初中数学-图形的变换

合集下载

最新版2019七年级数学下册章节测试题-《第二章图形的变换》考试题(含答案)

最新版2019七年级数学下册章节测试题-《第二章图形的变换》考试题(含答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行答案:B2.如图,将四边形AEFG变换到四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍答案:D3.如图△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,下列说法不正确的是()A.AP=A′PB.MN垂直平分AA′,CC′C.这两个三角形面积相等D.直线AB,A′B′的交点不一定在MN上解析:D4.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个答案:C5.下列图形不一定是轴对称图形的是()A.等边三角形B.长方形C.等腰三角形D答案:D6.下面给出的是一些产品的商标图案,从几何图形的角度看(不考虑文字和字母),既是轴对称图形又能旋转l80°后与原图重合的是()答案:C7.下列图形中,旋转60°后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形答案:A8.下列对于旋转的判断中,正确的是()A.图形旋转时,图形的形状发生了改变B.图形旋转时,图形的大小发生了改变C.图形旋转时,图形的位置发生了改变D.图形旋转时,图形的形状、大小和位置都发生了改变答案:C9.把△ABC先向左平移1 cm,再向右平移2 cm,再向左平移3 cm。

再向右平移4 cm,……,经这样移动l00次后,最后△ABC所停留的位置是()A.△ABC左边50 cm B.△ABC右边50 cm C.△ABC左边l m D.△ABC右边l m 答案:B10.如图所示,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,若∠BAF=50°,则∠EAF的度数为()A.50°B.45°C.40°D.20°答案:D11.小宇同学在一次手工制作活动中,先把一张矩形纸片按图①的方式进行折叠,使折痕的左侧部分比右侧部分短l cm;展开后按图②的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长lcm,再展开后,在纸上形成的两条折痕之问的距离是()A.0.5 cm B.1 cm C.1.5 cm D.2 cm答案:B二、填空题12.用有45°直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角 为.解析:22°13.如图,已知△ABC中的∠C=50°,则放大镜下△ABC中∠C=_______.解析:50°14.如图,∠AOB=90°,它绕点O旋转30°后得到∠COD,•则∠AOC=•_____,•∠BOC=_____,∠COD=______.解析:30°,60°,90°15.下图是一些国家的国旗,其中是轴对称图形的有__________个.解析:316.观察图形:其中是轴对称图形的是 (填序号) .解析:①②③④⑥17.已知△CDE是△CAB经相似变换后得到的像,且∠A=30°,∠CDE=30°,AB=4,DE=2,AC=3,则CD= .解析:3218.下列各图中,从左到右的变换分别是什么变换?解析:轴对称变换,相似变换,旋转变换,平移变换19.判断下列各组图形分别是哪种变换?解析:轴对称,平移,旋转,相似20.直角三角形作相似变换,各条边放大到原来的3倍,则放大后所得图形面积是原图形面积的倍.解析:921.等边三角形ABC绕着它的中心,至少旋转度才能与其本身重合.解析:12022.点A和点A′关于直线l成轴对称,则直线l和线段AA′的位置关系是:.解析:垂直且平分三、解答题23.如图所示,将△ABC经相似变换、边长扩大一倍得到像△A′B′C′.(1)请你画出像△A′B′C′.(2)猜测△A′B′C′的面积是△ABC的面积的多少倍.解析:(1)图略;(2)S 4A B C ABC S S '''∆∆=24.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.解析:图略25.如图所示的轴对称图形的对称轴都不止一条,请把它们都画出来.解析:略26.已知,如图□ABCD .(1)画出□A 1B 1C 1D 1,使□A 1B 1C 1D 1与□ABCD 关于直线MN 对称;(2)画出□A 2B 2C 2D 2,使□A 2B 2C 2D 2与□A 1B 1C 1D 1关于直线EF 对称.解析:略27.画出图中图形的对称轴,并给予必要的作图说明.解析:略28.如图所示,在一块长为20 m,宽为14 m的草地上有一条宽为2 m的曲折的小路,你能运用所学的知识求出这块草地的绿地面积吗?解析:216 m229.你看到过如图所示的图案吗? 这个图案可以由什么基本图形经怎样的平移得到?解析:可以由“V”平移得到30.电子跳蚤在数轴上的一点A,第一次从点A0向左平移1个单位到达点A l,第二次由点A l向右平移2个单位到达点A2,第三次由点A2向左平移3个单位到达点A3,第四次由点A3向右平移4个单位到达点A4,….按以上规律平移了l00次,电子跳蚤处于数轴上的点A100所表示的数恰是2058,则电子跳蚤的初始位置点A0所表示的数是多少?解析:200831.如图所示,准备一张正方形的纸.沿如图①所示的虚线对折两次,得到一个小正方形;再沿图②的虚线对折;在得到的直角三角形上画出如图③所示的图形,再将阴影部分剪下来;打开你的作品.是一个旋转图形吗?旋转多少度后能与自身重合?你还能画出更有创意的作品吗?解析:它是一个旋转图形,旋转90°后与自身重合32.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.解析:(1)16;(2)图略33.数学兴趣小组的同学想利用树影测树高,在阳光下他们测得一根长为1 m的竹竿的影长为0.9 m.此刻测量树影,发现树的影子不全落在地上,有一部分影子落在墙壁上,如图所示,同学们测得地面上的影子长为3.6 m,墙壁上的影子长为0.9 m.又知以树和地面上的树影为边的三角形与同一时刻以竹竿和地面上的影子为边的三角形是一个相似变换,求这棵树的实际高度.解析:4.9m34.如图所示,在方格纸中,有两个形状、大小完全相同的图形,请指出如何运用轴对称、平移、旋转这三种运动,将一个图形重合到另一个图形上.解析:把△ABC先绕点A逆时针旋转90°,再向上平移2个单位,然后以D点所在的竖格子线为对称轴进行轴对称变换35.如图所示是视力表中的一部分.以第一个图形为基本图形.请分析后三个图形可以根据基本图形作怎样的变换得到.解析:略36.如图所示,有三个正方形的花坛,准备把每个花坛都分成形状、大小相同的四块,种不同的花草.现向大家征集设计图案,图①是某同学设计的图案,请你在图②、③中再设计两种不同的图案.解析:略37.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.解析:略38.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.解析:略39.如图,直线a是一个轴对称图形的对称轴,画出这个轴对称图形的另一半,并说明这个轴对称图形是一个什么图形,它一共有几条对称轴.(不写作法,保留作.图痕迹.)解析:是一个正五角星,它共有五条对称轴. 如图所示:40.如图所示,△ABC是等腰直角三角形,点D在BC上,将△ABD按逆时针旋转至△AFE的位置,问:(1)此旋转的旋转中心是哪一个点?(2)此旋转的角度为多少度?(3)若点M为AB的中点,则旋转后点M转到了什么位置?解析:(1)点A;(2)45°;(3)AF的中点。

九年级数学《图形变换-》复习教案

九年级数学《图形变换-》复习教案

课题:图形的变换(初三复习课)关键词教学目标重点难点考点分析教学方法教学过程教学反思教学目标:1、知识与技能复习“平移、旋转、轴对称”的概念、性质以及变换的联系与区别。

会运用轴对称和中心对称的定义判断图形的对称性,能运用图形变换的知识解决实际问题。

2、过程与方法能从变换的角度思考问题,在变换中穿插复习已学知识,找到核心问题所在,并有效解决问题3、情感态度与价值观通过作图及设计培养学生的美感,在进行教学思维训练的同时进行情感教育,体验数学的运用价值,激发学习兴趣,使学生综合发展教学重点、难点重点:掌握图形平移、旋转、轴对称的概念、性质及基本应用难点:提高学生思维的灵活性及对上述知识的综合运用中考考点分析图形的变换是近年中考必考的内容之一,一般以操作探究形式对这部分知识进行考查。

要关注变换(包括平移、旋转、轴对称、位似)性质的理解和应用。

让学生掌握几何变换这一重要的研究手段和方法,提高学生的识图能力和操作解题的综合能力。

教学方法及手段:在教学中穿插使用了:问答对话互动交流法、直观展示法、直观展示法、数形结合法、层次教学法、综合分析探究法等教学方法和手段。

教学教具对称图形的图片,投影仪学生自主学习方案学习目的1,了解“平移、旋转、轴对称”的概念、性质以及变换的联系与区别2,能运用图形变换的知识解决实际问题.预学检测1,同学们,你们在初中阶段学过哪些变换?2,请整理如下知识点:⑴平移、旋转、轴对称的概念⑵平移、旋转、轴对称的性质⑶图形的对称性与对称图形的关系3,请举些生活中常见的轴对称图形与中心对称图形的例子教学过程:(一)预习导学本节课,老师将和同学们一起复习图形的变换。

1、提问:学过哪些变换?答:平移、旋转、轴对称、位似(以后再详细复习)2、展示预学清单中3个考点标题,师生互动共同整理知识点(即划线部分)考点①平移、旋转、轴对称的概念平移:将一图形沿(某一方向)平行移动(一定的距离)的过程。

旋转:将一图形绕(一定点)转动(一定角度)。

初中数学图与图形的变换精讲

初中数学图与图形的变换精讲

图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。

华东师大初中数学九上《23.6.2 图形的变换与坐标教案

华东师大初中数学九上《23.6.2 图形的变换与坐标教案

图形的交换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1 如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2 如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC 沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3 如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4 如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?(2)△AOB 的顶点坐标发生了什么变化?【归纳结论】横纵坐标都变为原来的21. 思考 将例4中的△AOB 以O 为位似中心,将△AOB 放大到原来的2倍得到△A ′OB ′.(1)△A ′OB ′可以画几个?(2)△AOB 的顶点坐标发生了什么变化?4.概括:填充完成教材92页的表格.三、运用新知,深化理解1.如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x,y )为△AOB 边上任一点,依次写出这几次变换后点P 对应点的坐标.【教学说明】教师适当点拨,学生分组讨论.四、师生互动,课堂小结这节课你学到哪些知识?有哪些收获?还有哪些疑问?1.布置作业:从教材相应练习和“习题23.6”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课采用集体讨论和活动探究`的数学方法,“以教师为主导,学生为主体”,教师的“导”立足于学生的学,以学为重心,放手让学生自主探索、归纳结论,体验学习的快乐,从而激发学生的学习兴趣.。

初二数学几何图形变换练习题

初二数学几何图形变换练习题

初二数学几何图形变换练习题在初中数学学习中,几何图形变换是一个重要的内容。

通过对图形进行平移、旋转、反射和放缩等操作,可以帮助我们加深对几何图形性质的理解。

下面将给出一些初二数学几何图形变换的练习题,希望能够帮助同学们巩固与拓展相关知识。

题目一:平移1. ABCD为一个平行四边形,EF是平行四边形的一条对角线。

(1)将平行四边形ABCD沿向量→→→→e向右平移3个单位得到平行四边形A1B1C1D1,连接DD1,证明A1D1∥EF。

(2)将平行四边形ABCD沿向量→→−→−→a向左平移4个单位得到平行四边形A2B2C2D2。

若A1A2的向量表示为→→−→−→b,则求向量→→−→−→b。

题目二:旋转2. 将正方形ABCD顺时针旋转90°得到正方形A1B1C1D1,连接CC1并延长,证明A1C1⊥CC1。

3. 将正方形ABCD顺时针旋转45°得到正方形A2B2C2D2,连接A2C2,若AC的长度为a,则求A2C2的长度。

题目三:反射4. 已知顶点是A(1,-3)的三角形ABC关于x轴反射得到三角形A1B1C1,连接AA1并延长,若直线AA1与x轴交于点D,求点D的坐标。

5. 直线y=x与直线y=2x关于直线y=-x反射,分别得到直线L1和L2。

若L1与L2的交点为P,则求P的坐标。

题目四:放缩6. 图中三角形ABC经过放缩得到三角形A1B1C1,若放缩比例为k,求A1B1 : BC的比值。

解答:题目一:平移1.(1)设向量→→→→AD=a,向量→→→→AC=b,由平移的性质知AA1=a+3,DD1=b+3。

根据平行四边形的性质,有AD=BC,AC=BD。

故A1D1∥EF得证。

(2)设向量→→−→−→a=〈x,y〉,则向量→→−→−→b=〈x-4,y〉。

根据平行四边形的性质,有AB=A1B1,AD=A1D1。

故向量→→−→−→a=AB-AD=〈x,y〉=A1B1-A1D1=向量→→−→−→b=〈-√2,0〉。

湘教版七下数学5.3图形变换的简单应用说课稿2

湘教版七下数学5.3图形变换的简单应用说课稿2

湘教版七下数学5.3图形变换的简单应用说课稿2一. 教材分析湘教版七下数学5.3《图形变换的简单应用》是初中数学的重要内容之一,它让学生初步接触图形变换,并学会运用变换的观点解决实际问题。

本节课的内容是在学生掌握了平面几何的基本知识和图形变换的基础知识之后进行授课的,为以后学习更复杂的图形变换打下基础。

二. 学情分析七年级的学生已经具备了一定的几何知识,对图形变换也有了一定的了解。

但是,学生对图形的变换规律和变换后的图形性质的理解还不是很深入,需要通过本节课的学习来进一步掌握。

此外,学生对于如何将实际问题转化为图形变换问题,并运用变换的观点解决实际问题,还需要加强训练。

三. 说教学目标1.知识与技能目标:让学生掌握图形变换的简单应用,学会用变换的观点解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。

四. 说教学重难点1.教学重点:图形变换的简单应用,如何将实际问题转化为图形变换问题。

2.教学难点:如何引导学生运用变换的观点解决实际问题,变换后图形的性质。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:多媒体课件、几何画板、实物模型等。

六. 说教学过程1.导入新课:通过展示一些生活中的实际问题,引导学生思考如何运用图形变换来解决这些问题。

2.知识讲解:讲解图形变换的基本概念和变换规律,让学生理解并掌握变换的原理。

3.案例分析:分析一些典型的实际问题,引导学生将其转化为图形变换问题,并运用变换的观点解决。

4.课堂练习:设计一些练习题,让学生巩固所学知识,并学会运用变换的观点解决实际问题。

5.总结提升:对本节课的内容进行总结,强调变换后图形的性质,引导学生学会用变换的观点看待实际问题。

6.布置作业:设计一些作业题,让学生进一步巩固所学知识。

2019年七年级数学下册单元测试题-第二章《图形的变换》测试版题(含标准答案)

2019年七年级数学下册单元测试题-第二章《图形的变换》测试版题(含标准答案)

2019年七年级下册数学单元测试题第二章图形的变换一、选择题1.如图所示的几张图中,相似图形是()A.①和②B.①和③C.①和④D.②和③答案:C2.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE的度数为()A.60︒B.67.5︒C.72︒D.75︒解析:B3.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最小步数为()A.2步B.3步C.4步D.5步答案:B4.如图所示,将一张矩形的纸对折,然后用针尖在上面扎出“S”,再把它铺平,铺开后图形是()答案:A5.如图所示,△ABC平移后得到△DEF,若∠BNF=100°,则∠DEF的度数是() A.120°B.100°C.80°D.50°答案:C6.平移前有两条直线互相垂直,那么这两条直线平移后()A.互相平行B.互相垂直C.相交但不垂直D.无法确定答案:B7.如图所示,不能通过基本图形平移得到的是()答案:D8.下列生活现象中,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.荡秋千D.投影片的文字经投影变换到屏幕答案:D9.按照图①的排列规律,在d内应选②中的()答案:B10.下列各选项中,右边图形与左边图形成轴对称的图形是()A. B.C.D.答案:C11.如图,每个正方形均由边长为l的小正方形组成,则下列图形中的三角形(阴影部分)是△ABC经相似变换后得到的像是()答案:A12.下列基本图形中,经过平移、旋转或轴对称变换后,不能得到最右边图的是()答案:C13.如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,那么图⑤的面积是()A.18 B.16 C.12 D.8答案:B14.下列现象中,不属于旋转变换的是()A.钟摆的运动 B.行驶中汽车车轮 C.方向盘的转动 D.电梯的升降运动答案:D15.如图,将四边形AEFG变换到四边形ABCD,其中E,G分别是AB,AD的中点,下列叙述不正确的是()A.这种变换是相似变换B.对应边扩大到原来的2倍C.各对应角度数不变D.面积扩大到原来的2倍答案:D16.从图形的几何性质考虑,下列图形中,有一个与其他三个不同,它是()A.B. C.D.答案:C17.如图所示的一些交通标志中,是轴对称图形的有().A. 1个B. 2个C.3个D.4个答案:B18.如图所示,绕旋转中心旋转60°后能与自身重合的是()答案:A二、填空题19.如图,把五边形ABCDO变换到五边形CDEFO,应用了哪种图形变换?请完整地叙述这个变换:解析:应用了旋转变换,五边形 CDBFO是由五边形ABCDO绕点 0接顺时针方向旋转90°得到的.20.如图,△ABO按逆时针旋转变换到△CDO,在这个变换中,旋转中心是_____,•BO 变换到了_______,∠C是由______旋转变换得到的.解析:点O ,DO, ∠A21.试找出如图所示的每个正多边形的对称轴的条数,并填下表格中.根据上表,请就一个正n 边形对称轴的条数作一猜想_________(用n 表示). 解析:3,4,5,6,7,8,n 条22.解析:王(轴对称图形都可以)23.如图,△A ′B ′C ′是△ABC 经旋转变换后的像, (1)旋转中心是 ,旋转角度是 ; (2)图中相等的线段:OA= ,OB= ,OC= ,AB= ,BC= ,CA= . (3)图中相等的角:∠CAB= ,∠BCA= ,∠AOA ′= = .解析: (3)∠C ′A ′B ′,∠B ′C ′A ′,∠BOB ′,∠COC ′ (1)0,60°;(2)OA ′,OB ′,OC ′,A ′B ′,B ′C ′,C ′A ′;24.如图所示,△DEF 是△ABC 绕点O 旋转后得到的,则点C 的对应点是点 ,线段AB 的对应线段是线段 ,∠B 的对应角是 .解析:F ,DE ,∠E25.如图所示的四个两两相联的等圆.右边的三个圆可以看做是左边的圆经过 得到的.解析:平移26.从汽车的后视镜中看见某车车牌的后5位号码是,该车牌的后5位号码实际是.解析:BA62927.点A和点A′关于直线l成轴对称,则直线l和线段AA′的位置关系是:.解析:垂直且平分28.请写出是轴对称图形的英文字母(至少写出五个) .解析:A,C,E,H,K等三、解答题29.请你用正方形、三角形、•圆设计一个有具体形象的轴对称图形(例如下图的脸谱),并给你的作品取一个适当的名字.解析:略30.画出如图所示的轴对称图形的对称轴,并回答下列问题:(1)连结BD,则对称轴和线段BD有怎样的位置关系?(2)原图形中有哪些相等的角?哪些全等的三角形?(3)分别作出图形中点F、G的对称点.解析:如图所示,连结BD,作线段BD的垂直平分线m,直线m•就是所求的对称轴.(1)对称轴垂直平分线段BD;(2)原图形中相等的角有:∠B=∠D,∠BAC=∠DEC,∠BCA=∠DCE,∠CAE=∠CEA ,∠BCE=∠DCA ,∠BAE=∠DEA .全等的三角形有:△ABC 和△EDC ; (3)点F 、G 的对称点分别是F ′、G ′,如图所示.31. 将下列各图形的变换与变换的名称用线连起来:解析:略.32.如图所示,在方格纸中如何通过平移或旋转这两种变换,由图形A 得到图形B ,再由图形B 得到图形C?(对于平移变换要求回答出平移的方向和平移的距离;对于旋转变换要求回答出旋转中心、旋转方向和旋转角度)解析:将图形A 向上平移4个单位长度,得到图形B ;将图形B 以点P 1为旋转中心顺时针旋转90°,再向右平移4个单位长度得到图形C 或将图形B 向右平移4个单位长度,再以P 2为旋转中心顺时针旋转90°得到图形C 33.如图,在网格中有一个四边形图案ABCO .平移变换相似变换旋转变换轴对称变换(1)请你画出此图案绕点O顺时方向旋转90°,l80°,270°的图案,你会得到一个美丽的图案,千万不要将阴影位置涂错;(2)若网格中每个小正方形的边长为l,旋转后点A的对应点依次为A1,A2,A3,求四边形AA1A2A3的面积;解析:(1)图略;(2)3434.如图所示,图①和图②都是轴对称图形,依照①和②,把③,④也画成轴对称图形.解析:略35.如图所示,在方格纸上作下列相似变换:(1)把图①中三角形的每条边放大到原来的3倍;(2)把图②中H的每条边缩小到原来的12.解析:略36.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.解析:由图①经过连续四次绕圆心顺时针旋转90°得到37.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.解析:略38.如图所示是在镜子中看到的某时刻时钟的情况,请问此时实际是几点钟?解析:3:2539.如图所示,△ABC与△DEF是关于直线l的轴对称图形,请说出它们的对应线段和对应角.解析:AC和DE,AB和DF,BC和FE;∠A和∠D,∠C和∠E,∠B和∠F40.如图所示,图①,图②分别是6×6正方形网格上两个轴对称图形(阴影部分),其面积分别为S A,S B(网格中最小的正方形面积为l平方单位).请观察图形并解答下列问题:(1)填空:S A:S B的值是.(2)请你在图③的网格上画出一个面积为8个平方单位的轴对称图形.解析:(1)9:11;(2)略。

初中数学图形变换综合题探究专题(word版+详解答案)

初中数学图形变换综合题探究专题(word版+详解答案)

图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。

【解题攻略】图形的轴对称、平移、旋转是近年中考的新题型、热点题型,它主要考查学生的观察与实验能力,探索与实践能力,因此在解题时应注意以下方面:1.熟练掌握图形的轴对称、图形的平移、图形的旋转的基本性质和基本方法。

2.结合具体问题大胆尝试,动手操作平移、旋转,探究发现其内在规律是解答操作题的基本方法。

3.注重图形与变换的创新题,弄清其本质,掌握其基本的解题方法,尤其是折叠与旋转等。

【解题类型及其思路】1.变换中求角度注意平移性质:平移前后图形全等,对应点连线平行且相等.2.变换中求线段长时把握折叠的性质:折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上.3.变换中求坐标时注意旋转性质:对应线段、对应角的大小不变,对应线段的夹角等于旋转角.4.变换中求面积,注意前后图形的变换性质及其位置等情况。

【典例指引】类型一【图形的平移】【典例指引1】1.两个三角板ABC,DEF按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点、线都在同一平面内),其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=4 cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=________cm;(2)求y关于x的函数表达式,并写出自变量x的取值范围;(3)设边BC的中点为点M,边DF的中点为点N,直接写出在三角板平移过程中,点M与点N之间距离的最小值.【举一反三】如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF=FP.(1)在图①中,通过观察、测量,猜想直接写出AB与AP满足的数量关系和位置关系,不要说明理由;(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ.猜想写出BQ 与AP满足的数量关系和位置关系,并说明理由.类型二【图形的轴对称--折叠】【典例指引2】将一个直角三角形纸片放置在平面直角坐标系中,点,点,点.是边上的一点(点不与点,重合),沿着折叠该纸片,得点的对应点.(Ⅰ)如图①,当时,求点的坐标;(Ⅱ)如图②,当点落在轴上时,求点的坐标;(Ⅲ)当与坐标轴平行时,求点的坐标(直接写出结果即可).【举一反三】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD,交AE于点G,连接DG.(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求CEDE的值.类型三【图形的旋转】【典例指引3】如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【举一反三】(1)(问题发现)如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.类型四【图形的位似】【典例指引4】如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.(1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;(2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).①连接AP,若2AP>OQ,求m的取值范围;②当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于.【举一反三】如图所示,网格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).(1)把△ABC向下平移5格后得到△A1B1C1,写出点A1,B1,C1的坐标,并画出△A1B1C1;(2)把△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,写出点A2,B2,C2的坐标,并画出△A2B2C2;(3)把△ABC以点O为位似中心放大得到△A3B3C3,使放大前后对应线段的比为1∶2,写出点A3,B3,C3的坐标,并画出△A3B3C3.【新题训练】1.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)写出点B的坐标;(3)将△ABC向右平移5个单位长度,向下平移2个单位长度,画出平移后的图形△A′B′C′;(4)计算△A′B′C′的面积﹒(5)在x轴上存在一点P,使PA+PC最小,直接写出点P的坐标.2.如图(1),在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),将线段AB先向上平移2个单位长度,再向右平移1个单位长度,得到线段CD,连接AC,BD,构成平行四边形ABDC.(1)请写出点C的坐标为,点D的坐标为,S四边形ABDC;(2)点Q在y轴上,且S△QAB=S四边形ABDC,求出点Q的坐标;(3)如图(2),点P是线段BD上任意一个点(不与B、D重合),连接PC、PO,试探索∠DCP、∠CPO、∠BOP之间的关系,并证明你的结论.3.(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形ABCD ,3AD =,4BD =,则拼得的四边形ABCD 的周长是_____.(操作发现)将图①中的ABE △沿着射线DB 方向平移,连结AD 、BC 、AF 、CE ,如图②.当ABE △的平移距离是12BE 的长度时,求四边形AECF 的周长. (操作探究)将图②中的ABE △继续沿着射线DB 方向平移,其它条件不变,当四边形ABCD 是菱形时,将四边形ABCD 沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.4.如图,在66⨯的正方形方格中,每个小正方形的边长都为1,顶点都在网格线交点处的三角形,ABC V 是一个格点三角形.()1在图①中,请判断ABC V 与DEF V 是否相似,并说明理由;()2在图②中,以O 为位似中心,再画一个格点三角形,使它与ABC V 的位似比为2:1()3在图③中,请画出所有满足条件的格点三角形,它与ABC V 相似,且有一条公共边和一个公共角.5.已知:AD 是ABC ∆的高,且BD CD =.(1)如图1,求证:BAD CAD ∠=∠;(2)如图2,点E 在AD 上,连接BE ,将ABE ∆沿BE 折叠得到'A BE ∆,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点G ,若10BF =,6EG =,求线段CF 的长.图1. 图2. 图3. 6.如图,长方形OABC 在平面直角坐标系xOy 的第一象限内,点A 在x 轴正半轴上,点C 在y 轴的正半轴上,点D 、E 分别是OC 、BC 的中点,30∠=︒CDE ,点E 的坐标为()2,a .(1)求a 的值及直线DE 的表达式;(2)现将长方形OABC 沿DE 折叠,使顶点C 落在平面内的点'C 处,过点'C 作y 轴的平行线分别交x 轴和BC 于点F ,G .①求'C 的坐标;②若点P 为直线DE 上一动点,连接'PC ,当'PC D ∆为等腰三角形,求点P 的坐标.(说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半)7.如图1,四边形ABCD 的对角线AC ,BD 相交于点O ,OB=OD ,OC=OA+AB ,AD=m ,BC=n ,∠ABD+∠ADB=∠ACB .(1)填空:∠BAD与∠ACB的数量关系为________;(2)求mn的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=5+12,求PC的长.8.如图,直线:y=﹣33x+4与x轴、y轴分别別交于点M、点N,等边△ABC的高为3,边BC在x轴上,将△ABC沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点O重合时,解答下列问题:(1)点A1的坐标为.(2)求△A1B1C1的边A1C1所在直线的解析式;(3)若以P、A1、C1、M为顶点的四边形是平行四边形,请直接写出P点坐标.9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.10.综合与实践问题背景折纸是一种许多人熟悉的活动,将折纸的一边二等分、四等分都是比较容易做到的,但将一边三等分就不是那么容易了,近些年,经过人们的不懈努力,已经找到了多种将正方形折纸一边三等分的精确折法,最著名的是由日本学者芳贺和夫发现的三种折法,现在被数学界称之为芳贺折纸三定理.其中,芳贺折纸第一定理的操作过程及内容如下(如图1):操作1:將正方形ABCD对折,使点A与点D重合,点B与点C重合.再将正方形ABCD展开,得到折痕EF;操作2:再将正方形纸片的右下角向上翻折,使点C与点E重合,边BC翻折至B'E的位置,得到折痕MN,B'E与AB交于点P.则P即为AB的三等分点,即AP:PB=2:1.解决问题(1)在图1中,若EF与MN交于点Q,连接CQ.求证:四边形EQCM是菱形;(2)请在图1中证明AP:PB=2:l.发现感悟若E为正方形纸片ABCD的边AD上的任意一点,重复“问题背景”中操作2的折纸过程,请你思考并解决如下问题:(3)如图2.若DEAE=2.则APBP=;(4)如图3,若DEAE=3,则APBP=;(5)根据问题(2),(3),(4)给你的启示,你能发现一个更加一般化的结论吗?请把你的结论写出来,不要求证明.11.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可). 12.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;13.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.14.已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.15.已知:如图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其点B,C,D的坐标分别为(1,2),(1,1),(3,1).(1)直接写出E点和A点的坐标;(2)试以点B为位似中心,作出位似图形A1B1C1D1E1,使所作的图形与原图形的位似比为3∶1;(3)直接写出图形A1B1C1D1E1的面积.16.如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为»AB,P是半径OB上一动点,Q是»AB上的一动点,连接PQ.发现:∠POQ=________时,PQ有最大值,最大值为________;思考:(1)如图2,若P是OB中点,且QP⊥OB于点P,求»BQ的长;(2)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积;探究:如图4,将扇形OAB沿PQ折叠,使折叠后的弧QB′恰好与半径OA相切,切点为C,若OP=6,求点O到折痕PQ的距离.17.(本小题10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′.设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.图①(Ⅰ)如图①,当点A′与顶点B 重合时,求点M 的坐标;(Ⅱ)如图②,当点A′落在第二象限时,A′M 与OB 相交于点C ,试用含m 的式子表示S ; (Ⅲ)当S=324时,求点M 的坐标(直接写出结果即可). 18.如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.图形变换综合题探究专题【考题研究】本专题主要包括图形的变换和相似形.其中轴对称图形、平移、中心对称图形的识别,相似三角形性质以填空和选择题为主,主要是考查对图形的识别和性质;图形的折叠、平移、旋转与几何图形面积相关的计算问题以填空题和解答题为主,主要是考查对几何问题的综合运用能力;而相似三角形的性质及判断定的应用往往还会结合圆或者解直角三角形等问题一并考查,主要是以解答题为主。

人教版初中数学中考复习课件 第24章 图形的变换(共27张PPT)

人教版初中数学中考复习课件  第24章  图形的变换(共27张PPT)

(1)∵AD∥BC, ∴∠ADB=∠DBC. 根据折叠的性质知∠ADB=∠BDF, ∠F=∠A=∠C=90°. ∴∠DBC=∠BDF. ∴BE=DE. 又∠BEF=∠DEC, ∴△BFE≌△DCE.
(2)在Rt△BCD中, ∵CD=2,∠ADB=∠DBC=30°, ∴BC=2√3. 在Rt△ECD中, ∵CD=2,∠EDC=30°, ∴DE=2EC. ∴(2EC)2-EC2=CD2. ∴EC=2√3/3. ∴BE=BC-EC=4√3/3.
18.如图-14,P是正方形ABCD内一点,点P到点A, B,D的距离分别为1,2√2,√10,将△ADP绕点A 顺时针旋转至△ABP′,连接PP′,并延长AP与BC 相交于点Q. (1)求证:△APP′是等腰直角三角形; (2)求∠BPQ的大小; (3)求CQ的长.
(1)∵△ADP绕点A顺时针旋转至△ABP′, ∴根据旋转的性质可知△APD≌△AP′B. ∴AP=AP′,∠PAD=∠P′AB. ∵∠PAD+∠PAB=90°, ∴∠P′AB+∠PAB=90°, 即∠PAP′=90°. ∴△APP′是等腰直角三角形.
5.坐标系内的点的对称坐标变化规律: 关于x轴对称的点的坐标,横坐标不变,纵坐标变 为原来的相反数. 关于y轴对称的点的坐标,横坐标变为原来的相反 数,纵坐标不变. 关于原点对称的点的坐标,横坐标与纵坐标都变 为原来的相反数.
热点剖析
【例1】(2015•广东)下列所述图形中,既是中
心对称图形,又是轴对称图形的是( A )
10 .
16.如图-12,在Rt△ABC中,∠C=90°,
∠ABC=30°,AB=8,将△ABC沿CB向右平移得到
△DEF.若四边形ABED的面积等于8,则平移的距离

初中数学教案:图形的变换

初中数学教案:图形的变换

初中数学教案:图形的变换一、引言图形的变换是初中数学中的重要内容,也是让学生们对几何形体有更深入认识的重要一步。

通过图形的变换,学生们可以了解到不同的变换方式对应的特点和规律,从而能够更好地理解几何形体的性质和特征。

本教案将针对初中数学中图形的变换进行详细介绍,结合具体的例题和练习,帮助学生们更好地掌握图形的变换知识。

二、平移1.平移的概念平移是指图形在平面上保持形状和大小不变的情况下,通过沿着某个方向移动一定距离后所得到的新图形。

平移的关键要素包括移动的方向和距离。

2.平移的性质(1)平移保持图形的形状和大小不变。

(2)平移后的图形与原图形的相对位置关系保持不变。

3.平移的表示方法平移可以通过向量表示方式来进行描述。

通过给定平移向量的方向和长度,即可唯一确定平移的位置和方式。

4.平移的例题与练习(1)例题:将图形A沿着向量→AB平移,得到图形B。

要求找出平移向量。

(2)练习:给定图形C,将其沿着向量→CD平移一定距离,得到图形D,求平移向量的坐标。

三、旋转1.旋转的概念旋转是指图形围绕一个旋转中心点,按照一定角度进行旋转后所得到的新图形。

旋转的关键要素包括旋转中心和旋转角度。

2.旋转的性质(1)旋转保持图形的形状和大小不变。

(2)旋转后的图形与原图形的相对位置关系保持不变。

3.旋转的表示方法旋转可以通过角度和旋转中心来描述。

通过给定旋转的角度和旋转中心的坐标,即可描述旋转的位置和方式。

4.旋转的例题与练习(1)例题:将图形E围绕点O逆时针旋转30度,得到图形F。

求旋转后图形F的坐标。

(2)练习:已知图形G围绕点P逆时针旋转60度,得到图形H。

求旋转后图形H的坐标。

四、翻转1.翻转的概念翻转是指图形绕着一个轴线对称进行翻转后所得到的新图形。

翻转的关键要素包括轴线的位置和方向。

2.翻转的性质(1)翻转保持图形的形状和大小不变。

(2)翻转后的图形与原图形的相对位置关系保持不变。

3.翻转的表示方法翻转可以通过轴线来描述。

《图形的变换》数学教案设计

《图形的变换》数学教案设计

《图形的变换》數學教案設計主题:《图形的变换》数学教案设计一、教学目标:1. 学生能够理解和掌握基本的图形变换概念,包括平移、旋转和对称。

2. 学生能够通过实践活动,运用所学知识进行简单的图形变换操作。

3. 通过学习,提高学生的空间观念和逻辑思维能力。

二、教学内容:1. 图形变换的基本概念2. 平移、旋转和对称的定义与特点3. 实践活动:进行简单的图形变换三、教学过程:1. 导入新课:教师展示一些经过变换后的图形,让学生观察并思考这些图形是如何变化的。

然后引出今天的主题——图形的变换。

2. 新课讲解:(1) 基本概念:教师讲解什么是图形的变换,以及变换的三种基本形式:平移、旋转和对称。

(2) 平移、旋转和对称:分别讲解这三种变换的特点和方法,并通过实例来说明。

3. 实践活动:教师分发给学生一些图形,让他们尝试进行平移、旋转和对称的操作,体验图形变换的过程。

4. 小结:教师总结本节课的学习内容,强调图形变换的概念和方法。

四、教学评价:1. 过程评价:在实践活动中,教师可以观察学生的操作过程,了解他们是否掌握了图形变换的方法。

2. 结果评价:教师可以通过提问或者小测试的方式,检查学生对图形变换的理解程度。

五、教学反思:在教学过程中,教师需要关注每个学生的反应,及时调整教学方法和节奏。

同时,也需要反思自己的教学效果,以便改进教学策略,提高教学质量。

六、家庭作业:布置一些图形变换的练习题,让学生在家进行复习和巩固。

七、扩展阅读:推荐一些关于图形变换的课外读物或网络资源,供学生自学和深入研究。

初中数学教案:图形的变换

初中数学教案:图形的变换

初中数学教案:图形的变换一、引言图形的变换是初中数学中重要的内容之一,它涉及到平面几何的基本概念和操作,帮助学生更好地理解图形的性质和变化规律。

本教案将以初中数学八年级上册相关知识点为基础,结合实际例子和具体步骤,详细介绍图形的常见变换类型及其应用。

二、平移1. 定义与性质平移是指在坐标平面上将一个图形沿着某一方向保持大小和形状不变地移动。

通过向量表示,我们可以把平移看作是将一个点(x, y) 沿着向量 (a, b) 进行变换后得到的新点 (x+a, y+b)。

2. 平移的实际应用平移在日常生活中有许多实际应用。

比如,在电商物流配送过程中,货物从仓库到达消费者手中并不会改变大小和形状,只是发生了位置上的变化;又如,在制作海报时,设计师往往需要对文字或图像进行调整来使其符合美观度要求。

三、旋转1. 定义与性质旋转是指围绕某一固定点按照一定的角度将图形旋转到一个新的位置。

在平面几何中,我们用顺时针或逆时针表示旋转方向,通过给定旋转中心和旋转角度来确定变换后的图形。

2. 旋转的实际应用旋转在许多领域都有广泛的应用。

例如,在天文学中,人们通过观测卫星、行星等天体的运动轨迹,研究它们相对于地球参考点的旋转规律;又如,在日常生活中使用 GPS 导航系统时,系统会根据车辆实时位置和导航目标位置之间的角度关系,计算出正确的行驶方向。

四、对称1. 定义与性质对称是指将一个图形沿着一条直线或者一个点进行翻折得到一个与原来完全重合但位置相反的新图形。

在平面几何中,我们分别称这条直线为镜面对称轴、称这个点为中心对称点。

2. 对称的实际应用对称在艺术设计、建筑构造和自然界等方面都有着广泛应用。

比如,在中国传统建筑中常见的“梁架”结构就是一种以柱子为轴线对称的形式,具有美观和结构稳定的特点;又如,在自然界中,许多花朵的外形呈现对称分布,使其在吸引昆虫传粉同时保持稳定性。

五、轴对称图形1. 定义与性质轴对称图形是指具有一个或多个轴对称轴的图形。

图形变换的方法指导

图形变换的方法指导

《图形变换思想的建立》课题实施计划北京农大附中初二数学备课组几何在学什么?对这个问题的认识决定着几何教学的根本效果。

是以图形为研究对象的学科;是以研究两个或两个以上图形之间关系的学科;是以培养几何直观为出发点,确立图形思维为基本目的的学科。

一、图形变化思想的作用与意义图形变换是把几何图形运用“剪切、割补、拼图、翻折、平移、旋转、放缩、展开”等手段转化为解决问题需要的基本图形或特殊位置,在新教材中占有重要地位.新课标要求通过实验操作,由浅入深,逐级递进,螺旋上升的方式渗透图形变换思想,意在提高学生的观察分析能力、推理判断能力和空间想象能力.图形变换更是一种重要的思想方法,它是一种以变化的、运动的观点来处理孤立的、离散的问题的思想.很好地领会这种解题的思想实质,并能准确合理地使用,在解题中会收到奇效.在初中阶段变换思想主要有旋转,平移,轴对称《图形的变换》在中考中有很重要的地位。

旋转,平移,轴对称思想的考察在近几年的中考试题中也是屡屡出现在数学教学中合理运用图形的变换思想,重视对学生几何变换思想的培养, 具有十分重要的意义。

我们的目标:通过三年的学习学生在几何能力上具备一定的画图能力、识图能力、观察能力、空间想象能力. 能够用图形变换思想去解题。

例1、如图2—1,多边形的相邻两边互相垂直,则这个多边形的周长为().(A)21 (B)26 (C)37 (D)42二.学情分析学生成绩出现问题往往有三种情况:智力水平问题,学习态度问题,学习方法问题。

我能做的只针对后两种,即:提升学生的学习兴趣,让学生喜欢上数学;帮学生找到好的学习方法,建立数学思想解决问题。

三、具体实施工作及今后计划首先学生要具有最基本的数学知识体系,我们的学生在几何中出现的问题往往是知识没有完整的体系,往往是定理定义都知道但放在一起就成了一锅粥,几何题目又相比代数来的开放,该怎么想,该用哪个就成了学生最大的困难。

不会做题就会使学生慢慢的失去学习的兴趣。

初中数学几何图形的变换组合创新实验

初中数学几何图形的变换组合创新实验

初中数学几何图形的变换组合创新实验在初中数学的学习中,几何图形一直是一个重要的组成部分。

而通过对几何图形进行变换组合的创新实验,不仅能够加深我们对几何知识的理解,还能培养我们的空间想象力、逻辑思维能力和创新能力。

几何图形的变换组合,包括平移、旋转、轴对称等基本变换,以及将不同的几何图形进行拼接、组合等操作。

这些操作看似简单,实则蕴含着丰富的数学原理和规律。

比如说平移,它是指在平面内,将一个图形上的所有点按照某个方向作相同距离的移动。

在实际生活中,我们可以看到很多平移的例子,比如电梯的上下运动、抽屉的推拉等。

通过平移实验,我们可以发现,平移后的图形与原图形形状和大小完全相同,只是位置发生了改变。

而且,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。

再来说旋转,旋转是指一个图形绕着一个定点,按照一定的方向,旋转一定的角度。

像风扇的叶片转动、钟表的指针走动,都是旋转现象。

在旋转实验中,我们能了解到旋转中心、旋转方向和旋转角度这三个要素决定了图形的旋转。

旋转后的图形,其形状和大小不变,对应点到旋转中心的距离相等,对应线段的长度相等,对应角相等,对应点与旋转中心所连线段的夹角等于旋转角。

轴对称则是指一个图形沿着一条直线对折后,直线两旁的部分能够完全重合。

生活中的轴对称图形随处可见,如蝴蝶、京剧脸谱等。

经过轴对称实验,我们知道对称轴是对称点连线的垂直平分线,轴对称图形的对应线段相等,对应角相等。

而将不同的几何图形进行组合拼接,则能创造出更多新奇有趣的图形。

比如,我们可以用两个完全相同的等腰直角三角形,将它们的斜边拼接在一起,就能得到一个正方形;用两个相同的等边三角形,可以拼出一个平行四边形。

在进行这些变换组合创新实验时,我们可以通过手工制作、计算机软件模拟等多种方式来实现。

手工制作是一种非常直观且有趣的方式。

我们可以准备一些卡纸、剪刀、胶水等工具,剪出各种几何图形,然后按照自己的想法进行变换和组合。

备考2021年中考数学复习专题:图形的变换_平移、旋转变换_旋转的性质,综合题专训及答案

备考2021年中考数学复习专题:图形的变换_平移、旋转变换_旋转的性质,综合题专训及答案

,在中,,,点延长线上一点,且,连接MP交AC于点H.将射线MP绕点M逆时针旋转交线段找出与相等的角,并说明理由,,求的值)的条件下,若,求线段(2020武汉.中考模拟) 已知平行四边形ABCD.逆时针旋转到的式子表示的值:的图象上,点为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)(1)求点A、B的坐标;:经过A'M,求△OA'M的面积;(2020杭州.中考模拟) 如图1,O为正方形如图一,菱形与菱形的顶点重合,点在对角线上,且.(1)的值为;将菱形绕点按顺时针方向旋转角(),如图二所示,试探究线段与之间的数量关菱形在旋转过程中,当点,,三点在一条直线上时,如图三所示,连接并延长,交于点,若,,则的长为(2020绍兴.中考模拟) 在正方形ABCD中,点E,F分别在边BC,CD上,且∠(2020如皋.中考模拟)11OAB OCD OA=OB OC=OD①的值为;断的值及∠OB= ,请直接写中,,绕点顺时针旋转,它的两边分别交(或它们的延长线)于点 .当绕点旋转到时(如图),易证 .(1)当绕点旋转到时(如图2),线段和之间有怎样的数量关系?写出.当绕点旋转到如图的位置时,线段和之间又有怎样的数量关系?请直接写出(2020武汉.中考模拟) 如图(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC,则,的值变化,当(2020安顺.中考真卷) 如图,四边形是正方形,点O为对角线的中点(1)问题解决:如图①,连接,分别取,的中点P,,则与的数量关系是是将图①中的绕点按顺时针方向旋转得到的三角形,连接,的中点,连接, .的形状,并证明你的结论;是将图①中的绕点A按逆时针方向旋转得到的三角形,连接,的中点,连接, .若正方形的边长为的面积DOE= 。

1M F= 和直线MH x NFMHO的面积;>k如图①,点为正方形内一点,,将绕点按顺时针方向旋转,得到(点的对应点为点),延长交于点,连接.1的形状,并说明理由;,请猜想线段与的数量关系并加以证明;,,请直接写出的长.轴交于点B,连接AB,将△OAB绕着点B顺时针旋转得到△(1)用配方法求抛物线的对称轴并直接写出A,1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

初中数学九年级上册《23.6.2 图形的变换与坐标课 件 (2)

初中数学九年级上册《23.6.2 图形的变换与坐标课 件  (2)

们的相似比是多少? Y A 6
C
思考:图中 的⊿AOB和 ⊿COD是什
B 么图形?通
2
D
X 过观察你能
02
6 发现什么规
律?
⊿AOB和⊿COD是以原点为位似中心的位似图形 规律:若两个图形是以原点为位似中心的位似图形,它们的相似比
你能说明理由吗?
反馈练习:
1.线段AB的两端点A(1,3),B(2,-5)。
Y
A
B’
0
A’
B
X
规律:对应点关于原点对称。即对应点的
总结梳理:
1、两个图形关于X轴对称,则对应点横坐标相同, 纵坐标互为相反数
2、两个图形关于Y轴对称,则对应点纵坐标相同, 横坐标互为相反数
3、两个图形关于原点对称,则对应点横、纵坐标均 互为相反数。
探究3: 如果将⊿AOB缩小,变成⊿COD,它
纵坐标相同, 横坐标互为相反数 点A与点 C关于原点对称 点横B坐与标点、D纵关坐于标原点对称
B
( -3 , 2)
1
01
C (-3, -2 )
A ( 3, 2 )
x
D ( 3 , -2)
例3、将⊿AOB沿着x轴对折,得到⊿A ’ OB, 画图并说明对应顶点Y 有什么变化?
A
B
X
O
A’
规律:对应点关于x轴对称。即对应点的 横坐标相等、纵坐标互为相反数
A’
A
O’
B’
X
规律(1)左右移动时,横坐标0 改变,左B 减右加,纵坐标不变:
变式:你能画图说明⊿AOB向左移动时,对应点的坐标 又有什么规律吗?
变式:
将⊿AOB向上或向下移动几个单位长度, 你能探Y 索出图形上下移动的规律吗?
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
以证明.
Q
F
P
B
E
C
如图,Rt△ABC 中,∠ACB=90°,∠BAC=30°,分别以 AB、AC 为边作
等边△ABE 和△ACD,连结 ED 交 AB 于 F,
求证:EF=FD.
E
B
F
C
A
D
例题 Example
在 Rt△ABC 中,∠ACB=90°,tan∠BAC= 1 . 点 D 在边 AC 上(不与 A,C 重合),连结 BD,F 2
例题 (二) 旋转变换在综合题中的应用 Example
图形变换几个专题分类:
三、轴对称变换 1、折叠问题 2、最短路径问题 3、轴对称变换在综合题中的应用 四、旋转相似变换 五、复合变换 (建议:二次函数与图形变换可以放在二次函数专题复习或在
例题 代几综合题中,动手操作题可以单独整理专题) Example
X –8 –7 –6 –5 –4 –3 –2 –1–1 0 1 2 3 4 5 6 7 8 9 –2 –3 –4 –5 –6
调研方法
(2012 北京)23.已知二次函数 y (t 1)x2 2(t 2)x 3 在 x 0 和 x 2 时的函数值相等。 2
(1) 求二次函数的解析式;
(2) 若一次函数 y kx 6 的图象与二次函数的图象都经过点 A(3,m) ,求 m 和 k
∠BAC绕顶点A逆时针旋转α°(0<α <45° ),旋转后角的两
边分别交BD于点P、点Q ,交BC,CD于点E、点F,连接 EF,
EO.
(1)在∠ BAC的旋转过程中, ∠ AEQ的大小是否改变,
若不变写出它的度数,若改变,写出它的变化范围
(2)探究△APQ与△AEF的面积的数量关系,写出结论并加
对学生的要求
Transform 变换
3.掌握基本辅助线: (1)中点、中线—中心对称—倍长中线—中位线 (2)等腰三角形、角平分线、垂直平分线—轴对
称—截长补短; (3)平行四边形、梯形—平移; (4)正多边形、共端点的等线段—旋转; 4.利用图形变换的观点分析和思考问题并能适当 添加辅助线构造特殊图形. 5.用变换的性质解决坐标系中的图形变换问题,用变换 的观点研究函数的平移和对称.
的值;
(3) 设二次函数的图象与 x 轴交于点 B ,C (点 B 在点 C 的左侧),将二次函数的图
象在点 B ,C 间的部分(含点 B 和点 C )向左平移 n(n 0) 个单位后得到的图象
记为 G ,同时将(2)中得到的直线 y kx 6 向上平移 n 个单位。请结合图象
回答:当平移后的直线与图象 G 有公共点时, n 的取值范围。
例9、如图1,以△ABC的边AB、AC为直角边向外作等腰直 角△ABE和△ACD,M是BC的中点,请你探究线段DE与 AM之间的关系。 如图2,若以△ABC的边AB、AC为直角边,向内作等腰直 角△ABE和△ACD,其它条件不变,试探究线段DE与AM之 间的关系.
例10、已知:如图,正方形ABCD中,AC,BD为对角线,将
2.知识覆盖面广,可综合的知识点较多凡是有 图形的问题都有应用图形变换的角度(包括函数 知识),要注重基本图形的认识.
3.此部分知识是中考试卷中的把关题,是检验学生 数学学习能力的知识点.
Transform 变换
对学生的要求
1.掌握图形变换的概念和性质; 2.对已学图形和常用辅助线的再认识: (1)从图形的构成和图形特点分析图形的轴对称 性、中心对称和旋转对称性,以及由图形变换决定 的图形的特殊性质. (2)从图形变换的角度分析添加平行线、倍长中 线、截长补短等辅助线后构造出的图形的变换性质, 以及辅助线的添加条件.
轴交于点 A,其对称轴与 x 轴交于点 B。
(1)求点 A,B 的坐标;
(2)设直线 l 与直线 AB 关于该抛物线的对称轴对称,求直线 l 的解析式;
(3)若该抛物线在 2 x 1这一段位于直线 l 的上方,并且在 2 x 3这一段位于
直线 AB 的下方,求该抛物线的解析式。
Y 11
10 9 8 7 6 5 4 3 2 1
题型分析
A
例1、Rt△ABC中,已知∠C=90°,∠B=50°,
点D在边BC上,BD=2CD.把△ABC绕着点D
逆时针旋转m(0°<m<180°)度后,如果点B
C
D
B
恰好落在初始Rt△ABC的边上,那么m=_________.
例题 Example
例2、已知: 梯形ABCD中, AB∥DC, AB = 2, CD = 5, ∠ABC
中点,求线段 CF 长度的最大值.
A
A
A
D
E
E
D
F F
C
B
图1
C
BC
B
图2
备图
如图所示,现有一张边长为 4 的正方形纸片 ABCD ,点 P 为正方形 AD 边
上的一点(不与点 A、点 D 重合)将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,
PG 交 DC 于 H,折痕为 EF,连接 BP、BH.
图形的变换
内容简介
Contents
《考试说明》的要求 图形变换的认识过程 近几年中考考察情况 学生通常遇到的问题 题型分析
《考试说明》的要求
图形变换的认识过程
Transform 变换
对图形变换的认识过程
1.初中学习图形变换,主要是从图形的位置关系 和对称性的角度来考虑问题,所以是学习一种 思维方法.
OB>OD,比较 BC+AD 与 AB+CD 的大小.
A
C
C
A 图1
B
A
B
图2
D
O
B
C 图3
例题 Example
例7、正方形ABCD中,E是BC上一点,AE⊥EG
交∠DCH的平分线于G,
求证:AE=EG
A
D
G
B
E
C
H
例题 Example
例8、正方形ABCD中,E是BC上一点,AE⊥EG 交∠DCH的平分线于G, 求证:AE=EG
Y 11
10
9
动点坐标化
8 7
6
5
4
3
2
1
X
–8 –7 –6 –5 –4 –3 –2 –1–1 0 1 2 3 4 5 6 7 8 9 –2 –3 –4 –5 –6
复习建议:
1.引导学生从几何图形与变换的角度重新认识常见辅助线 的添加方法;
2.注重基本图形的讲解和常规方法的落实; 3.注重解题方法:类比:从特殊到一般
近几年中考考察情况
Investigate
考 查
显性: 题目以图形变换的语言叙述或图形 本身具有变换的特征.
隐性: 在解决动手操作问题或几何计算证 明题时利用图形变换的观点分析和 思考问题并能适当添加辅助线构造 所需图形解决问题.
Investigate
考 查
近几年中考试题中利用图形变换的几个方面
谢谢
Thanks
BD平分∠ ABC.
A
求证: BD + BC = AD.
D
B C
例题 Example
例5、如图,在Rt△ABC中,AD=BC,CD=BE。
能否求出∠BOE的度数?
B
O
E
A
D
C
例题 Example
在 Rt△ABC 中,∠C=90°,D,E 分别为 CB,CA 延长线上的点,BE 与 AD 的交点为 P. (1)若 BD=AC,AE=CD,在图 1 中画出符合题意的图形,并直接写出∠APE 的度数; (2)若 AC 3BD , CD 3AE ,求∠APE 的度数.
并计算 AD 的值(用含 的式子表示);
BC
(3) 在图 2 中,固定 △AOB ,将△COD 绕点O 旋转,直接写出 PM 的最大值.
B
A
M
O P
N
B
A
M
O
P
N
D
C
D
C
如图 1,在□ABCD 中,AE⊥BC 于 E,E 恰为 BC 的中点, tanB 2 .
(1)求证:AD=AE; (2)如图 2,点 P 在 BE 上,作 EF⊥DP 于点 F,连结 AF.
(1)求证:∠APB=∠BPH;
(2)当点 P 在边 AD 上移动时,△PDH 的周长是否发生变
化?并证明你的结论;
(3)设 AP 为 x,四边形 EFGP 的面积为 S,求出 S 与 x 的
函数关系式,试问 S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
A
P
D
E
H G
F
B
C
已知:△AOB 中, AB OB 2 ,△COD 中,CD OC 3 , ∠ABO ∠DCO . 连
为 BD 中点.
(1)若过点 D 作 DE⊥AB 于 E,连结 CF、EF、CE,如图 1. 设CF kEF ,则 k =

(2)若将图 1 中的△ADE 绕点 A 旋转,使得 D、E、B 三点共线,点 F 仍为 BD 中点,
如图 2 所示.求证:BE-DE=2CF;
(3)若 BC=6,点 D 在边 AC 的三等分点处,将线段 AD 绕点 A 旋转,点 F 始终为 BD
①利用平移变换证明线段的关系
②利用平移变换求点的坐标和直线解析式及取值范围
③利用轴对称变换求最短路径、求两个角和的度数; 进行有关计算和证明
④利用旋转变换(中心对称)证明两条线段的关系; 进行有关计算
学生经常遇到的问题
问题 Problem时,为什么要旋转? 2.图形具备什么条件的时候可以实现旋转? 3.旋转变换的作用是什么? 另:共线问题,指令语言问题,叙述问题等
相关文档
最新文档