集合基础训练题

合集下载

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案一、选择题1. 若集合A={x|x<5},B={x|x>3},则A∩B等于:A. {x|x<3}B. {x|x>5}C. {x|3<x<5}D. {x|x≤3}2. 对于集合A={1, 2, 3}和B={2, 3, 4},A∪B的元素个数是:A. 3B. 4C. 5D. 63. 若集合C={x|x是偶数},D={x|x是自然数},则C⊆D是:A. 真B. 假4. 集合E={x|x²-5x+6=0}的元素个数是:A. 0B. 1C. 2D. 35. 已知集合F={x|-2≤x≤2},G={x|x²-4=0},则F∩G等于:A. {-2}B. {2}C. {-2, 2}D. 空集二、填空题6. 集合H={x|x²-3x+2=0}的元素是_________。

7. 若集合I={x|x²-1=0},则I的补集(相对于实数集R)是_________。

8. 集合J={x|x>0且x<10}与K={x|x是整数}的交集J∩K包含的元素个数是_________。

9. 集合L={x|x²+4x+4=0}的元素个数是_________。

10. 若集合M={x|x²-4=0},则M的元素是_________。

三、解答题11. 给定集合N={1, 2, 3}和O={2, 3, 4},请找出N∩O,并说明其元素的个数。

12. 集合P={x|x²-4x+3=0},请列出集合P的所有元素。

13. 集合Q={x|x²+2x+1=0},请判断该集合是否为空集,并说明理由。

14. 若集合R={x|x²-6x+8=0},请找出R的补集(相对于实数集R)。

15. 集合S={x|x²-9=0},请列出S的元素,并计算S的元素个数。

答案:1. C2. B3. A4. C5. C6. 1, 27. 所有非-1和非1的实数8. 99. 010. -2, 211. N∩O={2, 3},元素个数为2。

集合测试题及答案

集合测试题及答案

集合测试题及答案一、选择题(每题2分,共10分)1. 集合A={1, 2, 3},B={2, 3, 4},那么A∩B(A与B的交集)是什么?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}2. 如果集合C={x | x是偶数},那么5属于C吗?A. 是B. 否3. 集合D={x | x是小于10的自然数},D的元素个数是多少?A. 5B. 9C. 10D. 无穷多4. 集合E={x | x^2 - 5x + 6 = 0},E中元素的个数是?A. 0B. 1C. 2D. 35. 对于集合F={1, 2, 3},其幂集P(F)包含多少个元素?A. 3B. 4C. 7D. 8二、填空题(每题3分,共15分)6. 集合A={x | x是小于5的正整数},用描述法表示A为________。

7. 集合G={1, 2, 3},那么G的补集(相对于自然数集N)是________。

8. 若集合H={x | x是大于1且小于10的整数},H的并集(与集合G={2, 3, 4, 5})是________。

三、解答题(每题5分,共20分)9. 给定集合I={1, 2, 3, 4, 5},J={4, 5, 6, 7},求I∪J(I与J的并集)。

10. 集合K={x | x是偶数且x<10},L={x | x是3的倍数且x<10},求K∩L(K与L的交集)。

11. 如果集合M={x | x是大于0且小于10的整数},求M的子集个数。

12. 集合N={x | x是2的幂次方},求N的前5个元素。

答案一、选择题1. B. {2, 3}2. B. 否3. C. 104. C. 25. D. 8二、填空题6. A={1, 2, 3, 4}7. G的补集是{x | x属于自然数集N且x≠1, 2, 3}8. H∪G={1, 2, 3, 4, 5}三、解答题9. I∪J={1, 2, 3, 4, 5, 6, 7}10. K∩L={6}11. M的子集个数是2^5=3212. N的前5个元素是{1, 2, 4, 8, 16}这份测试题覆盖了集合的基本操作,包括交集、并集、补集、子集和幂集等概念,适合作为集合理论的复习材料。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中的一个基本概念,它描述了一组对象的全体。

以下是一些集合的简单练习题及答案,适合初学者进行练习。

练习题1:确定以下集合的元素。

集合A = {x | x是小于10的正整数}答案: A = {1, 2, 3, 4, 5, 6, 7, 8, 9}练习题2:判断以下两个集合是否相等。

集合B = {x | x是偶数}集合C = {2, 4, 6, 8, 10, 12, ...}答案: B和C是相等的,因为集合B包含了所有偶数,而集合C也是所有偶数的集合。

练习题3:找出集合A和集合B的交集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B没有交集,即A ∩ B = ∅。

练习题4:找出集合A和集合B的并集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B的并集是A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

练习题5:确定集合A的补集,假设全集U包含所有小于等于10的整数。

集合A = {1, 3, 5, 7, 9}全集U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}答案: A的补集是A' = {0, 2, 4, 6, 8, 10}。

练习题6:如果集合D = {x | x是A和B的元素},求D。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: D = {2, 3}。

练习题7:如果集合E = {x | x不属于A且不属于B},求E。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: E = {1, 4}。

练习题8:确定集合A和集合B的差集。

集合A = {1, 2, 3, 4, 5}集合B = {3, 4, 5, 6}答案: A和B的差集是A - B = {1, 2}。

练习题9:假设集合F = {x | x是A的元素且不是B的元素},求F。

集合练习题带答案

集合练习题带答案

集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。

以下是一些集合的练习题以及相应的答案,供学生练习和参考。

练习题1:判断下列集合是否正确,并给出理由。

- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。

- B集合正确,它表示所有偶数的集合,满足集合的定义。

- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。

练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。

- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。

- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。

- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。

练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。

答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。

练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。

答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。

练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。

答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。

集合基础题训练

集合基础题训练

1、设集合A = {1, 2, 3},B = {x | x是A中的元素且x > 1},则集合B的元素个数为?A. 0B. 1C. 2D. 3(答案:C)2、若集合M = {x | x2 - x - 6 = 0},N = {x | ax - 1 = 0},且N是M的子集,则a的值为?A. 0或1/2B. 0或-1/2C. 0或1/3D. 0或-1/3(答案:D)3、设全集U = {1, 2, 3, 4, 5},集合A = {1, 2, 3},B = {3, 4},则A∩B的补集为?A. {1, 2}B. {1, 2, 5}C. {4, 5}D. {3, 4, 5}(答案:B)4、若集合A = {x | x = 2k, k ∈Z},B = {x | x = 3m, m ∈Z},则A∩B的元素特征是?A. 既是2的倍数又是3的倍数B. 仅是2的倍数C. 仅是3的倍数D. 既不是2的倍数也不是3的倍数(答案:A)5、设集合A = {x | -2 ≤x ≤5},B = {x | x > 3},则A∪B的元素范围是?A. -2 ≤x ≤5B. x > 3C. x ≥-2D. 以上都不对(答案:C)6、若集合A = {x | x是质数且小于10},则A中元素的个数为?A. 2B. 3C. 4D. 5(答案:C)7、设集合A = {x | x是等腰三角形},B = {x | x是等边三角形},则B与A的关系是?A. B = AB. B ⊆ AC. A ⊆ BD. B与A无关系(答案:B)8、若集合M = {x | x是平行四边形},N = {x | x是矩形},则N与M的关系是?A. N = MB. N ⊆ MC. M ⊆ ND. N与M是同一集合的不同表示(答案:B)。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。

下面是一些集合的简单练习题以及它们的答案。

练习题1:判断下列集合是否相等。

A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。

集合C和A不相等,因为集合中的元素不允许重复。

练习题2:求集合A和集合B的并集。

A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。

练习题3:求集合A和集合B的交集。

A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。

练习题4:求集合A和集合B的差集。

A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。

练习题5:判断下列集合是否为子集。

A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。

练习题6:求集合A和集合B的补集。

A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。

练习题7:判断下列集合是否为幂集。

A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。

集合B的幂集是{∅, {1}, {2}, {1, 2}}。

集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。

练习题8:求集合A和集合B的笛卡尔积。

A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。

练习题9:求集合A的对称差集与集合B。

集合综合测试题(基础、好用、值得收藏)

集合综合测试题(基础、好用、值得收藏)

集合综合测试题一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为() A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}2.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是图中的()2.设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=() A.(1,2) B.[1,2] C.[1,2) D.(1,2]图1-2-14.已知全集U=R,集合A={1,2,3,4,5},B={x∈R|x≥2},则图1-2-1中阴影部分所表示的集合为()A.{0,1} B.{1}C.{1,2} D.{0,1,2}5.(2013·韶关模拟)已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.N C.I D.∅二、填空题6.(2013·梅州模拟)设全集U={-1,0,1,2,3,4},∁U M={-1,1},N={0,1,2,3},则集合M∩N=________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________.8.(2013·中山模拟)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪∁R B=R,则实数a 的取值范围是________.三、解答题9.(2013·广州模拟)已知函数f(x)=x2-x-2的定义域集合是A,函数g(x)=lg[(x-a)(x -a-1)]的定义域集合是B.(1)求集合A、B;(2)若A∩B=A,求实数a的取值范围.10.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.11.(2013·佛山调研)集合A={(x,y)|y=-x2+mx-1},B={(x,y)|y=3-x,0≤x≤3},若A∩B是只有一个元素的集合,求实数m的取值范围.解析及答案一、选择题1.【解析】∵∁U A={0,4},B={2,4},∴(∁U A)∪B={0,2,4}.【答案】 C2.【解析】∵M={-1,0,1},N={-1,0},∴N M U.【答案】 B3.【解析】由题意知:B={x|x-1>0}={x|x>1},又∵A={x|-1≤x≤2},∴A∩B={x|1<x≤2}.【答案】 D4.【解析】图中阴影部分所表示的集合为A∩∁U B,又∁U B={x|x<2},A={1,2,3,4,5},∴A ∩∁U B ={1}.【答案】 B5.【解析】 由N ∩∁I M =∅知N ⊆M ,又M ≠N ,∴M ∪N =M .【答案】 A二、填空题6.【解析】 ∵∁U M ={-1,1},∴M ={0,2,3,4},∴M ∩N ={0,2,3}.【答案】 {0,2,3}7.【解析】 ∵∁U A ={1,2},∴A ={0,3},又A ={x ∈U |x 2+mx =0}={0,-m },∴-m =3,∴m =-3.【答案】 -38.【解析】 ∁R B ={x |x <1,或x >2},要使A ∪∁R B =R ,则a ≥2.【答案】 [2,+∞)三、解答题9.【解】 (1)由x 2-x -2≥0⇔x ≤-1或x ≥2,所以A ={x |x ≤-1或x ≥2}.由(x -a )(x -a -1)>0得x <a 或x >a +1,所以B ={x |x <a 或x >a +1}.(2)由A ∩B =A 知A ⊆B ,得⎩⎨⎧a >-1,a +1<2, 所以-1<a <1,所以实数a 的取值范围是(-1,1).10.【解】 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎨⎧m -2=0,m +2≥3. ∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3.因此实数m 的取值范围是m >5或m <-3.11.【解】 集合A 表示抛物线上的点,抛物线y =-x 2+mx -1开口向下且过点(0,-1).集合B 表示线段上的点,要使A ∩B 只有一个元素,则线段与抛物线的位置关系有以下两种,如图:由图(1)知,在函数f (x )=-x 2+mx -1中,只要f (3)≥0即可,即m ≥103.由图(2)知,抛物线与直线在x ∈[0,3]上相切,则⎩⎨⎧y =-x 2+mx -1,y =3-x ⇒x 2-(m +1)x +4=0, 由Δ=(m +1)2-16=0,∴m =3或m =-5,当m =3时,切点(2,1)适合;当m =-5时,切点(-2,5)舍去.∴m =3或m ≥103.。

集合简单的练习题

集合简单的练习题

集合简单的练习题题目一:集合的定义与性质1. 假设集合A={1,2,3,4,5},请列举出A的所有子集。

2. 用集合的形式表示以下集合:a) 所有小于10的正整数。

b) 所有女性学生。

c) 所有大于0小于1的实数。

3. 已知集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的交集和并集。

题目二:集合的运算1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的差集。

2. 已知集合A={2,4,6,8},集合B={1,3,5,7},求A与B的并集。

题目三:集合的特殊运算1. 设集合A={x | x是偶数且1 ≤ x ≤ 10},请列举出A的所有元素。

2. 设集合B={x | x是奇数或x是负数},请列举出B的所有元素。

3. 设集合C={x | x是素数且x < 20},请列举出C的所有元素。

题目四:集合的关系1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否是B的子集。

2. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否与B相等。

3. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A与B是否有交集。

题目五:特殊集合1. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={2,4,6,8},求A的补集。

2. 设全集为U={a,b,c,d,e,f,g,h,i,j},集合A={a,b,c,f,g},集合B={a,c,d,g,i},求A与B的并集的补集。

答案:题目一:1. 集合A的所有子集为:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3, 5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2, 4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}2. 集合的表示形式:a) {1,2,3,4,5,6,7,8,9}b) {女性学生的姓名}c) {x | 0 < x < 1, x为实数}3. A与B的交集为{4,5},并集为{1,2,3,4,5,6,7,8}题目二:1. A与B的差集为{1,2,3}2. A与B的并集为{1,2,3,4,5,6,7,8}题目三:1. A={2,4,6,8,10}2. B={x | x为奇数,x为负数}3. C={2,3,5,7,11,13,17,19}题目四:1. A是B的子集。

集合基础练习题100个

集合基础练习题100个

集合基础练习题100个1. 设A={1,2,3},B={2,3,4},求并集A∪B。

2. 设A={1,2,3},B={3,4,5},求交集A∩B。

3. 设A={1,2,3},B={3,4,5},求差集A-B。

4. 设U={1,2,3,4,5},A={2,3},求A的补集。

5. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否是B的子集。

6. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否与B相等。

7. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的并集。

8. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的交集。

9. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的差集。

10. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的对称差。

11. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的并集。

12. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的交集。

13. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的差集。

14. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的对称差。

15. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的并集。

16. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的交集。

17. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的差集。

18. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的对称差。

19. 设U={苹果、香蕉、橙子、西瓜、葡萄},A={苹果、香蕉、橙子},B={橙子、西瓜},求A与B的并集。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案一、判断题1. 空集是任何集合的子集。

2. 若A∩B=A,则A⊆B。

3. 集合{1, 2, 3}和集合{3, 2, 1}是不同的集合。

4. 任意两个集合的交集一定是空集。

5. 若A⊆B,则A∪B=B。

二、选择题1. 设A={x|x²3x+2=0},则A中元素的个数为()A. 0B. 1C. 2D. 32. 已知集合M={1, 2, 3, 4, 5},下列选项中不属于M的子集的是()A. {1, 2, 3}B. {5, 4, 3, 2, 1}C. {6}D. {}3. 若集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. ∅4. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B=()A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 4}5. 设集合A={x|x²x6=0},B={x|x²4x+3=0},则AB=()A. {2}B. {3}C. {2}D. {3}三、填空题1. 已知集合A={1, 2, 3, 4},B={3, 4, 5, 6},则A∩B=_________。

2. 若集合M={x|x²4x+3=0},则M的元素个数为_________。

3. 设集合P={x|x²2x+1=0},则P=_________。

4. 已知集合A={x|x²5x+6=0},B={x|x²3x+2=0},则A∪B=_________。

5. 若集合A={1, 2, 3},B={x|x²5x+6=0},则AB=_________。

四、解答题1. 设集合A={x|x²4x+3=0},B={x|x²3x+2=0},求A∩B。

2. 已知集合M={1, 2, 3, 4, 5},求满足条件“集合中的元素都是偶数”的M的子集。

数学集合基础练习题

数学集合基础练习题

数学集合基础练习题一、单项选择题1. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的结果是:A) {1, 2, 3, 4}B) {2, 3}C) {1, 4}D) {1, 2, 3}2. 若集合A中的元素个数为3,集合B中的元素个数为5,则A×B 的结果是:A) {3, 5}B) {1, 2, 3, 4, 5}C) {2, 3, 4, 5}D) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}3. 设集合A = {1, 2, 3},B = {2, 3, 4},C = {3, 4, 5},则A∪(B∩C)的结果是:A) {1, 2}B) {1, 2, 3, 4}C) {1, 2, 3, 4, 5}D) {1, 3, 5}4. 已知集合A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A-B的结果是:A) {1, 2}B) {1, 2, 3, 4}C) {1, 2, 5, 6}D) {3, 4}二、填空题1. 若集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的结果是________。

2. 若集合A中的元素个数为3,集合B中的元素个数为5,则A×B 的结果是________。

3. 设集合A = {1, 2, 3},B = {2, 3, 4},C = {3, 4, 5},则A∪(B∩C)的结果是________。

4. 已知集合A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A-B的结果是________。

三、解答题1. 若集合A = {x | x是偶数,0 ≤ x ≤ 10},求集合A的元素个数。

解析:集合A中的元素为0, 2, 4, 6, 8, 10,共有6个元素。

2. 若集合A = {x | x是自然数,2 ≤ x ≤ 10},B = {x | x是质数,0 ≤ x ≤ 10},求A∩B的结果。

集合的基本关系练习题(含答案解析)

集合的基本关系练习题(含答案解析)

一、选择题1.下列四个结论中,正确的是( )A.0={0}B.0∈{0}C.0⊆{0}D.0∈{∅}【解析】选B.{0}是含有1个元素0的集合,故0∈{0}.2.如果M={x|x+1>0},则( )A.∅∈MB.∅=MC.{0}∈MD.{0}⊆M【解析】选D.M={x|x+1>0}={x|x>-1},所以{0}⊆M.3.下列四个集合中,是空集的是( )A.{x|x+3=3}B.{(x,y)|y2=-x2,x,y∈R}C.{x|x2≤0}D.{x|x2-x+1=0,x∈R}【解析】选 D.对A,{x|x+3=3}={0};对B,{(x,y)|y2=-x2,x,y∈R}={(0,0)};对C,{x|x2≤0}={0};对D,由于Δ=(-1)2-4=-3<0,即方程x2-x+1=0无解,故{x|x2-x+1=0,x∈R}=∅.4.已知集合A={x|3≤x2≤5,x∈Z},则集合A的真子集个数为( )A.1个B.2个C.3个D.4个【解析】选C.由题意知,x=-2,2,即A={-2,2},故其真子集有3个. 【误区警示】本题易忽视真子集这一条件而误选D.5.已知集合M={x|y2=2x,y∈R}和集合P={(x,y)|y2=2x,y∈R},则两个集合间的关系是( )A.M PB.P MC.M=PD.M,P互不包含【解析】选D.由于两集合代表元素不同,即M表示数集,P表示点集,因此M与P互不包含,故选D.【误区警示】解答本题易忽视集合的属性而误选C.6.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是( )【解析】选B.由N={x|x2+x=0}={-1,0},得N M.7.设集合S={x|x≥2},T={x|x≤5},则S∩T= ( )A.{x|x≤5}B.{x|x≥2}C.{x|2<x<5}D.{x|2≤x≤5}【解析】选D.依题意计算得S∩T=,故选D.8.已知集合A={-2,0,2},B={x|x2-x-2=0},则A∪B= ( )A.∅B.{2}C.{0,-1,2}D.{-2,-1,0,2}【解析】选D.因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∪B= {-2,-1,0,2}.9.设集合A={x∈N|1≤x≤10},B={x∈R︱x2+ x-6=0},则图中阴影表示的集合为( )A.{2}B.{3}C.{-3,2}D.{-2,3}【解析】选A.A={1,2,3,4,5,6,7,8,9,10},B={-3,2},由题意可知,阴影部分即为A∩B,故A∩B={2}.【补偿训练】若集合A={x|-2≤x≤3},B={x|x<-1或x>4},则集合A ∩B等于( )A.{x|x≤3或x>4}B.{x|-1<x≤3}C.{x|3≤x<4}D.{x|-2≤x<-1}【解析】选D.将集合A,B表示在数轴上,由数轴可得A∩B={x|-2≤x<-1},故选D.10.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:那么d⊗(a⊕c)的运算结果为( )A.aB.bC.cD.d【解题指南】先计算(a⊕c)的结果,再计算d⊗(a⊕c)的值.【解析】选A.由上表可知:(a⊕c)=c,故d⊗(a⊕c)=d⊗c=a.11.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.8【解题指南】由并集中的元素可知集合B中至少含有一个元素3,由此分类求解.【解析】选C.因为A={1,2},A∪B={1,2,3},所以B={3}或{1,3}或{2,3}或{1,2,3},故选C.12.集合A={2n+1|n∈Z},集合B={4k±1|k∈Z},则A与B间的关系是( )A.A∈BB.A BC.A∉BD.A=B二、填空题1.已知集合A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当符号填空:A B,A C,{2} C,2 C.【解析】A={1,2},B={1,2},C={0,1,2,3,4,5,6,7},所以A=B,A C,{2}C,2∈C.答案:= ∈2.已知集合A={x|-2≤x≤3},B={x|x≥m},若A⊆B,则实数m的取值范围为.【解题指南】根据集合间的关系,借助数轴求解.【解析】将集合A,B表示在数轴上,如图所示,所以m≤-2.答案:m≤-23.设x,y∈R,A={(x,y)|y=x},B=,则A,B的关系是.【解析】因为B=={(x,y)|y=x,且x≠0},故B A.答案:B A【误区警示】解答本题易忽视集合B中x≠0而误认为A=B.4.设集合A={5,a+1},集合B={a,b}.若A∩B={2},则A∪B= .【解题指南】由交集求出a,b,再求并集.【解析】因为A∩B={2},所以2∈A,故a+1=2,a=1,即A={5,2};又2∈B,所以b=2,即B={1,2},所以A∪B={1,2,5}.答案:{1,2,5}三、解答题1.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.【解析】因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)}, {(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.2.若集合A={x|(k+1)x2+x-k=0}有且仅有两个子集,求实数k的值. 【解析】集合A有且仅有两个子集说明A中仅有一个元素,那么对于方程(k+1)x2+x-k=0,若k+1=0,即k=-1,方程即为x+1=0,x=-1,此时A={-1},满足题意;若k+1≠0,则需Δ=0,即12-4(k+1)(-k)=0,解得k=-,此时A={-1},满足题意.所以实数k的值为-1或-.3.已知M={1},N={1,2},设A={(x,y)|x∈M,y∈N},B={(x,y)|x∈N,y ∈M},求A∩B和A∪B.【解析】因为A={(1,2),(1,1)},B={(1,1),(2,1)}.所以A∩B={(1,1)},A∪B={(1,1),(1,2),(2,1)}.【误区警示】本题易忽视集合A,B是点集而致错.4.已知A={1,x,-1},B={-1,1-x}.(1)若A∩B={1,-1},求x.(2)若A∪B={1,-1,},求A∩B.(3)若B⊆A,求A∪B.【解析】(1)由条件知1∈B,所以1-x=1,所以x=0.(2)由条件知x=,所以A=,B=,所以A∩B=.(3)因为B⊆A,所以1-x=1或1-x=x,所以x=0或,当x=0时,A∪B={1,0,-1},当x=时,A∪B=.。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合简单练习题及答案在数学中,集合是一种基本的概念,它是由一组元素组成的。

集合的概念在日常生活中也有广泛的应用,比如我们可以用集合来表示一组人、一组物品或一组事件等等。

为了帮助大家更好地理解集合的概念和运算,下面我将为大家提供一些简单的练习题及答案。

练习题1:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求A ∪ B。

答案1:A ∪B = {1, 2, 3, 4, 5, 6}。

解析1:A ∪B 表示的是集合 A 和集合 B 的并集,即包含了 A 和 B 中的所有元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以A ∪ B 就是包含了这些元素的集合,即 {1, 2, 3, 4, 5, 6}。

练习题2:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求A ∩ B。

答案2:A ∩B = {3, 4}。

解析2:A ∩B 表示的是集合 A 和集合 B 的交集,即包含了 A 和 B 中共有的元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以A ∩ B 就是包含了 A 和 B 中共有的元素,即 {3, 4}。

练习题3:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A - B。

答案3:A -B = {1, 2}。

解析3:A -B 表示的是集合 A 减去集合 B,即从集合 A 中去除与集合 B 中相同的元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以 A - B 就是从集合 A 中去除与集合 B 中相同的元素,即 {1, 2}。

通过以上的练习题及答案,希望大家能够对集合的概念和运算有更深入的理解。

集合是数学中非常重要的概念之一,它在解决实际问题中有着广泛的应用。

数学集合基础试题及答案

数学集合基础试题及答案

数学集合基础试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是集合{1, 2, 3}的子集?A. {1, 2}B. {1, 3, 4}C. {4, 5, 6}D. {1, 2, 3, 4}2. 集合A={1, 2, 3}和集合B={3, 4, 5}的交集是什么?A. {1, 2}B. {3}C. {4, 5}D. {1, 2, 3, 4, 5}3. 集合A={1, 2, 3}和集合B={3, 4, 5}的并集是什么?A. {1, 2}B. {3}C. {1, 2, 3, 4, 5}D. {4, 5}4. 空集是所有集合的什么?A. 子集B. 真子集C. 交集D. 并集二、填空题(每题5分,共20分)5. 如果A={x|x^2-3x+2=0},那么集合A的元素是_________。

6. 集合{1, 2, 3}和{2, 3, 4}的交集是_________。

7. 集合{1, 2, 3}和{2, 3, 4}的并集是_________。

8. 如果A={x|x是偶数},B={x|x是奇数},那么A∪B是_________。

三、解答题(每题15分,共40分)9. 给定集合A={1, 3, 5}和集合B={2, 4, 6},求A∩B和A∪B。

10. 定义集合A={x|x^2-5x+6=0},求集合A的所有元素,并说明集合A的性质。

答案:一、选择题1. A2. B3. C4. A二、填空题5. {1, 2}6. {2, 3}7. {1, 2, 3, 4, 6}8. R(实数集)三、解答题9. A∩B={ }(空集),因为集合A和B没有共同元素;A∪B={1, 2, 3, 4, 5, 6},因为并集包含两个集合的所有元素。

10. 集合A={2, 3},因为方程x^2-5x+6=0的解是x=2和x=3。

集合A 是有限集,因为它只包含两个元素,并且是数集的一个子集。

集合基础习题(有答案)

集合基础习题(有答案)

集合基础习题(有答案)1.已知集合 A,B,C,D,且D=A∩B∩C,则 D 等于A∩B∩C。

2.设全集 U,集合 A,B,C,D,则 A∪B∪C∪D=U。

3.若关于 x 的方程 x+mx+1=0 有两个不相等的实数根,则实数 m 的取值范围是 (-1,1)。

4.若集合 M={-1,0,1},N={0,1,2},则M∩N={1}。

5.若全集 U={a,b,c,d},则集合 {a,b} 的补集为 {c,d}。

6.若 A∪B=U,且A∩B=∅,则 A 和 B 互为补集。

7.已知 U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={2,4,5},则A∪{6,8}={1,3,5,6,7,8},B∩{5,7}={5}。

8.若全集 M={a,b,c},N={1,2},P={(a,1),(b,2)},则 P 的补集为 {(a,2),(a,1),(b,1),(b,2),(c,1),(c,2)}。

9.设全集U={x|0≤x≤2},则 U 的补集为 {x|x2}。

10.已知集合P={x|x≤1},M={a},若 P∪M=P,则 a 的取值范围是 (-∞,-1]。

11.若全集 U={a,b,c,d},集合 A={a,b},B={c,d},则A∩B=∅。

12.已知集合 A={x},B={{x}},则 AB={{x},{x,x}}。

13.集合A={x|x≤3},B={x|x≥2},C={x|1≤x≤4},则A∩B=[2,3],B∩C=[2,4]。

14.已知集合 A={x|x<3},B={1,2,3,4},则A∩B={1,2}。

15.已知集合 M={1,2,3,4},N={2,3},则集合 N 可以为{1,2,3}。

16.已知全集U={a,b,c,d,e,f},集合A={a,b,c},B={c,d,e},C={e,f},则(A∩B)∪C={c,e,f}。

17.已知集合 A={x|x²-2x+1<0},则实数 x 的取值范围是(1,2)。

集合基础练习试题含答案.doc

集合基础练习试题含答案.doc

集合•基础练习(一)选择题1.下列命题正确的是[]A.1是集合N中最小的数.B.x2—4x+4=0 的解集为{2, 2}C.{0}不是空集D.太湖中的鱼所组成的集合是无限集2.下列各条件(1)大于5小于20且既能被3整除也能被2整除的数的全体;⑵方程X2+2X+7=0的解的全体;(3)某学校校园内部的柳树的全体;(4)大于50的无理数的全体;其中能确定一个集合的有个.A. 1个B. 2个C. 3个D. 4个3.已知集合A={y|y=—x?+5x—4, x《R},则有A.1GA,且4EAB.IGA,但4wAC.1WA,但4UAD.IwA,且4wA(二)填空题1.已知集合A={xER|ax2+2x+l=0, a《R},若A中元素至多只有一个, 则a的取值范围是.2.实数集{3, x, x2—2x}中的元素x应满足的条件为.3.已知x、y、zGR,且x、y> z都不为0,则M=-皿^二七+兰+三+严]中元素的个数为.、|x| |y| |z| |xyz|Jx~I~ v ― 54.集合< (x, y)< ,用列举法表小为.[2x—4y=—8 ------------5.设A={x|x=2k, kez}, B={x|x=2k+1, kez}, C={x|x=4k+L kez}, 又若aGA, beB,贝0 a+be(填A、B、C 之一).(三)解答题1.用两种方式写出下列各题解的集合.x = 3 ~I~ 2 v, ② x2 —1 = 0 ③(X—1)2=0 ④(x+l)2<05x+y = 42.设f(x)=x^+ax+b, A={x|f(x)=x}={a},求a、b 的值.3.已知小于或等于x的最大整数与大于或等于x的最小整数之和是7, 求x的集合.*4.已知A = {x|x = *, m《N, n《N},若a《A, b《A,求证:ab£ A.参考答案()选择题1.C((A)中N包含元素0. (B)不满足集合元素互异性・(D)太湖中鱼是有限的而不是无穷多的)2.D(注意(B)中X2+2X+7=0的解集是空集,(C)学校校园内部的树是确定的.)3.B(集合A是二次函数y=—x2+5x—4中,y的取值范围,而不是一元二次方程一x^+5x—4=0 的解集,而y=—x^+5x—4=—(x5 9 9——)2 + T » 故1《A,但4wA.2 4 4()填空题1.aNl或a=0 ①当ax? + 2x+l=0是一元二次方程时,即aNO时,A=4—4asS0, .L aNl②当a=0时,ax2+2x+l=0是一元一次方程2x+l= 0也有一个根,因此也满足条件.2.x砖一 1且xNO且xN3(由集合元素的互异性知,x#3 fx#3< x2—2x#3 => x#3Jlx# —1=> x# —1J1X#0J1.X#3)x2— 2x#x x/0且x/33.3个①当x, y, z都是正数时m=4②当x, y, z都是负数时m= —4③当x, y, z有两个正数一个负数或两个负数一个正数时m=0)4.(2, 3)①{(x, y)|< x = 3 +2y 5x+y = 4 -1))1.5. B (A=(x|x=2k, ke z }={偶数} B={奇数} C 集合为所有被4整除余1 的数,I a 为偶数,1)为奇数,.I a+b 为奇数故a+b£B )(三)解答题②{x|x2 —1=0}={1, -1){x|(x —1)2=0}={1}{x|(x+l)2<O} = 02. a = j, b = j ・(由f(x) = 乂得乂?+ax+b = x, BPx 2 + (a — l)x+ b=0, ,/ A={a}方程x^+(a —l)x+b=O 有两个相等实根为a,将a 代入方程得:a^+a(a —l)+b=O ①又由z\=0得(a —1)^—4b=0②解①②得a = : , b = f .)3. (x£R|3<x<4} ①当x 是整数时:x+x=7 x=3.5EZ,舍去.②当x 不是整数时,设 nVxVn+1, n£Z, 「・ n+(n+l)=7, 「・ n=3 3<x< 4, ・.・(xER|3<x<4})4.证明:•「 a, b^A /.设a = b = . m., m 7, n., n 7q ID] q 1Z 1 Z niLEN(m 2>m t )...ab = 2mg 了 n^^N.ab€ A。

集合练习题以及答案

集合练习题以及答案

集合练习题以及答案集合是数学中的基本概念之一,它涉及到元素与集合之间的关系,以及不同集合之间的运算。

以下是一些集合练习题及其答案,供学习者练习和参考。

练习题1:判断下列命题的真假。

- A = {1, 2, 3}- B = {2, 3, 4}- 命题1:1 ∈ A- 命题2:4 ∈ A- 命题3:A ⊆ B答案1:- 命题1:真,因为1是集合A的元素。

- 命题2:假,因为4不是集合A的元素。

- 命题3:假,因为集合A不包含集合B的所有元素。

练习题2:集合C和D的定义如下,请找出C ∪ D和C ∩ D。

- C = {1, 2, 3, 5}- D = {2, 4, 5, 6}答案2:- C ∪ D = {1, 2, 3, 4, 5, 6},这是C和D所有元素的并集。

- C ∩ D = {2, 5},这是C和D共有的元素。

练习题3:集合E和F如下,求E - F。

- E = {1, 3, 5, 7, 9}- F = {3, 5, 7}答案3:- E - F = {1, 9},这是E中所有不在F中的元素。

练习题4:集合G和H如下,判断它们是否相等。

- G = {x | x是小于10的正整数}- H = {1, 2, 3, 4, 5, 6, 7, 8, 9}答案4:- G和H相等,因为它们包含相同的元素。

练习题5:集合I和J如下,求I的补集。

- I = {x | x是偶数}- J = R(实数集)答案5:- I的补集是所有不在I中的元素,即所有奇数,可以表示为{x ∈ J | x是奇数}。

练习题6:集合K和L如下,找出K相对于L的补集。

- K = {x | x是小于20的正整数}- L = {x | x是小于50的正整数}答案6:- K相对于L的补集是所有在L中但不在K中的元素,即{x ∈ L | 20 ≤ x < 50}。

结束语:通过这些练习题,我们可以加深对集合概念的理解,包括元素与集合的关系、集合的运算以及集合的表示方法。

集合练习题含答案

集合练习题含答案

集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。

- 答案:集合是由一些确定的、不同的元素所组成的整体。

集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。

2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。

- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。

3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。

- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。

A∩B={2, 3},表示A和B中共有的元素集合。

4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。

- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。

5. 证明题:证明对于任意集合A,A⊆A。

- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。

因为集合A中的元素自然属于A本身,所以A⊆A。

6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。

求至少喜欢一门科目的学生人数。

- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。

根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。

7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。

- 答案:A∩(B∪C)不为空集。

因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档