角
跟踪训练2 正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证: 平面AED⊥平面A1FD1.
题型三 利用空间向量求角
例3 如图,在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D为AB的中点. (1)求点C到平面A1ABB1的距离;
人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案
第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。
A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。
高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案
高中数学选修2-1-第三章第一节《3.1空间向量及其运算》全套教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN空间向量及其运算课时分配:第一课空间向量及其加减运算 1个课时第二课空间向量的数乘运算 1个课时第三课空间向量的数量积运算 1个课时第四课空间向量运算的坐标表示1个课时3. 1.1 空间向量及其加减运算【教学目标】1.了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;2.理解共面向量定理及其推论;掌握点在已知平面内的充要条件;3.会用上述知识解决立体几何中有关的简单问题。
【教学重点】点在已知平面内的充要条件。
共线、共面定理及其应用。
【教学难点】对点在已知平面内的充要条件的理解与运用。
b a AB OA OB+=+=;b a OB OA BA-=-=;)(R a OP ∈=λλ3.平行六面体:平行四边形ABCD 平移向量a 到D C B A ''''的轨迹所形成的几何体,叫做平行六面体,并记作:ABCD -D C B A ''''它的六个面都是平行四边形,每个面的边叫做平行六面体的棱。
4.平面向量共线定理方向相同或者相反的非零向量叫做平行向量。
由于任何一组平行向量都可以平移到同一条直线上,所以平行向量也叫做共线向量。
向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使b =λa 。
这个定理称为平面向量共线定理,要注意其中对向量a 的非零要求。
条有向线段来表示。
思考:运算律:(1)加法交换律:a b b a+=+ (2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(C BAOb bb aa a C'B'A'D'DABC数t 满足等式t OA OP +=a。
其中向量a 叫做直线l 的方向向量。
选修2-1 第三章 3.1.2 空间向量的数乘运算
→ → → → → 又∵MN=MC+CE+EB+BN 1 → → → 1→ =-2CA+CE-AF-2FB, 1→ → 1→ 1→ → → 1→ ∴2CA+AF+2FB=-2CA+CE-AF-2FB. → → → → → → → ∴CE=CA+2AF+FB=2(MA+AF+FN). → → → → → → ∴CE=2MN,∴CE∥MN,即CE与MN共线.
新知导学
6.a∥α是指a所在的直线____________ 在平面α内 或_____________. 平行于平面α 同一个平面 的向量叫做共面向量,共面向量所在 平行于____________ 异面 . 的直线可能相交、平行或________
7.空间任意两个向量总是共面的, 但空间任 意三个向量就不一定共面了.例如,图中的长 → → → 方体,向量AB、AC、AD,无论怎样平移都不 能使它们在同一平面内.
指明两向量有公共点,同理证明二直线平行方法类似.
如右图,已知四边形 ABCD 是空间 四边形, E、 H 分别是边 AB、 AD 的中点, → F、G 分别是边 CB、CD 上的点,且CF= 2→ → 2 → 3CB,CG=3CD. 求证:四边形 EFGH 是梯形.
[证明] ∵E、H 分别是 AB、AD 的中点, → 1→ → 1 → ∴AE=2AB,AH=2AD. → 2→ → 2 → ∵CF=3CB,CG=3CD, → 3→ → 3 → ∴CB=2CF,CD=2CG,
共线向量 温故知新 回顾复习平面向量中数乘向量与共线向量的概念与定理, 运算律. 思维导航 1 .参照平面向量思考,空间向量中,数乘向量的定义, 运算律,共线向量定理还成立吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
而∠ASB=∠CSD,于是S→A·S→B=S→C·S→D,因此④正确,其
题 余三个都不正确,ห้องสมุดไป่ตู้
栏
目 故正确结论的序号是③④.
答案 ③④
精品课件
研一研·题型解法、解题更高效
跟踪训练 1 如图,四棱柱 ABCD—
A1B1C1D1 的底面 ABCD 是矩形,AB=4,
AD=3,AA1=5,∠BAA1=∠DAA1=60°,
AC 的中点.
本
(1)证明:A1O⊥平面 ABC;
专 题
(2)求直线 A1C 与平面 A1AB 所成角的正弦值;
栏
(3)在 BC1 上是否存在一点 E,使得 OE∥平面 A1AB,若
目
不存在,说明理由;若存在,确定点 E 的位置.
(1)证明 因为 A1A=A1C,且 O 为 AC 的中点, 所以 A1O⊥AC.
专 又 AB=BC,AB⊥BC,
题 栏
所以 OB=12AC=1.
目 所以 O(0,0,0),A(0,-1,0),A1(0,0, 3),C(0,1,0),C1(0,2,
3),B(1,0,0),则有A→1C=(0,1,- 3),A→A1=(0,1, 3),
A→B=(1,1,0).
设平面 A1AB 的法向量为 n=(x,y,z),
________. 解析 容易推出:S→A-S→B+S→C-S→D=B→A+D→C=0,
所以③正确;
精品课件
研一研·题型解法、解题更高效
又因为底面 ABCD 是边长为 1 的正方形,SA=SB=SC=
SD=2,所以S→A·S→B=2·2·cos∠ASB,S→C·S→D=2·2·cos∠CSD,
本 专
=BB1.
本
求证:(1)BC1⊥AB1;
专 (2)BC1∥平面 CA1D.
题 栏
证明 如图,以 C1 为原点,分别以 C1A1,C1B1,
目 C1C 所在直线为 x 轴、y 轴、z 轴建立空间直
角坐标系.设 AC=BC=BB1=2,则 A(2,0,2),
B(0,2,2) , C(0,0,2) , A1(2,0,0) , B1(0,2,0) ,
例 1 如图,在四棱锥 S—ABCD 中,底面
ABCD 是边长为 1 的正方形,S 到 A、B、
C、D 的距离都等于 2.给出以下结论:
本
①S→A+S→B+S→C+S→D=0;②S→A+S→B-
专 题
S→C-S→D=0;③S→A-S→B+S→C-S→D=0;
栏 目
④S→A·S→B=S→C·S→D;⑤S→A·S→C=0,其中正确结论的序号是
②证明可在平面内找到一个向量与直线的方向向量是
本
专
共线向量;
题 栏
③利用共面向量定理,即证明可在平面内找到两不共线
目
向量用直线的方向向量线性表示.
4.线面垂直
用向量证明线面垂直的方法主要有:
①证明直线的方向向量与平面的法向量平行;
②利用线面垂直的判定定理转化为线线垂直问题. 精品课件
研一研·题型解法、解题更高效
专
题 空间向量判断空间中的位置关系的常用方法如下. 栏 1.线线平行
目
证明两条直线平行,只需证明两条直线的方向向量是共
线向量.
2.线线垂直
证明两条直线垂直,只需证明两直线的方向向量垂直,
则 a⊥b⇔a·b=0.
精品课件
研一研·题型解法、解题更高效
3.线面平行
用向量证明线面平行的方法主要有:
①证明直线的方向向量与平面的法向量垂直;
本
求 解
A由C1题的意长可.得,A→B·A→D=0,A→B·A→A1=4×5×cos
60°=10,
专 题 栏 目
因A→D为·A→A→AC1=1=3A×→B5+×B→cCos+6C0→°C=1=125A→. B+A→D+A→A1, 所以|A→C1|2=(A→B+A→D+A→A1)2
=|A→B|2+|A→D|2+|A→A1|2+2(A→B·A→D+A→B·A→A1+A→D·A→A1)
C1(0,0,0),D(1,1,2).
精品课件
研一研·题型解法、解题更高效
(1)由于B→C1=(0,-2,-2),A→B1=(-2,2,-2), 因此B→C1·A→B1=0-4+4=0,因此B→C1⊥A→B1,
故 BC1⊥AB1.
本 专 题
(2)取 A1C 的中点 E,连接 DE,由于 E(1,0,1), 所以E→D=(0,1,1),又B→C1=(0,-2,-2),
精品课件
研一研·题型解法、解题更高效
栏 目
所以E→D=-12B→C1,又 ED 和 BC1 不共线,所以 ED∥BC1,
又 DE⊂平面 CA1D,BC1⊄平面 CA1D,
故 BC1∥平面 CA1D.
精品课件
研一研·题型解法、解题更高效
跟踪训练 2 如图,在三棱柱 ABC—A1B1C1 中,侧面 AA1C1C⊥底面 ABC,AA1=A1C =AC=2,AB=BC,且 AB⊥BC,O 为
=42+32+52+20+10+125=85.
所以 AC1 的长为 85.
精品课件
研一研·题型解法、解题更高效
题型二 利用空间向量证明空间中的位置关系
向量作为工具来研究几何,真正把几何的形与代数中
的数实现了有机结合;给立体几何的研究带来了极大的便
利,利用空间向量可以方便地论证空间中的一些线面位置
本 关系,如线面平行、线面垂直、面面平行、面面垂直等.用
本 专 题 栏 目
精品课件
画一画·知识网络、结构更完善
本 专 题 栏 目
精品课件
研一研·题型解法、解题更高效
题型一 空间向量及其运算
空间向量的运算主要包括空间向量的线性运算、数量
本 专
积运算以及空间向量的坐标运算.空间向量的运算法则、
题 运算律与平面向量基本一致.
栏
目
精品课件
研一研·题型解法、解题更高效
又由题意可知,平面 AA1C1C⊥平面 ABC,交线为 AC, 且 A1O⊂平面 AA1C1C,所精以品课A件1O⊥平面 ABC.
研一研·题型解法、解题更高效
(2)解 如图,以 O 为原点,OB,OC,OA1 所在直线分别为 x,y,z 轴建立空间直角坐标 系.
本 由题意可知,A1A=A1C=AC=2,
5.面面平行
①证明两个平面的法向量平行(即是共线向量);
本
专
②转化为线面平行、线线平行问题.
题 6.面面垂直
栏
目
①证明两个平面的法向量互相垂直;
②转化为线面垂直、线线垂直问题.
精品课件
研一研·题型解法、解题更高效
例 2 如图,已知在直三棱柱 ABC—A1B1C1 中,AC⊥BC,D 为 AB 的中点,AC=BC