初中物理受力分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《初中物理受力分析》一、下面各图的接触面均光滑,对小球受力分析:

二、下面各图的接触面均粗糙,对物体受力分析:

图1

图2

图3

图5

图6

图7

图9

F

图11

图10图12

8

图4

图19

物体静止在斜面上

图20

图21

图13

v

图15

v

图16

图14

物体处于静止

物体刚放在传送带上

图17

物体随传送带一起

做匀速直线运动

图18

图22

物体处于静止(请画出物体

受力可能存在的所有情况)

图23

三、分别对A 、B 两物体受力分析:

(对物体A 进行受力分析)

图24 物体处于静止 图26 物体刚放在传送带上

图28

杆处于静止状态,其中杆与半球面之间光滑 图29 杆处于静止状态,其中 杆与竖直墙壁之间光滑 图30 杆处于静止状态 图31 图32

匀速上攀 图33 v v 图34

匀速下滑 图36

A 、

B 两物体一起做匀速直线运动

A 、

B 两物体均静止 图37 图42 A 、B 两物体一起匀速下滑 A 、B 、

C 两物体均静止 图38

随电梯匀速上升

(4)

(6)

(7)

(5)

(9

(8) (13)

(14)

(15)

(16) (17

) (18) (19) (20) (21) (28) (29) (30)

(31

)

(32)

(33)

滑轮重力不计

三球静止 (25) (26) (27

) 小球A 静止 A 、B 匀速运动 A 、B 匀速运动 (37)(38)(39(40)A 、B 、C 三者都静止,分别画出ABC 三者的受力图 分别画出各物块的受力分析图 弹簧处于压缩状态

(10) (11) (12) (22) (23) (24

)

P Q AO 表面粗糙,OB 表面光滑

分别画出两环的受力分析图

以下各球均为光滑刚性小球

初三数学 圆教案

一、本章知识框架

二、本章重点

1.圆的定义:

(1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆. (2)圆是到定点的距离等于定长的点的集合. 2.判定一个点P 是否在⊙O 上. 设⊙O 的半径为R ,OP =d ,则有 d>r 点P 在⊙O 外; d =r 点P 在⊙O 上; d

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半.

②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角.

(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角. 弦切角的性质:弦切角等于它夹的弧所对的圆周角. 弦切角的度数等于它夹的弧的度数的一半.

4.圆的性质:

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,

那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. 垂径定理及推论:

(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. (3)弦的垂直平分线过圆心,且平分弦对的两条弧.

(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. (5)平行弦夹的弧相等.

猫虽往上爬但不能上升,保持在原来高度。 (43

)

(44

)

(45)

(46) (47) (48)

猫虽沿杆往上爬,但不能上升,保持在原来的高度。足够长的杆往下运动

此环为轻环,重力忽略

A 匀速上升

A 沿墙壁向上匀速滑动

5.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.

(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.

(4)垂心:是三角形三边高线的交点.

6.切线的判定、性质:

(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线.

②到圆心的距离d等于圆的半径的直线是圆的切线.

(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点.

③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

7.圆内接四边形和外切四边形

(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.

8.直线和圆的位置关系:

设⊙O 半径为R,点O到直线l的距离为d.

(1)直线和圆没有公共点直线和圆相离d>R.

(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.

(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d

9.圆和圆的位置关系:

设的半径为R、r(R>r),圆心距.

(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.

(2)没有公共点,且的每一个点都在外部内含d

(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.

(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.

(5)有两个公共点相交R-r

10.两圆的性质:

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.

11.圆中有关计算:

圆的面积公式:,周长C=2πR.

圆心角为n°、半径为R的弧长.

圆心角为n°,半径为R,弧长为l的扇形的面积.

弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.

圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.

相关文档
最新文档