同济大学高等数学(第七版)上册第一章函数
(完整版)同济大学高等数学上第七版教学大纲(64学时)
福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。
(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。
2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。
二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。
2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。
3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。
4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。
5、掌握极限运算法则。
6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
高等数学(同济第七版)课后答案解析
(2)当1()W*WI5时,点〃在(/上.点。在汕上(图1-6).
ICPI =x.14()1=2x -20.
设点()到。。的距髙为奴则
h丨I = 45- 2x
20=25=25,
W A =y(45 -2x).故
74■
二如(45 -2、)= -厅十+I8x.
(3)当!5<x<20时,点户、。都在网上(图1-7).
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.
放
/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
解M二彼二—乂
sin40
50=—/*[ HC+ (HC+2col40°• /e)],
得
BC=単_col40。・力,
n
所以
為2-cos40°
L=——+n .
hsin40°'
而h>0H^-cot 40° • A>0,«此湿周函数的定义域为(040。).
由15.设x()y平面上冇正方形/) ={(x,y)IOWjcW1,0Wy WI}及f[线2:x+y= £(£N()).若S(〃表示正方形〃位于宜线,左下方部分的面积,试求SJ)与/之间的函数关系.
1时1=*-15,\A(J\=2x-20.
设点Cfl|AH的距离为/,则
高数同济七版电子课本上册
反常积分
反常积分的概念
反常积分是对于无穷区间上的积分,它分为两类:无穷限的反常积 分和瑕点的反常积分。
反常积分的性质
反常积分具有一些特殊的性质,例如:无穷限的反常积分的结果可 能为无穷大,瑕点的反常积分的结果可能为无穷小。
反常积分的计算方法
对于不同类型的反常积分,计算方法有所不同,常用的方法包括利 用极限理论、幂级数展开等。
法则。
基本公式
02 基本公式包括指数函数的导数、幂函数的导数、对数
函数的导数和三角函数的导数等。
常见函数的导数
03
常见函数的导数包括一次函数的导数、二次函数的导
数、反比例函数的导数和幂函数的导数等。
微分及其应用
01
02
03
微分的概念
微分是函数在某一点处的 近似值,即函数在该点的 切线截距。
微分的几何意义
柯西中值定理
进一步揭示了函数在某点处的导数与该点附近函数的平均值之间的关系,是微分学中的重要定理之一。
洛必达法则
洛必达法则基本内容
在一定条件下,当一个函数的极限为0时,可以 应用洛必达法则求其导数的极限。
洛必达法则的应用
适用于求一些复杂函数的极限,简化计算过程 。
洛必达法则的条件
只有在满足一定条件下才能使用洛必达法则,否则可能导致错误的结果。
反常积分的应用
• 总结词:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类问 题。反常积分的应用包括物理、工程、经济等领域。
• 详细描述:反常积分是定积分的一种推广形式,它可以用来求解更广泛的一类 问题。反常积分有两种类型:无穷区间上的反常积分和无界函数的反常积分。 无穷区间上的反常积分可以用来求解函数在无穷区间上的积分,而无界函数的 反常积分可以用来求解函数在有限区间上的瑕积分。反常积分的应用非常广泛 ,包括物理、工程、经济等领域。例如,在物理学中,反常积分可以用来求解 量子力学中的波函数问题、电动力学中的电磁场问题等;在工程学中,反常积 分可以用来求解流体动力学中的问题、热传导问题等;在经济领域,反常积分 可以用来求解贴现问题、投资组合问题等。
高等数学 同济大学第七版第1章第1节课件C1S1
那么称函数f (x)在X上有上界
y
K1 称为函数f (x)在X上的一个上界
类似可以定义函数f (x)在X上有下界
o
x
函数的几种特性
1.函数的有界性
设函数f (x) 的定义域为D,数集 X D
如果存在数 K1, 使得 f ( x) K1 对任一 x X 都成立
那么称函数f (x)在X上有上界
o
x
注 函数f (x)在X上有界
函数f (x)在X上既有上界,又有下界
例:f ( x) sin x 在(, )内有界,f ( x) 1 在(0, 1)内无界 x
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
y
如果对于区间I上的任意两点x1及x2,
积 f g ( f g)( x) f ( x) g( x), x D
商 f g
f ( x) f ( x) , x D \ x | g( x) 0
g g(x)
概念
概念
集映 合射
逆映射
区邻 间域
构造 复合映射
初等函数 函
反函数
数
复合函数 构造
四则运算
第一讲 映射与函数
映
特例
函
射
数
概念
映
函
射
数
映射的概念
定义 设X、Y是两个非空集合,如果存在一个法则f,使得 对X中每个元素x,按法则f,在Y中有唯一确定的元素 y与之对应,那么称f为从X到Y的映射,记作:y=f (x)
f Xx
原像
像
定义域
Y y
值域
注
(1) 映射的三要素:定义域、值域的范围、对应法则; (2) 映射的像唯一,但原像不一定唯一; (3) 映射又称为算子,在不同数学分支中有不同的名称
同济大学高等数学(第七版)上册第一章函数 PPT课件
16 x2 0
(1) (2)
y 2x ln x 16 x2
y log5 (x2 1)
ln x 0 x [1, 4) (4, )
x0
x2 1 0 x (, 1) (1, )
函数定义可简单地归结为构成函数的两个要素: • 定义域 D f : 自变量的变化范围。 • 对应法则 f :自变量与因变量的对应规则。
y y f (x)
f (x)
f (x)
-x o x
x
偶函数图形关于y轴对称,如:y=kx2
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数;
y
y f (x)
-x f (x)
f (x)
o
xx
奇函数的图形关于原点对称,如:y=kx
奇、偶函数经四则运算后仍可在一定条件 下保持相应的奇、偶性。
解: D( 7) 1, 5
D(1 2) 0,
D(D( x)) 1,
(5) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
例.
已知函数
y
f
(
x)
2 1
x, x,
y
y f (x)
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
新版高等数学(同济第七版)上册-知识点总结-新版-精选.pdf
高等数学(同济第七版)上册-知识点总结第一章函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim x g x f 且lx g x f )()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以 f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以 f (x) ~ g(x) 2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1-cos x ~ 2/2^x ,xe -1 ~ x ,)1ln(x ~ x ,1)1(x ~ x二.求极限的方法1.两个准则准则 1.单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤h (x )若A x h A x g )(lim ,)(lim ,则Ax f )(lim 2.两个重要公式公式11sin limx x x公式2ex xx /10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332n n nnnxxo n xx x xxx o n x x x x e)(!2)1(...!4!21cos 2242nnnx o n xxxx )()1(...32)1ln(132nnn x o n xxxxx )(!))1()...(1(...!2)1(1)1(2nnx o xn n xx x )(12)1( (5)3arctan 1212153n n n xo n xxxxx 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0x f x x,0)(lim 0x F x x;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则这个定理说明:当)()(limx F x f xx 存在时,)()(limx F x f xx 也存在且等于)()(limx F x f xx ;当)()(limx F x f x x为无穷大时,)()(limx F x f xx 也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L ospital )法则.型未定式定理2 设函数)(x f 、)(x F 满足下列条件:(1))(lim 0x f xx ,)(lim 0x F xx ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(x F ;(3))()(limx F x f xx 存在(或为无穷大),则注:上述关于0x x时未定式型的洛必达法则,对于x 时未定式型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“”型的未定式,其它的未定式须先化简变形成“00”或“”型才能运用该法则;)()(lim)()(limx F x f x F x f x xx x)()(lim)()(lim 0x F x f x F x f x xxx(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim0'00x f xx f x x f x (如果存在)7.利用定积分定义求极限基本格式11)()(1limdx x f n kf nnk n(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x)的间断点。
高等数学(同济第七版)(上册)-知识点
WORD 格式可编辑版
...
第二章 导数与微分 一.基本概念
1.可微和可导等价,都可以推出连续,但是连续不能推出可微和可导。
∈[ a,b] ,有公式
,
, 称为拉格朗日余项 上面展开式称为以0(x) 为中心的n 阶泰勒公式。当 x0 =0 时,也称为n阶麦克劳林
WORD 格式可编辑版
...
公式。 常用公式( 前8个)
WORD 格式可编辑版
...
五.导数的应用
一.基本知识 设函数f ( x) 在 x0 处可导,且 x0 为f ( x) 的一个极值点,则 f '(x0) 0 。 我们称x 满足 f '(x0) 0 的 x0 称为 f (x) 的驻点,可导函数的极值点一定是驻点, 反之不然。极值点只能是驻点或不可导点,所以只要从这两种点中进一步去判断。
二.求导公式
三.常见求导
WORD 格式可编辑版
...
1. 复合函数运算法则 2. 由参数方程确定函数的运算法则
设x =( t) ,y =(t) 确定函数y = y( x) ,其中'(t),'(t) 存在,且'(t) ≠ 0,则 dy '(t)
dx '(t) 3. 反函数求导法则 设y = f ( x) 的反函数x = g( y) ,两者皆可导,且f ′( x) ≠ 0 则 g'( y) 1 1 ( f '(x) 0)
2. 第二充分条件
f (x) 在 x0 处二阶可导,且 f (x0) 0 ,f (x0 ) 0 ,则①若 f (x0 ) 0 , 则 x0 为极大值点;②若 f (x0 ) 0 ,则 x0 为极小值点.
高等数学(同济大学第七版)第一章函数与极限课后答案
高等数学(同济大学第七版)第一章函数与极限课后答案高等数学(同济大学第七版)第一章函数与极限课后答案1. 函数的概念1.1 什么是函数在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数可以用各种形式表示,例如数学公式、图表或者一种操作规则。
1.2 函数的分类根据函数的性质和表达方式,函数可以分为代数函数、三角函数、指数函数、对数函数等等。
每种类型的函数都有其独特的性质和特点。
2. 极限的概念与性质2.1 极限的定义在数学中,当自变量趋近于某个特定值时,函数的值可能会趋近于一个常数或无限大。
这种趋近的过程被称为极限。
极限可以用数学符号进行表示。
2.2 极限的性质极限具有一些重要的性质,例如唯一性、局部性以及四则运算法则。
这些性质对于研究函数的性质和行为至关重要。
3. 函数的连续性与间断点3.1 函数的连续性连续性是函数的重要性质之一,它表示函数在某个区间内没有突变或间断。
一个函数可以是连续的,也可以是不连续的。
3.2 间断点的分类根据函数在某个点处的性质,间断点可以分为可去间断点、跳跃间断点和无穷间断点。
每种类型的间断点都有其特定的定义和判断条件。
4. 导数与微分4.1 导数的定义在数学中,导数表示函数在某一点处的变化率或斜率。
导数可以通过极限的概念来定义,并且具有一些重要的性质。
4.2 微分的概念与计算微分是导数的一个重要应用,它可以用于计算函数在某一点处的近似值。
微分也可以用于解决最优化问题和求解方程的近似解。
5. 函数的凸性与极值5.1 函数的凸性凸性是函数曲线的重要性质之一,它表示函数曲线在某个区间内的凸凹形态。
凸性可以通过函数的二阶导数来判断。
5.2 极值的概念与求解极值是函数在某个区间内取得的最大值或最小值。
求解极值可以通过函数的导数和二阶导数来进行,常用的方法包括 Fermat 定理和 Euler 判别法。
6. 函数的图形与曲线的绘制6.1 函数的图形与性质函数的图形是函数曲线在平面直角坐标系上的表示。
高等数学同济第七版上册课后习题答案
高等数学同济第七版上册课后习题答案高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。
而《高等数学》同济第七版上册更是众多高校选用的经典教材。
课后习题作为巩固和深化知识的重要手段,其答案的准确性和完整性对于学生的学习效果有着直接的影响。
在学习高等数学的过程中,很多同学都会遇到各种各样的问题,尤其是在课后习题的解答上。
有时候,即使认真听讲、仔细阅读教材,也可能会在解题时感到困惑。
这时候,一份详细准确的课后习题答案就显得尤为重要。
首先,我们来看第一章函数与极限。
这一章的习题主要围绕函数的概念、性质以及极限的计算展开。
对于函数的定义域、值域、奇偶性等问题,需要同学们对函数的定义有清晰的理解。
而极限的计算则是这一章的重点和难点,包括利用极限的四则运算法则、两个重要极限、等价无穷小替换等方法求极限。
以习题 1-1 中的第 5 题为例:求函数\(f(x) =\sqrt{x^2 4}\)的定义域。
要解决这个问题,我们需要令\(x^2 4 \geq 0\),即\((x 2)(x + 2) \geq 0\)。
解得\(x \leq -2\)或\(x \geq2\),所以函数的定义域为\((\infty, -2 \cup 2, +\infty)\)。
再比如第一章的习题 1-5 中的第 2 题:计算\(\lim_{x \to 0}\frac{\sin 3x}{x}\)。
这道题可以利用重要极限\(\lim_{x \to 0} \frac{\sin x}{x} = 1\)来求解。
将原式变形为\(3 \times\lim_{x \to 0} \frac{\sin 3x}{3x}\),结果为\(3\)。
第二章导数与微分的习题则侧重于导数的定义、求导法则以及微分的计算。
对于复合函数的求导,需要同学们熟练掌握链式法则。
比如习题 2-2 中的第 7 题:设\(y =\ln \sqrt{\frac{1 x}{1+ x}}\),求\(y'\)。
同济七版高等数学上册 大一上学期 映射与函数 ppt
于是,
四. 初等函数
(1) 基本初等函数 常数函数、幂函数、指数函数、 对数函数、 三角函数、 反三角函数 (2) 初等函数
由常数及基本初等函数经过有限次四则运 算和复合步骤所构成 ,并可用一个式子表示 的函数 ,称为初等函数 .否则称为非初等函数 .
例如
y x3 5x2 1
y ex ex
(1,0)
(a 1)
4.三角函数
正弦函数 y sin x
余弦函数 y cos x
正切函数 y tan x 余切函数 y cot x
正割函数 y sec x 余割函数 y csc x
5.反三角函数 反正弦函数 y arcsin x 反余弦函数 y arccos x
反正切函数 y arctan x
③牢固掌握极限运算法则,极限的性质,尤其是函 数 极限的保号性质
④理解极限存在准则,熟记两个重要极限及其证明 方法,灵活地运用它们及各种变形公式求极限
⑤正确理解连续概念,理解间断点的分类
⑥理解初等函数的连续性,掌握闭区间上连续函数 的性质
第一节 映射与函数
一、集合 二、映射 三、函数
一、集合
1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.
几个特殊的函数举例
y
(1) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
y
(2) 取整函数 y=[x]
4 3
[x]表示不超过 x 的最大整数
2
阶梯曲线
1 -4 -3 -2 -1 o -11 2 3 4 5 x
高等数学(同济第七版)(上册)_知识点总结
...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。
(2)l≠0,称f(x)与g(x)是同阶无穷小。
(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。
高等数学(同济第七版)上册-知识点汇总
高等数学(同济第七版)上册-知识点汇总————————————————————————————————作者:————————————————————————————————日期:高等数学(同济第七版)上册-知识点总结第一章 函数与极限一. 函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠ 0,称f (x)与g(x)是同阶无穷小。
(3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法1.两个准则准则 1. 单调有界数列极限一定存在准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x )若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o nx x x x x +-++-=++ )(!))1()...(1( (2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则; )()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限 基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在) 7.利用定积分定义求极限基本格式⎰∑==∞→101)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设0x 是函数y = f (x )的间断点。
同济大学高等数学(第七版)1-1 函数
o
x
就称函数f (x)在X上无界. 注 函数f (x)在X上有界 函数f (x)在X上既有上界,又有下界. 例: f ( x ) sin x 在 ( , ) 内有界,f ( x )
1 在 (0, 1)内无界. x
1 x 例如: f ( x ) 1 x
1 理解为: f ( ) 1
注
只有当两个函数的定义域和对应法则都相同时, 这两个函数才是相同的,否则就是不同的.
例2 下列函数是否相同,为什么?[P16,T2(1)(2)]
(1) (2)
函数的几种特性
1.函数的有界性
设函数f (x) 的定义域为D,数集 X D.
否则称为非初等函数.
非初等函数举例
分段函数
在自变量的不同变化范围中,对应法则用不同式子表示. 符号函数 取整函数
1, x 0 y sgn x 0, x 0 1, x 0
y
1
1
o
x
y
n x n 1 , n Z
注 分段函数不一定就是非初等函数! 2 1 o 1 2 3 4
y f g ( x ) , x Dg
称为由函数u=g(x)与函数y=f (u)构成的复合函数.
Rg D f ; 注 (1) 函数g 与函数f 构成复合函数 f g 的条件:
(2) 在一定条件下两个以上函数也可构成复合函数. 例: y u , u cot v , v x 2 x y cot 2 D x | 2kπ x (2k 1)π, k Z
1 在 (0, 1) 内有下界,但没有上界; x 在 (1, 2) 内既有下界,也有上界.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果自变量在定义域内任取一个数值时, 对应的函数值总是只有一个,这种函数叫做单 值函数,否则叫与多值函数.
例如,x 2 y 2 a 2.
分段函数
在自变量的不同变化范围中, 对应法则用不同的
式子来表示的函数,称为分段函数.
例如,
2 x 1, f ( x) 2 x 1,
函数的值域可由其定义域和对应规则确定,即
R f ={ y y = f( x ),x D f }= f( D f ). 结论:函数的两个要素实际也给出了判别两函数是 否相同的方法,即若两函数的定义域相同,对应法
则也相同,这两函数就是相同的,否则就是不同的。
例如:y = f( x )= sin x,x R =( - ,+ );
解: 从方程 y=log3(2x-3) 中解出x为
1 y x (3 3) 2
当 s > 3 时,C = 10 + 2( 10 – 3 )+ 3( s – 10 )= 3s – 6 .
上述车费 C 与行驶里程 s 间的函数关系可写为:
0 s 3, 10 , C C s 2s 4 , 3 s 10 , 3s 6 , s 10 .
函数的几种基本特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x ) M 成立,
则称函数f ( x )在X上有界.否则称无界.
y
M y=f(x) o -M
y
M
x
有界 X
o -M
x0
X 无界
x
注: (1)一个函数在某个区间上有界,正数M 的取法不是唯一的; (2)有界性是函数的局部性质,与选定 的区间有关。
高等数学 —
研究对象为变量, 运动和辩证法进入了数学.
数学中的转折点是笛卡儿的变数. 有了变数 , 运动进入了数学, 有了变数, 辩证法进入了数学 , 有了变数 , 微分和积分也就立刻 成为必要的了,而它们也就立刻产 生.
高等数学的主要内容
1. 分析基础: 函数 , 极限, 连续 2. 微积分学: 一元微积分 (上册) 多元微积分 (下册) 3. 向量代数与空间解析几何 4. 无穷级数 5. 常微分方程
y = f( x )= sin x,x D =( - , ) 表示不同的函数,因为它们的定义域不同。
y = f( x )= lg x 2,x D =( - , 0 )∪( 0 ,+ ) ;
y = g( x )= 2lg x,x E =( 0 ,+ ) ;
表示不同的函数,因为它们的定义域不同。
注: 周期函数不一定存在最小正周期 . 例如, 常量函数 f ( x) C 思考:
f ( x) sin 2 x, f ( x) cos x 的周期分别是多少?
三、 反函数
y f ( D), ! x D, 使得 x f ( y )
这是一个由 f ( D) 到 D 新的对应关系 , 称为函数 y f ( x )的反函数.记作 x f 1 ( y) y f ( D)
称为半开区间, 记作 [a , b) 称为半开区间, 记作 (a , b] 有限区间
[a ,) { x a x }
( , b) { x x b}
无限区间
o
a o
b
x x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2.邻域: 设a与是两个实数, 且 0.
o
I
x
设函数 f ( x )的定义域为 D, 区间I D,
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时,
恒有 (2) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调减少的 ;
y
y f ( x)
f ( x1 )
f ( x2 )
o
I
x
4.函数的周期性:
数集{ x x a }称为点a的邻域 ,
点a叫做这邻域的中心 , 叫做这邻域的半径.
U (a ) { x a x a }.
a a a o 点a的去心的邻域, 记作U (a).
x
U (a) {x 0 x a }.
3.函数的单调性:
设函数 f ( x )的定义域为 D, 区间I D,
如果对于区间I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x )在区间I上是单调增加的 ;
y
y f ( x)
f ( x2 )
f ( x1 )
x
(4) 狄利克雷函数
1 当x是有理数时 y D( x ) 0 当x是无理数时
y
1
• o 无理数点 有理数点
x
1 x Q , 例 设 D( x ) 0 x Q 7 求D( ), D(1 2 ).并讨论D( D( x ))的性质. 5 7 解: D( ) 1, 5
a a ; b b
绝对值不等式:
( a 0)
a b a b a b.
x a ( a 0) x a ( a 0)
a x a;
x a 或 x a;
二、函数
D 是一个给定的数集, 定义 设x 和y 是两个变量,
如果对于每个数 x D , 变量 y 按照一定法则总有 确定的数值和它对应,则称 y 是 x 的函数,记作
o
3.常量与变量: 在某过程中数值保持不变的量称为常量,
而数值变化的量称为变量.
注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
4.绝对值:
a a0 a a a 0 运算性质: ab a b ;
解: f (x) 的定义域 D [0 , ) 值域
f ( D ) [0 , )
1 2
y
y2 x
y 1 x
f (1 )2 2
f( )
1 t
2
1 1 , 0 t 1 t 2 , t 1 t
O
1
x
例:某市的出租车按如下规定收费:当行驶里程不 超过3km 时,一律收起步费 10 元;当行驶里程超
1.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a, b R, 且a b.
{ x a x b} 称为开区间, 记作 (a, b)
o a x b { x a x b} 称为闭区间, 记作 [a, b] o a
b
x
{ x a x b} { x a x b}
反函数的定义域和值域恰为原函数的值域 和定义域
1
y
反函数y ( x )
Q ( b, a )
o
直接函数y f ( x ) P (a , b)
x
直接函数与反函数的图形关于直线 y x对称.
例如: y=ex 的反函数为x=lny;
y=3x2的反函数?
练习:求 y=log3(2x-3) 的反函数。
例:sinx,cosx函数在整个定义域内都有界。 y=1/x在(0,1)内无界, 而在(1,2)上有界。
2.函数的奇偶性:
设D关于原点对称, 对于x D, 有 f ( x ) f ( x ) 称 f ( x )为偶函数;
y
y f ( x)
f ( x )
-x o x
f ( x)
x
过 3km 时,除起步费外,对超过 3km 但不超过 10
km 的部分,按每千米 2 元计费,对超过 10 km 的部 分按每千米 3 元计费,试写出车费 C 与行驶里程 s 之间的函数关系。
解:
以 C = C( s )表示这个函数,其中 s 的单位是 km,C 的单位是元。按问题的规定: 当 0 < s 3 时,C = 10; 当 3 < s 10 时,C = 10 + 2( s – 3 )= 2s + 4;
教材:
《高等数学》(第七版)
同济大学应用数学系 主编
高等教育出版社, 2014.7.
数学 不仅是一种工具,
而且是一种思维模式;
数学 不仅是一种知识,
而且是一种素养;
数学 不仅是一种科学,
而且是一种文化;
何谓数学素养(数学素质)?
通俗说法——把所学的数学知识都排除或忘掉后,
剩下的东西。
微积分的创立背景
1、 计算曲面面积,如:由曲线 y 2 x
2
和直线 y x 4所围成的图形的面积.
2、求空间立体的体积
y
y f ( x)
o
x x dx
x
z f ( x, y)
D
3、变速运动物体的瞬时速度
4、炮弹的最大射程
5、光滑曲线的切线和法线
什么是高等数学 ?
初等数学 — 研究对象为常量, 以静止观点研究问题.
如何学好微积分 ?
1、深刻理解基本概念
2、勤于思考,敢于提问,独立完 成作业
华罗庚
3、快乐学习,在学习中提升自己、 认识自己
第一章
函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一节
函数
一、基本概念 二、函数及其几种基本特性 三、反函数 四、复合函数 初等函数
一、基本概念
D(1 2) 0,
D( D( x )) 1,
(5) 取最值函数
y max{ f ( x ), g( x )}