基于开关电源设计的报告总结

合集下载

开关电源实验报告

开关电源实验报告

开关电源实验报告一开关电源原理如下图30W开关电源电路图所示,市电先经过由电容CX1和滤波电感LF1A组成的滤波电路后,再经过型号为KBP210的整流桥BD1和C1组成的整流电路,输出直流电。

直流电又经过由UC3842和2N60等元器件组成的高频逆变电路后,变成高频的交流电,经高频变压器输出为低电压的高频交流电。

高频交流经肖基特二极管SR1060后变为脉动的直流电,最后经滤波电容和滤波电感变为我们想要的直流电输出。

MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。

(2)输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

(3)整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

1.2功率变换电路(1)MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

(2)常见的原理图:(3)工作原理R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。

在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。

开关电源的设计实验报告

开关电源的设计实验报告

河西学院物理与机电工程学院综合设计实验开关电源的设计实验报告学院:物理与机电工程学院专业:电子信息科学与技术:侯涛日期:2016年4月12日绪论开关电源是近年来应用非常广泛的一种新式电源,它具有体积小、重量轻、耗能低、使用方便等优点,在邮电通信、航空航天、仪器仪表、工业设备、医疗器械、家用电器等领域应用效果显著。

一、开关电源的概念和分类电源是将各种能源转换成为用电设备所需电能的装置,是所有靠电能工作的装置的动力源泉。

1.开关电源的概念电是工业的动力,是人类生活的源泉。

电源是产生电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。

我们用的电,一般都需要经过转换才能适合使用的需求,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。

按照电子理论,所谓AC/DC就是交流转换为直流;AC/AC称为交流转换为交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变直流。

为了达到转换的目的,电源变换的方法是多样的。

自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。

所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。

在转换时,以自动控制稳定输出并有各种保护环节的电路,称为开关电源。

开关电源在转换过程中,用高频变压器隔离称之为离线式开关变换器,常用的AC/DC 变换器就是离线式变换器。

开关电源通常由六大部分组成,如图所示。

第一部分是输入电路,它包含有低通滤波和一次整流环节。

220V交流电直接经低通滤波和桥式整流后得到未稳压的直流电压Vi,此电压送到第二部分进行功率因数校正,其目的是提高功率因数,它的形式是保持输入电流与输入电压同相。

功率因数校正的方法有无源功率因数校正和有源功率因数校正两种。

所谓有源功率因数校正,是指电源在校正过程中常采用三极管和集成电路。

开关电源电路常采用有源功率因数校正。

直流开关电源实习报告

直流开关电源实习报告

实习报告一、实习背景随着电子技术的不断发展,直流开关电源在各种电子设备中的应用越来越广泛。

为了更好地了解直流开关电源的工作原理和设计方法,提高自己的实际操作能力,我参加了为期两周的直流开关电源实习。

二、实习内容实习期间,我主要进行了以下几个方面的工作:1. 学习直流开关电源的基本原理和工作特性:通过阅读相关资料和请教工程师,我了解了直流开关电源的组成、工作原理以及各种参数的含义,为后续的实际操作打下了基础。

2. 分析实际电路:实习过程中,我分析了多个实际电路,掌握了不同电路元件的功能和作用,以及它们在电路中的连接方式。

3. 设计电路:在工程师的指导下,我独立设计了一个简单的直流开关电源电路,并完成了电路图的绘制。

4. 搭建电路:我参与了电路的搭建工作,学会了如何正确连接各种元件,并掌握了调试电路的方法。

5. 测试与优化:通过实测数据,分析了电路的性能指标,发现存在的问题,并在工程师的指导下进行了优化。

三、实习收获1. 理论知识:通过实习,我对直流开关电源的理论知识有了更深入的了解,掌握了开关电源的设计方法和注意事项。

2. 实际操作能力:在实习过程中,我参与了电路的搭建和调试,提高了自己的实际操作能力。

3. 团队协作:在实习过程中,我与同学们共同完成任务,学会了团队协作,提高了沟通与协作能力。

4. 问题解决能力:在电路设计和优化过程中,我学会了如何分析问题、解决问题,提高了自己的独立思考能力。

四、实习总结通过本次实习,我对直流开关电源的设计和应用有了更深入的了解,提高了自己的实际操作能力和团队协作能力。

同时,我也认识到自己在理论知识和技术水平上的不足,今后将继续努力学习,提高自己的综合素质,为将来的工作打下坚实的基础。

(实习报告完)。

基于TOP222Y的单片开关电源的设计

基于TOP222Y的单片开关电源的设计

采用PWM控制器和MOSFET功率开关一体化的集成控制芯片是新一代开关电源设计的重要特点和趋势。

本文介绍了三端PWM/MOSFET二合一集成控制器件TOPSwitch 系列的工作原理及其在开关电源设计中的应用,同时也介绍了与TOPSwitch相匹配的高频功率变压器的设计。

其中, PWM控制器和变压器的设计是开关电源设计的关键。

在研究了单片开关电源的工作原理基础之上,采用TOP222Y芯片设计了输出为5V/2A 小功率单片式开关电源电路及高频变压器;并对电路中的一些元器件的参数进行了计算和选择。

该电路基本能满足设计的要求。

通过毕业设计,即巩固了所学的知识,又得到了一次实践的锻炼。

关键词:开关电源、脉宽调制、TOP222Y第一章序言 (1)1.1 开关电源的发展 (1)1.2 单片开关电源芯片及应用 (1)第二章单片开关电源工作原理 (3)2.1 开关电源的工作原理 (3)2.2 单片开关电源的工作原理 (4)第三章基于TOP222Y的单片开关电源的设计 (6)3.1 TOP222Y的工作原理 (6)3.2 基于TOP222Y芯片单端反激式开关电源的设计 (8)第四章单片开关电源电路的元件选择与参数计算 (11)4.1 整流滤波电路元件的选择 (11)4.2 PC817的内部结构及工作原理 (11)4.3 TL431的工作原理 (11)4.4 PC817光电耦合器与TL431外围器件参数计算 (12)4.5 TL431的取样电阻计算 (12)第五章高频变压器设计 (14)5.1 变压器的分类 (14)5.2 高频变压器的工作原理 (14)5.2 高频变压器设计方法 (14)5.3 高频变压器的绕制 (15)第六章总结 (17)第一章序言1.1 开关电源的发展开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

开关电源实训报告

开关电源实训报告

7.5.2 三端单片开关 集成稳压器及其应用 一、TOP Switch-Ⅱ简介: - 简介: (TOP221∼TOP227) ∼ )
三端器件 DIP-8或SMT-8封装 - 或 - 封装
二、TOP Switch-Ⅱ工作原理: - 工作原理:
详见P.215∼216 ∼ 详见
的应用电路: 三、TOP Switch的应用电路: 的应用电路
4.2000年11月 年 月
四代
TOPSwitch–GX
型号: 型号:TOP242∼249 ∼ 封装: 封装: TO–220–7C 有6个引脚 个引脚 即X L C S F D X(设定极限电流端) (设定极限电流端) 相当于TOPSwitch–FX的M端分为 L(线路检测端) 相当于 的 端分为 (线路检测端) 系列: ※Tiny Switch系列: 系列 将控制IC和 功率管集成于一体, 将控制 和MOSFET功率管集成于一体,依负载自 功率管集成于一体 动调整开关频率,提高效率, 个引脚。 动调整开关频率,提高效率, 4个引脚。 个引脚 D-功率管漏极 - BP-旁路(外接滤波电容) -旁路(外接滤波电容) S-源极 - EN-使能控制端(高电平时 导通……) -使能控制端(高电平时MOSFET导通 导通 ) 型号: 型号:TNY253∼255 ∼ ※ Tiny Switch–Ⅱ系列: Ⅱ系列: TNY264P/G TNY266P/G∼ TNY268P/G ∼ 实际引出端有7个 实际引出端有 个
2.1994年二代 年二代
TOPSwitchⅡ Ⅱ
型号: 型号: TOP221∼227 ∼ 开关频率: 开关频率:100KHz 工作电压: 工作电压:85V∼265V ∼ 封装: 封装: TO–220 DIP8 SMD–8 (TOP221Y ∼227Y) ) (TOP221P ∼224P) ) (TOP221G ∼227G) )

一个200W开关电源的功率级设计总结

一个200W开关电源的功率级设计总结

200W 开关电源的功率级设计总结1. 导言新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。

这篇文章描述了一个用于液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低于1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。

这些特征对于将要应用的场合是不可或缺的。

2. 电路描述和设计设计指标如下∶·交流输入电压∶85-265VRMS·功率因素∶> 0.95·总输出功率∶200W·三个直流输出∶5V/0.3A12V/5A24V/6A电源分为两个单元。

第一电源集成一个功率因素校正电路,内置在FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个24V/6A 和12V/5A 的输出。

这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。

在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。

这种变换器能产生一个稳压的24V 输出。

12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。

这个附加模块改善了12V输出校正,减少交叉调节问题,这对于多重输出正激变换器总是一个问题,当负载大范围变化时。

附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基于飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。

这个电源工作在待机模式下,它的无负载功耗低于500mW。

因此,即使对于省电模式下小负载情况,也有可能满足1W待机功耗的限制。

为了简洁,设计计算和电路图将在每个模组中单独给出。

最终完成的示意图和布局,可在附录中查到。

3. 功率因素校正本节回顾了功率因素校正电路的电源选择。

用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。

开关电源实验报告总结

开关电源实验报告总结

开关电源实验报告总结我做这个开关电源实验啊,那可真是有一肚子话想说。

刚开始的时候,我瞅着那些个实验器材,就跟瞅着一堆外星物件似的。

那些电线啊,乱得像我早上刚睡醒的头发,缠缠绕绕的。

电源盒子呢,方方正正的,黑不溜秋,透着一股神秘劲儿,感觉它随时能给我来个下马威。

我就这么硬着头皮开始摆弄。

旁边有个同学,那家伙,看着挺机灵的,我就忍不住问他:“哎,你看这线咋接啊?我这眼睛都看花了。

”他眼睛滴溜溜一转,说:“我也不太清楚呢,咱一块儿琢磨琢磨呗。

”得嘞,我俩就凑一块儿,对着那电路图看了又看。

这电路图啊,密密麻麻全是线条和符号,我感觉我不是在看电路图,是在看一幅复杂得要命的藏宝图。

那一会儿,实验室里安静得很,就偶尔有仪器发出的轻微嗡嗡声,像蚊子在耳边叫,搅得人心烦意乱。

我想着这开关电源到底是个啥原理呢?就像我想弄明白为啥我家那电闸有时候跳有时候不跳一样。

我一边想着,一边手里拿着电线小心翼翼地往接口上怼。

每怼一下,心里都跟敲小鼓似的,生怕一下子冒出个火花啥的把我给吓个半死。

好不容易把线路接得差不多了,我按下开关的时候,手都有点抖。

眼睛死死盯着电源,心里想:“你可千万给点面子啊,别给我整出啥幺蛾子。

”你还别说,电源灯亮了,那一刻,我心里就像一下子开了花似的,乐开了花啊。

我扭头就对那同学说:“成了成了!”那同学也咧着嘴笑,露出两颗大白牙,眼睛眯成了缝儿。

可是呢,这高兴没持续多久。

我发现电源输出不太稳定,这就像你刚觉得抓到了救命稻草,结果发现这稻草是根烂的。

我又开始各种检查,这时候感觉那些电线和零件都在跟我作对。

我皱着眉头,嘴里嘟囔着:“你们这些个小玩意儿,咋就不能乖乖听话呢?”后来经过一番折腾,终于把问题给解决了。

这整个实验过程啊,就像坐过山车似的,一会儿上一会儿下。

我从这个实验里可算是明白了,这开关电源看着简单,里面的门道可真不少。

这就跟做人一样,看着普普通通的一个人,肚子里指不定藏着多少本事和秘密呢。

基于单片机控制的开关电源及其设计

基于单片机控制的开关电源及其设计

基于单片机控制的开关电源及其设计
开关电源是一种广泛应用于电子设备中的电源,它具有高效率、稳定
性好、体积小等优点。

基于单片机控制的开关电源则是在传统开关电源的
基础上结合了单片机的控制功能,可以实现更精确、智能的控制。

首先,输入滤波模块用于滤除输入电源中的高频噪声,以保证后续电
路正常工作。

整流滤波模块则将输入电源的交流信号经过整流后变为直流
信号,并进行滤波以减小波动。

接下来,开关变换模块是整个开关电源的关键。

该模块中包含了主要
的开关电源拓扑结构,如Buck、Boost、Buck-Boost等。

通过开关元件的
开关动作,实现电源输入电压到输出电压的变换。

在设计中,需要考虑开
关频率、开关管的选择以及辅助器件的设计。

输出滤波和稳压控制模块用于进一步滤除开关变换模块输出电压中的
高频噪声,并稳定输出电压。

可以使用电容、电感等元件来实现滤波功能,并通过反馈控制实现稳压功能。

最后,单片机控制模块通过采集输入电压、输出电压等信号,实时监
控电源的工作状态,并根据需要进行调节。

比如,可以通过PWM信号控制
开关元件的开关频率,从而实现输出电压的调节。

同时,单片机还可以实
现过压、过流、过温等保护功能,提高开关电源的安全性和可靠性。

总结起来,基于单片机控制的开关电源通过单片机的控制功能,实现
了对开关电源的精确控制。

在设计中需要注重滤波和稳压控制模块的性能
选择和设计,同时合理选择开关变换模块的拓扑结构和开关元件,以确保
开关电源的效率和稳定性。

开关电源 实验报告

开关电源 实验报告

开关电源实验报告开关电源实验报告引言:开关电源是一种常见的电源供应器件,其工作原理是通过开关管的开关动作,将输入电压转换为高频脉冲信号,再经过滤波和稳压电路得到稳定的输出电压。

本实验旨在通过搭建开关电源电路并进行测试,探究其工作原理和性能特点。

一、实验目的本实验旨在:1. 理解开关电源的工作原理;2. 掌握开关电源电路的搭建方法;3. 测试开关电源的输出电压、效率等性能指标。

二、实验器材与原理1. 实验器材:- 开关电源模块- 电压表- 电流表- 变压器- 电阻、电容等元件2. 实验原理:开关电源的核心是开关管,其工作原理是通过开关管的开关动作,将输入电压转换为高频脉冲信号,再经过滤波和稳压电路得到稳定的输出电压。

开关电源的主要特点是高效率、体积小、重量轻、稳定性好等。

三、实验步骤与结果1. 搭建开关电源电路:根据实验器材提供的原理图,搭建开关电源电路。

连接好输入电源和输出负载后,确保电路连接正确。

2. 测试输出电压:将电压表接在开关电源的输出端,调节输入电压,记录不同输入电压下的输出电压。

根据记录的数据,绘制输入电压与输出电压的关系曲线。

3. 测试效率:将电流表接在开关电源的输入端,记录输入电压和输入电流。

根据输入功率和输出功率的关系,计算开关电源的效率。

通过多次测试,得出不同输入电压下的效率曲线。

4. 分析实验结果:根据实验数据和曲线图,分析开关电源的输出电压与输入电压的关系,以及效率与输入电压的关系。

讨论开关电源的性能特点和应用范围。

四、实验结论通过本实验,我们得出以下结论:1. 开关电源能够将输入电压转换为稳定的输出电压,具有较高的效率和稳定性;2. 开关电源的输出电压与输入电压呈线性关系,可以通过调节输入电压来控制输出电压;3. 开关电源的效率随着输入电压的增加而增加,但过高的输入电压可能导致效率下降。

五、实验总结通过本实验,我们深入了解了开关电源的工作原理和性能特点。

开关电源作为一种常见的电源供应器件,在电子设备中得到广泛应用。

开关电源设计报告

开关电源设计报告

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。

前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。

总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。

考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。

其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。

将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。

由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。

在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。

S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。

36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。

开关电源实验报告

开关电源实验报告

开关电源实验报告开关电源实验报告一、引言开关电源是一种电能转换设备,通过将输入电源的直流电压转换为所需的输出电压,广泛应用于各种电子设备中。

本实验旨在通过实际搭建开关电源电路并进行测试,探究开关电源的工作原理和性能。

二、实验原理开关电源主要由输入滤波电路、整流电路、功率开关器件、变压器、输出滤波电路和反馈控制电路等组成。

其中,输入滤波电路用于滤除输入电源中的高频噪声,整流电路将交流电转换为直流电,功率开关器件实现高效的开关操作,变压器用于降低或升高电压,输出滤波电路用于去除输出电压中的纹波,反馈控制电路用于稳定输出电压。

三、实验步骤1. 按照实验指导书提供的电路图,搭建开关电源电路。

2. 将输入电压接入电路,注意接线的正确性和安全性。

3. 打开电源,调节电压和电流的设定值。

4. 测量输入电压、输出电压和输出电流的数值,并记录下来。

5. 根据实验数据,计算开关电源的效率和纹波系数。

四、实验结果与分析通过实验测量得到的数据如下:输入电压:12V输出电压:5V输出电流:2A根据实验数据,可以计算开关电源的效率和纹波系数。

效率可以通过输出功率与输入功率的比值来计算,纹波系数可以通过输出电压的纹波值与输出电压的平均值的比值来计算。

通过计算得到的结果可以评估开关电源的性能。

五、实验心得通过本次实验,我对开关电源的工作原理和性能有了更深入的了解。

在实际搭建电路的过程中,我注意到了电路连接的重要性,一旦接线错误可能导致电路无法正常工作或者安全事故的发生。

在测量数据时,我也学会了使用合适的仪器和方法,确保测量结果的准确性。

六、结论本实验通过搭建开关电源电路并进行测试,深入探究了开关电源的工作原理和性能。

通过实验数据的分析,可以评估开关电源的效率和纹波系数,为进一步优化开关电源设计提供了参考依据。

通过实验,我也提高了实际动手操作和测量技巧,加深了对开关电源的理论知识的理解。

基于51单片机控制的开关电源设计

基于51单片机控制的开关电源设计

基于51单片机控制的开关电源设计一、引言开关电源是一种将交流电转换为直流电的电子设备,广泛应用于各个领域。

本文将以基于51单片机控制的开关电源设计为题,介绍设计的原理和实现过程。

二、设计原理开关电源的设计主要包括输入电路、滤波电路、变压器、整流电路、滤波电路、稳压电路以及控制电路。

其中,控制电路起到控制和调节输出电压的作用。

在本设计中,我们采用了51单片机作为控制电路的核心,通过编程控制电路的开关状态,实现对输出电压的精准调节。

三、设计过程1. 输入电路的设计:输入电路主要用于将交流电转换为直流电,并对电压进行稳压处理。

我们选择了整流桥和滤波电容作为输入电路的核心元件,通过整流和滤波,将交流电转换为平稳的直流电。

2. 变压器的设计:变压器是开关电源的重要组成部分,用于提高或降低输入电压的大小。

我们根据实际需求选择合适的变压器,使得输出电压与输入电压之间满足所需的关系。

3. 整流电路的设计:整流电路用于将输入电压转换为脉冲电压,我们选择了二极管桥整流电路,通过将输入电压进行整流,得到脉冲电压。

4. 控制电路的设计:控制电路是整个开关电源设计中最关键的部分,我们选择了51单片机作为控制电路的核心。

通过编程,我们可以控制开关管的开关状态,从而实现对输出电压的调节和稳定。

5. 输出电路的设计:输出电路主要用于输出稳定的直流电压。

我们选择了稳压电路和滤波电容作为输出电路的核心元件,通过稳压和滤波,得到稳定的输出电压。

四、实现效果通过以上的设计过程,我们成功实现了基于51单片机控制的开关电源。

通过编程控制,我们可以实现对输出电压的精确调节和稳定控制。

该开关电源具有输出电压稳定、效率高、响应速度快等特点,适用于各种电子设备的供电需求。

五、总结本文以基于51单片机控制的开关电源设计为题,介绍了设计的原理和实现过程。

通过该设计,我们可以实现对输出电压的精确调节和稳定控制,满足各种电子设备的供电需求。

希望本文能为读者提供有关开关电源设计的参考和借鉴,同时也希望读者能够通过自己的努力和创新,设计出更加高效和稳定的开关电源。

开关电源 实验报告

开关电源 实验报告

开关电源实验报告
《开关电源实验报告》
实验目的:通过实验,掌握开关电源的工作原理和基本特性,了解开关电源的应用和优势。

实验器材:开关电源、示波器、电阻、电容、电感等元件。

实验原理:开关电源是一种能够将输入电压转换成稳定输出电压的电源,其工作原理是通过开关管的开关控制,将输入电压进行高频开关,并通过变压器、整流器、滤波器等电路将其转换成稳定的输出电压。

实验步骤:
1. 连接开关电源和示波器,设置合适的输入电压和负载电阻。

2. 调节示波器,观察输入电压和输出电压的波形,测量其幅值和频率。

3. 更改负载电阻,观察输出电压的稳定性和响应速度。

4. 探究开关电源在不同负载条件下的工作特性,比较其与线性电源的优势和劣势。

实验结果:通过实验,我们观察到开关电源在不同输入电压和负载条件下,能够稳定地输出所需的电压,并且具有高效率、小体积、轻质量等优势。

同时,我们也发现在负载变化较大时,开关电源的响应速度更快,稳定性更好,适用范围更广。

实验结论:开关电源是一种高效、稳定、适应性强的电源,具有广泛的应用前景。

通过本次实验,我们对开关电源的工作原理和特性有了更深入的了解,为今后的电子电路设计和实际应用提供了重要参考。

通过本次实验,我们对开关电源的工作原理和特性有了更深入的了解,为今后
的电子电路设计和实际应用提供了重要参考。

基于UC3842芯片控制的60W反激开关电源的制作报告

基于UC3842芯片控制的60W反激开关电源的制作报告

中山火炬职业技术学院开关电源项目考核报告专业班级:电信092班姓名:陈楚洁学号: 00指导老师:何薇薇电子工程系2011 年1 月7 日二、项目内容及要求基于UC3842芯片控制的60W反激开关电源的制作,输入电源电压:220V±15%,输出电流5A,输出电压12V,输出功率60W,开关频率60K,占空比最大为45%。

三、项目电路图四、项目各部分电路的工作原理(输入EMI滤波电路、整流滤波电路、反激变换器、输出整流滤波电路、UC3842控制电路、反馈电路)输入EMI滤波电路的工作原理:该电路在输入端首先由热敏电阻R2来抑制浪涌电流,再由保险管F2和压敏电阻ZR1来保护电路,ZR1不仅起到过压保护的作用,更为电路吸收了尖峰电压,差模电容C2、C3和差模电感L2构成差模滤波器滤除差模干扰信号,共模电容C4、C5和共模电感L1构成共模滤波器滤除共模干扰信号。

整流滤波电路的工作原理:该部分电路采用全桥整流,正半周时,回路为:C3+——D1——D3——C3-;负半周时,回路为:C3-——D2——D4——C3+。

反激变换器的工作原理:在该部分电路中,变压器T1的原边电感工作时,副边不工作;正半周时,Q2导通,原边电感极性上正下负,此时回路为:C3+——Np——Q1——C3-,D8不导通;负半周时,Q1关断,副边电感极性上正下负,此时回路为:NS——D8——L3——负载,原边辅助绕组作为辅助电源给UC3842提供16V的启动电压。

输出整流滤波电路的工作原理:该电路由二极管D8构成半波整流电路,整流后再用电容C10、C11、C12和电感L3进行整流。

UC3842控制电路的工作原理:该电路首先由电阻R3对电源进行限流从而给芯片提供16V 的启动电压,由芯片UC3842来控制占空比,稳定输出。

反馈电路的工作原理:该电路采用精密基准源TL431构成误差电压放大器,通过线性光耦PC817进行精确的调整,从而取样输出信号,当取样信号的电压值大于TL431内部基准电压2.5V时,TL431导通,因此线性光耦PC817也导通,从而将信号传送到UC3842,从而稳定输出;当取样信号的电压值小于TL431内部基准电压2.5V时,TL431关断,电路不能起到稳压作用。

开关电源设计报告

开关电源设计报告

开关电源设计报告一、引言开关电源是一种能将交流电转换为稳定直流电的电源系统,其重要性在于它可以提供各种电子设备所需的不同电压和电流。

本设计报告旨在介绍一种基于开关电源的设计方案,以满足特定要求的电子设备的电源需求。

二、设计目标本设计的目标是设计一种能够提供稳定电压和电流输出的开关电源,以满足特定要求的电子设备的供电需求。

具体要求如下:1.输出电压范围:12V-24V可调;2.输出电流范围:0.5A-2A可调;3.输出电压稳定度:小于1%;4.输出电流稳定度:小于1%;5.效率:大于80%。

三、设计方案为满足上述需求,本设计选择了 Buck 变换器作为开关电源的拓扑结构。

Buck 变换器是一种非绝缘型降压式开关电源,其输出电压小于输入电压。

1.元器件选择(1)功率开关管:选择具有较低导通和开通损耗的MOSFET作为功率开关管。

(2)电感:选择合适的电感,以确保在开关电源工作时,电感上的输出电流变化平滑。

(3)二极管:选择具有较低正向压降的二极管,以降低二极管的功耗。

(4)电容:选择合适的电容,以滤波输出电压,稳定电源。

2.控制策略本设计选择了固定频率脉冲宽度调制(PWM)控制策略,通过控制MOSFET的导通与开通时间,来调节输出电压。

PWM控制器会根据输出电压与设定电压之间的差异调整功率开关管的工作状态,从而实现输出电压的稳定。

3.反馈回路为了实现开关电源的稳定输出,本设计引入了反馈回路。

通过采集输出电压,并与设定电压进行比较,从而控制PWM控制器的工作,维持稳定输出。

四、设计结果及性能测试基于上述设计方案,进行了原型设计和性能测试,得到了以下结果:1.输出电压范围:12V-24V,可调。

2.输出电流范围:0.5A-2A,可调。

3.输出电压稳定度:小于1%。

4.输出电流稳定度:小于1%。

5.效率:大于80%。

通过与实际要求进行对比,设计结果基本满足了我们的需求。

五、总结本设计报告详细介绍了一种基于开关电源的设计方案,满足特定要求的电子设备的电源需求。

开关电源专业实习报告

开关电源专业实习报告

一、实习单位及实习时间实习单位:XX电子科技有限公司实习时间:2023年7月1日至2023年9月30日二、实习目的与意义本次实习旨在将所学理论知识与实际工作相结合,提高自己在开关电源领域的专业技能和实践能力。

通过在XX电子科技有限公司的实习,我希望能够深入了解开关电源的设计、生产、测试和维护等各个环节,为今后的工作打下坚实的基础。

三、实习内容在实习期间,我主要参与了以下工作内容:1. 开关电源设计- 学习了开关电源的基本原理和设计方法,了解了各种开关电源拓扑结构的特点和应用场景。

- 参与了公司一款新产品的开关电源设计,从电路原理图设计、PCB布局布线到样机制作,全程参与了设计过程。

- 在设计过程中,学习了如何优化电路设计,提高电源效率,降低功耗和成本。

2. 开关电源生产- 参观了公司的生产线,了解了开关电源的生产流程,包括原材料采购、焊接、组装、老化测试等环节。

- 学习了开关电源生产过程中常见的故障和解决方法,掌握了生产线的操作技能。

3. 开关电源测试- 参与了开关电源的测试工作,学习了各种测试仪器和测试方法,如万用表、示波器、负载箱等。

- 通过测试,掌握了开关电源的各项性能指标,如输出电压、电流、效率、纹波等。

4. 开关电源维护- 学习了开关电源的维护保养知识,了解了如何进行日常维护和故障排除。

- 参与了公司开关电源的定期检查和维护工作,积累了维护经验。

四、实习收获通过本次实习,我收获颇丰:1. 专业技能提升- 熟练掌握了开关电源的设计、生产、测试和维护等基本技能。

- 能够独立完成开关电源的设计工作,并优化设计,提高效率。

2. 团队协作能力- 在实习过程中,与同事积极沟通,共同解决问题,提高了团队协作能力。

3. 实践经验积累- 通过实际操作,将理论知识与实际工作相结合,积累了宝贵的实践经验。

4. 职业素养提升- 在实习过程中,严格遵守公司规章制度,认真负责地完成工作任务,提高了自己的职业素养。

毕业设计 基于IGBT的大功率开关电源设计

毕业设计 基于IGBT的大功率开关电源设计

1 前言电源是各类电子设备的重要组成部分,没有一部高质量的电源,难以保证电子设备的正常工作,由于高频开关电源在重量、体积和效率等方面是线性电源无可比拟,因此在许多领域中得到广泛应用。

线性电源和开关电源各有自己的特点,线性电源的特点是稳定性好、可靠性高、输出电压精度高、输出纹波电压小。

它的不足之处是要求采用工频变压器和滤波器,它们的重量和体积都很大,并且调整管的功耗较大,使得电源的效率大大降低。

相对于线性电源来说,开关电源具有效率高,可靠性和稳定性较好,体积小,重量轻的优点,它对供电电网电压的波动不敏感,在电网电压波动较大的情况下,仍能维持较稳定的输出,因此,开关电源更能满足现代电子设备的要求。

近些年来,由于新型功率器件和开关集成稳压器的出现,以及电力电子变换技术的进步,使开关电源又有了长足发展。

绝缘栅双极型晶体管IGBT是由MOSFET和双极型晶体管复合而成的一种器件,其输入极为MOSFET,输出极为PNP晶体管,因此,可以把其看作是MOS输入的达林顿管。

它融和了这两种器件的优点,既具有MOSFET器件驱动简单和快速的优点,又具有双极型器件容量大的优点,因而在现代电力电子技术中得到了越来越广泛的应用。

本系统采用门极可关断功率全控式电力电子器件IGBT,改变其负载两端的直流平均电压的调制方法采用脉冲调宽的方式,即主开关通断的周期保持不变,而每次通电时间可变。

由于IGBT工作在高频与高电压、大电流的条件下,使得它容易损坏,另外,电源作为系统的前级,因为受电网波动、雷击等原因的影响使得它所承受的应力更大,故IGBT 的可靠性直接关系到电源的可靠性。

因而对IGBT的保护设计是电源设计时需要重点考虑的一个环节。

本次设计采用富士公司的EXB841驱动芯片,利用其单电源,模块化,过流检测,保护软关断等优点,通过单片机控制实现大功率开关电源电路的设计。

2.1 方案论述2.1.1方案一图2.1 开关电源电路框图交流电压经过EMI滤波及整流滤波后,得到直流电压加到半桥变换器上,用TLP250去驱动功率IGBT管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计并制作所示的开关稳压电源。

R L
U 1=
开关稳压电源
题目要求变压器把市电转变为15V —21V ,正常情况下为18V ,经合适的变换器,输
出30—36V 步进可调的电压,其输出最大电流可达2A ,电压调整率及负载调整率小于2%,电源效率大于70%。

一、变换器的选择:
拿到这个题目,首先是要选择合适的变换器,已知输入电压15V -21V ,输出电压30-36,那么很明显要先择升压电路,以下是常用的具有升压功能的变换器:
1.单管反激式 :
o 1in D
U n
U D
=- 其中D 为开关PWM 的占空比
2.半桥逆变—整流电路
o in U nDU =
3.全桥逆变-整流
o 2in U nDU =
4.双Boost 电路
o 1in
U U D
=
-
5.Boost 电路
o 1in
U U D
=
-
6.Buck-Boost 变换电路
o 1in U U D =
-
以上这6种电路,只要选择合适的n和调整合适的占空比D就能得到输出电压大于输入电压的升压变换电路,以下是这几种电路的特点:
根据以上比较可以看出,该电路要求输出的电压较小,输出电流也较小,但对纹波指标要求较高,因此可选择比较容易控制,电路较简单的Boost升压变换电路。

二、控制方案选择
1.采用单片机产生PWM信号控制,控制比较灵活,可以通过键盘设定对输出电压步进调整,但电路设计比较复杂,需要对反馈回路和驱动电路单独进行设计,同时对软件的要求也比较高。

下面对该控制方案进行具体分析:
首先,在单片机的选择上,由于比赛要求,单片机选择肯定是TI公司的MSP430,但是就我们目前的学习来看,有两款可供选择,MSP430F149和MSP430G2553,MSP430G2553有20个引脚,IO口有16个,如果仅仅用来做显示液晶使用,IO端口还够用,但如果用来控制开关管,同时还要进行过流检测和电压电流保护功能,则IO端口需要用专用芯片扩展,如果选择MSP430F149,则该单片机有64个引脚,48个IO端口,对该电路来说,具有充足的IO口余量,但同时也增加了电路的复杂性,不过在理论上这两款单片机都是可行的。

其次,由于单片机不可能直接去控制开关管,所以需要单独的驱动电路,常用的驱动芯片有IR2302、IR2110、IR2104、IR2153
以下是这些芯片的电气特性:
从上表中对比可以看出,IR2110的在性能上优于IR2104和IR2302,但就电路而言,IR2110是14脚的,比8脚的IR2104和IR2302要复杂,若要设计比较好的电路,还是优先选择IR2110和IR2153
反馈网络设计:
对于反馈网络,有多种方案,(1)最简单的的就是直接让单片机通过AD对输出电压进行采样,再根据比例调控PWM占空比稳定输出电压,这种方法电路比较简单,但是PWM 调控是不是特别灵敏。

(2)用硬件辅助调控,方法是让单片机产生方波,通过运放组成的积分电路产生固定频率的三角波,通过比较器与反馈电压比较产生PWM去调节MOSFET管。

2.使用集成的开关电源控制芯片,常用的TI芯片有MC34063,UC3842,UC3843,UC3844,UC3845,SG3524,TL494,这些集成芯片一般都有过压,过流保护,采样电压输入等,只需少许的元件就能达到所要的设计要求,电路自然也就简单一些,但在电路的灵活性,可控性上局限性比较大,适用于小功率电路。

电流采样电路:电流采样一般是在电路上串联一小于1欧的电阻,通过测电阻两端的压差来确定电流的大小,常用的电流采样芯片有INA282,MNX471,INA270.
三、开关管的选择:
开关电源中的开关管一般选用MOSFET管,由于是作为开关使用,所以就要求MOSFET 管的频率高,导通时可载电流大,导通电阻小,常用的MOSFET管有IRF540,IRF3205,
四、二极管的选择
由于开关电源中的开关频率较高,所以二极管一般采用快速恢复二极管或肖特基二极管如ESAD85M-009,NF0526。

电路各部分选择好,在通过计算得到电感L,电容C,经过调试后应该就能达到题目要求。

相关文档
最新文档