Eviews处理多元回归分析操作步骤
Eviews的logistic回归分析
预测应用
利用建立的模型进行预测,比较预测结果与 实际观测值的差异。
06
结论与展望
研究结论
01
Logistic回归分析在eviews中 的实现方法已经得到了验证, 并且具有较高的预测精度和稳 定性。
02
通过eviews进行Logistic回归 分析可以有效地解决分类问题 ,尤其在二分类问题中表现优 异。
03
EViews软件介绍
软件概述
EViews是一款专门用于经济学、金融 学、统计学等领域的数据分析和预测 软件,具有强大的数据处理、回归分 析和时间序列分析功能。
EViews具有友好的用户界面和灵活的 操作方式,使得用户可以轻松地进行 数据处理、模型建立和预测分析。
EViews提供了丰富的数据接口,支持 多种数据格式,可以方便地导入各种 数据源,如Excel、CSV、数据库等。
变量选择
根据研究目的和理论背景,选择与购买行为相关 的自变量。
3
模型估计
使用EViews软件进行模型参数估计,得到回归 系数、置信区间等。
结果解读与讨论
结果解读
根据回归结果,解释各个自变量对因变量的 影响程度和方向。
模型评估
使用似然比检验、AIC等统计量评估模型的 拟合优度。
结果讨论
根据回归结果,探讨自变量之间的交互作用 和模型假设的合理性。
03
在实际应用中,Logistic回归 分析可以帮助我们更好地理解 数据之间的关系,为决策提供 有力支持。
研究不足与展望
目前的研究主要集中在Logistic回归 分析的算法实现和预测精度方面,对 于其理论基础和应用场景的研究还不 够深入。
在实际应用中,Logistic回归分析对 于异常值的敏感度较高,需要进一步 研究如何降低其对模型稳定性的影响 。
运用EVIEWS建立多元线性回归并进行相关检验
运用EVIEWS 建立多元线性回归并进行相关检验姓名:jelly一、输入数据某社区家庭对某种消费品的消费需要调查二、根据数据画出散点图从上面两散点图可以看出此社区家庭对某商品的消费支出与家庭月收入、商品的价格大致呈线性关系且随着家庭收入和户主受教育年数的逐渐增大对此商品的消费支出也呈逐渐增大的趋势。
三、样本相关阵从样本相关阵可以看出,某商品的消费支出与家庭月收入、商品的价格的相关系数高达0.965046和0.752695 ,说明某商品的消费支出与家庭月收入、商品的价格有显著的线性关序号 商品 价格X1 家庭月 收入X2 对某商品的消费支出Y 1 23.56 7620 591.9 2 24.44 9120 654.5 3 32.07 10670 623.6 4 32.46 11160 647 5 31.15 11900 674 6 34.14 12920 644.4 7 35.3 14340 680 8 38.7 15960 724 9 39.63 18000 757.1 10 46.68 19300 706.8系,可以考虑建立二元线性回归模型。
四、对数据进行普通最小二乘估计,OLS 表如下五、写出估计方程12626.50939.7905700.28618i Y X X ∧=-+(40.13010) (3.197843) (0.05838)t=(15.611195) (-3.061617) (4.902030)20.902218R = 2R =0.874281 六、随机干扰项2'1e e n k σ∧=--'''''ˆˆˆˆˆ()()()()e e Y YY Y Y X Y X Y Y Y X βββ=--=--=-=2116.85 所以22116.85ˆ302.411021σ==-- 由OLS 表得20.902218R = 2R =0.874281 七、由OLS 可得 F=32.29 0.05(2,7) 4.74F =因为32.29>4.74,所以方程的总体线性性显著成立由OLS 表可得 C 的t 值为15.61 X1的t 值为-3.06 X2的值为4.90 0.025(7) 2.365t =所以常输项,X1和X2的总体参数都显著的异于零将数据分别代入以下三个式子:0ˆ00.025ˆt S ββ±⨯ 1ˆ10.025ˆt S ββ±⨯ 2ˆ20.025ˆt S ββ±⨯ 可得参数95%的置信区间分别为(531.62,724.40) -17.35,-2.22) (0.014,0.042)八、X1=35 X2=20000将X1,X2代人方程可得Y 为856.20Y 的均值0ˆY S =37.05 0.025(7) 2.365t = 所以Y 的均值在95%的置信区间为(768.58,943.82)Y 的个值0ˆY S =40.93 0.025(7) 2.365t =所以Y 的个值在95%的置信区间为(759.41,952.99)第二个实验输入数据,对其进行回归分析输出OLS 表由表可得方程为ˆln 101540.609ln 0.361ln Y K L =++ (1.59)(3.45) (1.79)2R =0.8099 2R =0.7963 F=59.660.05(2,28)F =3.34 0.025(28)t =2.048 0.01(28)t =1.701所以lnK 与lnL 联合起来对lnY 有显著的线性影响在5%的显著性水平下,lnK 的参数通过了检验但lnL 的参数未通过t 检验,如果设定显著性水平为10%,lnL 与lnK 都通过检验。
计量经济学 多元线性回归分析;eviews6操作ppt课件
CONSP
GDPP
CONSP
1978
395.8
675.1
1990
797.1
1979
437.0
716.9
1991
861.4
1980
464.1
763.7
1992
966.6
1981
501.9
792.4
1993
1048.6
1982
533.5
851.1
1994
1108.7
1983
572.8
931.4
1995
1213.1
根据最小二乘原理,参数估计值应该是下列方程组的解
ˆ 1
Q
0
ˆ 2 Q
0
ˆ k
Q
0
n
n
其中 Q ei2 (Yi Yˆi)2
i1
i1
n
2
Yiˆ1ˆ2X2i ˆkXki
i1
完整版PPT课件
11
于是得到关于待估参数估计值的正规方程组:
ˆ1 ˆ2 X 2i ˆk X ki ˆ1 ˆ2 X 2i ˆk X ki
Sample: 1978 2000 Included observations: 23
Coefficient Std. Error t-Statistic Prob.
C
201.1228 14.88892 13.50822
0
X
0.386173 0.007224 53.45683
0
R-squared Adjusted R-squared
或 1
n
x2 ji1 n
(XjiXj)2 Q j
1 xx Q n
经验分享使用eviews做回归分析
[经验分享] 使用eview s做线性回归分析Glossa ry:ls(least square s)最小二乘法R-sequar ed样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaur ed()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criter ion赤池信息量(AIC)(越小说明模型越精确)Schwar z ctiter ion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statis t ic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同g dp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
Eviews处理多元回归分析操作步骤
操作步骤1.建立工作文件(1)建立数据的exel电子表格(2)将电子表格数据导入eviewsFile-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。
2.计算变量间的相关系数在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。
结果表明Coilfuture数列与其他数列存在较好的相关关系。
3.时间序列的平稳性检验(1)观察coilfuture序列趋势图在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。
图形表明序列随时间变化存在上升趋势。
(2)对原序列进行ADF平稳性检验quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。
以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。
(3)时间序列数据的一阶差分的ADF检验quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。
以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均小于临界值,表明各序列一阶差分都是平稳的。
Eviews多元逻辑回归案例分析
Eviews多元逻辑回归案例分析
简介
本文档旨在使用Eviews软件进行多元逻辑回归分析的案例研究。
逻辑回归是一种常见的统计方法,被广泛应用于解答分类问题。
通过利用Eviews软件的功能,我们将对一个特定案例进行多元逻
辑回归分析并得出结论。
数据收集与准备
在进行多元逻辑回归分析之前,我们首先需要收集并准备相关
的数据。
这些数据应包括自变量和因变量,以及其他可能影响结果
的变量。
采集的数据应保证准确性和完整性。
Eviews多元逻辑回归分析步骤
1. 导入数据:使用Eviews软件将准备好的数据导入到程序中。
2. 数据清洗:对导入的数据进行清洗,包括缺失值处理、异常
值处理等。
3. 模型建立:根据研究的目的和问题,选择合适的自变量进行
建模。
4. 模型估计:使用Eviews软件对建立的模型进行估计,得出
模型的系数和显著性水平。
5. 模型评估与解释:对估计结果进行评估和解释,包括模型的
拟合程度和自变量的影响程度。
6. 结论与讨论:根据模型的结果,得出结论并进行相应的讨论。
结论
通过本次多元逻辑回归分析,在Eviews软件的辅助下,我们
对指定案例进行了深入的研究和分析。
通过清洗数据、建立模型、
估计和解释结果,我们得出了相关结论并进行了进一步的讨论。
这
些结果将为进一步研究和决策提供有价值的参考和指导。
参考文献
[1] Eviews软件官方文档. (访问日期:XXXX年XX月XX日)。
多元线性回归eviews操作
多元线性回归eviews操作一.模型设定本例中我们假设拟建立如下多元回归模型:01122Y X X u βββ=+++二.估计参数1.建立工作文件首先,进入Eviews 主页,在菜单中依次点击File\New\Workfile ,出现对话框Work Create 。
截面数据Unstructured/undated 只需输入样本数就可以。
时间序列数据Dated-regular frequency 在Date specification 中选择数据频率: Annual (年度) Weekly (周数据) Quarterly (季度) Daily (5 day week )每周5天日数据 Daily (7 day week )每周7天日数据Monthly (月度)integer date (未注明日期或者不规则的) Semi Annual (半年度)其次,点击OK ,出现未命名文件的Workfile UNTITLED 工作框。
其中c 为截距项,resid 为残差项。
若要将文件存盘,点击save ,在save as 对话框中选择存盘路径,并输入文件名。
如多元线性回归案例2.输入数据方法一:Quick\Empty Group 等方法二:data Y X1 X2,得到如下表;3.估计参数方法一:Quick\Estimate Equation 方法二: LS Y C X1 X2三、解释表里参数标准差1β∧S =0.075308,回归标准差=被解释变量标准差=回归模型标准差:σ∧残差平方和:2i e ∑=4170093被解释变量的标准差:2=2388.459 AIC 和SC 准则:这两个准则要求仅当所增加的解释变量能减少AIC 值或SC 值时才在原模型中增加该解释变量。
与调整的可决系数相似。
多元小于一元,可以将前期人均居民消费作为解释变量包括在模型中。
四、模型检验1.经济意义检验估计的参数值都为正数,经济意义合理。
(实验2)多元回归分析实验报告.doc
⑩陕&科技丈嗲实验报告成绩一、实验预习:1.多元回归模型。
2.多元回归模型参数的检验。
3.多元回归模型整体的检验。
二、实验的目的和要求:通过案例分析掌握多元回归模型的建立方法和检验的标准;并掌握分析解决实际金融问题的能力。
三、实验过程:(实验步骤、原理和实验数据记录等)软件:Eviews3.1数据:给定美国机动车汽油消费量研究数据。
1.实验步骤1)在Eviews7.0中,新建文件,并将给定的数据输入新建的文件中;2)分析变量间的相关关系;3)进行时间序列的平稳性检验,根据序列趋势图,对原序列进行ADF平稳性检验,再对时间序列数据的一阶差分进行ADF检验,并对结果进行分析讨论。
2.实验原理对于只有一个解释变量的模型,其参数估计方法是最简单的,一般形式如下:y t= A)+ +其中&称为被解释变量,人称为解释变量,%称为随机误差项。
模型可分为两部分:1)回归方程部分,2)随机误差部分,义㈣归分析就是根据样本观察值寻求从和成的估计值。
图一0 Series: S Torkfile: ADF::Adf\| VeA- J Proc: Object Properties ^nnt Name {Freeze J Default-n x| Options | Sample [Gerr j图二2)建立回归模型如卜:四、实验总结:(实验数据处理和实验结果讨论等)1.实验数据处理1)数据的预处理:通过绘制动态曲线、绘制散点图、计算变量之间的相关 关系为正式建模做准备。
可以画出美国汽车各项研究数据的趋势图如下:QMG = c(l) + c(2) * MOB + c(3) * PMG + c(4) * POP + c(5) * GNP 回归结果如下:Dependent Variable: QMG Method: LeastSquares Date: 06/10/14 Time: 16:19 Sample:1950 1987 Included observations: 38QMG=C(1)+C(2)*MOB+C(3)*PMG+C(4)*POP+C(5)*GNP由表中数据带入公式可写出线性回归表达式为:QMG = 24553723 + 1.418520 * MOB- 27995762 * PMG- 59.8748 * POP- 30540.88 * GNP3)进行模型检验从表Prob列的数据中发现c(0)与c(4)的值T检验未通过,可以考虑删除相应的自变量。
经验分享,使用eviews做回归分析
[经验分享] 使用eviews做线性回归分析Glossary:ls(least squares)最小二乘法R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaured()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criterion赤池信息量(AIC)(越小说明模型越精确)Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statistic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
第三次实验(EVIEWS实现多元线性回归)
7/2/2013
榆林学院数学系统计教研室
9
三、检验方程
1、经济意义检验
模型结果表明在假定户主受教育年限不 变的情况下,家庭月平均收入增加1元,家 庭书刊年消费支出将增加0.086元;在假定 家庭平均月收入不变的情况下,户主受教育 年数增加1年,家庭书刊年消费支出将增加 52.37元。这与我们的认识大致相符。
7/2/2013
榆林学院数学系统计教研室
11
四、进行点预测和区间预测
现有一户家庭的月均收入为4000元,户主受教育年数为 18年,预测该户家庭的书刊消费是多少,构造该估计值 95%的置信区间。
7/2/2013
榆林学院数学系统计教研室
12
四、进行点预测和区间预测
可得当X1=4000,X2=18时,Y等于1238.45。 由单值预测和条件均值预测的公式:
10222021一绘制散点图和样本相关阵从样本相关阵可以看出家庭书刊消费与家庭收入户主受教育年数之间的相关系数高达0788517和0960757说明家庭书刊消费与家庭收入户主受教育年数有显著的线性关系可以考虑建立二元线性回归模型
《计量经济学》实验指导 ——基于Eviews软件 实验三:运用EVIEWS建立多元线 性回归并进行相关检验
7/2/2013
榆林学院数学系统计教研室
5
一、绘制散点图和样本相关阵
从样本相关阵可以看出,家庭书刊消费与 家庭收入、户主受教育年数之间的相关系数高 达0.788517和0.960757 ,说明家庭书刊消 费与家庭收入、户主受教育年数有显著的线性 关系,可以考虑建立二元线性回归模型。
7/2/2013
7/2/2013
榆林学院数学系统计教研室
2
多元线性回归模型建模步骤
第三讲eviews多元线性回归模型ppt课件
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.2 多元线性回归模型的检验
3.2.1 拟合优度检验
拟合优度是指样本回归直线与观测值之间的拟合程度。 1.多重决定系数
总离差平方和=残差平方和+ 回归平方和 自由度: (n-1)= (n-k-1)+ k ESS:由回归直线(即解释变量)所解释的部分,表示x对y的线性影响。 RSS:是未被回归直线解释的部分,由解释变量x对y影响以外的因素而造成的。
507.7
613.9
563.4
501.5
781.5
541.8
611.1
1222.1
793.2
660.8
792.7580.8Fra bibliotek612.7
890.8
1121.0
1094.2
1253.0
家庭收入 x 1027.2 1045.2 1225.8 1312.2 1316.4 1442.4 1641.0 1768.8 1981.2 1998.6 2196.0 2105.4 2147.4 2154.0 2231.4 2611.8 3143.4 3624.6
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
多重决定系数或决定系数是指解释变差占总变差的比重,用来表述解 释变量对被解释变量的解释程度:
经验分享,使用eviews做回归分析
[经验分享] 使用eviews做线性回归分析Glossary:ls(least squares)最小二乘法R-sequared样本决定系数(R2):值为0-1,越接近1表示拟合越好,>0.8认为可以接受,但是R2随因变量的增多而增大,解决这个问题使用来调整Adjust R-seqaured()S.E of regression回归标准误差Log likelihood对数似然比:残差越小,L值越大,越大说明模型越正确Durbin-Watson stat:DW统计量,0-4之间Mean dependent var因变量的均值S.D. dependent var因变量的标准差Akaike info criterion赤池信息量(AIC)(越小说明模型越精确)Schwarz ctiterion:施瓦兹信息量(SC)(越小说明模型越精确)Prob(F-statistic)相伴概率fitted(拟合值)线性回归的基本假设:1.自变量之间不相关2.随机误差相互独立,且服从期望为0,标准差为σ的正态分布3.样本个数多于参数个数建模方法:ls y c x1 x2 x3 ...x1 x2 x3的选择先做各序列之间的简单相关系数计算,选择同因变量相关系数大而自变量相关系数小的一些变量。
模型的实际业务含义也有指导意义,比如m1同gdp肯定是相关的。
模型的建立是简单的,复杂的是模型的检验、评价和之后的调整、择优。
模型检验:1)方程显著性检验(F检验):模型拟合样本的效果,即选择的所有自变量对因变量的解释力度F大于临界值则说明拒绝0假设。
Eviews给出了拒绝0假设(所有系统为0的假设)犯错误(第一类错误或α错误)的概率(收尾概率或相伴概率)p 值,若p小于置信度(如0.05)则可以拒绝0假设,即认为方程显著性明显。
2)回归系数显著性检验(t检验):检验每一个自变量的合理性|t|大于临界值表示可拒绝系数为0的假设,即系数合理。
eviews--回归分析
1、Eviews 是什么
Eviews 是美国 QMS 公司研制的在 Windows 下专门从事数据分析、回归分析和预测的工 具。使用 Eviews 可以迅速地从数据中寻找出统计关系,并用得到的关系去预测数据的未来 值。Eviews 的应用范围包括:科学实验数据分析与评估、金融分析、宏观经济预测、仿真、 销售预测和成本分析等。 Eviews 是专门为大型机开发的、用以处理时间序列数据的时间序列软件包的新版本。 Eviews 的前身是 1981 年第 1 版的 Micro TSP。目前最新的版本是 Eviews4.0。我们以 Eviews3.1 版本为例,介绍经济计量学软件包使用的基本方法和技巧。虽然 Eviews 是经济 学家开发的,而且主要用于经济学领域,但是从软件包的设计来看,Eviews 的运用领域并 不局限于处理经济时间序列。即使是跨部门的大型项目,也可以采用 Eviews 进行处理。 Eviews 处理的基本数据对象是时间序列,每个序列有一个名称,只要提及序列的名称 就可以对序列中所有的观察值进行操作,Eviews 允许用户以简便的可视化的方式从键盘或 磁盘文件中输入数据, 根据已有的序列生成新的序列, 在屏幕上显示序列或打印机上打印输 出序列,对序列之间存在的关系进行统计分析。Eviews 具有操作简便且可视化的操作风格, 体现在从键盘或从键盘输入数据序列、 依据已有序列生成新序列、 显示和打印序列以及对序 列之间存在的关系进行统计分析等方面。 Eviews 具有现代 Windows 软件可视化操作的优良性。可以使用鼠标对标准的 Windows 菜单和对话框进行操作。 操作结果出现在窗口中并能采用标准的 Windows 技术对操作结果进 行处理。此外,Eviews 还拥有强大的命令功能和批处理语言功能。在 Eviews 的命令行中输 入、编辑和执行命令。在程序文件中建立和存储命令,以便在后续的研究项目中使用这些程 序。
使用eviews做线性回归分析
使用eviews做线性回归分析随着统计学的发展,线性回归分析越来越被广泛应用于数据分析。
Eviews是一种经济数据分析软件,具有强大的数据分析功能和易于使用的界面,可广泛用于数据分析和预测。
本文将介绍使用Eviews进行线性回归分析的基础步骤,以及如何解读结果和提高模型的准确性。
一、数据准备在进行线性回归分析之前,我们需要准备一组数据。
数据可以从各种来源获得,例如国家统计局、经济学文献、互联网数据库等。
在Eviews中,可以使用Excel、SPSS和STATA等软件导入数据。
在导入数据时,必须确保数据格式正确,包括数据类型、数值范围等。
二、建立模型在Eviews中,建立模型的步骤如下:1.打开导入的数据文件,进入“工作文件”界面。
2.选择“Quick”菜单下的“Estimate Equation”选项,然后在弹出的“Model Specifica tion”对话框中填写相关信息。
此对话框包括四个标签页:变量、样本、选项和高级。
3.在“变量”标签页中,选择研究对象和解释变量,并将它们拖动到相应的框中。
例如,如果我们想研究通货膨胀对GDP的影响,那么GDP应当作为解释变量,通货膨胀率应作为解释变量。
4.在“样本”标签页中,设置分析的时间范围,如开始年份、结束年份、选定的样本或整个样本。
5.在“选项”标签页中,选择所需的估计方法,如OLS、GLS、FGLS等,并指定所需的统计量、弱工具检验、边际效应和预测分析等。
6.在“高级”标签页中,选择是否需要对模型进行修正,如修正异方差、自相关或其他检验结果不好的部分。
7.完成设置后,单击“OK”按钮,Eviews即可自动推导出相应的模型,并显示在“结果”窗口中,在这里可以查看与验证自己的模型结果是否正确等。
三、结果解读1.变量系数:表示自变量的影响程度。
如果系数大于零,则表示该变量与因变量正相关;如果系数小于零,则表示该变量与因变量负相关;如果系数等于零,则表示该变量与因变量之间没有关系。
计量经济学多元线性回归分析eviews操作PPT课件
人均GDP GDPP 1602.3 1727.2 1949.8 2187.9 2436.1 2663.7 2889.1 3111.9 3323.1 3529.3 3789.7
该两组数据是1978~2000年的时间序列数据 (time series data)
1、建立模型 拟建立如下一元回归模型
CONSP C GDPP 采用Eviews软件进行回归分析的结果见下表
μ~ N(0, 2I) 同一元回归一样,多元回归还具有如下两个重要假设:
假设7,样本容量趋于无穷时,各解释变量的方差趋于有 界常数,即n∞时,
1
n
x
2 ji
1 n
( X ji X j )2 Q j
或
1 xx Q n
其中:Q为一非奇异固定矩阵,矩阵x是由各解释变量 的离差为元素组成的nk阶矩阵
nk nk
第15页/共63页
四、参数估计量的性质
在满足基本假设的情况下,其结构参数的普
通最小二乘估计、最大或然估计及矩估计仍具 有:
同时,随线着性样性本、容无量偏增性加、,有参效数性估。计量具有: 渐近无偏性、渐近有效性、一致性。
1、线性性
βˆ (XX)1 XY CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
2 ki
ki
ˆ 0 ˆ1
ˆ k
1 X 11
X k1
1 X 12
X k2
1 Y1 X 1n Y2 X kn Yn
即
(XX)βˆ XY
由于X’X满秩,故有 βˆ (XX)1 XY
第11页/共63页
将上述过程用矩阵表示如下:
即求解方程组:
βˆ (Y
Xβˆ )(Y
EViews3.1做回归分析 经典版 一看就会版
二、输入和编辑数据 建立一个空数据组表格,点击Quik / Empty Group
得到空数据表如下图
三、图形分析
四、用OLS估计模型中的参数 估计模型中的参数
R-squared 拟合优度 Adjusted R-squared 修正拟合优度 ˆ S.E of regression 回归方程的标准差 σ u Sum squared resid 残差平方和 ∑ ε i2 Log likelihood 似然函数的对数 Durbin-Watson stat DW统计量 Mean dependent Var S.D dependent Var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic) 因变量的均值 因变量的标准差 赤池信息准则 施瓦兹信息准则 F统计量 F统计量显著水平(概率值)
拟合图和残差图
计算预测值,在工作文件主窗口输入命令:
Scalar+0.052209357*182321
软件获取: (1) 学校图书馆 ftp → softwares (软件) → Eviews3.1 (2) EViews软件在教室电脑上拷即可。 (3)EViews软件占空间6.5MB 。
五、预测2005年的出口总额 Procs :过程按钮
利用估计出方程的对话框,还可进行预测,点击 “Forecast”
同时在工作文件中出现标记
点击
,便得到所有预测值,见下页
在估计出的方程窗口中,点击 Resids可得 拟合图和残差图
红色表示实际值 、绿色表示估计值 、兰色表示残差
一元回归模型计算举例( ) §2.9案例分析 — 一元回归模型计算举例(2) 案例分析
07多重共线性 EVIEW 处理方法
第七章 多重共线模型案例导入:根据理论与经验分析,影响居民服装需求d C 的主要因素有可支配收入Y 、流动资产拥有量L 、服装类价格指数Pc 和总物价指数0P 。
下表给出了某地10年间有关统计资料。
服装需求函数有关统计资料年份d C (百万元) Y (百万元) L (百万元) 服装类价格指数Pc 物价总指数0P 19988.4 82.9 17.1 92 94 19999.6 88.0 21.3 93 96 200010.4 99.9 25.1 96 97 200111.4 105.3 29.0 94 97 200212.2 117.7 34.0 100 100 200314.2 131.0 40.0 101 101 200415.8 148.0 44.0 105 104 200517.9 161.8 49.0 112 109 200619.3 174.2 51.0 112 111 2007 20.8 184.7 53.0 112 111 背景知识:在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,即解释变量1X ,2X ,……,k X 中的任何一个都不能是其他解释变量的线性组合。
如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。
在经济现象中,经济变量之间常常因为存在具有相同方向的变化趋势、存在较密切关系、采用滞后变量作为解释变量、数据收集范围过窄等原因而造成存在多重共线性。
较高程度的多重共线性可能对最小二乘估计产生如下严重后果:增大最小二乘估计量的方差;参数估计值不稳定,对样本变化敏感;检验可靠性降低,产生弃真的错误。
由于参数估计量方差增大,在进行显著性检验时,t 检验值将会变小,可能使某些本该参数显著的检验结果变得不显著,从而将重要变量舍弃。
多重共线性是较为普通存在的现象,在运用最小二乘法进行多元线性回归时,不但要检验解释变量间是否存在多重共线性,还要检验多重共线性的严重程度。
04(其他回归模型)多元回归模型及EVIEWS应用基本
cst 1 2 inc t 3 ut
试以此说明如何用软件进行非线性回归参数估 计。
15
EViews进行非线性回归模型参数估计步骤
建立工作文件(cs_inc.wfl) 建立序列对象,录入数据 为了确定初始值,可利用降维法确定参数初 始值,为此令b3=1,建立线性回归模型,创 建线性方程对象,用OLS法估计参数作为非 线性回归的初始值,此为 b1,b2,b3:449.07,0.7345,1 建立非线性回归模型对象
36
1990年前后的中国居民的总储蓄-收入数据
年份 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2 GNP 4038.2 4517.8 4860.3 5301.8 5957.4 7206.7 8989.1 10201.4 11954.5 14922.3 16917.8 18598.4 年份 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 储蓄 9107 11545.4 14762.4 21518.8 29662.3 38520.8 46279.8 53407.5 59621.8 64332.4 73762.4 GNP 21662.5 26651.9 34560.5 46670 57494.9 66850.5 73142.7 76967.2 80579.4 88228.1 94346.4
第三讲 eviews多元线性回归模型
1045.2
1225.8 1312.2 1316.4 1442.4 1641.0 1768.8 1981.2 1998.6 2196.0 2105.4 2147.4 2154.0 2231.4 2611.8 3143.4 3624.6
9
12 9 7 15 9 10 18 14 10 12 8 10 14 18 16 20
内容:
(1)残差分布表中,各期残差是否大都落在±的虚线框内,这直观地 反映了模型拟合误差的大小及变化情况。 (2)残差分布是否具有某种规律性,即是否存在着系统误差。 (3)近期残差的分布情况。 另外,利用判定系数比较模型的拟合优度时,如果两个模型包含的解 释变量个数不同,则应采用“调整的判定系数”。 除了调整的判定系数之外,人们还使用另外两个指标 SC ( Schwarz Criterion ,施瓦兹准则)和 AIC(Akaike lnformation Criterion ,赤池 信息准则)来比较含有不同解释变量个数模型的拟合优度。
一般地,估计线性模型时可对模型参数施加若干个线性约束条件。例如, 对模型
其中
式中第二项为一非负标量,于是
式(3.5.9)表明受约束样本回归模型的残差平方和大于无约束样本回归模型
的残差平方和,这意味着,通常情况下,对模型施加约束条件会降低模型的解 释能力。
约束条件的个数。
表3.5.1 无约束条件的C-D生产函数估计结果
3.5 受约束回归
在建立回归模型时,有时根据经济理论需要对模型中变量的参数施加一定
的约束条件。对模型施加约束条件后进行回归,称为受约束回归 (restricted regresslon),与此对应,不加任何约束的回归称为无约束回归 (unrestricted regression)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作步骤
1.建立工作文件
(1)建立数据的exel电子表格
(2)将电子表格数据导入eviews
File-open-foreign data as workfile,得到数据的Eviews工作文件和数据序列表。
2.计算变量间的相关系数
在窗口中输入命令:cor coilfuture dow shindex nagas opec ueurope urmb,点击回车键,得到各序列之间的相关系数。
结果表明Coilfuture数列与其他数列存在较好的相关关系。
3.时间序列的平稳性检验
(1)观察coilfuture序列趋势图
在eviews中得到时间序列趋势图,在quick菜单中单击graph,在series list对话框中输入序列名称coilfuture,其他选择默认操作。
图形表明序列随时间变化存在上升趋势。
(2)对原序列进行ADF平稳性检验
quick-series statistics-unit root test,在弹出的series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择level,得到原数据序列的ADF检验结果,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值0.97大于所有临界值,则表明序列不平稳。
以此方法,对各时间序列依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均大于临界值,表明各原序列都是非平稳的。
(3)时间序列数据的一阶差分的ADF检验
quick-series statistics-unit root test,在series name对话框中输入需要检验的序列的名称,在test for unit root in 选择框中选择1nd difference,对其一阶差分进行平稳性检验,其他保持默认设置。
得到序列的ADF平稳性检验结果,检测值-7.8远小于所有临界值,则表明序列一阶差分平稳。
以此方法,对各时间序列的一阶差分依次进行ADF检验,将检验值与临界值比较,发现所有序列的检验值均小于临界值,表明各序列一阶差分都是平稳的。
由此可知,以上时间序列均为一阶单整时间序列。
4.Granger因果检验
(1)quick-group statistics-granger causality test,出现如下对话框,输入各序列名称,点击OK。
以此得到输入序列之间的单项或双向因果关系。
(2)滞后阶数采用Eviews推荐的滞后阶数
(3)得到与coilfuture序列相关的Granger因果检验结果。
存在dow到coilfuture 的单向因果关系;存在shindex到原油期货价格的单向因果关系;存在原油期货价格到nagas的双向因果关系;存在原油期货价格到OPEC产量的单向因果关系;存在ueurope到原油期货价格的单向因果关系;存在ermb到原油期货价格的单向因果关系。
5.协整检验
对上述的7个单整时间序列采用EG(Engle-Granger)两步法进行协整检验。
(1)在工作表窗口选取coilfuture 、dow 、shindex、nagas、opec、ueurope、urmb,然后单击右键,选择open,点击as group,得到所有序列数据。
(2)在新窗口中点击proc,选择make equation,使用Engle-Granger(EG)两步检验法进行回归,得到回归结果:
(3)在新窗口中点击proc,选择make residual series,得到残差项时间序列RESID01。
(4)对该序列RESID01进行ADF检验(如上所述)。
若残差项平稳,则存在协整关系。
否则,不存在。
由结果可知,检验值-5.298明显小于所有临界值,则残差项RESID01平稳,即原油期货价格与选定的相关连续经济变量存在着长期均衡关系。
6.误差修正模型
(1)对所有的时间数列取对数,消除异方差问题,得到一组新数列,并命名为P1=log(coilfuture),P2=log(dow),P3=log(shindex),P4=log(nagas),P5=log(opec),P6=lo g(ueurope),P7=log(umrb)。
可在eviews中输入Genr命令,自动产生对数数列。
(2) 对数据重新建立回归模型。
单击quick里estimate equation,输入回归参数,P1,P2,P3,P4,P5,P6,P7,得到回归结果。
(3)在quick菜单里点击generate series,输入ecm=resid02(这个resid02在eviews里是指最近一次回归的残差序列)。
再点击quick菜单中的estimate equation,输入:d(p1))c d(p2) d(p3) d(p4) d(p5) d(p6) d(p7) ecm(-1) 得出回归方程,ecm前面的系数就是误差修正系数,看这些系数是不是显著,如果显著就说明因变量对解释变量的短期波动有影响。