62立方根导学案2人教版七年级下
七年级数学下册 6.2 立方根(第2课时)导学案(新版)新人教版
立方根 一、自主学习1.平方根、 立方根的概念2.平方根与立方根有什么不同? 平方根 立方根 性质正数0 负数表示3.求下列各式的值327102-; ()331.0--; ()25-二、合作探究探究1.问题:350有多大呢?因为=33_______.=34________.所以 ________ <<350________.因为=36.3________.=37.3________.所以________<<350________.因为=368.3________=369.3________.所以________<<350________.如此循环下去,可以得到更精确的350的近似值,它是一个无限不循环小数,350=3.684 031 49……事实上,很多有理数的立方根都是无限不循环小数.我们用有理数近似地表示它们.1.一些计算器设有 键,用它可以求出一个立方根(或其近似值).有些计算器需要用 , 键求一个数的立方根.2.利用计算器来求一个数的立方根:操作用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是根指数不同.步骤:输入3 → 被开方数 → = → 根据显示写出立方根.例 1 求-5的立方根(精确到0.01)3 → 被开方数 → = → 1.709975947 所以35 1.71-≈- 例2 用计算器求下列各式的值: (1)31728 (2)32197±探究2.利用计算器计算,并将计算结果填在表中,…000216.03 3216.0 3216 …你发现了什么吗?你能说说其中的道理吗?可以发现被开方数的小数点向_____或向_____移动_____位,它立方根的小数就相应地向___或向_____移动_____位.用计算器计算3100(结果个有效数字),并利用你发现的规律说出30001.0,31.0,3100000的近似值.四、当堂检测1.用计算器求下列各式的值:(1)315625 (2)318452.比较 3,4,350的大小.3.立方根的概念的起源;原于几何中的正方体有关,如果一个正方体的体积为V ,这个证方体的棱长为多少?4.计算:()()()2323331244272⎛⎫-+-+-⨯-- ⎪⎝⎭.5.计算下列各数的立方根(1)-8 (2)0.729 (3)-338思路点拨:通常用立方运算求一个数a 的立方根,先找出立方等于a 的数,写出立方式,再由立方式写出a 的立方根的值,这就是运用计算求数a 的立方.6.写出所有符合下列条件的数(1) 大于17-小于11 的所有整数;(2) 绝对值小于 的所有整数7.拓展提高解方程:求等式中的x :(x-3)3-64=0 18思路点拨:通常把方程变形为x3=a的形式,利用求立方根的方法,求出。
人教版七年级下册数学同步导学案《6.2立方根(2)》导学案第二课时(无答案)
人教版七年级下册数学同步导教案《 6.2 立方根( 2)》导教案 第二课时(无答案)《 6.2 立方根( 2)》导教案班级小组姓名评论一、学习目标1.进一步理解立方根的观点,并能娴熟地进行求一个数的立方根的运算;2.能用有理数预计一个无穷不循环小数的大概范围,形成估量的意识,培育估量能力。
3.极度热忱,高效学习。
二.自主学习1.填空:3210=_______,5 2 =________,30.1 3 =________;272.研究课本 51 页:∵ 38 =______,38 =______,∴ 3 8 ______38∵ 327 =_____,327 =_____,∴ 3 27 ______327关于随意实数 a.能够得出 : 3 a3a3.问题: 3 50 有多大呢?∵ 33 27,4364,∴3350 4 ;∵ 346.656 ,3,∴3 50;∵349.836032 ,350.24349 ,50.6 5 3∴3503.69 ; 这样循环下去,能够获得更精准的350的近似值,它是一个无穷不循环小数,350 =3. 68403149事实上,好多有理数的立方根都是无限不循环小数.我们用有理数近似地表示它们. 4.利用计算器来求一个数的立方根:用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤同样,不过根指数不一样。
步骤:输入 3→被开方数 →= →依据显示写出立方根 .被开方数的小数点向右每挪动3 位 ,它的算术平方根就向右挪动_______位;1 / 3被开方数的小数点向左每挪动 3 位 ,它的算术平方根就向左挪动_______位.5.研究:323____,3( 2)3____ ,343____ ,关于随意数 a ,3 a3______;(3 8)3____,(333 27)3____,关于随意数a,(3a )3______ 8) ____, (6.自学检测:(1). 38的相反数是 ________,倒数是 __________ 。
人教版数学七年级下册导学案6.2 立方根 导学案
学段
初中
年级
七年级
学科
数 学
单元
第6单元
课题
6.2立方根
课型
新授
主备学校
初审人
终审人
主备人
合作团队
课标
依据
1、了解立方根的概念,会用根号表示数的立方根。
2、会用立方运算求百以内整数(对应的负整数)的立方根
教学
目标
1.了解立方根的概念,能用根号表示一个数的立方根;了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;理解“两个互为相反数的立方根的关系
点拨升华
反馈
矫正
2
教师就学生的展示点拨
扩展
提升
4
【活动3】例:说出下列各式表示的意义并求值
⑴ ⑵ ⑶ ⑷
(与课本P50例题稍微有些调整,使学生更好的了解立方根的意义)
总结
提高
2
1.立方根的概念、表示方法和性质
2.体会立方根从概念、表示方法和性质等方面的区别
3.两个规律性的计算 =- ;( )3=
体会从特殊---一般----特殊的数学学习方法
(考察数的立方根的性质和表示方法)
2.如果x3=8,那么x=
3.立方根等于本身的数为
4.-3是的平方根,是的立方根
5.表示,并求出下列数的立方根
⑴ -10 ⑵ ⑶ 0 ⑷-0.008
6.下列说法中不正确的是( )
(A) 8的立方根是2 (B) -8的立方根是-2
(C) 的立方根为2 (D )125的立方根为±5
⑴ ⑵ ⑶ (⑷
方根、算术平方根的概念、性质和表示方法
互助
释疑
2
回忆平方根、算术平方根的概念、性质和表示方法,为立方根的学习做准备
七年级数学下册 6.2 立方根教案2 新人教版(2021学年)
七年级数学下册 6.2 立方根教案2 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册6.2 立方根教案2 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册6.2 立方根教案2 (新版)新人教版的全部内容。
课题:6。
2 立方根教学目标:了解立方根和开立方的概念;掌握立方根的性质;会求一个数的立方根.重点:立方根的运算难点:立方根的概念及其运算教学流程:一、知识回顾问题1:什么叫做平方根?如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根). 即:x2=a,那么x叫做a的平方根a的平方根记作:_______9的平方根记作:_______144的平方根记作:_______答案:追问:怎么求一个数的平方根?填空:(1)2的平方根是________;(2)0的平方根是________;(3)-16的平方根是____________。
答案:问题2:平方根具有什么性质呢?正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.二、探究1问题:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的棱长应该是多?追问1:你还记得正方体的体积与棱长有什么关系吗?答案:V=a3追问2:谁的立方等于27呢?解:设这种包装箱的棱长为xm,则x3=27∵33=27∴x=3定义:如果一个数的立方等于a,那么这个数叫做a的立方根(也叫三次方根).即:x3=a,那么x叫做a的立方根∵33=27∴____是27的立方根答案:3练习1:求下列各数的立方根:解:(1)∵(-3)3=-27∴-27的立方根是-3(2)∵(32)3=338∴338的立方根是32(3)∵(-4)3=-64∴ -64的立方根是-4填空:答案:1,-8,27,-27,1,-2,3,-3定义:求一个数的立方根的运算,叫做开立方。
人教版七年级数学下册6.2《立方根》导学案
人教版义务教育课程标准实验教科书七年级下册6.2《立方根》导学案【学习目标】1.了解立方根和开立方的概念;2.会用根号表示一个数的立方根,掌握开立方运算;3.培养学生用类比的思想求立方根的运算能力。
【教学重点】立方根的概念与性质【教学难点】会求某些数的立方根【教学过程】一、创设情境,复旧导新1、回顾平方根的定义及性质2、用魔方的体积导出立方根【活动一】复习1、16的平方根是;-16的平方根是;0的平方根是2、回顾平方根的定义及性质3、已知一个数的立方,求这个数。
二、启发诱导,探索新知1、归纳立方根的定义2、由探究问题得出开立方的定义3、明确立方与开立方互为逆运算4、点拨立方根的表示方法5、总结立方根的性质6、从定义、性质、表示方法方面归纳平方根与立方根的不同7、想一想:立方根是它本身的数有哪些?平方根呢?算术平方根呢?8、区分几个不同的符号。
【活动二】1、自主学习P49立方根的定义2、完成P49探究练习3、如何表示一个数的立方根4、求下列各数的立方根27(1)-27 (2)27 (3)-8(4)0.216 (5)05、正数有立方根吗?如果有,有几个?负数呢?0呢?6、下列各式分别表示什么意思,并求值(1)364 (2)1253- (3)36427-7、议一议:平方根与立方根的不同8、判断下列说法是否正确,说明理由。
(1)278的立方根是32± (2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是2±(5)0的立方根和平方根都是0三、引导探究,延伸知识【活动三】1、探究:38-= ; -38= 。
38- -38 327-= ; -327= 。
327- -3272、求下列各数的值,并找出规律。
(1) 332= ;33)2(-= ;33)3(-= ; 334= ;330 =(2) 33)8(= ;33)8(-=33)27(= ;33)27(-= ;33)0(=结论:1、3a -=-3a2、33a =a3、33)(a =a四、课堂小结【活动四】回顾所学知识:1、立方根的定义、性质;2、表示方法;3、开立方。
人教版七年级下册数学导学案设计:6.2立方根(无答案)
6.2 立方根导教案一.成功目标:1. 了解立方根的含义,会用符号表示一个数的立方根,;2. 会用立方运算求任何一个数的立方根;3. 经历从立方运算到开立方运算的演变过程,发展逆向思维能力.二.成功学习:自主预习教材,并独立完成下列问题.1.(回顾)正数的平方根有 个,它们互为 ; 0的平方根是 ;负数 平方根.2.立方根概念:一般地,一个数x 的立方等于a ,即 ,那么这个数x 就 叫做a 的 或三次方根,数a 立方根记作 , 读作______,其中a 叫做_______,左上角的数3叫做_________.如:823=,则2叫做8的_________,即283=;()823-=-, 则___是8-的立方根,即______.3.开立方:求一个数的________的运算叫开立方,4.开立方运算与立方运算互为_______运算.思考:你能说出8,0.125,0,-8,827-的立方根吗?有何发现? (1)∵328=,∴8的立方根是 ;(2)∵( )3=0.125,∴0.125的立方根是 ;(3)∵( )3=0,∴0的立方根是 ;(4)∵( )3=8-,∴8-的立方根是 ;(5)∵( )3=827-,∴827-的立方根是 . 立方根的性质:正数的立方根是 数,负数的立方根是 数,0的立方根是 ,并且都只有 个.三.典型例题:例1. 求下列各数的立方根:(1)64 ; (2)7; (3)827; (4)-0.125 .练习: 1.说出下列各数的立方根216 , - , - , - , 2 , -3 .2.1的算数平方根是 ,平方根是 ,立方根是 . 0的算数平方根是 ,平方根是 ,立方根是 .-1立方根是 .例2. 求下列各式的值:3(1)27- ; 3(2)0.008 ;(3)31125- ; 33(4)(5).练习:计算:(1)38321+ (2)327102---例3. 下列各式的未知数x :(1) 3641250x += ; (2)625)1(53=-x .四.课堂小结:本节课我的收获有哪些?五.成功检测:1.64的立方根的算术平方根是______,8的立方是8的立方根的______倍.2.立方根是其本身的数是____,_______的立方根等于它的平方根.3. 若312+x 和31x -相等,则x =_______.4.下列说法中,不正确的是( )A .任何一个数都有立方根;B .一个数只有一个立方根;C .正、负数的立方根与被开方数同号;D .立方根与本身相等的数只有0和1.5.下列说法正确的是( )A. 27的立方根是±3B. 81-的立方根是21 C. -5是-125的立方根 D. -6的立方根是-2166.平方根和立方根相同的数为a ,立方根和算术平方根相同的数为b ,则a+b 的立方根为( ).(A )0 (B )1 (C )0或1 (D )1±7.有下列命题:①负数没有立方根;②一个数的立方根不是正数就是负数;③一个正数或负数的立方根和这个数同号,0的立方根是0;④如果一个数的立方根是这个数本身,那么这个数必是1和0.其中错误的是( )A.①②③B.①②④C.②③④D.①③④8.计算:(1)33001.0833+ (2)3216- (3)3327102112561---9.解方程:(1)3641250x -= ; (2)()31216x -=-.10.34x =,且(230y xz -=,求3x y z +-的值11.31312.能力提升: a 0.000 001 0.0011 1000 1000 000 3a根怎样变化?你能总结其中的规律吗?(3) 3178≈5.625 求3178.0的值13.求下列各式的值:(1)(-)+(-2)×()-÷| -2| (2)(-4)-()+六. 布置作业:。
七年级数学下册 6.2《立方根》导学案(2)(无答案) (新版)新人教版
《6.2立方根》导学案(2)【学习目标】1.了解立方根的概念,会用根号表示一个数的立方根;了解开立方与立方的互逆运算关系2.自主、合作、交流3.体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别【重点】立方根的概念和求法。
【难点】立方根与平方根的区别【学习过程】一、复习导入:(2分钟)1. 立方根及开立方的概念2. 平方根与立方根有什么不同?被开方数平方根立方根正数负数零3、(1) 64的平方根是________立方根是________.(2) 的立方根是________. (3) -37是_______的立方根.(4) 若 ,则 x=_______, 若,则 x=________.(5) 若,则x的取值范围是__________。
二、自主学习内容、指导、检测:(15分钟)1、完成课本P50页探究,总结规律:求负数的立方根,可以先求出这个负数的的立方根,再取其,即。
思考:立方根是它本身的数是,平方根是它本身的数是2、一些计算机设有键,用它可以求出一个立方根(或其近似值)。
有些计算器需要用第二功能键求一个数的立方根。
3、介绍用计算器求立方根的方法,详见课本P51页第一自然段。
三、释疑点拨:(3分钟)例1、求下列各式的值:(1)364;(2)-381;(3)36427-。
例2、求满足下列各式的未知数x:(1)364x1250+=四、训练提升:(20分钟)1.已知x3 = b,则b是x的 ________ ,x是b的______________2.1258的立方根 _________ ,–512的立方根是___________3. x3 = 64,则x =________________________4. 立方等于–64的数是_______________5.计算:327102---学法指导复习提问,巩固所学知识,注重知识的联系阅读教材,自主、交流、合作完成所学内容生总结平方根与立方根区别,小组交流回答327()92=-x()93=-xxx-=2。
七年级数学下册《6.2立方根》导学案2(无答案)新人教版(2021年整理)
福建省南平市浦城县七年级数学下册《6.2 立方根》导学案2(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省南平市浦城县七年级数学下册《6.2 立方根》导学案2(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省南平市浦城县七年级数学下册《6.2 立方根》导学案2(无答案)(新版)新人教版的全部内容。
立方根1、了解立方根的概念,会用根号表示一个数的立方根2、能够利用立方运算,求某些数的立方根,了解开立方与立方的互逆运算关系一、导入新课1、现有一只体积为8cm3的正方体纸盒,它的每一条棱长是多少?2、如果一个数的立方等于-827,这个数是多少?3、立方根的定义:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数就叫做a 的立方根,也称为a 的三次方根;如果x 叫做a 的立方根,数a 的立方根记作3a ,读作“三次根号a ”.例如:2的立方是8,所以___是____的立方根,记作283=,又如278323-=-)(,____是___的立方根,记作327832-=-;若a x =3,则x 叫做a 的_____,a 叫做x 的____。
4、开立方的定义:求一个数的立方根的运算叫做开立方。
5、开立方和立方互为逆运算,因此求一个数的立方根可以通过立方运算来求。
二、自主练习1、求下列各数的立方根⑴1258-, ⑵126.0, ⑶0, ⑷3)3(- (5)610- 立方根的性质:正数有____个____的立方根,负数有____个____的立方根,0的立方根是_____.2、3a 表示a 的立方根,那么_____)33=a (;_______33=a 。
人教版数学七年级下册----6.2立方根导学案
6.2立方根 学习目标、重点、难点 【学习目标】1、立方根的定义、表示方法、性质及求法;2、开立方定义;3、平方根与立方根的区别与联系;【重点难点】1、立方根的定义、表示方法、性质及求法;2、开立方定义;3、平方根与立方根的区别与联系;新课导引如右图所示的是一块正方体的水晶砖,体积为8立方厘米.那么它的棱长是多少?【问题探究】 棱长的立方为体积,故可设该正方体的棱长为x 厘米,故只需求出方程x 3=8的解.【解析】由于23=8,故体积为8立方厘米的正方体的棱长为2厘米.教材精华知识点1立方根立方根的概念.一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.也就是说,若x 3=a ,则x 是a 的立方根.立方根的表示方法.数a 的立方根表示为3a ,读作“三次根号a ”,其中a 是被开方数,3是根指数,要特别注意,这里的根指数3不能省略.立方根的性质.(1)正数的立方根是正数;负数的立方根是负数;0的立方根是0.(2)两个重要的性质.①33a a -=-例如:38-=-2,38-=-2,所以3388-=-.定义:如果x 3=a ,那么x 叫做a 的立方根 表示:a 的立方根表示为3a 正数的立方根是正数 负数的立方根是负数 0的立方根是0 a a a a a ==-=-333333)(性质 立方根 求法:开立方:求一个数的立方根的运算叫做开立方相关知识:立方根与平方根的区别与联系②3333)(a a ==a .例如:333364)64(==64.规律方法小结 两个互为相反数的立方根之间的关系:根据立方根的定义,若3x =a ,因为3x -=-a ,3x -=-a ,所以33x x -=-,即一个数的立方根的相反数等于这个数的相反数的立方根. 知识点2开立方求一个数的立方根的运算,叫做开立方.开立方与立方互为逆运算,如43=64.364=4.知识点3 平方根与立方根的区别与联系区别.(1)用根号表示平方根时,根指数2可以省略,而用根号表示立方根时,根指数3不能省略;(2)平方根只有非负数才有,而立方根任何数都有;(3)一个正数的平方根有两个,而一个正数的立方根只有一个.联系.(1)都与相应的乘方运算互为逆运算;(2)0的平方根和立方根都是0.规律方法小结 类比法:类比法是一种在两个或两类不同对象之间,或者在事物与事物之间,根据它们某些方面的相似之处进行比较,通过联想和预测,可推断出它们在其他方面也可能相似,从而去建立猜想和发现真理的方法.例如,负数没有平方根,但负数有立方根.通过类比可猜想,负数没有4次方根,没有6次方根,即负数没有偶次方根.事实上,任何数的偶次方都不能为负数,所以负数一定没有偶次方根.负数的奇次方为负数,所以负数的奇次方根为负数.通过类比还可以猜出正数有两个偶次方根,它们互为相反数.拓展 (1) 33a =a ,33)(a =a .(2)立方根等于本身的数有1,0,-1.(3)正数的立方根是正数;负数的立方根是负数;0的立方根是0.(4)若两个数互为相反数,则它们的立方根仍互为相反数,反之也成立.课堂检测基本概念题1、如果x <0,那么x 的立方根为 ( )A .3xB .3x -C .3x -D .3x ±基础知识应用题2、求下列各式的值.(1)3125-; (2) 364343; (3) 3008.0-; (4) 31000--.3、计算. (1) 14421008.0103-; (2)327191+-·22550⎪⎭⎫ ⎝⎛+.综合应用题4、已知M =13--+n m m 是m +3的算术平方根,N =3422+--n m n 是n -2的立方根,试求M -N 的值.5、已知x x y x --++3922=0,求3x +6y 的立方根.探索创新题6、(1)观察下列等式并完成填空:33722722=;3326332633=;3363446344=; 33)()()()()(5=. (2)把你发现的规律用公式总结出来.体验中考1、如图所示,下列各数中,数轴上点A 表示的可能是 ( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根2、327-的绝对值是 ( )A .3B .-3C .31 D .31-学后反思附: 课堂检测及体验中考答案课堂检测1、分析 本题主要考查立方根的性质及表示方法,同时要注意立方根与平方根的区别.故选A .【解题策略】 求代数式的平方根或立方根,应首先把这个式子化简出来,然后再求平方根或立方根.2、分析 本题考查立方根的概念与性质.解.(1) 3125-=-5. (2) 47643433=. (3) 3008.0-=-0.2. (4) 333101000=--=10.【解题策略】 立方与开立方互为逆运算,要熟记1~10的立方.求负数的立方根的问题,可运用关系式33a a -=- (a >0),将其转化为正数的立方根,再转化成相反数的形式.3、分析 利用平方与开平方、立方与开立方的互逆关系求出相应的算术平方根与立方根. 解:(1) 14421008.0103-=10×0.2-21×12=2-6=-4. (2)327191+-·22550⎪⎭⎫ ⎝⎛+=3278-·42550+=422532⨯-=21532⨯-=-5. 4、分析 主要明确算术平方根和立方根的意义及表示方法.解:由题意可知⎩⎨⎧=+-=--,3342,21n m n m 解方程组得⎩⎨⎧==.3,6n m所以M =36+=3.N =323-=1.所以M -N =3-1=2.5、分析 本题是求关于x ,y 的代数式的立方根,这里应先确定x ,y 的值,然后再计算.解:由x x y x --++3922=0,得⎪⎩⎪⎨⎧-=-=+③,0>3②,09①,022x x y x 由②③可知x =-3,将x =-3代入①,得y =6,所以3x +6y =3×(-3)+6×6=-9+36=27,所以3x +6y 的立方根是3.6、 分析 本题考查归纳、探索能力.等式左边各式中的分子和等式右边的整数对应的分别为2,3.4.分母对应的为23-1,33-1,43-1,所以第4个等式一定是331245512455=.规律为333311-=-+n n n n n n (n 为大于1的整数). 解:(1) 331245512455=. (2) 333311-=-+n n n n n n (n 为大于1的整数). 【解题策略】 此种类型题要通过观察、归纳,从而探索规律,并用含n 的代数式表示,注意规律公式的正确性.体验中考1、 分析 本题考查算术平方根和立方根的概念,因为4的算术平方根是2,4的立方根是34≈1,8的算术平方根约等于3,8的立方根是2.所以A 表示的可能是8的算术平方根.故选C .2、 分析 本题考查立方根的概念和绝对值的概念,因为327-=-3.所以327-的绝对值是3.故选A .。
初中数学人教新版七年级下册6.2 立方根 导学案2(下)
初中数学人教新版七年级下册实用资料6.2 立方根 导学案2【教学目标】1、通过本课学习能用有理数估计一个无理数大致范围。
2、通过观察探索发现数学规律。
【教学重点】用有理数估计一个无理数的大致范围。
【教学难点】用有理数估计一个无理数的大致范围。
【教学内容】51页。
教 学 过 程【活动一】(学生先独立完成,然后小组合作。
10分钟)1、 请仿例填空:例:1== 3== 4==5== 6== 7==8==9==10== 12== 14== 0.1==0.2==0.3=2、请你试着估计一下无理数3、 试比较3、44、比较下列各组数的大小:(1 2.5 (把2.5化为分数) (2) 32【活动二】(学生先独立完成,然后小组合作,10分钟)5、 观察下列表格通过上表你发现了什么规律?请归纳:______________________________________________6、请填表:7=1.4428、一个正方体的,它的棱长变为原来多少倍? 如果体积扩大为原来的27倍呢?n 倍呢?9=40.98 则x =_________【活动三】独立完成------------------------------------------5分钟 10、填空:___25.0____,0.25____,64___,64=±==±=_____134-_____134-____,5___,52244=⎪⎭⎫⎝⎛±=⎪⎭⎫ ⎝⎛=±=11、求下列各数的立方根: ();641-1 008.0-2)(; (3)827; (4)6312、下列各数分别介于哪两个整数之间?(1) 28; (2)38; (3)399课后反思:__________________________________________________________________立方根(2)当堂检测题(考试时间:10分 满分100分)1、请你试着估计一下无理数330最靠近哪两个整数?________________2、试比较6、7、3251的大小。
人教版数学七年级下册第20课时《6.2立方根(2)》教案
人教版数学七年级下册第20课时《6.2立方根(2)》教案一. 教材分析《6.2立方根(2)》是人教版数学七年级下册的一个重要内容,本节课主要让学生进一步理解立方根的概念,掌握求立方根的方法,并能运用立方根解决实际问题。
教材通过例题和练习,让学生在已有知识的基础上,进一步巩固和拓展立方根的知识。
二. 学情分析学生在之前的学习中已经掌握了立方根的基本概念和求法,但部分学生对于立方根的应用还不够熟练,对于一些复杂问题的解决还需要加强。
因此,在教学过程中,教师需要关注学生的学习情况,针对性地进行辅导,提高学生对立方根知识的运用能力。
三. 教学目标1.知识与技能:使学生进一步理解立方根的概念,掌握求立方根的方法,能够运用立方根解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生探究和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
四. 教学重难点1.重点:立方根的概念和求法。
2.难点:运用立方根解决实际问题。
五. 教学方法采用自主学习、合作交流、启发引导等教学方法。
教师通过设置问题,引导学生思考,激发学生的学习兴趣,培养学生解决问题的能力。
六. 教学准备1.准备相关的教学材料,如PPT、例题、练习题等。
2.准备教学用具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾立方根的基本概念和求法,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示本节课的主要内容,包括立方根的定义、求法以及应用。
同时,给出一些例题,让学生初步感知立方根的知识。
3.操练(10分钟)学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师给出一些实际问题,让学生运用立方根的知识进行解决。
学生分组讨论,共同解决问题。
5.拓展(10分钟)教师引导学生思考:立方根在实际生活中有哪些应用?让学生举例说明,进一步拓宽学生的知识视野。
七年级数学下册 导学案 6.2 立方根
6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的的运算叫做开立方,与开立方互为逆运算(小组合作学习)6、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是 .(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?二、边学边练例1、 求下列各式的值:(1)364; (2)327102例2、求满足下列各式的未知数x :(1)3x 0.008=练习1. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的平方根是________立方根是________. (2) 的立方根是________. (3) 37-是_______的立方根. (4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.3、计算:(1)38321+ 4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x y x y ++的值. 三、我的感悟这节课我的最大收获是: 我不能解决的问题是:四、课后反思327()92=-x ()93=-x x x -=23x -。
七年级数学人教版下导学案:6.2 立方根
课题05 6、2 立方根德育目标:观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,在独立思考和小组交流中学习。
学习目标:1、使学生进一步理解立方根的概念,并能熟练地进行求一个数的立方根的运算.2、能用有理数估计一个无理数的大致范围,使学生形成估算的意识,培养学生的估算 学习重点:用有理数估计一个无理数的大致范围。
学习难点:用有理数估计一个无理数的大致范围。
学习过程: 一、课堂引入:(知识复习)1、求下列各式的值 327102-; ()331.0--; ()25-2、 <50< ,50的整数部分是 ,小数部分是 。
3、用计算器求数的平方根的步骤是① ,② ,③ ,④ 。
二、自学教材 学生自学课本P50---51 探究1、问题: 350有多大呢?如何估算近似值。
2、、利用计算器来求一个数的立方根:操作:用计算器求数的立方根的步骤及方法:用计算器求立方根和求平方根的步骤相同,只是 三次根号 不同。
步骤: → → → 根据显示写出立方根.3、利用计算器计算,并将计算结果填在表中,你发现了什么吗?你能说说其中的道理吗? … 000216.033216.0 3216 …归纳: 被开方数的小数点每移动3位,三次根式3a 的值小数点相应的方向移动1位。
三、自学例题:例1:求-5的立方根(保留三个有效数字)3 → 被开方数-5 → = → 1.709975947所以35 1.71-≈-四、当堂练习。
(学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价) (A 组)1、下列各式是否有意义?(1)—33; (2)33-; (3)33)3(- (4)23-2、一个正方形的水晶砖,体积为100,它的棱长大约在( )A 、4~5B 、5~6C 、6~7D 、7~8(B 组)3、用计算器计算3100(结果3个有效数字)。
并利用你发现的规律说出30001.0,31.0,3100000的近似值。
4、求下列各式的值:(1)—3027.0; (2)3278-;(3)36437-1; (4)31-87(C 组)5、比较下列各组数的大小:(1)39与2.5; (2)33与236、解下列方程⑴x 3=0.008 ⑵x 3—3=83⑶)—1(3x =64板书设计: 6、2 立方根例1:求-5的立方根(保留三个有效数字)3 → 被开方数-5 → = → 1.709975947所以 35 1.71-≈-五、学习反思。
人教版七年级数学(下册)导学案 6.2 立方根
6.2 立方根【学习目标】1、了解立方根的概念,初步学会用根号表示一个数的立方根;2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根;3、体会一个数的立方根的惟一性,分清一个数的立方根与平方根的区别。
【学习重点和难点】1.学习重点:立方根的概念和求法。
2.学习难点:立方根与平方根的区别。
【学习过程】一、自主探究1.平方根是如何定义的 ? 平方根有哪些性质?2、问题:要制作一种容积为27 m3的正方体形状的包装箱,这种包装箱的边长应该是3、思考:(1) 的立方等于-8?(2)如果上面问题中正方体的体积为5cm3,正方体的边长又该是4、立方根的概念:如果一个数的立方等于a,这个数就叫做a的 .(也叫做数a的).换句话说,如果 ,那么x叫做a的立方根或三次方根. 记作: .读作“”,其中a是,3是,且根指数3 省略(填能或不能),否则与平方根混淆.5、开立方求一个数的的运算叫做开立方,与开立方互为逆运算(小组合作学习)6、立方根的性质(1)教科书49页探究(2)总结归纳:正数的立方根是数,负数的立方根是数,0的立方根是 .(3)思考:每一个数都有立方根吗?一个数有几个立方根呢?(4)平方根与立方根有什么不同?二、边学边练例1、 求下列各式的值:(1)364; (2)327102例2、求满足下列各式的未知数x :(1)3x 0.008=练习1. 判断正误:(1)、25的立方根是 5 ;( )(2)、互为相反数的两个数,它们的立方根也互为相反数;( )(3)、任何数的立方根只有一个;( )(4)、如果一个数的平方根与其立方根相同,则 这个数是1;( )(5)、如果一个数的立方根是这个数的本身,那么这个数一定是零;( )(6)、一个数的立方根不是正数就是负数.( )(7)、–64没有立方根.( )2、(1) 64的平方根是________立方根是________. (2) 的立方根是________. (3) 37-是_______的立方根. (4) 若 ,则 x=_______, 若 ,则 x=________. (5) 若 , 则x 的取值范围是__________, 若 有意义,则x 的取值范围是_______________.3、计算:(1)38321+ 4、已知x-2的平方根是4±,2x y 12-+的立方根是4,求()x y x y ++的值.三、我的感悟这节课我的最大收获是: 我不能解决的问题是:四、课后反思327()92=-x ()93=-x x x -=23x -。
人教版数学七年级下册---导学案-6.2 立方根(第1课时)
6.2 立方根(第1课时) 【学习目标】1.掌握立方根概念性质及运算,区分平方根与立方根的不同,提高运算能力。
2.通过独立思考,小组合作,用类比的方法理解开立方与立方互为逆运算。
3.极度热情,激情投入,培养严谨的数学思维习惯。
【学习重点】立方根的概念和性质。
【学习难点】立方根与平方根的区别。
【知识链接】1.一个非负数a 的平方根是2.计算下列各数的立方:___;23= ___)2(3=-; ____5.03=; ___03=;____)5.0(3=-; _____)32(3=; ______)32(3=-;。
【自习】阅读教材P 49---501.一般地,如果一个数的立方等于a ,那么这个数叫做a 的 或 .一个数a 的立方根表示为 ,读作 。
其中a 是 ,3是 。
2.阅读教材的“探究”,根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点?一个正数有 个立方根, 一个负数有 个立方根,0的立方根是______.3.开立方与立方运算有什么关系?4.立方根与平方根有什么区别于联系?5.互为相反数的两个数的立方根有什么关系?你认为与相等吗?6.下列说法中错误的是( )A 、负数没有立方根B 、0的立方根是0C 、1的立方根是1D 、-1的立方根是-1.7.若一个数的平方根是8±,则这个数的立方根是( )A.4B.4±C.2D.2±8.已知12=x ,求3x 的值。
9. 分别求出下列各数的立方根:0.064, 0. -1, 8, -.125【自疑】等级: 组长签字:【自探】活动一:立方根的概念及性质问题一:立方等于8的数有几个?是哪些数?有立方等于-8的数吗?若有,是多少?问题二:正数的立方根是正数还是负数?负数的立方根呢?0的立方根呢?问题三:任何一个数a 都有立方根吗?有几个?怎样表示?问题四:立方根等于它本身的数有哪些?活动二:立方根的计算=32-)( , =35.0-)( , =35 , =332)( , -8的立方根是 ,-0.025的立方根是 ,125的立方是 , 278的立方根是 。
七年级初一数学下册6.2立方根导学案新版新人教版2
立方根学习目标:1.了解立方根的概念,会用根号表示一个数的立方根;2.会求一个数的立方根;3.运用数学符号描述开方运算的过程,建立开方的概念,发展抽象思维.学习重点:掌握立方根的概念,会求一个数的立方根. 学习难点:明确平方根与立方根的区别,能熟练地求一个数的立方根.一、自主学习【旧知回顾】1.7的平方根是 ,5的算术平方根是 ,9的平方根是 2.求下列各式的值 (1)2)3(- (2)2)3(- (3)2)3(-π (4)2)1(-x )1(<x3.填空:2的立方是 ;43的立方是 ;0的立方是 ;3)3(-= ;3)52(-= .总结:正数的立方是 ; 负数的立方是 ; 0的立方是二,合作探究立方根的定义:。
记作:2、求下列各数的立方根(1)64 (2)1258- (3)9 (4)310- (5)64 (6)03、下列各数有立方根吗?如果有,请写出来;如果没有,请说明理由278,0.001,9,-3,-64,216125-,0三,归纳总结:四,当堂检测(必做题)1.立方根等于本身的数是 ( )A .±1B .1,0C .±1,0D .以上都不对2.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1B .±1,0C .0D .0,13.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+ 4.求下列各式的值 33)2.1( , 33)6(- , 33)5(- , 381-- 3027.0-- 3343 3125216- 31-2719 33)6-( 2)4(-- 34 2343+ 327102- 31258-- 3854-讨论:1. 等于多少?)(338- 等于多少?)(332 2. 等于多少?)(338- 等于多少?332 你能用符号总结一下刚才的结论吗?5.判断下列说法是否正确(1)9的平方根是3 ( ) (2)8的立方根是2 ( )(3)-0.027的立方根是-0.3( ) (4)31271±的立方根是 ( ) (5)-9的平方根是-3 ( ) (6)-3是9的平方根 ( )6.填空:(1)64的平方根是 ,立方根是 ,算术平方根是(2)=31- ,=25 ,=3216125 ,3833= 7.求下列各式中的x(1)2163=x (2)02733=-x (3)016413=+x (4)081)1(33=+-x(选做题)8.若==m m 则,10 ,若的平方根是,则m m 43=9.8的立方根与25的平方根之差是10.一个正方形木块的体积为2125cm ,现将它锯成8个同样大小的正方体小木块,求每个小正方形体木块的表面积.11、若==m m m 则,312.已知0)532(32,2=--+--y x y x y x 满足:,求的立方根y x 8-13.由下列等式 (63)44634426332633722722333333===,,所提示的规律,可得出一般性的结论是七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列句子中,不是命题的是()A.三角形的内角和等于180度B.对顶角相等C.过一点作已知直线的垂线D.两点确定一条直线【答案】C【解析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选:C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.2.下列事件中,最适合使用普查方式收集数据的是()A.了解扬州人民对建设高铁的意见B.了解本班同学的课外阅读情况C.了解同批次LED灯泡的使用寿命D.了解扬州市八年级学生的视力情况【答案】B【解析】试题分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A、了解扬州人民对建设高铁的意见,人数众多,应采用抽样调查;B、了解本班同学的课外阅读情况,人数较少,应采用全面调查;C、了解同批次LED灯泡的使用寿命,具有破坏性,应采用抽样调查;D、了解扬州市八年级学生的视力情况,人数众多,应采用抽样调查;故选B.考点:全面调查与抽样调查.3.下列图案中,()是轴对称图形.A.B.C.D.【答案】D【解析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 4.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4【答案】C【解析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.5.下列语句中,是命题的是( )A .两点确定一条直线吗?B .在线段AB 上任取一点C .作∠A 的平分线AMD .两个锐角的和大于直角【答案】D【解析】选项A,B,C 不能写成如果……那么……的形式.选项D ,如果两个角是锐角,那么它们的和大于直角.所以选D.6.某校在“创建素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比.如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频数分布图.已知从左到右4个小组的百分比分别是5%,15%,35%,30%,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)( )A.18篇B.24篇C.25篇D.27篇【答案】D【解析】在这次评比中被评为优秀的调查报告数为6313763+++++×60=27(篇).故选D.7.下列方程中,解为x=﹣2的方程是()A.x﹣2=0 B.2+3x=﹣4 C.3x﹣1=2 D.4﹣2x=3【答案】B【解析】方程的解就是能够使方程左右两边相等的未知数的值,把x=2代入各个方程进行进行检验,看能否使方程的左右两边相等.【详解】解:分别将x=﹣2代入题目中的四个方程:A、左边=﹣2﹣2=﹣4≠右边,该方程的解不是x=﹣2,故本选项错误;B、左边=2﹣6=﹣4=右边,该方程的解是x=﹣2,故本选项正确;C、左边=﹣6﹣1=﹣7≠右边,该方程的解不是x=﹣2,故本选项错误;D、左边=4+6=10≠右边,该方程的解不是x=﹣2,故本选项错误;故选B.【点睛】本题的关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.8.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.11a b<D.ab>b2【答案】A【解析】举特例如c=0,可对A进行判断;根据不等式性质,把a>b>0两边都加上c得到B,都除以ab 得到C,都乘以b得到D.【详解】解:当c=0,则ac>bc不成立;当a>b>0,则a+c>b+c;1a<1b;ab>b1.故选:A.【点睛】考查了不等式性质:①在不等式两边同加上或减去一个数(或式子),不等号方向不改变;②在不等式两边同乘以或除以一个正数,不等号方向不改变;③在不等式两边同乘以或除以一个负数,不等号方向改变.9.要使分式有意义,则的取值应满足()A.B.C.D.【答案】C【解析】根据分式的分母不为0即可求解.【详解】依题意得x-1≠0,∴故选C.【点睛】此题主要考查分式的有意义的条件,解题的关键是熟知分母不为零.10.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题题11.李老师带领x名学生到某动物园参观,已知成人票每张20元,学生票每张10元.设门票的总费用为y元,则y=________.【答案】10x+20【解析】根据总费用=成人票用钱数+学生票用钱数,可得y=10x+20.故答案为10x+20.12.如图,直线a ,b 被直线c 所截,若//a b ,140∠=︒,3110∠=︒,则2∠=_______°.【答案】70【解析】根据两直线平行,内错角相等求出∠4,再根据对顶角相等解答.【详解】解:如图∵a ∥b ,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4∴∠2=∠3-∠4=110°-40°=70°故答案为:70【点睛】本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.13.如图,用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的 12.已知这个铁钉被敲击 3 次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是 2?cm ,若铁钉总长度为 a?cm ,则 a 的取值范围是_______________.【答案】3 3.5a <≤【解析】求钉子的总长度只需要分别求出每次钉入木板的长度,相加即可.【详解】解:第一次是 2cm ,第二次是1cm,第三次不会超过0.5cm,故铁钉总长度为3a 3.5<≤.【点睛】本题考查了一元一次不等式组的应用,属于简单题,将现实生活与数学思想联系起来是解题关键. 14.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为10=,则m =_____.【答案】10±【解析】利用题中四次方根的定义求解.10=,∴4410m =,∴10m =±.故答案为:10±.【点睛】本题考查了方根的定义.关键是求四次方根时,注意正数的四次方根有2个.15.-0.00000586用科学记数法可表示为__________.【答案】-5.86×10-6【解析】分析:根据科学记数法的概念即可得出结果.详解:-0.00000586=-5.86×10-6点睛:我们把一个较大的数或一个较小的数写成10n a ⨯(0<a ≤10,n 为整数)的形式,叫做科学记数法.把一个较小数写成科学记数法时若前面有n 个零,则指数为-n.16.如果x 2+kx+1是一个完全平方式,那么k 的值是___________.【答案】k=±1.【解析】试题分析:这里首末两项是x 和1这两个数的平方,那么中间一项为加上或减去x 的系数和常数1的积的1倍,故k=±1.解:中间一项为加上或减去x 的系数和常数1的积的1倍,∴k=±1.故答案为k=±1.17.如图,已知在ABC 中,AB 边的垂直平分线交CA 的延长线于点E ,在CE 上取一点F ,使,35FBA ABC C ∠=∠∠=︒,则EBF ∠=________.【答案】35°【解析】首先根据线段的垂直平分线性质得出EA=EB ,然后进一步利用等边对等角得出∠EBA=∠EAB ,据此再利用三角形外角性质得出∠EAB=∠C+∠ABC ,进而求出∠EBF=∠C=35°.【详解】∵AB 边的垂直平分线交CA 的延长线于点E ,∴EA=EB ,∴∠EBA=∠EAB ,又∵∠EBA=∠EBF+∠FBA ,∠EAB=∠C+∠ABC ,∴∠EBF+∠FBA=∠C+∠ABC ,∵FBA ABC ∠=∠,∠C=35°,∴∠EBF=∠C=35°,故答案为:35°.【点睛】本题主要考查了线段垂直平分线性质以及三角形外角性质的综合运用,熟练掌握相关概念是解题关键.三、解答题18.如图,已知点D 为ABC △的边BC 的中点,,⊥⊥DE AC DF AB ,垂足分别为,E F ,且BF CE =. 求证:()()12B C AD ∠=∠平分BAC ∠【答案】(1)详见解析;(2)详见解析.【解析】(1)由中点的定义得出BD =CD ,由HL 证明Rt △BDF ≌Rt △CDE ,得出对应角相等即可; (2)根据全等三角形的性质得到DF DE =,利用角平分线的判定定理即可得出结论.【详解】证明:(1)D 是BC 的中点,BD CD ∴=,DE AC DF AB ⊥⊥,,BDF ∴与CDE △为直角三角形,在Rt BDF 和Rt CDE △中,BF CE BD CD =⎧⎨=⎩, Rt BDF Rt CDE HL ∴≌(),B C ∴∠=∠;(2)Rt BDF Rt CDE ≌,DF DE ∴=,AD ∴平分BAC ∠.【点睛】本题考查全等三角形的判定和性质、角平分线的判定定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.问题情景:如图1,AB ∥CD ,∠PAB=140°,∠PCD=135°,求∠APC 的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请你补全她的推理依据.如图2,过点P 作PE ∥AB ,∵AB ∥CD ,∴PE ∥CD . ( )∴∠A+∠APE=180°.∠C+∠CPE=180°. ( )∵∠PAB=140°,∠PCD=135°,∴∠APE=40°,∠CPE=45°∴∠APC=∠APE+∠CPE=85°.( )问题迁移:(2)如图3,AD ∥BC ,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD 与∠α、∠β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 与∠α、∠β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;等量代换;(2)∠CPD=∠α+∠β,理由见解析;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.【解析】(1) 过点P作PE∥AB,根据“两直线平行,同旁内角互补”可得∠A+∠APE=180°,∠C+∠CPE=180°;进一步可求得结果.(2)过P作PE∥AD交CD于E,则AD∥PE∥BC,根据“两直线平行,内错角相等”可得∠α=∠DPE,∠β=∠CPE,因此,∠CPD=∠DPE+∠CPE=∠α+∠β;(3)类似(2)的方法,分两种情况,即:P在BA延长线时或在AB延长线时.可得出结论..【详解】解:(1)过点P作PE∥AB,如图2所示:∵AB∥CD,∴PE∥CD.(平行于同一条直线的两条直线平行)∴∠A+∠APE=180°.∠C+∠CPE=180°.(两直线平行同旁内角互补)∵∠PAB=140°,∠PCD=135°,∴∠APE=40°,∠CPE=45°,∴∠APC=∠APE+∠CPE=85°.(等量代换)故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;等量代换;(2)∠CPD=∠α+∠β,理由如下:如图3所示,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,如图4所示:过P作PE∥AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β﹣∠α;当P在AB延长线时,如图5所示:同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α﹣∠β.【点睛】本题考核知识点:平行线性质.解题的关键是构造平行线,根据平行线的性质,从已知角推出未知角,再根据角的和或差求出关系式.20.在一个不透明的袋子中装有4 个红球和6 个黄球,这些球除颜色外都相同,将袋子中的球充分摇匀后,随机摸出一球.(1)分别求摸出红球和摸出黄球的概率(2)为了使摸出两种球的概率相同,再放进去8 个同样的红球或黄球,那么这8 个球中红球和黄球的数量分别是多少?【答案】(1)P(摸到红球)=,P(摸到黄球)=;(2)1 个, 3 个.【解析】分析:(1)直接利用概率公式计算即可求出摸出的球是红球和黄球的概率;(2)设放入红球x个,则黄球为(8−x)个,由摸出两种球的概率相同建立方程,解方程即可求出8个球中红球和黄球的数量分别是多少.详解:(1)∵袋子中装有4个红球和6个黄球,∴随机摸出一球是红球和黄球的概率分别是:P (摸到红球)=,P (摸到黄球)=;(2)设放入红球x 个,则黄球为(8−x )个, 由题意列方程得:解得:x =1.所以这8个球中红球和黄球的数量分别应是1个和3个.点睛:本题考查的是求随机事件的概率,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.21.对于实数a b ,,用a b *表示运算2a b +,例如,132135*=⨯+=(1)求101-3π-⎛⎫* ⎪⎝⎭ (2)分解因式:()()222ax ax a ax -*- 【答案】(1)-1;(2)()221a x - 【解析】(1)先计算出0-11(-)3π,的值,然后按照定义的新运算的运算顺序和法则计算即可; (2)先按照定义的新运算的顺序和法则得出()()222ax ax a ax -*-的结果,然后合并同类项之后再利用提取公因式和公式法分解因式即可.【详解】解:(1)1013π-⎛⎫*- ⎪⎝⎭ =()13*-21(3)=⨯+-23=-1=-(2)()()222ax ax a ax -*- ()()2222ax ax a ax =-+- 2422ax ax a ax =-+-244ax ax a =-+()2441a x x =-+ ()221a x =-【点睛】本题主要考查定义新运算和分解因式,掌握完全平方公式是解题的关键.22.如图,已知180A ABC ︒∠=-∠,BD CD ⊥于点D ,EF CD ⊥于点F(1)求证://AD BC ;(2)若142︒∠=,求2∠的度数.【答案】(1)见解析;(1)41°【解析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(1)根据平行线的性质求出∠3,根据垂直推出BD ∥EF ,根据平行线的性质即可求出∠1.【详解】解:(1) 证明:180A ABC ︒∠=-∠,180A ABC ︒∴∠+∠=.//AD BC ∴(1) //AD BC1342︒∴∠=∠=.又,BD CD EF CD ⊥⊥,∴∠BDF=∠EFC=90°,//BD EF ∴.3242︒∴∠=∠=.【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 三个顶点的位置如图所示,现将△ABC 平移,使点A 移动到点A ',点B 、C 的对应点分别是点B '、C '.(1)△ABC 的面积是 ; (2)画出平移后的△A 'B 'C ';(3)若连接AA '、CC ′,这两条线段的关系是 .【答案】(1)72;(2)见解析;(3)平行且相等. 【解析】(1)利用割补法求解可得;(2)由点A 及其对应点A ′得出平移方式为:先向左移5格,再向下移2格,据此作出点B 和点C 的对应点,再顺次连接即可得;(3)根据平移变换的性质可得答案.【详解】解:(1)△ABC 的面积是3×3﹣12×1×2﹣12×2×3﹣12×1×3=72, 故答案为72; (2)如图所示,△A 'B 'C '即为所求,(3)若连接AA '、CC ′,这两条线段的关系是平行且相等,故答案为平行且相等.【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称变换的定义和性质及割补法求三角形的面积. 24.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.【答案】50∠=EOF .【解析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=,由OE AB ⊥得到90BOE =∠,根据对顶角相等得80AOC BOD ∠=∠=,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=,∵180AOC AOD ∠+∠=,∴45180x x +=,解得:20x =,∴480AOC x ∠==,∵OE AB ⊥,∴90BOE =∠,∵80AOC BOD ∠=∠=,∴10DOE BOE BOD ∠=∠-∠=,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=, ∴104050EOF EOD DOF ∠=∠+∠=+=.【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系. 25.如图,已知AD ∥BE ,∠A=∠E ,求证:∠1=∠1.【答案】见解析.【解析】分析:由AD与BE平行,利用两直线平行同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到DE与AC平行,利用两直线平行内错角相等即可得证.详解:因为AD∥BE,所以∠A=∠EBC.因为∠A=∠E,所以∠EBC=∠E.所以DE∥AB.所以∠1=∠1.点睛:此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,由 AD ∥BC 可以得到的结论是( ).A .∠1=∠2B .∠1=∠4C .∠2=∠3D .∠3=∠4【答案】C 【解析】根据平行线的性质(两直线平行,内错角相等)得出即可.【详解】∵AD ∥BC ,∴∠2=∠3,即只有选项C 正确,选项A. B. D 都错误,故选C.【点睛】此题考查平行线的性质,解题关键在于掌握其性质.2.如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒,则BFC ∠的度数是( ).A .117°B .120°C .132°D .107°【答案】A 【解析】根据题意得∠BDC=97∘,再证明∠EFC=∠BFD.再根据外角和定理,即可计算出∠BFC 的度数.【详解】在△ACD 中,∵∠A=62°,∠ACD=35°∴∠BDC=∠A+∠ACD=62°+35°=97°;在△BDF 中,∵∠BDC+∠ABE+∠BFD=180°,∠ABE=20°,∴∠BFD=180°−97°−20°=63°,∴∠EFC=∠BFD=63°(对顶角相等).=180-BFC ∴∠∠EFC =180°-63°=117°故选A【点睛】本题考查外角和定理,熟练掌握性质定理是解题关键.3.如图,在平面直角坐标系中, // //AB BG x 轴,// // // //BC DE HG AP y 轴,点以D 、C 、P 、H 、在x 轴上, ()1,2A ,()1,2B -,()3,0D -,(3,E --2),()3,2G -,把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A 处,并按A B C D E F G -------H P A --…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是( )A .()1,2B .()1,2-C .()1,0-D .()1,0【答案】D 【解析】先求出凸形ABCDEFGHP 的周长为20,得到2018÷20的余数为18,由此即可解决问题. 【详解】∵A (1,2),B (−1,2),D (−3,0),E (−3,−2),G (3,−2),∴“凸”形ABCDEFGHP 的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P 处上面1个单位的位置,坐标为(1,0).故选:D .【点睛】本题考查图形类规律,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.4.我们可以用图示所示方法过直线a 外的一点P 折出直线a 的平行线b ,下列判定不能作为这种方法依据的是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一条直线的两条直线互相平行【答案】D【解析】依据平行线的判定定理进行分析,即可得到正确结论.【详解】解:如图,由折叠可得,∵∠BPC=∠ADP=90°,∴a∥b,故A选项能作为这种方法的依据;∵∠EPD=∠ADP=90°,∴a∥b,故B选项能作为这种方法的依据;∵∠BPD+∠ADP=180°,∴a∥b,故C选项能作为这种方法的依据;而D选项不能作为这种方法的依据;故选:D.【点睛】本题考查的是平行线的判定定理,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行..530)A.3与4之间B.5与6之间C.6与7之间D.3与10之间【答案】B【解析】直接利用估算无理数的方法得出接近无理数的整数进而得出答案.【详解】解:∵25<30<36,253036即:5306,∴30的值在5与6之间.故选B .【点睛】此题主要考查了估算无理数的大小,正确掌握二次根式的性质是解题关键.6.按如下程序进行运算:并规定,程序运行到“结果是否大于 65”为一次运算,且运算进行 3 次才停止。
人教版初一数学下册6.2立方根导学案
6.2 立方根导学案【学习目标】1. 使学生了解一个数的立方根概念,并会用根号表示一个数的立方根。
2. 用立方运算求某些数的立方根3. 学会用立方根分析和解决实际问题.【学习重点】立方根的概念及性质.【学习难点】求一个数的立方根.【学习过程】一、温故知新1、_________________________________ 平方根的概念:如果一个数x 的等于a ,即x2=a ,那么这个数x就叫做a的_______ (也叫二次方根),求一个数a的平方根的运算,叫做_____ .2、平方根具有什么特征?二、探究新知1. 你能类比平方根的定义给出立方根的定义吗?归纳:立方根的概念:如果一个数x的_____ 于a ,即x3=a ,那么这个数x就叫做_________ (也叫三次方根),求一个数a的立方根的运算,叫做_____ .2. 根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?因为23 =8,所以8的立方根是()3因为()=0.125,所以0.125的立方根是()3因为()=0,所以0的立方根是()3因为()=£,所以-8的立方根是()因为3一色,所以一A的立方根是()27 27小结:(1) _____________________ 正数的立方根有 ,是 ; (2) _____________________ 负数的立方根有 ,是 ; (3) _________________ 0的立方根是 . 3. 立方根的表示方法:求一个数a 的立方根记做 ________ ,读作“三次根号a ”;其中a 叫 _______ ,3叫 ________ ,3不能 ________ . 三、新知应用例1求下列各数的立方根:(1 -27 ; ( 2)38 ; ( 3) - 5.3. 求下列各式的值:(1) .. 210 ;(2) 3 -0.001 ; (3) -3 -8X 27例2求下列各式的值:£ ;⑶睥3(1^64 ; ( 2)-四、巩固练习1. 下列说法中正确的是( A. - 4没有立方根 C.丄的立方根是13662. 求下列各数的立方根: (1) -丄;B.1的立方根是士 1 D. - 6的立方根是3二(2) -0.008 ;(3) 15彳;10 五、课堂总结谈谈你对本节课的收获与疑惑?六、当堂检测(第1小题8分,第2、3、4题每题4分) 1. 求下列各式的值 (1)3 1000 ;(2)3 -0-064 ;( 3)3 -1 ;(4)2. 下列说法正确的是( ).A 、 一个数的立方根一定比这个数小B 、 一个数的算术平方根一定是正数一个正数的立方根有两个 一个负数的立方根只有一个,3—C D 3.若一需=J 7,则a 的值是(且为负数 A 7B 、-7 C 、一 7D 3438885124.若 a 2 =25 , 3b = -125 , 则 a b 的值为( )A.— 10B. 0C . 0 或一10D . 0, —10或)•\ 810。
2023年人教版七年级数学下册第六章《6.2立方根》导学案
新人教版七年级数学下册第六章《6.2立方根》导学案学科数学教学内容 6.2立方根年级7(2)执教授课时间自主学习目标了解立方根的概念.合作学习目标会求一些数的立方根合作探究目标引导学生类比平方根学习立方根的概念和求法.合作重点学习立方根的概念和求法.合作难点引导学生类比平方根学习立方根的概念和求法.合作关键引导学生类比平方根学习立方根的概念和求法.教学流程教学素材教学环节教师行为学生活动引入课题前置诊断口述倾听1.复习引入你还记得什么是平方根吗?平方根具有什么特任征?创境引入设置问题情境,启发引导小组合作、交流。
展示答案2 要制作一种容积为的正方体形状的包装箱,这种包装箱的棱长应该是多?展示目标口述学生倾听学习内容1 你能类比平方根的定义给出立方根的定义吗?导学1 巡视探讨、交流,立方根的定义:如果一个数的立方等于a,那么这个数就叫做a的立方根(cube root,也叫做三次方根).即若,那么x 叫做a的立方根.自主合作巡视自主独立完成互动交流指导学生评价举手展示求一个数a的立方根的运算叫做开立方.根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?立方根的特征:正数的立方根是正数;负数的立方根是负数; 0的立方根是0.巩固达标巡视独立练习学习内容2 一个数a的立方根,记作,读作:“三次根号a”,其中a叫被开方数,3叫根指数,3不能省略.导学2 提问自主合作评价自学互动交流巡视填空,你能发现其中的规律吗?巩固达标巡视举手展示327max33a例2 求下列各式的值:课堂小结问题1:什么是立方根?如何求一个数的立方根?问题2:我们研究立方根的方法与研究平方根的方法之间有什么联系?小结质疑合作与交流作业:51页第1,2,3,4题及长江作业对应练习巩固拓展巡视自主,小组交流33312716423.864--();();()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
** 立方根导学案2
【教学目标】1、通过本课学习能用有理数估计一个无理数大致范围。
2、通过观察探索发现数学规律。
【教学重点】用有理数估计一个无理数的大致范围。
【教学难点】用有理数估计一个无理数的大致范围。
【教学内容】51页。
教学过程
【活动一】(学生先独立完成,然后小组合作。
10分钟)
1、请仿例填空:
例:2=332=38
1=3= 33=3= 34=3=3
5=3=36=3=37=3=3
8=3= 39= 3=310=3=3
1 2=3=3
1
4
=3= 30.1=3=3
0.2=3= 30.3=3=3
2、请你试着估计一下无理数335最靠近哪两个整数?
3、试比较3、
4、350的大小。
4、比较下列各组数的大小:
(1)39与2.5 (把2.5化为分数)(2)33与3 2
【活动二】(学生先独立完成,然后小组合作,10分钟)
5、 观察下列表格
x
** ** 216 216000 ** 1 1000 1000000 3
x
**
**
6
60
**
1
10
100
通过上表你发现了什么规律?请归纳:______________________________________________
6、请填表: x **
** 16 ** 320 320000 ** 780000
3
x
**
**
**
7、已知30.3=0.6694 3
3=1.442 则3300=______
3
3000=____________
8、一个正方体的,它的棱长变为原来多少倍? 如果体积扩大为原来的27倍呢?n 倍呢?
9、已知:368.8=4.096
3
x =40.98 则x =_________
【活动三】独立完成------------------------------------------5分钟 10、填空:
___25.0____,0.25____,64___,64=±==±=
_____
134-_____134-____,5___,52
2
44=⎪⎭⎫
⎝⎛±=⎪⎭⎫ ⎝⎛=±=
11、求下列各数的立方根: ();
641-1 008.0-2)(; (3)8
27
; (4)63
12、下列各数分别介于哪两个整数之间?
(1) 28; (2)38; (3)399
课后反思:__________________________________________________________________
立方根(2)当堂检测题
(考试时间:10分 满分100分)
1、请你试着估计一下无理数330最靠近哪两个整数?________________
2、试比较6、7、3251的大小。
____________________________
3、9
4
的算术平方根是______________ 4、9
4
的平方根是______________
5、-1的立方根是_______
6、已知:35=1.7099
3
50=3.6840 则:30.05=___________
7、370=4.1213
3
m =0.41213 则:m =___________。