(完整)人教版七年级数学上册应用题大集结专题训练

合集下载

人教版七年级数学上册应用题专题归纳1(K12教育文档)

人教版七年级数学上册应用题专题归纳1(K12教育文档)

人教版七年级数学上册应用题专题归纳1(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版七年级数学上册应用题专题归纳1(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版七年级数学上册应用题专题归纳1(word版可编辑修改)的全部内容。

列一元一次方程解应用题的常见题型(设未知数,找等量关系列方程)一. 和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少.基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。

1. 一个数的 2 倍与 10 的和等于 18, 则这个数是_______。

一个数的二分之一与 3 的差等于 2,则这个数是_______。

一个数的 3 倍比 10 大 2,则这个数是_______。

2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?3。

某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?4。

七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?二。

等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式.“等积变形”是以形状改变而体积不变为前提。

1。

把内径为 200mm,高为 500mm 的圆柱形铁桶,装满水后慢慢地向内径为 160mm,高为400mm 的空木桶装满水后,铁桶内水位下降了多少?2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。

人教版七年级上数学试题:第一章 有理数的应用训练试题20题(含解答) (1)

人教版七年级上数学试题:第一章 有理数的应用训练试题20题(含解答) (1)

有理数的应用题1.某班同学的标准身高为170 cm,如果用正数表示身高高于标准身高的高度,那么(1)5 cm和-13 cm各表示什么?(2)身高低于标准身高10 cm和高于标准身高8 cm各怎么表示?解:(1)5 cm表示比标准身高高5 cm,-13 cm表示比标准身高矮13 cm.(2)身高低于标准身高10 cm表示为-10 cm,身高高于标准身高8 cm表示为+8 cm.2.一只可爱的小虫从点O出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1 cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?解:小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).小虫得到的芝麻数为54×2=108(粒).3.(十堰中考)气温由-2 ℃上升3 ℃后是(A)A.1 ℃B.3 ℃C.5 ℃D.-5 ℃4.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7;(2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).5.(无锡中考)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11 ℃.6.已知某银行办理了7笔业务:取款8.5万元,存款6万元,取款7万元,存款10万元,存款16万元,取款9.5万元,取款3万元,则这个银行的现金是增加了还是减少了?增加或减少了多少元?解:规定取出为负,存进为正,由题意可得-8.5+6-7+10+16-9.5-3=4(万元).答:这个银行的现金增加了4万元.7.甲水库的水位每天升高3 cm,乙水库的水位每天下降5 cm,4天后,甲、乙水库水位总的变化量各是多少?解:水位升高记为正,水位下降记为负.3×4=12(cm).-5×4=-20(cm).答:4天后,甲水库水位上升12 cm,乙水库水位下降20 cm.8.某市冬季里的一天,早上6时气温是零下12 ℃,中午11时上升了5 ℃,晚上8时又上升了-8 ℃,则晚上8时的气温是-15℃.9.某公司去年1~3月平均每月盈利2万元,4~6月平均每月亏损1.6万元,7~10月平均每月亏损1.5万元,11~12月平均每月盈利3.6万元.(设盈利为正,亏损为负)(1)该公司去年一年是盈利还是亏损?(2)该公司去年平均每月盈利(或亏损)多少万元?解:(1)3×2+3×(-1.6)+4×(-1.5)+2×3.6=2.4(万元).答:该公司去年一年盈利2.4万元.(2)2.4÷12=0.2(万元).答:该公司去年平均每月盈利0.2万元.10.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17.(1)将最后一名老师送到目的地时,小王在出发地点的东方还是西方?距出发地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天上午汽车共耗油多少升?解:(1)(+15)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(-17)=[(+15)+(+3)]+[(+13)+(-13)]+[(-4)+(-10)+(-12)+(-17)]=(+18)+(-43)=-25(千米).答:将最后一名老师送到目的地时,小王在出发地点的西方,距出发地点25千米.(2)(15+4+13+10+12+3+13+17)×0.4=34.8(升).答:这天上午汽车共耗油34.8升.11.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,-10,-12,+3,-13,-17.(1)将最后一名老师送到目的地时,小王在出发地点的东方还是西方?距出发地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天上午汽车共耗油多少升?解:(1)(+15)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(-17)=[(+15)+(+3)]+[(+13)+(-13)]+[(-4)+(-10)+(-12)+(-17)]=(+18)+(-43)=-25(千米).答:将最后一名老师送到目的地时,小王在出发地点的西方,距出发地点25千米.(2)(15+4+13+10+12+3+13+17)×0.4=34.8(升).答:这天上午汽车共耗油34.8升.12.用四舍五入法按括号中的要求对下列各数取近似数.(1)2.009(精确到个位);(2)46 850 000(精确到万位);(3)4.762×107(精确到百万位);(4)13亿(精确到十万位).解:(1)2.(2)4.685×107.(3)4.8×107.(4)1.300 0×109.13.已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab +c +d 5+e 2的值. 解:因为a ,b 互为倒数,所以ab =1.因为c ,d 互为相反数,所以c +d =0.因为e 的绝对值为2,所以e =±2.所以e 2=(±2)2=4.所以12ab +c +d 5+e 2=12+0+4=412. 14.在数轴上画出表示下列各数的点:-1.8,0,-3.5,103,612.再将这些数重新排成一行,并用“<”号把它们连接起来.解:如图.-3.5<-1.8<0<103<612.15.用四舍五入法按括号中的要求对下列各数取近似数.(1)2.009(精确到个位);(2)46 850 000(精确到万位);(3)4.762×107(精确到百万位);(4)13亿(精确到十万位).解:(1)2.(2)4.685×107.(3)4.8×107.(4)1.300 0×109.16.在如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2 018次输出的结果为(B)A .6B .3C.322 018D.321 009+3×1 00917.有一种纸的厚度为0.1毫米,若拿两张重叠在一起,将它对折一次后,厚度为22×0.1毫米.求:(1)对折2次后,厚度为多少毫米?(2)对折6次后,厚度为多少毫米?解:(1)23×0.1=8×0.1=0.8(毫米).(2)27×0.1=128×0.1=12.8(毫米).18.如果表示x +y +z ,表示运算a -b +c -d ,那么×2 016 2 0192 017 2 018=12.19.已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab +c +d 5+e 2的值.解:因为a ,b 互为倒数,所以ab =1.因为c ,d 互为相反数,所以c +d =0.因为e 的绝对值为2,所以e =±2.所以e 2=(±2)2=4. 所以12ab +c +d 5+e 2=12+0+4=412.20.a ,b 分别是数轴上两个不同点A ,B 所表示的有理数,且|a|=5,|b|=2,A ,B 两点在数轴上的位置如图所示:(1)试确定数a ,b ;(2)A ,B 两点相距多少个单位长度?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数; (4)点P 从A 点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2 019次后,求P 点表示的数. 解:(1)因为|a|=5,|b|=2,所以a =5或-5,b =2或-2.由数轴可知,a <b <0,所以a =-5,b =-2.(2)-2-(-5)=3.答:A ,B 两点相距3个单位长度. (3)①若C 点在B 点的右侧,则CB =13CA =13(CB +AB). 所以CB =12AB =32. 所以点C 表示的数为-2+32=-12;②若C 点在A ,B 点之间,则CB =13CA =13(AB -CB). 所以CB =14AB =34. 所以点C 表示的数为-2-34=-112. 综上,C 点表示的数为-12或-114. (4)-5-1+2-3+4-5+6-7+…-2 017+2 018-2 019=-1 015. 答:P 点表示的数为-1 015.。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

人教版2020年七年级上册数学期末实际问题应用题专题训练带答案

人教版2020年七年级上册数学期末实际问题应用题专题训练带答案

2020年七年级上册数学期末实际问题应用题专题训练1. 福清某水果批发市场橙的价格如表:(1)小凯分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出217元,小凯第一次购买橙________千克,第二次购买橙________千克;(2)小坤分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克橙的单价不相同,共付出436元,请问小坤第一次,第二次分别购买橙多少千克?(列方程求解)2. 为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?3. 2020年元旦期间,某商场打出促销广告,如表所示.小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.4. 武安市为创建文明城市,市环卫局准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需440元,购买2个A型垃圾箱比购买3个B型垃圾箱少用140元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中买A型垃圾箱不超过16个.①求购买垃圾箱的总花费w(元)与A型垃圾箱x(个)之间的函数关系式;②当买A型垃圾箱多少个时总费用最少,最少费用是多少?5. 用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.(1)根据题意,填写下表:(2)复印张数为多少时,两处的收费相同?6. 李老师准备购买若干个某种笔记本奖励学生,甲、乙两家商店都有足够数量的这种笔记本,其标价都是每个6元,甲商店的促销方案是:购买这种笔记本数量不超过5个时,原价销售;超过5个时,超过部分按原价的7折销售.乙商店的销售方案是:一律按标价的8折销售.(1)若李老师要购买x(x>5)个这种笔记本,请用含x的式子分别表示李老师到甲商店和乙商店购买全部这种笔记本所需的费用.(2)李老师购买多少个这种笔记本时,到甲、乙两家商店购买所需费用相同?(3)若李老师需要20个这种笔记本,则到甲、乙哪家商店购买更优惠?7. 某商场计划购进A,B两种新型节能台灯共80盏,这两种台灯的进价,售价如下表所示:(1)若商场的进货款为3700元,则这两种台灯各购进了多少盏?(2)若商场规定B型台灯的进货数量不超过A型台灯数量的2倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?8. 某地生产一种绿色蔬菜若在市场上直接销售,每吨利润为0.1万元;经粗加工后销售,每吨利润可达0.5万元;经精加工后销售,每吨利润涨至0.8万元.当地一家蔬菜公司收集这种蔬菜120吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工14吨;如果进行精加工,每天可加工5吨,但两种加工方式不能在同一天同时进行,受季节条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多的对蔬菜进行精加工,没来得及进行加工的蔬菜,在市场上直接销售..方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案利润最大,为什么?9.为迎接2020年新年的到来,甲、乙两校联合准备文艺汇演.甲、乙两校参加文艺汇演的人数共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省________元.(2)求甲、乙两校各有多少名学生准备参加演出?(3)如果甲校准备演出的人员中有9人被抽调去为市民义务书写对联不能参加演出,那么你有几种购买服装的方案?通过比较,你认为如何购买服装才能最省钱?10.学校为了做好大课间活动,计划用400元购买10件体育用品,价格如下表:(1)若400元全部用来购买篮球和羽毛球拍共10件,问各购买多少件?(2)400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?若能,直接写出购买方案即可;若不能,说明理由.11. 为喜迎中华人民共和国成立70周年,某中学将举行以“追寻红色信仰,传承红色基因”为主题的“重走长征路”活动.七年级需要在文具店购买国旗图案贴纸和小红旗分发给学生作为活动道具,已知每袋贴纸有100张,每袋小红旗有50面,贴纸和小红旗需整袋购买.甲、乙两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少20元,而且2袋贴纸与1袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共40袋,给每位参加活动的学生分发国旗图案贴纸2张,小红旗1面,恰好全部分完,请问该校七年级有多少名学生?(3)在(2)条件下,两家文具店的优惠如下:甲文具店:全场商品购物超过800元后,超出800元的部分打八五折;乙文具店:相同商品,“买十件赠一件”.请问在哪家文具店购买比较优惠?12. 春节将至,市区两大商场均推出优惠活动:①商场一:全场购物每满100元返30元现金(不是100元不返);②商场二:所有的商品均按8折销售.某同学在两家商场发现他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价之和为470元,且运动服的单价比书包的单价的7倍少10元.(1)根据以上信息,求运动服和书包的单价;(2)该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用.参考答案与试题解析2020年12月25日初中数学一、解答题(本题共计 12 小题,每题 10 分,共计120分)1.【答案】17,23(2)设第一次购买x千克橙,则第二次购买(100−x)千克橙.分三种情况:①第一次购买橙少于20千克,第二次购买橙20千克以上但不超过40千克,则两次购买的质量不到100千克,不成立;②第一次购买橙少于20千克,第二次橙超过40千克.依题意得:6x+4(100−x)=436,解得:x=18,则100−18=82(千克);③第一次购买橙20千克以上但不超过40千克,第二次橙超过40千克,依题意得:5x+4(100−x)=436,解得:x=36,则100−36=64千克.答:第一次购买18千克橙,第二次购买82千克橙或第一次购买36千克橙,第二次购买64千克橙.2.【答案】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得,2(x+50)=3x,解得x=100,x+50=150.答:每套队服是150元,每个足球是100元.)(2)到甲商场购买所花的费用为:150×100+100(a−10010=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100a=80a+15000(元).(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.3.【答案】解:(1)∵第一次付了134元<200×90%=180(元),∴第一次购物不享受优惠,即所购物品的原价为134元;②∵第二次付了490元>500×90%=450(元),∴第二次购物享受了500元按9折优惠,超过500元部分按8折优惠.设小欣妈妈第二次所购物品的原价为x元,根据题意得:90%×500+(x−500)×80%=490,解得x=550.答:小欣妈妈两次购物时,所购物品的原价分别为134元,550元.(2)500×90%+(550+134−500)×80%=597.2(元).又134+490=624(元),∵597.2<624,∴她将这两次购物合为一次购买更节省.4.【答案】解:(1)设每个A型垃圾箱m元,每个B型垃圾箱n元,根据题意得:{3m+2n=440,2m+140=3n,解得:m=80,n=100.故每个A型垃圾箱80元,每个B型垃圾箱100元.(2)①设购买x个A型垃圾箱,则购买(30−x)个B型垃圾箱,根据题意得:w=80x+ 100×(30−x)=−20x+3000(0≤x≤16且x为整数).②∵在w=−20x+3000中,∴w随x值增大而减小,∴x=16时,w取最小值,最小值=−20×16+3000=2680.当买16个A型垃圾箱时总费用最少,最少费用是2680元.5.【答案】解:(1)甲店每页收费0.1元,乙复印店一次复印页数不超过20时,每页收费0.12元,一次复印页数超过20时,超过部分每页收费0.09元,设在同一家复印店一次复印文件的页数为x(x为非负整数),则甲店复印x页,收费为0.1x元,则乙店复印x页,当0≤x≤20时,收费为:0.12x,当x>20时,收费为0.09(x−20)+20×0.12=0.09x+0.6,当x=10时,甲店收费为0.1×10=1元,乙店收费为0.12×10=1.2元;当x=30时,甲店收费为0.1×30=3元,乙店收费为0.09×30+0.6=3.3元.(2)由(1)知甲店复印x页,收费为0.1x元,则乙店复印x页,当0≤x≤20时,收费为:0.12x,当x>20时,收费为0.09(x−20)+20×0.12=0.09x+0.6,故当0≤x≤20时,不可能收费相同,所以x>20,所以0.09x+0.6=0.1x,解得x=60.答:复印张数为60时,两处的收费相同.6.【答案】解:(1)李老师到甲商店购买全部这种笔记本应付费:6×5+0.7×6(x−5)=4.2x+9(元);李老师到乙商店购买全部这种笔记本应付费: 0.8×6x=4.8x(元).(2)设李老师要购买x(由题可知x>5)个这种笔记本时,到甲、乙两家商店购买所需费用相同.由题意,得4.2x+9=4.8x,解得x=15.答:李老师购买15个这种笔记本时,到甲、乙两家商店购买所需费用相同.(3)李老师购买20个这种笔记本到甲商店应付费:4.2×20+9=93(元);李老师购买20个这种笔记本到乙商店应付费:4.8×20=96(元).因为93元<96元,所以李老师到甲商店购买更优惠.7.【答案】解:(1)设商场应购进A型台灯x盏,则B型台灯为(80−x)盏,根据题意得,40x+50(80−x)=3700,解得x=30,所以,80−30=50,答:应购进A型台灯30盏,B型台灯50盏;(2)设商场销售完这批台灯可获利y元,则y=(60−40)x+(75−50)(80−x),=20x+2000−25x=−5x+2000即y=−5x+2000,∵B型台灯的进货数量不超过A型台灯数量的2倍,∴80−x≤2x,∴x≥80(x为整数);3∵k=−5<0,y随x的增大而减小,∴x=27时,y取得最大值,为−5×27+2000=1865(元).答:商场购进A型台灯27盏,B型台灯53盏,销售完这批台灯时获利最多,此时利润为1865元.8.【答案】解:方案一,因为14×15=210>120,所以可以全部进行粗加工,利润为:120×0.5=60(万元);方案二:精加工15×5=75 (吨),直接销售:120−75=45(吨),利润为:75×0.8+45×0.1=60+4.5=64.5(万元);方案三:设x天对蔬菜进行精加工,(15−x)天对蔬菜进行粗加工,恰好15天完成,可得方程:5x+14(15−x)=120,解得,x=10,15−10=5,利润为:5×10×0.8+14×5×0.5=75(万元).综上所述,方案三利润最大.9.【答案】1320(2)设甲校有学生x人(依题意46<x<90),则乙校有学生(92−x)人.依题意得:50x+60×(92−x)=5000,解得:x=52.经检验x=52符合题意.∴92−52=40(人).故甲校有52人,乙校有40人.(3)方案一:各自购买服装需43×60+40×60=4980(元);方案二:联合购买服装需(43+40)×50=4150(元);方案三:联合购买91套服装需91×40=3640(元);综上所述:因为4980元>4150元>3640元.所以应该甲、乙两校联合起来选择按40元一次购买91套服装最省钱.10.【答案】解:(1)设买篮球x个,则买羽毛球拍(10−x)件,由题意得,50x+25(10−x)=400,解得:x=6,则10−x=4.答:买篮球6个,买羽毛球拍4件.(2)设买篮球x个,买排球y个,则买羽毛球拍(10−x−y)件,由题意得50x+40y+25(10−x−y)=400,x=30−3y,5∵x,y都是整数,∴当y=0时,x=6,羽毛球拍为4件;当y=1时,不符合题意,舍去,当y=2时,不符合题意,舍去,当y=3时,不符合题意,舍去,当y=4时,不符合题意,舍去,当y=5时,x=3,羽毛球拍为2件,当y=6时,不符合题意,舍去,当y=7时,不符合题意,舍去,当y=8时,不符合题意,舍去,当y=9时,不符合题意,舍去,当y=10时,x=0,羽毛球拍为0件.∴篮球、排球和羽毛球拍各3,5,2个.11.【答案】解:(1)设每袋贴纸x元,每袋红旗(x+20)元,根据题意得2x=x+20,解得x=20,∴x+20=20+20=40.答:每袋国旗图案贴纸的价格是20元,每袋小红旗的价格是40元. (2)设购买贴纸y袋,购买小红旗(40−y)袋,=50(40−y),根据题意得:100y2解得y=20,∴七年级的人数为:50×(40−y)=1000(名).答:七年级有1000名学生.(3)由(2)知购买贴纸20袋,购买小红旗20袋,∵贴纸每袋20元,红旗每袋40元,∴全部金额为:20×20+20×40=1200(元),在甲文具店应付金额为:800+400×0.85=1140(元),在乙文具店应付金额为:(20−1)×20+(20−1)×40=1140(元). 答:在甲、乙两家文具店购买同样优惠.12.【答案】解:(1)设书包单价为x元,则运动服的单价为(7x−10)元,由题意得,x+7x−10=470,解得:x=60,则7x−10=410.答:书包单价为60元,则运动服的单价为410元;(2)到商场二这两件商品的费用为470×0.8=376(元),到商场一买这两件商品的费用470−4×30=350(元),去商场一买运动服410−30×4=290(元),商场二买书包60×0.8=48(元),共计338元,所以这个同学要去商场一买运动服,去商场二买书包,费用为338元.。

(完整)人教版七年级数学上册应用题大集结专题训练.docx

(完整)人教版七年级数学上册应用题大集结专题训练.docx

七年级数学应用题类型总概1.和、差、倍、分:(1)倍数关系:通关“是几倍,增加几倍,增加到几倍,增加百分之几,增率⋯⋯”来体 .(2)多少关系:通关“多、少、和、差、不足、剩余⋯”来体.2.行程:(1)行程中的三个基本量及其关系:路程=速度× .(2)基本型有① 相遇;②追及;一般情况下:相背而行;行船;形跑道.③行船中的逆水、行中的逆。

a、水速度 =静水速度 +水流速度。

b、逆水速度 =静水速度 -水流速度。

c、(水速度 -逆水速度 )÷2= 水流速度。

(注:逆的情况和一的思路)3.力配:要搞清人数的化,常型有:(1)既有入又有出;(2)只有入没有出,入部分化,其余不;(3)只有出没有入,出部分化,其余不4.工程:工程中的三个量及其关系:工作量=工作效率×工作5.商品售有关关系式:商品利 =商品售价—商品价 =商品价×折扣率—商品价商品利率 =商品利 / 商品价 =商品售价—商品价 / 价商品售价 =商品价×折扣率6.数字(1)要搞清楚数的表示方法:一个三位数的百位数字 a,十位数字是 b,个位数字c(其中 a、b、c 均整数,且 1≤a≤9, 0 ≤b≤ 9, 0 ≤c≤9)个三位数表示: 100a+10b+c.(2)数字中一些表示:两个整数之的关系,大的比小的大 1;偶数用 2n 表示,的偶数用 2n+2 或 2n— 2 表示;奇数用 2n+1 或 2n—1 表示 .7.储蓄问题⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率. 利息的20%付利息税⑵利息 =本金×利率×期数本息和 =本金 +利息利息税 =利息×税率( 20%)8.按比例分配问题(1)甲:乙:丙=a:b:c, 全部数量 =各部分成分含量之和,一般设的的时候为:ax,bx,cx 。

人教版七年级上册数学第一章有理数应用题专题训练

人教版七年级上册数学第一章有理数应用题专题训练

人教版七年级上册数学第一章有理数应用题专题训练1.有8箱苹果,以每箱20千克为标准,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:1.5,-3,-1,0.5,1,-2,2,-2.5,与标准质量相比较,这8箱苹果总计超过或不足多少千克?8箱苹果总质量是多少千克?2.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1. (1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?3.某快递员骑车从快递公司出发,沿东西方向行驶,依次到达A 地、B 地、C 地、E 地.将向东行驶的路程(单位:km )记为正,向西行驶的路程记为负,则该快递员行驶的各段路程依次对应为:2-,3-,7+,1+,7-,最后该快递员回到快递公司. (1)以快递公司为原点,用1个单位长度表示1km ,在如图所示的数轴上标出表示A 、B 、C 、D 、E 五个地方的位置,并求出B 地与D 地之间的距离;(2)该快递员从公司出发直至回到该公司,一共骑行了多少km ?4.快递小哥骑摩托车从快递公司出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小丽家,最后回到快递公司.(1)以快递公司为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴轴上标出小明、小红、小丽家的位置; (2)小明家与小丽家相距多远?(3)若摩托车每千米耗油0.03升,那么快递小哥这次送货共耗油多少升?5.超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,3-,2,0.5-,1,2-,2-, 2.5-. (1)这8筐白菜一共多少千克?(2)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?6.聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义. (2)把上表补充完整.7.某口罩加工厂每名工人计划每天生产400个医用口罩,由于种种原因,实际每天生产量与计划量相比有出入.如下表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩多少个?(2)根据表格记录的数据,求出小王本周实际生产口罩数量.8.出租车司机王师傅某天早上营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天早上所接六位乘客的行车里程(km)如下:﹣2,+5,﹣4,+1,﹣6,﹣2(1)将最后一位乘客送到目的地时,王师傅在早上出发点的什么位置?(2)若汽车耗油量为0.1L/km,这天早上王师傅接送乘客,出租车共耗油多少升?(3)若出租车起步价为6元,起步里程为2km(包括2km),超过部分(不足1km按1km计算)每千米1.5元,王师傅这天早上共得车费多少元?9.某一出租车一天下午以市民之家为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6.(1)将最后一名乘客送到目的地,出租车离市民之家出发点多远?在市民之家的什么方向?(2)若每千米的价格为3元,司机一个下午的营业额是多少?10.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).(1)若经过这一周,该粮库存有大米88吨,求m的值,运进或运出大米多少吨?(2)若大米进出库的装卸费用为每吨25元,求这一周该粮库需要支付的装卸总费用.11.如下图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到一条“折线数轴”,我们称点A和点D在数轴上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点Q从点C运动到点B需要的时间为______秒;(2)动点P从点A运动至D点需要的时间为多少秒?(3)当P、O两点在数轴上相距的长度与Q、O两点在数轴上相距的长度相等时,求出动点P在数轴上所对应的数.12.在“十·一”黄金周期间,云南鲜花饼深受游客喜欢,某商店有20箱鲜花饼,以每箱10kg 为标准,超过或不足的千克数分别用正数、负数来表示:(1)20箱鲜花饼中,最重的一箱比最轻的一箱重多少千克? (2)与标准质量相比,20箱鲜花饼总计超过或不足多少千克?13.某粮库1月7日到9日这3天内进出库的吨数记录如下(“+”表示进库,“﹣”表示出库):(1)经过这3天进出库后,粮库管理员结算时发现粮库里结存480吨粮食,那么3天前粮库里的存量有多少吨?(2)如果进库出库的装卸费都是每吨10元,那么这3天要付出多少装卸费?14.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A 地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,-13,-7,+12,+7,+5 (1)收工时距离A 地多远?(2)若每千米耗油0.2千克,问从A 地出发到收工时共耗油多少千克?15.请列式计算:某检修小组乘坐一辆汽车沿东西方向的公路检修输电线路,规定向东为正,他们从A 地出发到收工时,走过的路程记录如下(单位:千米)7+,12-,15+, 3.5-,5+,4+,7-,11.5-.(1)他们收工时在A地哪个方向,距离A地多远?(2)汽车行走的总路程是多少千米?(3)若汽车每千米耗油0.4升,汽车从现在位置返回A地还需耗油多少升?16.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况:(1)小王第一周实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?17.下表是学生A~H某次考试的得分情况(比班级平均分高记为正,比班级平均分低记为负):(1)若A的得分是52分,则B的得分是多少?(2)在学生A~H中,得分最高的与得分最低的相差多少分?18.食品厂为检测某袋装食品的质量是否符合标准,从袋装食品中抽出样品30袋,每袋以100克为标准质量,超过和不足100克的部分分别用正、负数表示,记录如下:(1)在抽测的样品中,任意挑选两袋,它们的质量最大相差多少克?(2)食品袋中标有“净重1002 克”,这批抽样食品中共有几袋质量合格?请你计算出这30袋食品的合格率;(3)这批样品的平均质量比每袋的标准质量多(或少)多少克?19.某汽车制造厂计划每周生产400辆新能源汽车,由于工人实行轮休,每日上班人数不一定相等,实际每日产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):(1)本周实际产量与计划产量相比,是增加了还是减少了?是多少?(2)若生产此款新能源汽车每辆利润约为0.2万元,求本周该厂家生产车辆的总利润.20.某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:千米):(1)在第 次记录时距A 地最远; (2)收工时距A 地 千米;(3)若每千米耗油0.4升,每升汽油需6.5元,问检修小组工作一天需汽油费多少元?参考答案:1.不足3.5千克,总重量156.5千克.2.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元3.(1)标出表示五个地方的位置见解析;B地与D地相距8km(2)一共骑行了24km4.(2)8.5千米;(3)0.6升.5.(1)194.5千克(2)58.35元6.(2)-4,17.(1)小王星期五生产口罩391个(2)小王本周实际生产口罩数量为2811个8.(1)将最后一位乘客送到目的地时,王师傅在早上出发点的西边,距离出发点8千米的位置(2)这天早上王师傅接送乘客,出租车共耗油2升(3)王师傅这天早上共得车费49.5元9.(1)3千米,在市民之家正东方向(2)105元10.(1)-20,运出大米20吨(2)450011.(1)2.5(2)15(3)11 53或12.(1)3千克(2)1.5千克13.(1)3天前粮库里的存量有525吨(2)这3天要付出1650元装卸费14.(1)收工时离A地5千米(2)从A地出发到收工时,共耗油14.2千克.15.(1)他们收工时在A地西面,距离A地3千米(2)65千米(3)1.2升16.(1)小王第一周实际销售苹果的总量为714千克(2)小王第一周销售苹果的利润一共为2142元17.(1)69(2)2718.(1)7克(2)80%(3)0.3克19.(1)本周实际产量与计划产量相比,是增加了,本周的实际产量为428辆车(2)本周该厂家生产车辆的总利润是85.6万元20.(1)4(2)4(3)83.2。

人教版七年级数学上册应用题大集结专题训练

人教版七年级数学上册应用题大集结专题训练

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余…”来体现.
2.行程问题:
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
4. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价=商品售价—商品进价/进价
商品售价=商品标价×折扣率
6. 数字问题
7.储蓄问题
本息和=本金+利息
③平场得分=平一场分数×平场数
⑤总场数=胜场数+平场数+负场数
11.等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.。

人教版七年级数学应用题库(附答案)

人教版七年级数学应用题库(附答案)

人教版七年级数学应用题库(附答案)第一篇:人教版七年级数学应用题库(附答案)1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?10、一块三角形地的面积是840平方米,底是140米,高是多少米?11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用2.4米,每件儿童衣服用布多少米?12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?第二篇:七年级下学期数学教学计划(人教)七年级下学期数学教学计划一.情况分析 1.学生情况:本班级现有学生人,其中男生人,女生人。

从上学期的教学观察与测试结果看,这班学生的学习态度较端正,学习习惯较差,跟不上教学进度的多。

受应试教育观念的影响,师生习惯于接受性学习,自主、合作、探究的风气尚未形成。

作业习惯抄袭,勤思好问的少。

为此新学期的数学教学要积极尝试自主、合作、探究学习,注意培养学生的学习兴趣和习惯品质,努力提高综合成绩,尽量缩小与其他两个班级的差距。

初一上册数学应用题大全及答案新人教版

初一上册数学应用题大全及答案新人教版

初一上册数学应用题大全及答案新人教版一、选择题:本大题共12小题,每小题3分,共36分,请你将认为正确答案前面的代号填入括号内1.﹣22=()A. 1 B.﹣1 C. 4 D.﹣4考点:有理数的乘方.分析:﹣22表示2的2次方的相反数.解答:解:﹣22表示2的2次方的相反数,∴﹣22=﹣4.故选:D.点评:本题主要考查的是有理数的乘方,明确﹣22与(﹣2)2的区别是解题的关键.2.若a与5互为倒数,则a=()A. B.﹣ C.﹣5 D. 5考点:倒数.分析:根据乘积为1的两个数互为倒数,可得答案.解答:解:由a与5互为倒数,得a= .故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.(3分)(2014 秋•北流市期中)在式子:,m﹣3,﹣13,﹣,2πb2中,单项式有()A. 1个 B. 2个 C. 3个 D. 4个考点:单项式.分析:直接利用单项式的定义得出答案即可.解答:解:,m﹣3,﹣13,﹣,2πb2中,单项式有:﹣13,﹣,2πb2,共3个.故选:C.点评:此题主要考查了单项式,正确把握单项式的定义是解题关键.4.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C. |﹣3|=|3| D.(﹣3)100=3100考点:有理数的乘方;绝对值.分析:根据有理数的乘方分别求出即可得出答案.解答:解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.点评:此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.5.如果2x2y3与x2yn+1是同类项,那么n的值是()A. 1 B. 2 C. 3 D. 4考点:同类项.专题:计算题.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.解答:解:∵2x2y3与x2yn+1是同类项,∴n+1=3,解得:n=2.故选B.点评:此题考查了同类项的知识,属于基础题,掌握同类项所含字母相同,并且相同字母的指数也相同,是解答本题的关键.6.( 3分)(2014秋•北流市期中)经专家估算,整个南海属于我国海疆线以内的油气资源约合1500忆美元,开采前景甚至要超过英国的北海油田,用科学记数法表示15000亿美元是()A. 1.5×104美元 B. 1.5×105美元C. 1.5×1012 美元 D. 1.5×1013美元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将15000亿用科学记数法表示为:1.5×1012.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列结论正确的是()A.近似数1.230和1.23精确度相同B.近似数79.0精确到个位C.近似数5万和50000精确度相同D.近似数3.1416精确到万分位考点:近似数和有效数字.分析:近似数的有效数字,就是从左边第一个不是0的数起,后边所有的数字都是这个数的有效数字,并且对一个数精确到哪位,就是对这个位后边的数进行四舍五入进行四舍五入.解答:解:A、近似数1.230有效数字有4个,而1.23的有效数字有3个.故该选项错误;B、近似数79.0精确到十分位,它的有效数字是7,9,0共3个.故该选项错误;C、近似数5万精确到万位,50000精确到个位.故该选项错误;D、近似数3.1416精确到万分位.故该选项正确.故选C.点评:本题考查了近似数与有效数字,主要考查了精确度的问题.8.若|x﹣1|+|y+2|=0,则(x+1)(y﹣2)的值为()A.﹣8 B.﹣2 C. 0 D. 8考点:非负数的性质:绝对值.分析:根据绝对值得出x﹣1=0,y+2=0,求出x、y的值,再代入求出即可.解答:解:∵|x﹣1|+|y+2|=0,∴x﹣1=0, y+2=0,∴x=1,y=﹣2,∴(x+1)(y﹣2)=(1+1)×(﹣2﹣2)=﹣8,故选A.点评:本题考查了绝对值,有理数的加法的应用,能求出x、y的值是解此题的关键,难度不大.9.一种金属棒,当温度是20℃时,长为5厘米,温度每升高或降低1℃,它的长度就随之伸长或缩短0.0005厘米,则温度为10℃时金属棒的长度为()A. 5.005厘米 B. 5厘米 C. 4.995厘米 D. 4.895厘米考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:5﹣(20﹣10)×0.0005=5﹣0.005=4.995(厘米).则温度为10℃时金属棒的长度为4.995厘米.故选C.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.有理数a、b在数轴上的位置如图所示,下列各式成立的是()A. a+b>0 B. a﹣b>0 C. ab>0 D.考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置判断出a,b的取值范围,进而可得出结论.解答:解:∵由图可知,a<﹣1<0<b<1,∴a+b<0,故A错误;a﹣b<0,故B错误;ab<0,故C错误;<0,故D正确.故选D.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.11.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B. 0 C.负数 D.非负数考点:有理数的混合运算.分析:分k>0,k<0及k=0分别进行计算.解答:解:当k>0时,原式=(k+k)÷k=2;当k<0时,原式=(﹣k+k)÷k=0;当k=0时,原式无意义.综上所述,(|k|+k)÷k的结果是非负数.故选D.点评:本题考查的是有理数的混合运算,在解答此题时要注意进行分类讨论.12.四个互不相等的整数a,b,c,d,它们的积为4,则a+b+c+d=()A. 0 B. 1 C. 2 D. 3考点:有理数的乘法;有理数的加法.分析: a,b,c,d为四个互不相等的整数,它们的积为4,首先求得a、b、c、d的值,然后再求得a+b+c+d.解答:解:∵a,b,c,d为四个互不相等的整数,它们的积为4,∴这四个数为﹣1,﹣2,1,2.∴a+b+c+d=﹣1+(﹣2)+1+2=0.故选;A.点评:本题主要考查的是有理数的乘法和加法,根据题意求得a、b、c、d的值是解题的关键.二、填空题.本大题共8小题,每小题3分,满分24分.请将答案直接写在题中的横线上13.﹣5的相反数是 5 .考点:相反数.分析:根据相反数的定义直接求得结果.解答:解:﹣5的相反数是5.故答案为:5.点评:本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.﹣4 = ﹣.考点:有理数的除法;有理数的乘法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=﹣4××=﹣.故答案为:﹣.点评:此题考查了有理数的除法,有理数的乘法,熟练掌握运算法则是解本题的关键.15.请写出一个系数为3,次数为4的单项式3x4 .考点:单项式.专题:开放型.分析:根据单项式的概念求解.解答:解:系数为3,次数为4的单项式为:3x4.故答案为:3x4.点评:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.16.三个连续整数中,n是最小的一个,这三个数的和为3n+3 .考点:整式的加减;列代数式.专题:计算题.分析:根据最小的整数为n,表示出三个连续整数,求出之和即可.解答:解:根据题意三个连续整数为n,n+1,n+2,则三个数之和为n+n+1+n+2=3n+3.故答案为:3n+3点评:此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.17.若a2+2a=1,则2a2+4a﹣1= 1 .考点:因式分解的应用;代数式求值.分析:先计算2(a2+2a)的值,再计算2a2+4a﹣1.解答:解:∵a2+2a=1,∴2a2+4a﹣1=2(a2+2a)﹣1=1.点评:主要考查了分解因式的实际运用,利用整体代入求解是解题的关键.18.一只蜗牛从原点开始,先向左爬行了4个单位,再向右爬了7个单位到达终点,规定向右为正,那么终点表示的数是 3 .考点:数轴.分析:根据数轴的特点进行解答即可.解答:解:终点表示的数=0+7﹣4=3.故答案为:3.点评:本题考查的是数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.19.若多项式a2+2kab与b2﹣6ab的和不含ab项,则k= 3 .考点:整式的加减.专题:计算题.分析:根据题意列出关系式,合并后根据不含ab项,即可确定出k的值.解答:解:根据题意得:a2+2kab+b2﹣6ab=a2+(2k﹣6)ab+b2,由和不含ab项,得到2k﹣6=0,即k=3,故答案为:3点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.一条笔直的公路每隔2米栽一棵树,那么第一棵树与第n棵树之间的间隔有2(n﹣1)米.考点:列代数式.分析:第一棵树与第n棵树之间的间隔有n﹣1个间隔,每个间隔之间是2米,由此求得间隔的米数即可.解答:解:第一棵树与第n棵树之间的间隔有2(n﹣1)米.故答案为:2(n﹣1).点评:此题考查列代数式,求得间隔的个数是解决问题的关键.三、本大题共3小题,每小题4分,满分12分21.计算:22﹣4× +|﹣2|考点:有理数的混合运算.分析:先算乘法,再算加减即可.解答:解:原式=4﹣1+2=5.点评:本题考查的是有理数的混合运算,熟知有理数混合运算顺序是解答此题的关键.22.利用适当的方法计算:﹣4+17+(﹣36)+73.考点:有理数的加法.分析:先去括号,然后计算加法.解答:解:原式=﹣4+17﹣36+73=﹣4﹣36+17+73=﹣40+90=50.点评:本题考查了有理数的加法.同号相加,取相同符号,并把绝对值相加.23.利用适当的方法计算: + .考点:有理数的乘法.分析:逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.解答:解:原式= ×(﹣9﹣18+1)= ×(﹣26)=﹣14.点评:本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.四、本大题共2小题,每小题5分,满分10分24.已知:若a,b互为倒数,c,d互为相反数,e的绝对值为1,求:(ab)2014﹣3(c+d)2015﹣e2014的值.考点:代数式求值;相反数;绝对值;倒数.分析:由倒数、相反数,绝对值的定义可知:ab=1,c+d=0,e=±1,然后代入求值即可.解答:解:由已知得:ad=1,c+d=0,∵|e|=1,∴e=±1.∴e2014=(±1)2014=1∴原式=12014﹣3×0﹣1=0.点评:本题主要考查的是求代数式的值,相反数、倒数、绝对值的定义和性质,掌握互为相反数的两数之和为0、互为倒数的两数之积为1是解题的关键.25.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,把a=﹣1,b=2代入得:6+4=10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、本大题共2小题,每小题5分,满分10分26.已知全国总人口约1.41×109人,若平均每人每天需要粮食0.5kg,则全国每天大约需要多少kg粮食?(结果用科学记数法表示)考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.解答:解:1.41×109×0.5=0.705×109=7.05×108(kg).答:全国每天大约需要7.05×10 8kg粮食.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.27.某市出租车的收费标准为:不超过2前面的部分,起步价7元,燃油税1元,2千米到5千米的部分,每千米收1.5元,超过5千米的部分,每千米收2.5元,若某人乘坐了x(x大于5)千米的路程,请求出他应该支付的费用(列出式子并化简)考点:列代数式.分析:某人乘坐了x(x>5)千米的路程的收费为W元,则W=不超过2km的费用+2km至5km的费用+超过5前面的费用就可以求出x与W的代数式.解答:解:7+1+3×1.5+2.5(x﹣5)=8+4.5+2.5x﹣12.5.=2.5x(元).答:他应该支付的费用为2.5x元.点评:本题考查了列代数式,解答时表示出应付费用范围划分.六、本大题共1小题,满分9分2 8.学校对七年级女生进行了仰卧起坐的测试,以能做40个为标准,超过的次数用正数表示,不足的次数用负数表示,其中6名女生的成绩如下(单位:个):2 ﹣1 03 ﹣2 1(1)这6名女生共做了多少个仰卧起坐?(2)这6名女生的达标率是多少?(结果精确到百分位)考点:正数和负数.分析:(1)由已知条件直接列出算式即可;(2)根据题意可知达标的有4人,然后用达标人数除以总人数即可.解答:解:(1)40×6+(2﹣1+0+3﹣2+1)=240+3=243(个).答:这6名女生共做了243个仰卧起坐;(2)×100%≈0.67=67%.答:这6名女生的达标率是67%.点评:本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.七、本大题共1小题,满分9分29.如图,边长为a的正方形工件,四角各打一个半径为r的圆孔.(1)列式表示阴影部分的面积;(2)当a=15,r=2时,阴影部分的面积是多少?(π取3.14,结果精确到0.1)考点:列代数式;代数式求值.分析:(1)阴影部分面积=正方形的面积﹣四个圆的面积;(2)把a=15,r=2代入(1)所列的代数式中,计算即可.解答:解:(1)阴影部分的面积:a2﹣4πr2;(2)当a=15,r=2时,a2﹣4πr2=152﹣4×3.14×22,=225﹣50.24≈174.8.答:阴影部分的面积是174.8.点评:此题主要考查了列代数式,关键是掌握圆的面积公式和正方形的面积公式.八、本大题共1小题,满分10分30.一振子从A点开始左右水平来回的震动8次后停止,如果规定向右为正,向左为负,这8次震动的记录为(单位:毫米):+10,﹣9,+8,﹣7,+6,﹣5,+5,﹣4.(1)该振子停止震动时在A点哪一侧?距离A点有多远?(2)若该振子震动1毫米需用0.02秒,则完成上述运动共需多少秒?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;(2)根据距离的和乘以单位距离所需的时间,可得总时间.解答:解:(1)10﹣9+8﹣7+6﹣5+5﹣4=1+1+2=4(毫米).答:该振子停止震动时在A点右侧.距离A点有4毫米.(2)(|+10|+|﹣9|+|+8|+|﹣7|+|+6|+|﹣5|+|+5|+|﹣4|)×0.02=54×0.02=1.08(秒).答:完成上述的运动共需1.08秒.点评:本题考查了正数和负数,利用距离的和乘以单位距离所需的时间等于总时间,注意第二问计算的是距离的和.。

(完整word)七年级数学上册应用题大全,文档

(完整word)七年级数学上册应用题大全,文档

七年级数学上册应用题大全1. 为节约能源,某单位按以下规定收取每个月电费:用电不高出140 度,按每度0.43 元收费;若是高出 140 度,高出局部按每度 0.57 元收费。

假设墨用电户四月费的电费平均每度0.5 元,问该用电户四月份应缴电费多少元?2. 某大商场家电部送货人员与销售人员人数之比为1:8。

今年夏天由于家电购置量明显增加,家电部经理从销售人员中抽调了22 人去送货。

结果送货人员与销售人数之比为2:5。

求这个商场家电部原来各有多少名送货人员和销售人员?3. 现对某商品降价10%促销 , 为了使销售金额不变, 销售量要比按原价销售时增加百分之几?4. 甲.乙两种商品的原单价和为 100 元,因市场变化,甲商品降 10%,乙商品抬价 5%调价后两商品的单价和比原单价和提高 2%,甲.乙两商品原单价各是多少/5. 甲车间人数比乙车间人数的 4/5 少 30 人,若是从乙车间调 10 人到甲车间去,那么甲车间的人数就是乙车间的3/4 。

求原来每个车间各多少人?6. 甲骑自行车从 A 地到 B 地,乙骑自行车从 B 地到 A 地,两人都均速前进,以知两人在上午8 时同时出发,到上午 10 时,两人还相距36 千米,到中午12 时,两人又相距36 千米,求A. B 两地间的行程?7. 甲、乙两车长度均为180 米,假设两列车相对行驶,从车头相遇到车尾走开共12 秒;假设同向行驶,从甲车头遇到乙车尾,到甲车尾高出乙车头需 60 秒,二车的速度不变,求甲、乙两车的速度。

8. 两根同样长的蜡烛,粗的可燃 3 小时 , 细的可燃8 / 3小时 , 停电时, 同时点燃两根蜡烛, 来电时同时吹灭 , 粗的是细的长度的 2 倍, 求停电的时间,设停电的时间是X9.某工厂今年共生产某种机器 2300 台,与昨年对照,上半年增加 25%,下半年减少 15%,问今年下半年生产了多少台 ? 。

1.甲骑自行车11. 跑得快的马每天走240 里,跑得慢的马每天走150 里。

新人教版七年级上册应用题专项训练

新人教版七年级上册应用题专项训练

新人教版七年级上册应用题专项训练七年级数学应用题类型总概我总结、差异、多重和分数问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率??”来体现.(2)多少关系:通过关键词“多、少、和、差、缺、盈?”(年龄问题)a比B大15岁。

五年前,a的年龄是B的两倍,而B现在是年龄是多少岁?2.三个连续奇数之和为387。

找出这三个奇数。

三、三个连续偶数的和是18,求它们的积4、、在日历上任意画一个含有9个数字的方框(3w3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。

5、、有一个两位数,十位数字比个位数字的2倍多1,将两个数字对调后,所得的数比原数小36,求原数。

6.有一个三位数的数字。

一位数是百位数的2倍,十位数比百位数大1。

如果以百位顺序反转该数字(将数字从一位改为一百位)得到的新数字比原始数字少49倍,则计算原始数字。

1二旅行问题:(1)行程问题中的三个基本量及其关系:路程=速度×时间.(2)基本类型有①相遇问题;② 跟进和解决问题;一般来说:相互对立;航行问题;环形跑道问题③ 航行中顺水和逆水的问题,飞行中顺风和逆风的问题。

a、顺水速度=静水速度+水流速度。

b、逆水速度=静水速度-水流速度。

c、(顺水速度-逆水速度)÷2=水流速度。

(注:顺逆风的情况和这一样的思路)2、甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。

(1)几秒钟后,A在B前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?1.A和B同时从A和B步行,A和B相距300米。

A每分钟走15米,B每分钟走13米。

几分钟后,两人将相隔20米?2、矿山爆破为了确保安全,点燃引火线后人要在爆破前转移到3000米以外的安全地带,引火线燃烧的速度是0.8厘米/秒,人离开的速度是5米/秒,问引火线至少需要多少厘米?3.车体长200米。

当它通过隧道时,速度是每小时60公里。

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案

人教版七年级上册数学应用题全集及答案1.一元一次方程应用题市场经济中,打折销售是一种常见的促销手段。

在此背景下,我们需要掌握以下知能点:1)商品利润=商品售价-商品成本价2)商品利润率=商品利润/商品成本价×100%3)商品销售额=商品销售价×商品销售量4)商品的销售利润=(销售价-成本价)×销售量5)商品打几折出售,即按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售。

1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售。

已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元。

这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元。

这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为:45%×(1+80%)x-x=504.某商品的进价为800元,出售时标价为1200元。

后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折。

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”。

经顾客投诉后,拆迁部门按已得非法收入的10倍处以每台2700元的罚款。

求每台彩电的原售价。

知能点2:方案选择问题6.某蔬菜公司有一种绿色蔬菜。

若在市场上直接销售,每吨利润为1000元。

经粗加工后销售,每吨利润可达4500元。

经精加工后销售,每吨利润涨至7500元。

当地一家公司收购这种蔬菜140吨。

该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨;如果进行粗加工,每天可加工6吨。

但两种加工方式不能同时进行。

受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕。

为此,公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工。

人教版数学七年级上册应用题专项(附答案)

人教版数学七年级上册应用题专项(附答案)

人教版数学七上应用题专项练习一、相遇问题对应数量关系式:速度×时间=路程快者路程+慢者路程=总路程(快者速度+慢者速度)×相遇时间=相遇路程1.AB两地相距75千米,甲车速度50千米每小时从A地出发,乙车速度40千米每小时从B地出发。

同时出发相对而行,几小时后相距30千米?2.甲乙两车从相距300千米的AB两地同时出发,甲速度是乙速度的1.5倍,4小时后相遇,乙速度是多少?3.甲乙两地相距600千米,慢车速度40千米每小时从甲地出发,快车速度60千米每小时从乙地出发;如果让慢车先走55分钟后,快车再出发,求快车开出多少小时后两车相遇?二、追及问题数量关系式:两者的路程差=追及路程/以追及时间为等量关系式1.同时不同地:快者时间=慢者时间快者路程—慢者路程=原来相距路程①甲车在乙车前方600米处,甲速度40千米每小时,乙车速度60千米每小时,同时出发,乙车几小时能追上甲车?②AB两地相距62千米,甲从A出发,每小时行14千米,乙从B出发每小时行18千米,若甲在前乙在后,两人同时同方向出发,几小时后乙超过甲10千米?2.同地不同时:先走者的时间=后走者的时间+时间差先走者的路程=慢走者的路程①慢车从车站开出,每小时行48千米,45分钟后,一快车从同车站同向开出,1.5小时追上了慢车,快车的速度是多少?②古代一队士兵去城外进行训练,以每小时5千米的速度行进,走了18分钟,城内要将一个重要信息传给队长,通讯员骑马以每小时14千米的速度按原路追赶。

通讯员多久能追上?三、环形跑道相遇追及问题同地反向:两者路程和=一圈的路程同地同向:两者路程差=一圈的路程1.一条环形跑道长400米,甲每分钟行450米,乙每分钟行250米;甲乙两人同时同地反向出发,几分钟后再相遇?甲乙两人同时同地同向出发,几分钟后再相遇?2.甲乙两人在400米的环形跑道上跑步,若同时同地同向跑则3分20秒相遇一次;若同时同地反向跑则40秒相遇,求甲的速度是每秒多少米?四、年龄问题等量关系式:大小年龄差永远不会变,一年一岁,人人平等1.现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,几年后父亲年龄是儿子年龄的3倍?3.父亲和女儿的年龄和是91,当父亲的年龄是女儿现在年龄的2倍的时候,女儿的年龄是父亲现在年龄的三分之一,求女儿现在的年龄?4.现在甲的年龄是乙的2倍,8年后两人年龄和是76岁,现在甲比乙大几岁?五、行船问题顺流航速=船的静水速度+水流速度逆流速度=船的静水速度-水流速度顺流速度×顺流时间=顺流路程逆流速度×逆流时间=逆流路程顺程+逆程=总路程1.一艘船航行于A,B两个码头之间,顺水航行需要2个小时,逆水航行需要4个小时,已知水流速度是4千米/时,求这两个码头之间的距离?2.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要多少小时?六、飞行问题顺风速=飞机无风速+风速逆风速=飞机无风速-风速顺风速×顺风时间=顺风路程逆风速×逆风时间=逆风路程顺程+逆程=总路程1.一架飞机在两地之间飞行风速为16千米/小时,顺飞飞行需要3小时,逆风飞行需要5小时,求无风时飞机的航速和两地之间的航程?七、利润率问题利润率=(利润÷进价)×100%进价(成本价)+利润=售价利润=进价(成本价)×利润率1.某商品进价500元,按标价的九折销售,利润率为15.2%,求商品的标价是多少元?2.某商品进价2000元,标价为3000元,商店要求以利润不低于5%的售价打折出售,售货员可以打几折出售此商品?3.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利利润相等,该工艺品每件的进4.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件扔获利15元,这种服装的进价是多少?八、和差倍分的问题问题的特点:已知两个量之间存在和倍差关系,可以求这两个量的多少。

(完整)人教版七年级上册数学应用题及答案

(完整)人教版七年级上册数学应用题及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费。

七年级数学上册专题训练(打包9套)(新版)新人教版

七年级数学上册专题训练(打包9套)(新版)新人教版

专题训练(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2, 且0.1<0.2,所以-0.1>-0.2.(2)-45与-56.解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530, 所以-45>-56.2.比较下面各对数的大小:(1)-821与-|-17|;解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.(2)-2 0152 016与-2 0162 017. 解:因为|-2 0152 016|=2 0152 016,|-2 0162 017|=2 0162 017,且2 0152 016<2 0162 017,所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为(B )A .3,13B .-3,13C .-3,-13D .3,-134.已知|a|=2,|b|=3,且b<a ,试求a 、b 的值.解:因为|a|=2,所以a =±2. 因为|b|=3,所以b =±3. 因为b<a ,所以a =2,b =-3或a =-2,b =-3.5.已知|x -3|+|y -5|=0,求x +y 的值.解:由|x -3|+|y -5|=0,得 x -3=0,y -5=0, 即x =3,y =5.所以x +y =3+5=8.6.已知|2-m|+|n -3|=0,试求m +2n 的值.解:因为|2-m|+|n -3|=0,且|2-m|≥0,|n -3|≥0, 所以|2-m|=0,|n -3|=0. 所以2-m =0,n -3=0. 所以m =2,n =3.所以m +2n =2+2×3=8. 7.已知|a -4|+|b -8|=0,求a +bab的值.解:因为|a -4|+|b -8|=0, 所以|a -4|=0,|b -8|=0. 所以a =4,b =8. 所以a +b ab =1232=38.类型3 绝对值在生活中的应用8.某汽车配件厂生产一批零件,从中随机抽取6件进行检验,比标准直径长的毫米数记为正数,比标准直径短的毫米数记为负数,检查记录如下表(单位:毫米):序号 1 2 3 4 5 6 误差/毫米+0.5-0.150.1-0.10.2(1)哪3件零件的质量相对来讲好一些?怎样用学过的绝对值知识来说明这些零件的质量好?(2)若规定与标准直径误差不超过0.1毫米的为优等品,在0.1毫米~0.3毫米(不含0.1毫米和0.3毫米)范围内的为合格品,不小于0.3毫米的为次品,则这6件产品中分别有几件优等品、合格品和次品?解:(1)因为|+0.5|=0.5,|-0.15|=0.15,|0.1|=0.1,|0|=0,|-0.1|=0.1,|0.2|=0.2,又因为0<0.1<0.15<0.2<0.5,所以第3件、第4件、第5件零件的质量相对来讲好一些. (2)由绝对值可得出:有3件优等品,2件合格品和1件次品.9.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,-5,-10,-8,+9,+12,+4,-6.若蜗牛的爬行速度为每秒12cm ,请问蜗牛一共爬行了多少秒?解:(|+7|+|-5|+|-10|+|-8|+|+9|+|+12|+|+4|+|-6|)÷12=122(秒).答:蜗牛一共爬行了122秒.10.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km ):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L /km ,这天下午汽车共耗油多少L? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km .(2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ).11.在活动课上,有6名学生用橡皮泥做了6个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记作负数,检查结果如下表:做乒乓球 的同学 李明 张兵 王敏 余佳 赵平 蔡伟 检测 结果+0.031-0.017+0.023-0.021+0.022-0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出合乎要求的乒乓球中哪个同学做的质量最好,6名同学中,哪个同学做的质量较差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名; (4)用学过的绝对值知识来说明以上问题. 解:(1)张兵、蔡伟.(2)蔡伟做的质量最好,李明做的质量较差. (3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.专题训练(二) 有理数的运算题组1 有理数的加、减、乘、除、乘方运算 1.计算:(1)(-3)+(-9); 解:原式=-12.(2)-4.9+3.7; 解:原式=-1.2.(3)(-13)+34;解:原式=512.(4)0-9;解:原式=-9.(5)(-3)-(-5); 解:原式=2.(6)-712-914;解:原式=-1634.(7)(-12.5)-(-7.5). 解:原式=-5.2.计算:(1)(-3)×5; 解:原式=-15.(2)(-34)×(-89);解:原式=23.(3)(-37)×(-45)×(-712);解:原式=-15.(4)(-4)×(-10)×0.5×0×2 017; 解:原式=0.(5)(-36)÷9; 解:原式=-4.(6)(-1225)÷(-35);解:原式=45.(7)(-12557)÷(-5).解:原式=2517.3.计算:(1)(0.3)2;解:原式=0.09.(2)(-10)3;解:原式=-1 000.(3)-(-2)4; 解:原式=-16.(4)(112)3.解:原式=278.题组2 有理数的混合运算 4.计算:(1)16+(-25)+24-35;解:原式=16+24+[(-25)+(-35)] =40+(-60) =-20.(2)314+(-235)+534-825;解:原式=314+534+[(-235)+(-825)]=9+(-11)=-2.(3)(12-58-14)×(-24);解:原式=12×(-24)-58×(-24)-14×(-24)=9.(4)719×(112-118+314)×(-214);解:原式=649×(-94)×(32-98+134)=-16×(32-98+134)=-16×32+16×98-16×134=-24+18-52=-58.(5)(-9)×(-11)÷3÷(-3); 解:原式=-99÷3÷3 =-11.(6)(-48)÷8-(-5)×(-6); 解:原式=-6-30 =-36.(7)2-(-4)+8÷(-2)+(-3). 解:原式=2+4+(-4)+(-3) =2+(-3) =-1.5.计算:(1)-12-(-12)3÷4;解:原式=-1-(-18)÷4=-1+18×14=-1+132=-3132.(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2); 解:原式=(-8)+(-3)×(16+2)-9÷(-2) =(-8)+(-3)×18+4.5 =(-8)+(-54)+4.5=-57.5.(3)-32×(-13)2-(-2)3÷(-12)2;解:原式=-9×19-(-8)÷14=-1+32=31.(4)(-2)4÷(-8)-(-12)3×(-22);解:原式=16÷(-8)-(-18)×(-4)=(-2)-12=-212.(5)(-58)×(-4)2-0.25×(-5)×(-4)3;解:原式=(-58)×16-0.25×(-5)×(-64)=-10-80 =-90.(6)-14+(1-0.5)×13×[2-(-3)2].解:原式=-1+0.5×13×(2-9)=-1+0.5×13×(-7)=-1-76=-136.专题训练(三) 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3; 解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12);解:原式=2x 2-12+3x -4x +4x 2-2=6x 2-x -52.(6)3(x 2-x 2y -2x 2y 2)-2(-x 2+2x 2y -3);解:原式=3x 2-3x 2y -6x 2y 2+2x 2-4x 2y +6=5x 2-7x 2y -6x 2y 2+6.(7)-(2x 2+3xy -1)+(3x 2-3xy +x -3);解:原式=-2x 2-3xy +1+3x 2-3xy +x -3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab.解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.专题训练(四) 整式的化简求值类型1化简后直接代入求值1.(柳州期中)先化简,再求值:5x2+4-3x2-5x-2x2-5+6x,其中x=-3.解:原式=(5-3-2)x2+(-5+6)x+(4-5)=x-1.当x=-3时,原式=-3-1=-4.2.(北流期中)先化简,再求值:(3a2b-2ab2)-2(ab2-2a2b),其中a=2,b=-1.解:原式=3a2b-2ab2-2ab2+4a2b=7a2b-4ab2.当a=2,b=-1时,原式=-28-8=-36.3.先化简,再求值:2(x +x 2y)-23(3x 2y +32x)-y 2,其中x =1,y =-3.解:原式=2x +2x 2y -2x 2y -x -y 2=x -y 2.当x =1,y =-3时,原式=1-9=-8.4.(钦南期末)先化简,再求值:2x 2y -[2xy 2-2(-x 2y +4xy 2)],其中x =12,y =-2.解:原式=2x 2y -2xy 2-2x 2y +8xy 2=6xy 2.当x =12,y =-2时,原式=6×12×4=12.5.(南宁四十七中月考)先化简,再求值:2(x 2y +xy)-3(x 2y -xy)-4x 2y ,其中x ,y 满足|x +1|+(y -12)2=0.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y=-5x 2y +5xy.因为|x +1|+(y -12)2=0,所以x =-1,y =12.故原式=-52-52=-5.类型2 整体代入求值6.若a 2+2b 2=5,求多项式(3a 2-2ab +b 2)-(a 2-2ab -3b 2)的值.解:原式=3a 2-2ab +b 2-a 2+2ab +3b 2=2a 2+4b 2.当a 2+2b 2=5时,原式=2(a 2+2b 2)=10.m+n-2+(mn+3)2=0,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的值.7.已知||解:由已知条件知m+n=2,mn=-3,所以原式=2(m+n)-2mn-2(m+n)-6(m+n)+9mn=-6(m+n)+7mn=-12-21=-33.专题训练(五) 图形的规律探索——教材P70T10的变式与应用教材母题:(教材P70T10)如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?【思路点拨】观察图形,可得到点的总数S与n之间的关系,用含n的式子表示S,便可分别求出当n=5,7,11时,S的值.【解答】观察图形,当n=2时,有两排点,总的点数为1+2=3(个);当n=3时,有三排点,总的点数为1+2+3=6(个);当n=4时,有四排点,总的点数为1+2+2+4=9(个);当n=5时,有五排点,总的点数为1+2+2+2+5=12(个).根据此规律,可知点的总数S=1+2(n-2)+n=3n-3,当n=7时,S=3×7-3=18;当n=11时,S=3×11-3=30.故当n=5,7,11时,S的值分别是12,18,30.【方法归纳】解决图形规律探索问题,首先从简单的基本图形入手,随着“序号”或“编号”增加时,后一个图形与前一个图形相比,在数量上的变化情况或图形变化情况,找出变化规律,从而推出一般性结论.1.如图是用相同长度的小棒摆成的一组有规律的图案,其中图1需要4根小棒,图2需要10根小棒,…,按此规律摆下去,则第11个图案所需小棒的根数为(C)A.70 B.68 C.64 D.582.(荆州中考)如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2 017个白色纸片,则n的值为(B)A .671B .672C .673D .6743.(益阳中考)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.4.如图是用棋子摆成的图案:根据图中棋子的排列规律解决下列问题:(1)第4个图中有22枚棋子,第5个图中有32枚棋子;(2)写出你猜想的第n 个图中棋子的枚数(用含n 的式子表示)是n +2+n 2. 5.下面是用棋子摆成的“小房子”.摆第10个这样的“小房子”需要多少枚棋子?摆第n 个这样的“小房子”呢?你是如何得到的?解:第1个“小房子”,下边正方形棋子4×2-4=4(枚),上边1枚,共4+1=5(枚); 第2个“小房子”,下边正方形棋子4×3-4=8(枚),上边3枚,共8+3=11(枚); 第3个“小房子”,下边正方形棋子4×4-4=12(枚),上边5枚,共12+5=17(枚); 第4个“小房子”,下边正方形棋子4×5-4=16(枚),上边7枚,共16+7=23(枚); …第n 个“小房子”,下边正方形棋子4×(n+1)-4=4n(枚),上边(2n -1)枚,共4n +2n -1=(6n -1)(枚).当n =10时,6n -1=6×10-1=59(枚).专题训练(六) 一元一次方程的解法1.解下列方程:(1)(南宁校级月考)2x +5=5x -7; 解:2x -5x =-7-5, -3x =-12, x =4.(2)12x +x +2x =140; 解:72x =140,x =40.(3)56-8x =11+x ; 解:-8x -x =11-56, -9x =-45, x =5.(4)43x +1=5+13x. 解:43x -13x =5-1,x =4.2.解下列方程:(1)(玉林期末)10(x -1)=5; 解:10x -10=5, 10x =5+10, 10x =15, x =32.(2)4x -3(20-2x)=10; 解:4x -60+6x =10, 4x +6x =60+10, 10x =70, x =7.(3)3(x -2)+1=x -(2x -1); 解:3x -6+1=x -2x +1, 4x =6, x =1.5.(4)4(2x -3)-(5x -1)=7; 解:8x -12-5x +1=7, 8x -5x =7+12-1, 3x =18, x =6.(5)4y -3(20-y)=6y -7(9-y). 解:4y -60+3y =6y -63+7y. 4y +3y -6y -7y =60-63, -6y =-3, y =12.3.解下列方程:(1)2x -13-2x -34=1;解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12, 8x -6x =4-9+12, 2x =7, x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90, 15x -12x =-90+30, 3x =-60, x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140, 12x -45x +20x =-36+140, -13x =104, x =-8.(4)2x -13-10x +16=2x +12-1;解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -10x -6x =3-6+2+1, -12x =0, x =0.(5)x +45-(x -5)=x +33-x -22.解:6(x +4)-30(x -5)=10(x +3)-15(x -2), 6x +24-30x +150=10x +30-15x +30, 6x -30x -10x +15x =30+30-24-150, -19x =-114, x =6.4.解下列方程: (1)x -40.2-2.5=x -30.05;解:原方程整理,得5x -20-2.5=20x -60. 移项,得5x -20x =-60+20+2.5. 合并同类项,得-15x =-37.5. 系数化为1,得x =2.5.(2)0.5x +0.90.5+x -53=0.01+0.02x 0.03.解:原方程整理,得5x +95+x -53=1+2x 3.去分母,得15x +27+5x -25=5+10x.移项、合并同类项,得10x =3. 系数化为1,得x =0.3.5.解方程:3|x|-5=|x|-22+1.5|x|=10, |x|=2, x =2或-2.6.解下列方程:(1)119x +27=29x -57;解:119x -29x =-57-27,x =-1.(2)278(x -3)-463(6-2x)-888(7x -21)=0.解:278(x -3)+463×2(x-3)-888×7(x-3)=0, (278+463×2-888×7)(x-3)=0, x =3.专题训练(七) 一元一次方程的应用1.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3 h ,已知船在静水中的速度是8 km /h ,水流速度是2 km /h ,若A 、C 两地距离为2 km (A 、B 、C 三地在一条直线上),则A 、B 两地间的距离是10或252k m .2.兄弟两人由家里去学校,弟每小时走6里,哥每小时走8里,哥晚出发10分钟,结果两人同时到校,学校离家有多远?解:设学校离家有x 里.由题意,得x 6-1060=x8.解得x =4. 答:学校离家有4里.3.用两台水泵从同一池塘中向外抽水,单开甲泵5小时可抽完,单开乙泵2.5小时便能抽完.(1)如果两台水泵同时抽水,多长时间能把水抽完?(2)如果甲泵先抽2小时,剩下的由乙泵来抽,乙泵用多少时间才能把水抽完?解:(1)设两台水泵同时抽水,x 小时能抽完.由题意,得 x 5+x 2.5=1,解得x =53. 答:两台水泵同时抽水,53小时能把水抽完.(2)设乙泵用y 小时才能抽完,由题意,得 15×2+12.5y =1,解得y =1.5. 答:乙泵用1.5小时才能把水抽完.4.一辆卡车在公路上匀速行驶,起初看到的里程碑上是一个两位数,过了1小时,里程碑上的数恰好是原来的个位上的数与十位上的数交换位置后所得到的两位数,又过了1小时,里程碑上的数是一个三位数,这个三位数的百位上的数与个位上的数分别是起初看到的两位数的十位上的数与个位上的数,而十位上的数为0,且起初的两位数个位上的数比十位上的数的5倍多1,求卡车的速度.解:设起初看到的两位数十位上的数是x ,则个位上的数是5x +1.由题意,得 [10(5x +1)+x]-[10x +(5x +1)]=(100x +5x +1)-[10(5x +1)+x]. 解得x =1.则5x +1=6,61-16=45(千米). 答:卡车的速度是45千米/时.5.某会议厅主席台上方有一个长12.8 m 的长条形(长方形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空∶字宽∶字距=9∶6∶2,如图所示:根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少. 解:设边空、字宽、字距分别为9x cm 、6x cm 、2x cm .由题意,得 9x ×2+6x×18+2x(18-1)=1 280. 解得x =8.则9x =72,6x =48,2x =16.答:边空为72 cm ,字宽为48 cm ,字距为16 cm .6.某次篮球联赛共有十支队伍参赛,部分积分表如下:队名 比赛场次 胜场 负场 积分 A 16 12 4 28 B 16 10 6 26 C 16 8 8 24 D161616其中一队的胜场总积分能否等于负场总积分?请说明理由. 解:由D 队可知,负一场积分为:16÷16=1(分), 则由A 队可知,胜一场积分为:28-4×112=2(分).设其中一队的胜场为x 场,则负场为(16-x)场,则 2x =16-x ,解得x =163.因为场数必须是整数, 所以x =163不符合实际.所以没有一队的胜场总积分能等于负场总积分.7.某商场在元旦期间搞促销活动,一次性购物不超过2 000元不优惠;超过2 000元,但不超过5 000元,按9折优惠;超过5 000元,超过部分按8折优惠,其中的5 000元仍按9折优惠.某人两次购物分别用了1 340元和4 660元.问:(1)此人的两次购物,若物品不打折,需多少元钱? (2)此人两次购物共节省多少元钱?(3)若将两次购物的钱合起来,一次购买相同的商品,是否更节省?请说明理由. 解:(1)因为2 000×90%=1 800(元)>1 340元,所以购1 340元的商品未优惠. 又因为5 000×90%=4 500(元)<4 660元,所以购4 660元的商品有两个等级优惠. 设其售价为x 元,依题意,得5 000×90%+(x -5 000)×80%=4 660, 解得x =5 200.所以如果不打折,那么分别需1 340元和5 200元,共需6 540元. (2)共节省6 540-(1 340+4 660)=540(元).(3)6 540元的商品优惠价为5 000×90%+(6 540-5 000)×80%=5 732(元), 1 340+4 660=6 000(元), 因为5 732<6 000,所以若一次购买相同的商品,更节省.8.一个车队共有n(n 为正整数)辆小轿车,正以每小时36千米的速度在一条笔直的街道上匀速行驶,行驶时车与车的间隔均为5.4米,甲停在路边等人,他发现该车队从第一辆车的车头到最后一辆的车尾经过自己身边共用了20秒的时间,假设每辆车的车长均为4.87米.(1)求n 的值;(2)若乙在街道一侧的人行道上与车队同向而行,速度为v 米/秒,当车队的第一辆车的车头从他身边经过了15秒钟时,为了躲避一只小狗,他突然以3v 米/秒的速度向前跑,这样从第一辆车的车头到最后一辆车的车尾经过他身边共用了35秒,求v 的值.解:(1)36千米/时=10米/秒,则4.87n +5.4(n -1)=20×10,解得n =20.(2)车队总长度:20×4.87+5.4×19=200(米). 由题意,得(10-v)×15+(10-3v)×(35-15)=200, 解得v =2.9.一辆汽车从A 地驶往B 地,前三分之一路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用一元一次方程解决的问题,并写出解答过程.解:答案不唯一,例如:①问题:普通公路和高速公路各为多少km? 解:设普通公路长为x km ,根据题意,得x 60+2x100=2.2.解得x =60. 则2x =120.答:普通公路和高速公路各为60 km 和120 km .②问题:汽车在普通公路和高速公路上各行驶了多少h? 解:设汽车在普通公路上行驶了x h ,根据题意,得 60x ×2=100(2.2-x).解得x =1. 则2.2-x =1.2.答:汽车在普通公路上和高速公路上分别行驶了 1 h 和1.2 h .专题训练(八) 线段的计算——教材P128练习T3的变式与应用教材母题:(教材P 128练习T 3)如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =4 cm ,求线段CD 的长度.【解答】 因为点D 是线段AB 的中点,AB =4 cm , 所以AD =12AB =12×4=2(cm ).因为C 是线段AD 的中点, 所以CD =12AD =12×2=1(cm ).【方法归纳】 结合图形,将待求线段长转化为已知线段的和、差形式.若题目中出现线段的中点,常利用线段中点的性质,结合线段的和、差、倍、分关系求解.同时应注意题目中若没有图形,或点的位置关系不确定时,常需要分类讨论,确保答案的完整性.1.如图,线段AB =22 cm ,C 是线段AB 上一点,且AC =14 cm ,O 是AB 的中点,求线段OC 的长度.解:因为点O 是线段AB 的中点,AB =22 cm , 所以AO =12AB =11 cm .所以OC =AC -AO =14-11=3(cm ).2.如图,已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点.(1)若DE =9 cm ,求AB 的长; (2)若CE =5 cm ,求DB 的长.解:(1)因为D 是AC 的中点,E 是BC 的中点, 所以AC =2CD ,BC =2CE.所以AB =AC +BC =2DE =18 cm . (2)因为E 是BC 的中点, 所以BC =2CE =10 cm .因为C 是AB 的中点,D 是AC 的中点, 所以DC =12AC =12BC =5 cm .所以DB =DC +BC =5+10=15(cm ).3.如图,B ,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 所以AD =AB +BC +CD =10x cm . 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm .所以BM =AM -AB =5x -2x =3x(cm ). 因为BM =6 cm , 所以3x =6,x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).4.如图,线段AB =1 cm ,延长AB 到C ,使得BC =32AB ,反向延长AB 到D ,使得BD =2BC ,在线段CD 上有一点P ,且AP =2 cm .(1)请按题目要求画出线段CD ,并在图中标出点P 的位置; (2)求出线段CP 的长度.解:(1)线段CD 和点P 的位置如图1、2所示.(2)因为AB =1 cm , 所以BC =32AB =32 cm .所以BD =2BC =3 cm .当点P 在点A 的右边时,CP =AB +BC -AP =12cm ;当点P 在点A 的左边时,点P 与点D 重合,CP =BD +BC =92cm .专题训练(九) 角的计算类型1 利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算. 1.如图,已知∠AOC=∠BOD=75°,∠BOC =30°,求∠AOD 的度数.解:因为∠AOC=75°,∠BOC =30°,所以∠AO B =∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°. 2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD 时,求∠CA E 的度数; (2)如图2所示,在此种情形下,当∠ACE=3∠BCD 时,求∠ACD 的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD是∠BOC的平分线.(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.解:(1)因为∠AOB与∠BOC互补,所以∠AOB+∠BOC =180°. 又因为∠AOB=40°,所以∠BOC=180°-40°=140°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=70°.(2)因为∠AOB 与∠BOC 互余, 所以∠AOB+∠BOC=90°. 又因为∠AOB=40°,所以∠BOC=90°-40°=50°. 因为OD 是∠BOC 的平分线, 所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决. 5.一个角的余角比它的补角的23还少40°,求这个角的度数.解:设这个角的度数为x °,根据题意,得 90-x =23(180-x)-40.解得x =30.所以这个角的度数是30°. 6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AO C ,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °. 因为OB 平分∠AOC, 所以∠AOB=3x °.所以2x +3x +3x +20=180. 解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °. 因为∠AOB=12∠BOC,所以∠BOC=2x °.所以3x +3x +2x +x =360. 解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小.解:因为∠AOB=75°,∠AOC =23∠AOB,所以∠AOC=23×75°=50°.因为O D 平分∠AOC,所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°; 如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线, 所以∠AOC =12∠AOB.因为∠AOB=60°, 所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°. (3)90°+α2 或90°-α2.。

人教版2024-2025学年度七年级上册数学期末实际问题应用题-和差倍分及数字问题提升训练[含答案]

人教版2024-2025学年度七年级上册数学期末实际问题应用题-和差倍分及数字问题提升训练[含答案]

人教版2024-2025学年度七年级上册数学期末实际问题应用题-和差倍分及数字问题提升训练1.某课外活动小组计划做一批中国结,如果每人做6个,那么比计划多做7个,如果每人做5个,那么比计划少做13个,求该小组原计划做多少个中国结?2.某建设工地挖掘机的台数与装卸机的辆数之和是21,如果每台挖掘机每天平均挖土3750m,每辆装卸机每天平均运土3300m,为了使每天挖出的土恰好及时运走,问挖掘机的台数和装卸机的辆数各是多少?3.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈妈的年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈妈的年龄是小明同学的年龄的2倍?4.有两个工程队,第一队有50人,第二队比第一队少12人.因任务需要,要求第一队的人数比第二队人数多2倍,问需要从第二队抽调多少人去支援第一队?5.某校六年级有学生153人,分成甲、乙、丙三个班,乙班比丙班多5人,而比甲班少8人,问三个班各有学生多少人.6.2019年11月18日,第二届华侨进口商品博览会在青田落下帷幕,本届博览会成果丰硕,意向成交额为25.3亿元,是第一届博览会意向成交额的2倍少5.9亿(1)求第一届华侨进口商品博览会的意向成交额(2)以这样的增长速度,预计下届华侨进口商品博览会意向成交额(精确到亿元)7.作为全国46个先行实施生活垃圾强制分类的试点城市之一,随着“垃圾分类”话题的热度居高不下,昆明市将如何实施城乡垃圾分类工作也倍受市民的关注.根据垃圾分类工作的要求,昆明市2019年第一季度共生产环保垃圾箱2800个,第一个月生产量是第二个月的2倍,第三个月生产量是第一个月的2倍,试问第二个月生产环保垃圾箱多少个?8.在五一期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?并说明理由.9.七年级三个兴趣小组的同学为清远山区小朋友搬书,舞蹈小组的同学共捐书x本,美术小组的同学捐的书比舞蹈小组捐的书的2倍还多8本,科技小组的同学捐的书比美术小组捐书的一半少6本.(1)这三个小组的同学一共捐书多少本?(用x的式子表示,并化简)(2)当x=10时,这三个小组的同学一共捐书多少本?10.某校七年级A班有x人,B班比A班人数的2倍少10人,如果从B班调出8人到A班.(1)用代数式表示两个班共有多少人?(2)用代数式表示调动后,B班人数比A班人数多几人?(3)x等于多少时,调动后两班人数一样多?11.将连续的奇数1,3,5,7,9,…,排列成如图所示数表:(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数的和;(3)十字框中的五个数的和能等于2 015吗?能等于2 020吗?若能,请写出这五个数;若不能,请说明理由.12.一个三位数,它的个位数字是a,十位数字是个位数字的3倍少1,百位数字比个位数字大5(1)用含a的式子表示此三位数;(2)若交换个位数字和百位数字,其余不变,则新得到的三位数字比原来的三位数减少了多少?13.如表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.-8 x y z 5 4 4 ……(1)x=______;y=______;z=______.(2)求第2021个格子中所填的数以及前2021个格子中所填整数之和为多少?(3)前n个格子中所填整数之和是否能为2020?若能,求出n的值,若不能,请说明理由.14.解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是3-,请你通过计算帮助她告诉魔术师的结果;(2)如果小明想了一个数计算后告诉魔术师结果为85,那么魔术师立刻说出小明想的那个数是多少?15.有一列数,按一定规律排成1,12-,14,18-,116,132-,…(1)这列数中的第7个数是,第n个数是.(2)若其中某三个相邻数的和是3512-,则这三个数中最大的数是多少?16.观察下列三行数,回答问题:-1、+3、-5、+7、-9、+11、……-3、+1、-7、+5、-11、+9、……+3、-9、+15、-21、+27、-33、……(1)第①行第9个数是___________第②行第9个数是___________第③行第9个数是___________(2)在第②行中,是否存在连续的三个数,使其和为83?若存在,求这三个数;若不存在,说明理由.(3)是否存在第m列数(每行取第m个数),这三个数的和正好为-99?若存在,求m;若不存在,说明理由.参考答案1.113个2.6台挖掘机,15辆装卸机3.(1)14岁;(2)12年后4.16人5.58、50、456.(1)15.6亿元;(2)41亿元7.第二个月生产环保垃圾箱400个8.(1)小明他们一共去了8个成人,4个学生;(2)购团体票更省钱.9.(1)4x+6;(2)46.10.(1)(3x-10)人;(2)(x-26)人;(3)x等于26时,调动后两班人数一样多.11.(1)十字框中的五个数的和是中间数23的5倍;(2)5a;(3)能12.(1)131a+490;(2)49513.(1)5,4,-8;(2)5;670;(3)能,n的值是6085,6071,6060 14.(1)2;(2)8015.(1)164,()11112nn---;(2)这三个数中最大的数是125616.(1)-17;-19;51.(2)存在,85,-91,89;(3)第m列数不存在答案第1页,共1页。

人教版七年级上册数学应用题大全及答案

人教版七年级上册数学应用题大全及答案

一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学应用题类型总概
1. 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余…”来体现.
2.行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度×时间.
(2)基本类型有
①相遇问题;
②追及问题;一般情况下:相背而行;行船问题;环形跑道问题.
③行船中的顺逆水问题、飞行中的顺逆风问题。

a、顺水速度=静水速度+水流速度。

b、逆水速度=静水速度-水流速度。

c、(顺水速度-逆水速度)÷2=水流速度。

(注:顺逆风的情况和这一样的思路)
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
5. 商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价=商品售价—商品进价/进价
商品售价=商品标价×折扣率
6. 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
7. 储蓄问题
⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
8.按比例分配问题
(1)甲:乙:丙=a:b:c,全部数量=各部分成分含量之和,一般设的的时候为:ax,bx,cx。

例如:甲、乙、丙的和为369,且甲:乙:丙=3:5:9,则设甲为3x,乙为5x,丙为9x,则:3x+5x+9x=369。

9.日历中的问题
①日历中的每一行上相邻两数,右边比左边大1.②日历中每一列上相邻的两数下面的数比上面的大7,且日历中数字a的取值是在1~31之间。

10.比赛得分规则
①总积分=胜场得分+平场得分+负场得分②胜场得分=胜一场分数×胜场数
③平场得分=平一场分数×平场数④负场得分=平一场分数×负场数
⑤总场数= 胜场数+平场数+负场数
11.等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
12.分阶段问题
这种问题一般情况下分两个阶段:
①在某一范围内收费标准。

②超出范围的收费标准的计算方法。

总费用=范围内的费用+超出范围的费用。

相关文档
最新文档