国内外大数据经典案例研究

合集下载

大数据十大经典案例(一)

大数据十大经典案例(一)

大数据十大经典案例(一)引言概述:大数据的应用正日益成为了改变各行各业的重要推动力,许多经典案例展示了大数据在解决现实问题、改善业务效率和推动创新方面的巨大潜力。

本文将介绍大数据领域中的十个经典案例,通过这些案例的分析和总结,我们可以更好地了解大数据的影响力和应用范围。

正文:1. 基于用户行为的个性化推荐系统- 利用大数据技术分析用户历史行为数据,实现个性化推荐,提高用户体验。

- 使用机器学习算法对海量数据进行处理和训练,提供更准确的商品推荐。

2. 航空公司客户关系管理- 分析乘客购票和航班数据,了解乘客偏好和行为模式,为航空公司提供精准的客户关系管理策略。

- 基于大数据预测乘客的需求,优化航班安排和座位分配,提高客户满意度和营收。

3. 银行风险控制和欺诈检测- 利用大数据技术监控和分析银行系统中的交易数据,快速识别潜在风险和欺诈行为。

- 借助机器学习和模型算法,预测金融市场动态,提高银行的风险控制能力。

4. 零售业供应链优化- 通过分析和整合销售数据、库存数据和供应商数据,实现精细化的供应链管理,减少库存成本和运营风险。

- 基于大数据分析,预测销售趋势和需求变化,在合适的时间点调整补货和分配策略,提高销售效率。

5. 健康医疗领域的数据分析应用- 利用大数据分析技术,挖掘医疗机构的海量数据,提取隐藏的医疗知识,支持医疗决策和治疗方案的制定。

- 基于大数据的健康监测和预测模型,提供个性化的健康管理建议和预防措施,提高医疗效果和患者满意度。

总结:以上是大数据领域中的五个经典案例,这些案例展示了大数据在各行各业的广泛应用,无论是个性化推荐、客户关系管理、风险控制、供应链优化还是医疗领域,大数据都发挥了重要的作用。

随着大数据技术的不断发展和应用范围的扩大,我们相信会有更多的经典案例涌现,为各行各业带来更多的机遇和挑战。

大数据十大经典案例

大数据十大经典案例

大数据十大经典案例随着信息技术的发展,大数据已经成为当今社会的重要资源。

大数据分析可以为企业提供更准确的市场预测、个性化推荐、客户细分等方面的支持。

在这篇文章中,我将介绍十个经典的大数据案例,展示大数据技术在多个行业中的应用。

1. 亚马逊个性化推荐系统亚马逊是大数据应用的典范之一。

他们利用大数据技术分析用户的购物习惯、点击行为、浏览历史等信息,为每个用户提供个性化的产品推荐。

这不仅提升了用户购物体验,也增加了销售额。

2. 谷歌搜索算法优化谷歌搜索引擎利用大数据分析来不断优化搜索结果的排名算法。

通过分析用户的搜索历史、点击行为等数据,谷歌可以更好地理解用户的意图,为他们提供更精准的搜索结果。

3. 滴滴出行的智能调度系统滴滴出行利用大数据技术分析用户的出行需求、交通状况等信息,通过智能调度算法将乘客和司机进行匹配,提高了乘客的等待时间和司机的工作效率。

4. 美团点评的用户画像分析美团点评通过大数据分析用户的点评、消费记录等信息,对用户进行画像分析。

这些画像可以帮助商家更好地了解消费者需求,制定更精准的营销策略。

5. 脸书的社交关系分析脸书运用大数据技术分析用户的社交行为,找出用户之间的关联和兴趣,为广告商提供更有针对性的广告定向投放。

6. 捷信金融的风险评估模型捷信金融利用大数据分析用户的借贷历史、资产状况等信息,建立风险评估模型,提高贷款审批的准确性和效率。

7. 瑞典的城市规划优化瑞典利用大数据分析交通状况、人口分布等信息,优化城市规划。

他们通过分析数据,提出了改进交通流动性、节约能源等方面的具体举措。

8. 亚太航空的客户关系管理亚太航空利用大数据技术分析客户的飞行历史、偏好等信息,为客户提供个性化的服务和优惠,增强客户忠诚度。

9. 法国医院的医疗预测法国一家医院使用大数据分析医疗数据,建立模型预测患者的住院时间和治疗方案,帮助医生做出更好的决策,提高医疗效率。

10. 哈佛大学的科学研究哈佛大学利用大数据分析海量的科学文献、实验数据等,挖掘潜在的科研关联和发现。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着信息技术的快速发展,大数据已经成为各行各业的热门话题。

大数据的出现为企业和组织提供了更多的机会和挑战。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同领域的应用和价值。

二、金融领域1. 案例一:信用评分模型在金融领域,大数据被广泛应用于信用评分模型的建立。

通过分析大量的历史数据,银行可以更准确地评估借款人的信用风险,从而制定更合理的贷款政策和利率。

这不仅有助于降低银行的风险,还能提高贷款审批的效率。

2. 案例二:交易风险监测大数据技术在金融交易风险监测方面也发挥了重要作用。

通过实时监测和分析交易数据,金融机构可以及时发现异常交易和欺诈行为,从而采取相应的措施防止风险的扩大。

这种实时监测和分析的能力大大提高了金融机构的安全性和反欺诈能力。

三、零售行业1. 案例三:精准营销大数据在零售行业的应用也非常广泛。

通过分析消费者的购买历史、行为数据和社交媒体数据,零售商可以更好地了解消费者的需求和偏好,并针对性地进行精准营销。

例如,根据消费者的购物习惯和兴趣推荐个性化的产品和促销活动,从而提高销售额和客户满意度。

2. 案例四:供应链优化大数据技术还可以帮助零售商优化供应链管理。

通过分析销售数据、库存数据和供应商数据,零售商可以更准确地预测需求,避免库存过剩或缺货的情况发生。

同时,大数据还可以帮助零售商优化物流和配送,提高运输效率和降低成本。

四、医疗健康领域1. 案例五:疾病预测与预防大数据在医疗健康领域的应用可以帮助医生和研究人员更好地预测和预防疾病。

通过分析大量的医疗数据和基因组数据,可以发现疾病的早期迹象和风险因素,从而采取相应的预防和干预措施。

这有助于提高疾病的诊断准确性和治疗效果,减少医疗资源的浪费。

2. 案例六:个性化医疗大数据还可以支持个性化医疗的实现。

通过分析患者的基因组数据、病历数据和生活习惯数据,医生可以为每个患者制定个性化的治疗方案,提高治疗效果和患者满意度。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着互联网的快速发展和智能设备的普及,大数据已成为当今社会的热门话题。

大数据是指规模庞大、类型多样的数据集合,这些数据集合可以通过计算机进行分析和挖掘,从而揭示隐藏在其中的信息和价值。

大数据应用则是将大数据技术与各行各业的实际需求相结合,为企业和组织提供决策支持、业务优化等方面的解决方案。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同领域的应用和价值。

二、案例一:零售业的用户购买行为分析零售业是大数据应用的一个重要领域。

通过分析用户的购买行为,零售商可以更好地了解用户的需求,优化商品布局和促销策略。

以某电商平台为例,该平台通过采集用户的购买记录、浏览记录、搜索记录等大量数据,利用大数据分析技术,对用户进行细分和画像。

通过分析用户的购买偏好、购买频次、购买时间等指标,可以精确预测用户的购买意愿和需求。

基于这些预测结果,电商平台可以向用户推荐个性化的商品,提高用户的购买满意度和忠诚度。

此外,大数据分析还可以匡助零售商优化商品的布局和促销策略。

通过分析用户的购买行为和偏好,可以发现用户的潜在需求和热门商品。

基于这些数据,零售商可以调整商品的陈列位置、增加热门商品的库存,并针对不同用户群体制定个性化的促销活动,提高销售额和利润。

三、案例二:金融行业的风险管理与反欺诈金融行业是大数据应用的另一个重要领域。

通过分析大量的金融数据,可以匡助金融机构提高风险管理能力,减少欺诈行为。

以银行业为例,银行通过分析客户的交易记录、信用评分、个人信息等大数据,可以建立客户的信用模型和风险评估模型。

通过这些模型,银行可以评估客户的信用风险和违约概率,从而决定是否赋予客户贷款或者信用额度。

此外,银行还可以通过大数据分析技术,监测客户的交易行为,及时发现异常交易和欺诈行为,保护客户的资金安全。

此外,大数据分析还可以匡助金融机构进行市场风险管理。

通过分析市场的波动情况、交易量、交易价格等数据,金融机构可以预测市场的走势和风险,及时调整投资组合,降低投资风险。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着信息技术的发展和互联网的普及,大数据已经成为当今社会的热门话题。

大数据是指规模庞大、复杂多样、难以处理的数据集合,它包含了结构化数据和非结构化数据,具有高速、多样、海量等特点。

大数据的应用已经渗透到各个行业,其应用案例也层出不穷。

本文将通过对几个经典的大数据应用案例进行分析,探讨大数据对企业和社会的影响。

二、案例分析1. 零售行业:亚马逊的个性化推荐系统亚马逊是全球最大的在线零售商之一,其成功的一个关键因素就是其个性化推荐系统。

亚马逊利用大数据技术对用户的购买历史、浏览记录、评价等数据进行分析,通过算法来预测用户的购买偏好,并向用户推荐相关的产品。

这种个性化推荐系统大大提高了用户的购物体验,增加了用户的忠诚度,也促进了销售额的增长。

2. 金融行业:花旗银行的风险管理在金融行业,风险管理是至关重要的一环。

花旗银行利用大数据技术对客户的交易记录、信用评分、社交媒体数据等进行分析,构建了一个全面的风险管理系统。

该系统能够实时监测交易风险,发现异常交易,并及时采取措施进行风险控制。

通过大数据的应用,花旗银行能够更好地保护客户资金安全,提高金融交易的效率和准确性。

3. 医疗行业:谷歌的疾病预测大数据在医疗行业的应用也非常广泛。

谷歌利用大数据技术对互联网上的搜索数据进行分析,发现了搜索关键词与疾病之间的关联性。

通过分析搜索数据,谷歌能够预测某个地区的疾病爆发趋势,提前采取措施进行疫情防控。

这种疾病预测系统对于公共卫生管理具有重要意义,能够帮助政府和医疗机构更好地应对疾病的传播。

4. 物流行业:UPS的智能调度系统UPS是全球最大的快递和物流服务供应商之一,其物流网络覆盖全球。

为了提高物流运输的效率和准确性,UPS利用大数据技术开发了智能调度系统。

该系统通过对实时的交通信息、天气数据、订单信息等进行分析,能够预测最佳的路线和交通状况,并自动调度物流车辆,提高物流运输的效率和准时率。

大数据十大经典案例

大数据十大经典案例

07
大数据经典案例六:沃尔玛的库存预

案例介绍
沃尔玛是美国最大的零售商,拥有数千家分店 和庞大的库存。为了确保商品充足和减少缺货 情况,沃尔玛利用大数据技术进行库存预测。
通过收集和分析历史销售数据、季节性变化、 天气预报和其他相关因素,沃尔玛能够预测各 分店的商品需求,从而精确地调整库存。
这种预测方法不仅提高了库存周转率,减少了 滞销和缺货现象,还为沃尔玛节省了大量成本。
大数据十大经典案例
• 大数据概述 • 大数据经典案例一:Netflix的推荐系统 • 大数据经典案例二:亚马逊的供应链
优化 • 大数据经典案例三:谷歌的搜索引擎
• 大数据经典案例四:阿里巴巴的客户 画像
• 大数据经典案例五:腾讯的社交网络 分析
• 大数据经典案例六:沃尔玛的库存预 测
• 大数据经典案例七:Uber的智能调度 系统
商业价值
库存降低
通过精准预测和实时调整,有 效降低了库存积压和滞销风险

配送速度提升
优化配送路线和配送策略,缩 短了配送时间,提高了客户满 意度。
成本控制
降低库存成本和物流成本,提 高了企业的整体盈利能力。
客户满意度提高
快速、准确的配送服务提高了 客户满意度,增强了客户忠诚
度。
04
大数据经典案例三:谷歌的搜索引擎
案例介绍
01 谷歌搜索引擎是全球使用最广泛的搜索引擎,每 天处理数以亿计的搜索请求。
02 通过大数据技术,谷歌能够实时分析用户搜索行 为,提供更加精准的搜索结果。
03 谷歌利用大数据技术不断优化搜索算法,提高搜 索质量和用户体验。
技术实现
分布式存储系统
谷歌使用分布式存储系统, 将海量数据分散存储在多 个节点上,确保数据可靠 性和可扩展性。

大数据相关性分析案例

大数据相关性分析案例

大数据相关性分析案例50款大数据的经典应用案例1. 梅西百货的实时定价机制。

根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。

该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。

这项举措减少了90%的预测模型构建时间。

SAP公司正在试图收购KXEN。

3. 沃尔玛的搜索。

这家零售业寡头为其网站自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。

根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。

“对沃尔玛来说,这就意味着数十亿美元的金额。

”Laney说。

4. 快餐业的视频分析。

该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。

如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。

5. Morton牛排店的品牌认知。

当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。

首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。

根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。

6. PredPol Inc.。

PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。

在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。

7. Tesco PLC(特易购)和运营效率。

这家超市连锁在其数据仓库中收集了700万部冰箱的数据。

通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。

8. American Express(美国运通,AmEx)和商业智能。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着信息技术的迅速发展,大数据已经成为当今社会的热门话题。

大数据的应用已经渗透到各个领域,对于企业的决策和发展起到了重要的作用。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同领域的应用及其带来的益处。

二、金融领域案例分析1. 银行风险管理某银行利用大数据技术,对客户的交易数据进行实时监控和分析,通过建立风险模型,能够及时发现异常交易和欺诈行为。

这种实时监控大大提高了银行的风险管理能力,减少了损失。

2. 信用评分模型一家信用卡公司利用大数据分析客户的消费行为、信用记录等数据,建立了准确的信用评分模型。

通过这个模型,公司能够更好地判断客户的信用状况,减少坏账率,提高贷款审批效率。

三、零售领域案例分析1. 个性化推荐系统一家电商公司利用大数据技术,根据用户的购买记录、浏览行为等数据,建立了个性化推荐系统。

通过分析用户的兴趣和偏好,系统能够向用户推荐更符合其需求的商品,提高用户购买率和满意度。

2. 库存管理优化一家连锁超市利用大数据分析销售数据和供应链数据,优化库存管理。

通过准确预测商品需求量,超市能够及时补充库存,避免商品断货和过剩。

这种优化能够降低库存成本,提高销售效率。

四、医疗领域案例分析1. 疾病预测和预防某医院利用大数据分析患者的病历数据、基因数据等,建立了疾病预测模型。

通过分析大量的数据,医院能够预测患者患某种疾病的风险,并采取相应的预防措施,提高治疗效果。

2. 医疗资源优化一家医疗机构利用大数据分析患者的就诊数据和医生的工作量数据,优化医疗资源的分配。

通过合理安排医生的排班和就诊时间,医疗机构能够提高医疗效率,减少患者的等待时间。

五、交通领域案例分析1. 智能交通管理某城市利用大数据分析交通流量数据和道路状况数据,建立了智能交通管理系统。

通过实时监控交通状况,系统能够及时调整交通信号灯的配时,优化交通流量,减少拥堵。

2. 公交车调度优化一家公交公司利用大数据分析乘客的出行数据和公交车的运行数据,优化公交车的调度。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言大数据是指规模庞大、多样化且快速增长的数据集合,对传统数据处理软件进行处理和分析会面临很大的挑战。

然而,随着大数据技术的不断发展和应用,越来越多的企业开始意识到大数据的价值,并利用大数据来提升业务效率、优化决策和创造新的商业价值。

本文将介绍几个大数据及大数据应用的经典案例,以匡助读者更好地理解大数据的应用价值。

二、经典案例分析1. 亚马逊的个性化推荐系统亚马逊是全球最大的电商平台之一,其成功的一个关键因素就是其个性化推荐系统。

亚马逊利用大数据技术,对用户的购买历史、浏览记录、评价等数据进行分析,从而能够准确地预测用户的购买意向,并向用户推荐符合其兴趣和需求的产品。

这种个性化推荐系统大大提升了用户购物体验,也匡助亚马逊提高了销售额。

2. 谷歌的搜索引擎优化谷歌是全球最大的搜索引擎,其搜索结果的质量和准确性是其成功的关键。

谷歌利用大数据技术,对海量的网页进行分析和处理,从而能够根据用户的搜索关键词提供最符适合户需求的搜索结果。

谷歌通过分析用户的搜索行为和点击行为,不断优化搜索算法,提升搜索结果的质量和准确性,为用户提供更好的搜索体验。

3. 脸书的社交网络分析脸书是全球最大的社交网络平台之一,其成功的一个关键因素就是其社交网络分析能力。

脸书利用大数据技术,对用户的社交关系、兴趣爱好、行为等数据进行分析,从而能够准确地预测用户的兴趣和需求,并向用户推荐相关的内容和广告。

这种个性化推荐和定向广告大大提升了广告的点击率和转化率,也匡助脸书实现了商业化的成功。

4. 物流行业的智能调度系统物流行业是一个典型的大数据应用领域,物流公司需要处理大量的定单数据、车辆位置数据、交通状况数据等。

利用大数据技术,物流公司可以实时监控车辆的位置和运输情况,根据交通状况和定单情况进行智能调度,提高运输效率和服务质量。

同时,物流公司还可以通过对历史数据的分析,优化路线规划和仓储布局,降低成本和提升效益。

13个经典大数据应用案例

13个经典大数据应用案例

13个经典大数据应用案例
例子1:在09年流感爆发的时候,google通过对人们输入词条的分析,挖掘出了有效及时的指示标,比通过层层收集的官方数据惊人很多。

例子2:Farecast通过对于机票数据的趋势变化情况,提供票价预测的服务,目前公布准确度高达75%,现在被微软收购,整合在了bing的搜索中。

例子3:Xoom是从事跨境汇款业务的公司,处理过的一个案例是,单独看一笔交易是合法的,但是重新检查了所有的数据之后,发现犯罪集团正在进行咋骗。

例子4:hadoop分析VISA的数据,将原来需要一个月的时间缩短为13分钟。

例子5:亚马逊三分之一的销售额来自个性化推荐系统。

例子6:美国折扣零售商能够通过用户购买商品的历史,判断出是否怀孕。

例子7:UPS有6W辆车,通过对车俩损害的数据挖掘,能够及时的预测那些车辆需要维修,达到预警的目的。

例子8:日本通过研究驾驶员的坐姿数据,用来作为汽车防盗系统中。

例子9:UPS通过对于位置数据的分析,获取最佳行车路径。

例子10:IBM开发了一套复杂的预测模型,完成了电动汽车动力与电力供应系统的预测。

例子11:微软和谷歌以及百度等搜索引擎的拼写检查以及纠错提示,有效的利用的数据废气。

例子12:巴诺通过分析人们在阅读的时候的行为,得出人们往往会放弃长篇幅的非小说类书籍。

例子13:The-numbers通过对于历史电影相关的数据的相关关系,来预测电影票房。

摘自:中国大数据。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言大数据是指规模庞大、复杂度高、处理速度快的数据集合,这些数据集合通常无法用传统的数据处理工具进行捕捉、管理和处理。

大数据应用是指利用大数据技术和方法对大数据进行分析、挖掘和应用的过程。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同领域的应用和价值。

二、电商行业的大数据应用案例1. 用户行为分析通过对用户在电商平台上的浏览、点击、购买等行为数据进行分析,可以揭示用户的偏好、购买意愿和消费习惯,从而为电商企业提供个性化推荐、精准营销和商品定价等决策支持。

例如,某电商企业通过分析用户的购买历史和浏览行为,发现某一类商品的浏览量和购买量呈正相关关系,于是针对该类商品进行促销活动,取得了显著的销售增长。

2. 库存管理优化电商企业的库存管理涉及到大量的商品和仓储设施,如何合理安排库存,既能满足用户需求,又能降低库存成本是一个挑战。

大数据技术可以通过分析历史销售数据、天气数据、促销活动数据等,预测商品的需求量,并根据需求量合理安排库存。

例如,某电商企业通过分析历史销售数据和天气数据,发现在天气炎热的时候,冷饮类商品的销售量会大幅增加,于是在天气预报显示高温时提前增加冷饮类商品的库存,避免了库存积压和销售缺货的问题。

三、金融行业的大数据应用案例1. 风险评估和欺诈检测金融机构需要对客户的信用风险进行评估,并及时发现和防范欺诈行为。

大数据技术可以通过分析客户的个人信息、财务状况、交易记录等多维度数据,构建客户画像,并利用机器学习算法进行风险评估和欺诈检测。

例如,某银行通过分析客户的贷款申请记录和还款能力等数据,建立了一个风险评估模型,可以自动判断客户的信用状况,并及时发出预警。

2. 个性化推荐金融机构可以通过分析客户的交易记录、偏好等数据,为客户提供个性化的产品推荐和服务。

例如,某证券公司通过分析客户的交易记录和偏好,为客户推荐符合其风险偏好和投资目标的投资组合,提高客户的投资收益。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言大数据是指规模庞大、类型多样且难以处理的数据集合,传统的数据处理方法已经无法胜任大数据时代的需求。

随着互联网的发展和技术的进步,大数据应用越来越广泛,对各行各业都产生了深远的影响。

本文将分析几个大数据及大数据应用的经典案例,以帮助读者更好地理解大数据的概念和应用。

二、经典案例分析1. 亚马逊的个性化推荐系统亚马逊作为全球最大的电商平台之一,每天都会产生海量的交易数据。

通过分析这些数据,亚马逊可以了解用户的购买行为、偏好和兴趣,从而为用户提供个性化的推荐服务。

亚马逊的个性化推荐系统基于大数据技术,通过分析用户的历史购买记录、浏览记录和社交网络数据,为用户推荐他们可能感兴趣的商品。

这种个性化推荐系统不仅提高了用户的购物体验,还能帮助亚马逊提高销售额。

2. 谷歌的搜索引擎优化谷歌作为全球最大的搜索引擎,每天都会处理数以亿计的搜索请求。

为了提供更精准的搜索结果,谷歌利用大数据技术对海量的网页进行分析和索引。

谷歌的搜索引擎优化算法基于大数据分析,通过分析用户的搜索行为和网页的相关性,为用户提供最相关和有用的搜索结果。

这种基于大数据的搜索引擎优化不仅提高了用户的搜索体验,还帮助企业提高网站的曝光率和流量。

3. Uber的智能调度系统Uber作为全球最大的打车平台之一,每天都会处理大量的订单和司机位置数据。

为了提高乘客的等待时间和司机的收入,Uber利用大数据技术开发了智能调度系统。

该系统基于大数据分析,通过分析乘客的位置、目的地、交通状况和司机的位置、工作时间等因素,智能地匹配乘客和司机,实现最优的调度和路线规划。

这种智能调度系统不仅提高了乘客的出行体验,还提高了司机的收入和工作效率。

4. Facebook的社交网络分析Facebook作为全球最大的社交网络之一,每天都会产生海量的用户行为数据。

为了提供更好的用户体验和精准的广告投放,Facebook利用大数据技术进行社交网络分析。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着信息技术的快速发展,大数据已经成为当今社会的热门话题。

大数据指的是规模巨大、类型多样、处理速度快的数据集合,对于企业和政府来说,如何有效地利用大数据进行决策和创新已成为一项重要的任务。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同领域的应用和价值。

二、金融领域的大数据应用案例分析1. 风险评估与预测金融领域是大数据应用的一个重要领域。

通过分析大量的历史交易数据和市场数据,可以建立起精确的风险评估模型,帮助金融机构准确评估借款人的信用风险,从而降低风险和损失。

例如,某银行通过分析客户的交易记录、个人信息和社交媒体数据,利用机器学习算法建立了一个智能风险评估系统,成功降低了不良贷款率。

2. 交易监测与欺诈检测大数据技术可以帮助金融机构实时监测交易,并及时发现异常交易和欺诈行为。

例如,一家支付公司利用大数据技术分析用户的交易数据和行为模式,建立了一个欺诈检测系统。

该系统可以实时监测用户的交易行为,并通过机器学习算法识别出可疑的交易,从而帮助公司防止欺诈行为的发生。

三、零售行业的大数据应用案例分析1. 消费者行为分析与个性化推荐零售行业可以通过分析消费者的购物行为、偏好和社交媒体数据,了解消费者的需求和喜好,从而提供个性化的推荐和服务。

例如,一家电商公司利用大数据技术分析用户的购物历史、浏览记录和社交媒体数据,建立了一个个性化推荐系统。

该系统可以根据用户的兴趣和购买历史,向其推荐相关的产品和服务,提高销售额和用户满意度。

2. 库存管理与供应链优化零售行业可以利用大数据技术对销售数据、库存数据和供应链数据进行分析,以优化库存管理和供应链运作。

例如,一家超市通过分析历史销售数据和天气数据,建立了一个预测模型,可以准确预测不同产品的需求量,并及时调整库存。

这样可以避免库存积压和断货的情况,提高供应链的效率和利润。

四、医疗行业的大数据应用案例分析1. 疾病预测与防控医疗行业可以通过分析大量的医疗数据和生物信息数据,建立疾病预测模型,帮助医生和政府预测和防控疾病的发生和传播。

大数据十大经典案例(2024)

大数据十大经典案例(2024)

引言概述:本文将介绍大数据领域的十个经典案例,并探讨它们在不同领域的应用,这些案例涵盖了金融、医疗、零售、交通和市场营销等领域。

通过详细阐述这些案例,读者将了解到大数据技术对于提高业务效率和创新的重要性。

正文内容:1.金融领域的大数据案例1.1.金融风控:通过大数据分析大量的用户数据,金融机构可以更好地评估借贷风险,提高风控能力,降低违约概率。

1.2.欺诈检测:利用大数据技术,金融机构能够快速发现可疑的交易模式,及时采取措施避免欺诈行为。

2.医疗领域的大数据案例2.1.个性化医疗:利用大数据分析患者的基因数据和病历资料,医疗机构可以根据个体差异制定个性化的治疗方案,提高医疗效果。

2.2.疾病预测:通过分析大规模的医疗数据,可以发现潜在的疾病模式,提前预测患者可能的健康问题,及早干预治疗。

3.零售领域的大数据案例3.1.消费者行为分析:通过对消费者购买记录和行为数据的分析,零售商可以了解消费者的偏好和购买习惯,从而进行更精确的市场定位和产品推广。

3.2.库存管理优化:通过对销售数据和库存数据的分析,零售商能够做出更准确的库存预测,减少库存积压和缺货现象,提高利润率。

4.交通领域的大数据案例4.1.交通流量优化:通过对车流量和道路状况的实时数据进行分析,交通管理部门可以合理调度交通信号灯和路线规划,减少交通拥堵。

4.2.共享交通:通过运用大数据技术,共享交通平台可以更好地预测和满足乘客需求,实现更高效的交通资源利用。

5.市场营销领域的大数据案例5.1.目标市场定位:通过对大量市场数据的分析,企业可以了解不同市场的消费者需求和趋势,从而精确地定位目标市场。

5.2.营销策略优化:通过对市场活动和广告效果的追踪分析,企业可以优化营销策略,提高广告投放的回报率。

总结:通过对这十个大数据经典案例的分析,我们可以看到大数据技术在各个领域的广泛应用。

它不仅能够提高业务效率,降低风险,还能够促进创新和发展。

随着技术的进步和数据规模的增加,大数据将在未来发挥越来越重要的作用。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着互联网的快速发展和技术的不断进步,大数据已经成为当今信息时代的核心驱动力之一。

大数据的应用在各个领域都取得了巨大的成功,为企业和组织提供了更准确、更全面的数据支持,从而帮助他们做出更明智的决策。

本文将分析几个经典的大数据应用案例,以展示大数据在不同领域的重要作用。

二、电商领域的大数据应用案例分析1. 京东的个性化推荐系统京东是中国最大的综合性电商平台之一,其个性化推荐系统是一个典型的大数据应用案例。

通过收集用户的浏览历史、购买记录、搜索关键词等数据,京东能够分析用户的偏好和需求,并根据这些数据为用户推荐个性化的商品。

这不仅提升了用户的购物体验,还帮助京东提高了销售额。

2. 淘宝的反欺诈系统淘宝是中国最大的在线购物平台,每天都有数以百万计的交易发生。

为了保护用户的利益,淘宝开发了一套反欺诈系统,利用大数据分析技术来识别潜在的欺诈行为。

系统会根据用户的购买行为、交易记录、评价等数据进行分析,并通过机器学习算法来判断是否存在欺诈风险。

这种系统的应用大大减少了欺诈交易的发生,提升了用户的信任度。

三、金融领域的大数据应用案例分析1. 花旗银行的风险管理系统花旗银行是全球领先的金融机构之一,为了更好地管理风险,他们开发了一套基于大数据的风险管理系统。

该系统通过收集和分析大量的金融数据,包括市场数据、客户数据、交易数据等,来评估风险并制定相应的措施。

这种系统的应用使得花旗银行能够更准确地预测市场波动,降低风险,提高盈利能力。

2. 中国银行的信用评分系统中国银行作为中国最大的商业银行之一,拥有庞大的客户群体。

为了更好地评估客户的信用风险,中国银行开发了一套基于大数据的信用评分系统。

该系统通过分析客户的个人信息、财务状况、还款记录等数据,来评估客户的信用水平。

这种系统的应用使得中国银行能够更准确地判断客户的还款能力,提高贷款审批的效率。

四、医疗领域的大数据应用案例分析1. IBM Watson的医疗诊断系统IBM Watson是一款基于人工智能和大数据分析的医疗诊断系统,它能够通过分析大量的医疗文献、病例数据等来辅助医生进行诊断和治疗决策。

大数据十大经典案例

大数据十大经典案例
ห้องสมุดไป่ตู้
2 数据新闻 让英国撤军
2010年10月23日《卫报》 利用维基解密的数据做了一篇 “数据新闻”。将伊拉克战争 中所有的人员伤亡情况均标注 于地图之上。地图上一个红点 便代表一次死伤事件,鼠标点 击红点后弹出的窗口则有详细 的说明:伤亡人数、时间,造 成伤亡的具体原因。密布的红 点多达39万,显得格外触目惊 心。一经刊出立即引起朝野震 动,推动英国最终做出撤出驻 伊拉克军队的决定。
在现在,“魔镜”可以通过数据的整合分析可 视化不仅可以得出谁是世界上最美的女人,还能通 过价量关系得出市场的走向。在不久前,“魔镜” 帮助中石等企业分析数据,将数据可视化,使企业 科学的判断、决策,节约成本,合理配置资源,提 高了收益。
6 Google成功预测冬季流感
2009年,Google通过分析5000万条美国人最频繁 检索的词汇,将之和美国疾病中心在2003年到2008年 间季节性流感传播时期的数据进行比较,并建立一个 特定的数学模型。最终google成功预测了2009冬季流 感的传播甚至可以具体到特定的地区和州。
7 大数据与乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA 进行排序的人。为此,他支付了高达几十万美元的费 用。他得到的不是样本,而是包括整个基因的数据文 档。医生按照所有基因按需下药,最终这种方式帮助 乔布斯延长了好几年的生命。
8 奥巴马大选连任成功
2012年11月奥巴马大选连任成功的胜利果实也 被归功于大数据,因为他的竞选团队进行了大规模 与深入的数据挖掘。时代杂志更是断言,依靠直觉 与经验进行决策的优势急剧下降,在政治领域,大 数据的时代已经到来;各色媒体、论坛、专家铺天 盖地的宣传让人们对大数据时代的来临兴奋不已, 无数公司和创业者都纷纷跳进了这个狂欢队伍。

大数据十大经典案例.ppt

大数据十大经典案例.ppt

报先后发明。
(3)近代以来,交通、通讯工具的进步,推 动了经济与社会的发展。
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时 代潮流 图说历史 主旨句归纳 (1)1911年,革命党人发动武昌起义,辛亥
革命
爆发,随后建立了中华民国,颁布了《中 华
民国临时约法》;辛亥革命是中国近代化
进 程的里程碑。
9 微软大数据成功预测奥斯卡21项大 奖
2013年,微软纽约研究院的经济学家大卫•罗斯 柴尔德( David Rothschild )利用大数据成功预测 24个奥斯卡奖项中的19个,成为人们津津乐道的话 题。今年罗斯柴尔德再接再厉,成功预测第86届奥 斯卡金像奖颁奖典礼24个奖项中的21个,继续向人 们展示现代科技的神奇魔力。
互联网出现在20世纪90年代。 答案:B
4.下列不属于通讯工具变迁和电讯事业发展影响的是( A.信息传递快捷简便 B.改变着人们的思想观念
)
C.阻碍了人们的感情交流
D.影响着人们的社会生活 解析:新式通讯工具方便快捷,便于人们感情的沟通和交流。 答案:C
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时代潮流 图说历史 主旨句归纳 (1)近代交通由传统的人力工具逐渐演变为 机械动力牵引的新式交通工具,火车、 汽车、电车、轮船、飞机先后出现。 (2)通讯工具由传统的邮政通信发展为先进 的电讯工具,有线电报、电话、无线电
6 Google成功预测冬季流感
2009年,Google通过分析5000万条美国人最频繁 检索的词汇,将之和美国疾病中心在2003年到2008年 间季节性流感传播时期的数据进行比较,并建立一个 特定的数学模型。最终google成功预测了2009冬季流 感的传播甚至可以具体到特定的地区和州。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析1. 引言大数据是指规模庞大、复杂度高且难以处理的数据集合。

随着信息技术的发展和互联网的普及,大数据应用在各个领域中扮演着重要角色。

本文将通过分析几个经典的大数据应用案例,探讨大数据在不同行业中的应用价值和影响。

2. 电子商务行业中的大数据应用案例2.1 亚马逊的个性化推荐系统亚马逊作为全球最大的电子商务平台之一,其个性化推荐系统是其成功的关键之一。

通过分析用户的购买历史、点击行为、浏览记录等大数据,亚马逊能够为每个用户提供个性化的商品推荐,提高用户购买转化率和用户满意度。

2.2 淘宝的精准营销策略淘宝作为中国最大的电子商务平台,利用大数据分析用户的购物行为、搜索记录等信息,能够为商家提供精准的营销策略。

通过定向广告投放和个性化推荐,淘宝能够提高广告的点击率和转化率,为商家带来更多的销售机会。

3. 金融行业中的大数据应用案例3.1 花旗银行的反欺诈系统花旗银行利用大数据分析客户的交易记录、信用评分、地理位置等信息,构建了一套强大的反欺诈系统。

该系统能够实时监测账户的异常交易行为,并通过机器学习算法进行风险评估,有效预防欺诈行为的发生,保护客户的资金安全。

3.2 银联的消费趋势分析银联作为中国最大的银行卡支付网络,通过大数据分析用户的消费行为、购买偏好等信息,可以准确把握用户的消费趋势。

这些数据可以帮助银联制定精准的市场营销策略,提高商户的销售额和用户的消费体验。

4. 交通运输行业中的大数据应用案例4.1 谷歌地图的交通拥堵预测谷歌地图通过分析用户的位置数据、交通流量等信息,能够实时预测道路的交通拥堵情况。

这些数据可以帮助用户选择最佳的出行路线,减少交通堵塞,提高出行效率。

4.2 快递物流的智能调度系统快递物流行业利用大数据分析货物的运输需求、交通状况等信息,构建智能调度系统。

通过优化路线规划和配送方案,可以提高物流效率,降低成本,提升用户的物流体验。

5. 医疗健康行业中的大数据应用案例5.1 IBM Watson的医疗诊断系统IBM Watson利用大数据分析医学文献、病历数据等信息,能够为医生提供精准的诊断和治疗建议。

数据分析经典案例

数据分析经典案例

数据分析经典案例近些年来,随着大数据时代的到来,数据分析成为企业决策的重要工具之一。

数据分析可以帮助企业发现潜在商机,优化运营流程,提高竞争力。

以下是一些经典的数据分析案例。

1. NetFlix数据分析案例NetFlix是一家全球知名的视频流媒体服务提供商。

为了提供更好的个性化推荐服务,NetFlix通过分析用户的观看行为,构建了一个复杂的推荐系统。

他们根据用户的浏览历史、评分等数据,使用机器学习算法,将用户分为不同的群体,然后根据群体的喜好,为用户推荐相关的电影和剧集。

这种个性化推荐系统极大地提高了用户的观看体验,也帮助NetFlix提高了用户留存率。

2. 沃尔玛数据分析案例沃尔玛是世界上最大的零售企业之一。

为了更好地管理库存和优化供应链,沃尔玛利用大数据进行实时预测和决策。

他们分析过去的销售数据,计算出不同产品的销售趋势和周期,然后基于这些数据,预测未来的销售情况,从而更好地安排产品的进货和配送。

这种数据驱动的供应链管理方法,让沃尔玛能够更好地满足客户需求,提高效率和利润。

3. 谷歌数据分析案例谷歌是全球最大的搜索引擎之一。

为了提供更精准的搜索结果,谷歌通过大数据分析来改进搜索算法。

他们分析用户的搜索行为和点击历史,通过推断用户的意图和兴趣,为用户提供更相关的搜索结果。

谷歌还通过分析全球的搜索数据,预测流行趋势和热点话题,从而提供有价值的洞察和建议。

这种数据驱动的搜索引擎算法,让谷歌成为用户首选的搜索引擎,也为他们带来了巨大的商业价值。

这些案例展示了数据分析在不同行业的应用和价值。

数据分析不仅可以为企业提供洞察和决策支持,还可以帮助企业发现商机,优化流程,提高效率和利润。

随着技术的进步和数据的不断增长,数据分析在未来将会发挥更重要的作用。

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析

大数据及大数据应用经典案例分析一、引言随着信息技术的快速发展,大数据成为当今社会的热门话题。

大数据是指规模巨大、类型多样的数据集合,无法使用传统的数据处理工具进行处理和分析。

大数据的应用已经渗透到各个领域,对经济、社会和科学研究等方面产生了深远的影响。

本文将通过分析几个经典的大数据应用案例,探讨大数据对于企业和社会的重要性和影响。

二、经典案例分析1. 电商行业的大数据应用案例电商行业是大数据应用的典型代表。

以阿里巴巴集团为例,他们通过采集和分析海量的用户数据,为商家提供精准的广告投放和个性化推荐服务。

阿里巴巴利用大数据技术,能够根据用户的购买历史、浏览行为和兴趣偏好等信息,为用户推荐最符合其需求的商品和服务。

这种个性化推荐不仅提高了用户的购物体验,也为商家带来了更高的转化率和销售额。

2. 医疗行业的大数据应用案例医疗行业也是大数据应用的重要领域之一。

例如,IBM的Watson医疗系统利用大数据技术,能够分析海量的医学文献、病例数据和基因组数据,为医生提供精准的诊断和治疗建议。

通过比对患者的病情和历史数据,该系统能够匡助医生更快速地制定治疗方案,提高诊断的准确性和治疗的效果。

此外,大数据还可以用于疾病的预测和监测,匡助政府和医疗机构及时采取措施,防止疾病的扩散和爆发。

3. 交通运输行业的大数据应用案例交通运输行业也是大数据应用的重要领域。

例如,谷歌地图利用大数据技术,通过分析用户的位置数据和交通状况,提供实时的路况信息和最佳的导航路线。

这不仅匡助司机避开拥堵路段,减少交通时间,也为城市交通管理部门提供了珍贵的数据参考,匡助他们优化交通规划和资源配置。

此外,大数据还可以用于交通事故的预测和预防,提高交通安全性。

4. 金融行业的大数据应用案例金融行业是大数据应用的重要领域之一。

例如,信用评分是金融机构决定是否赋予贷款的重要指标。

利用大数据技术,金融机构可以分析借款人的信用历史、财务状况和社交媒体数据等信息,更加准确地评估借款人的信用风险。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国内外大数据经典案例研究大数据时代的来临使得产生的数据量呈爆炸式增长,各行各业均面临着海量数据的分析、处理问题。

如何运用大数据技术从海量数据中挖掘出有价值的信息,将是今后企业发展的一个巨大挑战。

点评收集研究了国内外大数据应用的经典案例,希望可以对读者有所启示。

1、塔吉特百货孕妇营销分析最早关于大数据的故事发生在美国第二大超市塔吉特百货。

孕妇对零售商来说是个含金量很高的顾客群体,但是她们一般会去专门的孕妇商店。

人们一提起塔吉特,往往想到的都是日常生活用品,却忽视了塔吉特有孕妇需要的一切。

在美国,出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,那时候再行动就晚了,因此必须赶在孕妇怀孕前期就行动起来。

塔吉特的顾客数据分析部门发现,怀孕的妇女一般在怀孕第三个月的时候会购买很多无香乳液。

几个月后,她们会购买镁、钙、锌等营养补充剂。

根据数据分析部门提供的模型,塔吉特制订了全新的广告营销方案,在孕期的每个阶段给客户寄送相应的优惠券。

结果,孕期用品销售呈现了爆炸性的增长。

2002年到2010年间,塔吉特的销售额从440亿美元增长到了670亿美元。

大数据的巨大威力轰动了全美。

点评:这个案例说明大数据在企业营销上的成功,利用大数据技术分析客户消费习惯,判断其消费需求,从而进行精确营销。

这种营销方式的关键在于其时机的把握上,要正好在客户有相关需求时才进行营销活动,这样才能保证较高的成功率。

2、沃尔玛“啤酒加尿布”经典案例总部位于美国阿肯色州的世界著名商业零售连锁企业沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析。

沃尔玛数据仓库里集中了其各门店的详细原始交易数据,在这些原始交易数据的基础上,沃尔玛利用NCR数据挖掘工具对这些数据进行分析和挖掘,可以很轻松地知道顾客经常一起购买的商品有哪些。

一个意外的发现是:“跟尿布一起购买最多的商品竟是啤酒!”这是数据挖掘技术对历史数据进行分析的结果,反映数据内在的规律。

沃尔玛派出市场调查人员和分析师对这一数据挖掘结果进行调查分析,经过大量实际调查和分析,揭示了隐藏在“尿布与啤酒”背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。

产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。

既然尿布与啤酒一起被购买的机会很多,于是沃尔玛就在其一个个门店将尿布与啤酒摆放在一起,结果是尿布与啤酒的销售量双双增长。

点评:无论“啤酒加尿布”仅仅是一个传说,还是一个真的发生过,它都已经成为大数据技术应用的一个经典案例。

这个故事的意义在于将看似不相关的商品数据放在一起进行分析,找到他们之间的相关性,从而进行交叉营销,促进商品的销量。

这种思维方式才是成功的关键。

3、试衣间的大数据应用传统奢侈品牌PRADA正在向大数据时代迈进。

她在纽约及一些旗舰店里开始了大数据时代行动。

在纽约旗舰店里,每件衣服上都有RFID码,每当顾客拿起衣服进试衣间时,这件衣服上的RFID会被自动识别,试衣间里的屏幕会自动播放模特穿着这件衣服走台步的视频。

人一看见模特,就会下意识里认为自己穿上衣服就会是那样,不由自主地会认可手中所拿的衣服。

而在顾客试穿衣服的同时,这些数据会传至PRADA总部。

包括:每一件衣服在哪个城市哪个旗舰店什么时间被拿进试衣间停留多长时间,数据都被存储起来加以分析。

如果有一件衣服销量很低,以往的作法是直接被废弃掉。

但如果RFID传回的数据显示这件衣服虽然销量低,但进试衣间的次数多。

那就说明存在一些问题,衣服或许还有改进的余地。

这项应用在提升消费者购物体验的基础上,还帮助Prada提升了30%以上的销售量。

传统奢侈品牌在大数据时代采取的行动,体现了其对大数据运用的视角,也是公司对大数据时代的积极回应。

点评:案例中,物联网和大数据的结合是成功的关键,利用了物联网技术来收集数据,大数据技术进行分析,进而得出市场需求的结论。

在服装领域,大数据等新技术正在发挥着巨大的作用。

4、路易斯维尔利用大数据治理空气污染问题美国堪萨斯州的路易斯维尔地区,大约有10万人饱受哮喘困扰。

根据2012年路易斯维尔市发布的当地健康报告,受访的500个成年人中,有15%都声称他们患有哮喘。

这也让人们对当地的空气质量状况产生了担忧。

因此,路易斯维尔市政府与IBM以及Asthmapolis合作,共同推出了“路易斯维尔哮喘数据创新计划”。

该计划选取了500名哮喘病患者,让他们使用Asthapolis的传感器。

每个哮喘病人可以得到价值35美元的Walgreen药店的购物卡以及500美元的抽奖机会。

传感器被装在哮喘病人日常使用的呼吸器上,可以记录病人使用呼吸器的情况,这种记录要比病人每天自己记录的使用日志要准确地多。

传感器的数据可以上传到病人的智能手机上,而通过智能手机,数据可以被传到病人的医生那里。

此外,通过Asthmapolis的移动应用,病人也可以看到针对刚才发送的数据的反馈和指导意见。

由于哮喘病的情况因人而异,因此,这样的个性化指导对于控制哮喘病发病有很重要的意义。

哮喘数据创新计划采集的数据将和其他数据源结合起来,研究其相关性并研究热点发病地区。

通过研究呼吸机数据与空气质量、交通状况、污染情况等数据的相关性,城市管理者可以更好的进行城市规划以及公众健康保护。

点评:健康问题一直是人们关注的热点领域,智慧医疗和大数据的结合对于未来医疗技术的发展具有重大推动作用,有助于提高医疗效果,减少医患纠纷。

5、阿里信用贷款和淘宝数据魔方中国最大的电子商务公司阿里巴巴已经在利用大数据技术提供服务:阿里信用贷款与淘宝数据魔方。

每天有数以万计的交易在淘宝上进行。

与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。

各大中小城市的百货大楼做不到这一点,大大小小的超市做不到这一点,而互联网时代的淘宝可以。

淘宝数据魔方就是淘宝平台上的大数据应用方案。

通过这一服务,商家可以了解淘宝平台上的行业宏观情况、自己品牌的市场状况、消费者行为情况等,并可以据此进行生产、库存决策,而与此同时,更多的消费者也能以更优惠的价格买到更心仪的宝贝。

而阿里信用贷款则是阿里巴巴通过掌握的企业交易数据,借助大数据技术自动分析判定是否给予企业贷款,全程不会出现人工干预。

截至目前,阿里巴巴已经放贷300多亿元,坏账率约0.3%左右,大大低于商业银行。

点评:目前国内的互联网金融行业正处于发展阶段,而大数据技术对互联网金融的发展具有至关重要的作用。

互联网金融不可避免的会产生海量的数据,如何利用大数据技术对这些数据进行合理的分析是互联网金融成功发展的关键。

6、其他大数据案例(1)腾讯——大数据技术促使腾讯视频成为国内第一腾讯视频凭借全平台资源,建立iSEE内容精细化运营战略,利用腾讯视频的庞大数据资源,了解用户所喜欢看的内容和用户的常见行为。

通过技术优势带给用户更好的观看体现。

最后借助腾讯视频社区化的关系链和多平台触达能力,让营销内容得到最大范围的传播,致力于成为国内最大的在线视频媒体交流平台。

(2)T-Mobile——大数据帮助移动运营商降低客户流失率移动运营商T-Mobile在多个IT系统中整合了大数据应用,对客户交易和互动数据进行综合分析,更准确地预测客户流失率。

通过将社交媒体数据和CRM 和计费系统中的交易数据进行综合分析,T-mobile在一个季度内将客户流失率降低了一半!(3)TXU Energy——智能电表:有了智能电表,供电公司能每隔15分钟就读一次用电数据,而不是过去的一月一次。

这不仅仅节省了抄表的人工费用,而且由于能高频率快速采集分析用电数据(产生大数据),供电公司能根据用电高峰和低谷时段制定不同的电价,TXU Energy就利用这种价格杠杆来平抑用电高峰和低谷的波动幅度。

例如,TXU Energy打出了这样的宣传口号:亲,晚上再洗衣服洗碗吧,晚上用电不要钱。

实际上,智能电表和大数据应用让分时动态定价成为可能,而且这对于TXU Energy和用户来说是一个双赢变化。

(4)麦克拉伦一级方程式车队——借助大数据技术,降低事故,保驾护航麦克拉伦车队(Mclaren’s F1 racing team)通过汽车传感器在赛前的场地测试中实时采集数据,结合历史数据,通过预测型分析发现赛车问题,并预先采取正确的赛车调校措施,降低事故几率并提高比赛胜率。

(5)UPS快递——大数据技术下的最佳行车路径UPS快递多效地利用了地理定位数据。

为了使总部能在车辆出现晚点的时候跟踪到车辆的位臵和预防引擎故障,它的货车上装有传感器、无线适配器和GPS。

同时,这些设备也方便了公司监督管理员工并优化行车线路。

UPS为货车定制的最佳行车路径是根据过去的行车经验总结而来的。

2011年,UPS的驾驶员少跑了近4828万公里的路程。

(6)DPR——用大数据设计建筑DRP建筑公司是加州旧金山分校医学中心价值15亿美元的建筑合同的总包商。

这也是首个完全基于大数据模型建设的医学中心建筑。

DPR使用了Autodesk公司的三维技术,设计师们能整合空气流动、建筑朝向、楼板空间、环境适应性、建筑性能等多种数据,形成一个虚拟模型,各种数据和信息可以在这个模型中实时互动。

建筑师、设计师和施工队伍通过这个模型可以在接近真实的完整的运营环境里,以可视化的方式观察数以百万计的数据标记。

点评:数据量的激增以及大数据技术的特点使得社会对大数据技术的需求日益增大,各个领域均开始出现成功利用大数据的案例。

政府、运营商、互联网企业是大数据技术的主要推动者,而未来有关大数据的投资将主要集中在客户的精准营销、智慧医疗、电子商务等三个领域。

相关文档
最新文档