指数分布

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数分布是连续型随机变量,指数分布具有无记忆性,指数分布是特殊的gamma分布。

指数分布(Exponential distribution)是一种连续概率分布。

指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

指数分布的定义形式:
λ就表示平均每单位时间发生该事件的次数,是指数函数的分布参数;f(x:λ) = λe^(-λx),表示在该时刻发生时间的概率。

比如放射性衰变就遵循这一分布,这里的半衰期就对应1/λ.
指数分布的期望为1/Lamta,方差为1/Lamta^2。

指数分布中最关键的一点,如何理解率参数。

给定独立同分布样本x= (x1, ...,x n),最大化似然概率得到参数的似然值为:
lamta^ = 1/x;
指数分布表示随机变量的概率只与时间间隔有关,而与时间起点无关。

数学语言表达为:
p(T>s+t | T >t ) = p(T>s) for all s,t >= 0
指数分布常用来描述“寿命”类随机变量的分布,例如家电使用寿命,动植物寿命,电话问题里的通话时间等等。

“寿命”类分布的方差非常大,以致于
已经使用的时间是可以忽略不计的。

例如有一种电池标称可以充放电500次(平均寿命),但实际上,很多充放电次数数倍于500次的电池仍然在正常使用,也用很多电池没有使用几次
就坏了——这是正常的,不是厂方欺骗你,是因为方差太大的缘故。

随机取一节电池,求它还能继续使用300次的概率,我们认为与这节电池是否使用过与曾经使用过多少次是没有关系的。

有人戏称服从指数分布的随机变量是“永远年轻的”,一个60岁的老人与一个刚出生的婴儿,他们能够再活十年的概率是相等的,你相信吗?——如果人的寿命确实是服从指数分布的话,回答是肯定的。

贴一道题加深理解。

相关文档
最新文档