sci论文写作模板(葵花宝典).pdf
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竭诚为您提供优质文档/双击可除sci论文写作模板(葵花宝典).pdf
篇一:sci论文模板
Runningtitle:lietal.on….
animprovedshuffledfrog-leapingalgorithmforknapsackp roblem
authors’name
affiliation
correspondenceautuor(通讯作者:
):tel/faxxxx;e-mail:xxx
abstract
shuffledfrog-leapingalgorithm(sFla)haslongbeenconsi deredasnewevolutionaryalgorithmofgroupevolution,and hasahighcomputingperformanceandexcellentabilityforg lobalsearch.knapsackproblemisatypicalnp-completepro
blem.Forthediscretesearchspace,thispaperpresentsthe improvedsFla,andsolvestheknapsackproblembyusingthea lgorithm.experimentalresultsshowthefeasibilityandef fectivenessofthismethod.
keywords:shuffledfrog-leapingalgorithm;knapsackprob lem;optimizationproblem
0introduction
knapsackproblem(kp)isaverytypicalnp-hardprobleminco mputerscience,whichwasfirstproposedandstudiedbydant zinginthe1950s.therearemanyalgorithmsforsolvingthek napsackproblem.classicalalgorithmsforkparethebranch andboundmethod(babm),dynamicprogrammingmethod(分支界定法和动态规划
法),etc.however,mostofsuchalgorithmsareover-relian ceonthefeaturesofproblemitself,thecomputationalvolu meofthealgorithmincreasesbyexponentially,andthealgo rithmneedsmoresearchingtimewiththeexpansionofthepro blem.intelligentoptimizationproblemforsolvingnparet heantcolonyalgorithm,greedyalgorithm,etc.suchalgori thmsdonotdependonthecharacteristicsoftheproblemitse
lf,andhavethestrongglobalsearchability.Relatedstudi eshaveshownthatitcaneffectivelyimprovetheabilitytos earchfortheoptimalsolutionbycombiningtheintelligent optimizationalgorithmwiththelocalheuristicsearching algorithm.
shuffledfrog-leapingalgorithmisanewintelligentoptim izationalgorithm,itcombinestheadvantagesofmemealgor ithmbasedongeneticevolutionandparticleswarmalgorith mbasedongroupbehavior.ithasthefollowingcharacterist ics:simpleinconcept,fewparameters,thecalculationspe ed,globaloptimizationability,easytoimplement,etc.an dhasbeeneffectivelyusedinpracticalengineeringproble ms,suchasresourceallocation,jobshopprocessarrangeme nts,travelingsalesmanproblem,0/1knapsackproblem,etc .however,thebasicleapfrogalgorithmiseasytoblendinto localoptimum,andthusthispaperimprovedtheshuffledfro g-leapingalgorithmtosolvecombinatorialoptimizationp roblemssuchasknapsackproblem.experimentalresultssho wthatthealgorithmis
effectiveinsolvingsuchproblems.
1themathematicalmodelofknapsackproblem
knapsackproblemisanp-completeproblemaboutcombinator ialoptimization,whichisusuallydividedinto0/1knapsac kproblem,completeknapsackproblem,multipleknapsackpr oblem,mixedknapsackproblem,thelatterthreekindscanbe transformedintothefirst,therefore,thepaperonlydiscu ssedthe0/1knapsackproblem.themathematicalmodelof0/1 knapsackproblemcanbedescribedas:
nmaxxivii0nxwc(x1or0,i1,2,...,n)iiii0
where:nisthenumberofobjects;wiistheweightoftheithob ject(i=1,2…
n);viisthevalueoftheithobject;xiisthechoicestatusof theithobject;whentheithobjectisselectedintoknapsack ,definingvariablexi=1,otherwisexi=0;cisthemaximumca pacityofknapsack.
2thebasicshuffledfrog-leapingalgorithm
itgeneratespfrogsrandomly,eachfrogrepresentsasoluti onoftheproblem,denotedbyui,whichisseenastheinitialp opulation.calculatingthefitnessofallthefrogsinthepo pulation,andarrangingthefrogaccordingtothedescendin